
Energy-Aware Task Allocation for Network-on-Chip Based Heterogeneous
Multiprocessor Systems

Jia Huang, Christian Buckl, Andreas Raabe
fortiss GmbH

Guerickestr. 25, 80805 Munich, Germany
{huang,raabe,buckl}@fortiss.org

Alois Knoll
Technische Universität München

Boltzmannstr. 3, 85748 Garching, Germany
knoll@in.tum.de

Abstract—Energy-efficiency is becoming one of the most
critical issues in embedded system design. In Network-on-Chip
(NoC) based heterogeneous Multiprocessor Systems, the energy
consumption is influenced dramatically by task allocation
schemes. Although various approaches are proposed to allocate
tasks in an energy-efficient way, existing work does not well
explore the tradeoff between the two major power consumers,
namely the processors and network links, resulting in subop-
timal mappings from a system point of view. In this paper,
we first extend the existing Integer Linear Programming (ILP)
formulation to take both processing and communication energy
into account. Thereafter, we propose a Simulated Annealing
with Timing Adjustment (SA-TA) heuristic to accelerate the
optimization process. While the SA-TA algorithm achieves
performance very close to the global optimum, significant
improvement in computation speed is observed.

Keywords-Processor scheduling; Resource management

I. INTRODUCTION

Multiprocessor System-on-Chip (MPSoC) platforms pro-
vide both high performance and high flexibility to allow
efficient execution of a wide range of applications. Hence,
MPSoCs are believed to be the major solution of future
embedded systems [1], [2]. A major step in the MPSoC
based development process is mapping and scheduling of
applications onto the platform. Since the on-chip processing
units typically have very distinct speed/power characteristics,
it is a challenging task to find the optimal task mapping.
Moreover, various constraints need to be considered, such
as the hardware resource limitation and timing constraints.

Energy efficiency is one of the most critical design issues
in embedded systems. For this reason, energy-aware task
allocation becomes an active research topic [3], [4], [5], [6].
Existing studies that tackle this problem can be categorized
into two main branches: software partitioning, which assigns
each task to a particular processor statically, and dynamic
scheduling, which relies on a global scheduler to select an
appropriate processor at runtime to execute a ready task.
Due to the simplicity in design and implementation, the
partitioning approach is more common [7]. In this paper,
we focus on the partitioning problem.

The dynamic energy consumption of a processor increases
quadratically with its operating frequency. Hence, using

a multiprocessor system, in which the execution can be
distributed to a set of slower and low energy consuming
cores, can lead to significant energy reduction. Nowadays,
multiprocessor chips with more than hundred cores already
exist in the market. We emphasize that, in such systems, the
on-chip network consumes a substantial portion of the power
budget. For example, in the Alpha 21364 processor, on-chip
routers and links consume 20% of the system power [8].
Another example is the MIT Raw, in which communication
power takes up to 36% of total power. Hence, to pursue
the system-level optimal solution, it is essential to consider
the task processing power and the communication power
together. However, the optimal mapping that minimizes
one part is often sub-optimal for the other part. A typical
situation is that the designer must evaluate the tradeoff
between processing and communication power. Moreover,
the hardware resource limitations and Quality of Service
(QoS) requirements of applications can not be ignored.

The goal of this study is to develop an algorithm for
efficient computation of the system-wide energy-optimal
task allocation for heterogeneous MPSoC systems. The main
contribution of this paper is an ILP formulation extended
from existing work and a novel Simulated Annealing with
Timing Adjustment (SA-TA) heuristic. Experimental results
show that the SA-TA heuristic achieves performance very
close to global optimum and in the mean time much higher
execution speed than ILP-based solutions.

The rest of this paper is organized as follows. Section II
introduces the task model and architecture model used in this
paper. The motivation of our work is explained in section III
using an example. Section IV provides an ILP formulation of
the problem and section V presents the details of the SA-TA
heuristic. Experimental results are presented in section VI.
A comparison of this work with related work is discussed
in section VII and section VIII concludes this paper.

II. TASK MODEL AND ARCHITECTURE MODEL

This work considers streaming applications represented
using Task Graphs. A TG is a Directed Acyclic Graph
(DAG), whose vertices V represent tasks to be executed
and edges E capture data dependencies between tasks. Each



vertex vi is annotated with three vectors: Ei contains the
energy consumption of task vi on each feasible processor,
Ci contains the respective execution time and Mi contains
the respective memory consumption. The execution time can
be worst case execution time for hard real-time tasks or
average execution time for soft real-time tasks. Each vertex
may have a relative deadline d, which specifies the latest
tolerable finishing time with respect to the start time of TG.
For an edge ei,j ∈ E between source task ti and target
tj , the size of the data (called token) to be transfered is
annotated by Wi,j . The communication cost is assumed to
be zero if both ti and tj are assigned to the same processor.

The hardware platforms we considered are NoC-based
heterogeneous MPSoCs. Each node pi in the model consists
of a processor, a memory component and a communication
facility, e.g. a router. Figure 1 shows a 2D-mesh NoC
example with 3x3 nodes of two different types. The location
of each node is determined by a pair of coordinates(xi, yi)
in terms of hops, which is the distance between two adjacent
nodes. A function Ω is provided in the model to compute
the distance between two nodes. In case of 2D-mesh,
the distance between pi and pj is the Manhattan distance
according to the routing path:

Di,j = abs(xi − xj) + abs(yi − yj)

While any topology can be involved in this architecture
model (as long as Ω is available), we concentrate only on
2D-mesh structure in the paper, since it is the most common
setup of MPSoC Platforms.

Minimal-path routing is assumed in this paper, which
indicates that the distance reflects the effort of communi-
cation. A linear model used in [9] is adopted to estimate
the communication cost in the mesh network. Let ε and τ
denote the cost in terms of energy and time respectively for
transferring a token with unit size between two nodes with
unit distance (1 hop). Then the energy and time consumption
to convey a token with W units between two nodes pi
and pj is estimated by εWDi,j and τWDi,j , respectively.
As pointed out in [9], this model works well for today’s
MPSoCs with high-bandwidth on-chip networks.

III. MOTIVATING EXAMPLE

This section discusses our motivation using an example.
We emphasize that traditional techniques, which either con-
sider only one of the two major power consumers or consider
both but ignore the tradeoff between them, can not guarantee
global optimality.

Assume our job is to allocate a 4-node linear task graph
(t1 . . . t4 in figure 2b) to a 3x3 2D mesh MPSoC platform
consisting of 5 types of processors (figure 2a). The indices
of processors in figure 2a indicate the type and ID, e.g. P1,x

labels the xth processor of type 1. The processing costs for
executing each individual task on each type of processors
are listed in 2c. As we can see, each task clearly has a

Figure 1. An example 2D-mesh NoC

preferred processor, e.g. it is much more efficient to execute
t1 on P1.x. The communication is assumed to have cost 1
per unit payload per hop.

Traditional approaches that minimize the processing
power only may produce a task mapping as in figure 2d).
As we can see, each task is mapped to its preferred type
of processor. More sophisticated approaches try to reduce
the communication cost without influencing the processing
cost, i.e. explore different spatial allocation while fixing the
task-to-processor-type mapping. For example, this strategy
is used in [10]. Figure 2e shows the improved mapping
(communication cost reduces from 29 to 23). However, if
we further examine the mapping in 2e, it can be found that
the desirability of mapping t3 to its preferred processor P3,x

is not very high, since the difference between execution cost
of t3 on P3,x and that on P5,x is only 6. It the same time,
mapping t3 to P3,1 generates significant communication
cost. Hence, it is more efficient to assign t3 to P5,1 such
that 10 units power saving from communication is achieved
with the tradeoff of 6 units lost from processing (figure 2f).

The lesson from this example is that it is particularly
important to take the tradeoff between the processing and
communication power into consideration while computing
task allocation. However, due to the high complexity of the
problem, most existing work such as [10] uses step-wise
approaches and does not well explore this tradeoff. As to the
motivating example, only mapping 2e can be found, which is
however suboptimal from a system point of view. In contrast,
the proposed approach always considers the system-level
power consumption.

IV. ILP FORMALISM

In [6], the authors present an ILP formulation of the
task allocation problem. However, only the task processing
energy is considered. This section presents an extended
version that takes communication power into account.



Figure 2. An Motivating Example

Let P denote the set of processors and T the set of tasks to
be allocated. For each task t ∈ T , the binary variable xi,m is
set to 1 iff ti is assigned to processor pm and 0 otherwise.
The binary variable pi,j denotes the execution precedence
between ti and tj . pi,j is 1 iff ti executes before tj and 0
otherwise. For each tasks ti, two integers si and fi are used
to denote the starting and finishing time (relative to the start
time of current iteration of the TG).

ILP Constraints. The ILP problem is incorporated with
following constraints:
• Each task is assigned to exactly one processor,

i.e.
∑

pm∈P
xi,m = 1,∀ti ∈ T

• No more memory is allocated than available.
• Task dependencies. Let src(e) and tgt(e) denote re-

spectively the source and destination of an edge e ∈ E
in task graph. Then the start time of tgt(e) must be no
earlier than the finishing time of src(e) plus the token
transfer latency. For tasks with data dependencies, the
precedence variables are automatically determined, i.e.
psrc(e),tgt(e) = 1, ptgt(e),src(e) = 0,∀e ∈ E

• If two tasks ti and tj are mapped to the same processor,
they must be executed sequentially, i.e. either pi,j or
pj,i is one and the execution time must not overlap.

• If task ti has a deadline di, the finish time of ti should
be no later than the deadline.

• Intrinsic constraints: pi,j and pj,i can not be 1 at the
same time. pi,j = pj,i = 0 means that ti and tj are
executed simultaneously on two different processors.

• Prerequisites. Some tasks may have fixed mappings
(e.g. to dedicated accelerators) or may be impossible
to be executed on some processors.

Objective Function. As pointed out before, our goal is to
minimize the system-level energy consumption. Hence the
objective function is defined as:

Minimize : Ep + Ecom

where Ep is the processing energy and Ecom is the com-
munication energy. Let Ei,m denote the energy needed to
execute task ti on processor pm, We be the token size in
edge e and Dm,n be the distance between processor pm
and pn, the processing and communication energy can be
computed as follows:

Ep =
∑
ti∈T

∑
pm∈P

xi,m · Ei,m (1)

Ecom =
∑
e∈E

∑
pm∈P

∑
pn∈P

εWeDm,nxsrc(e),m · xtgt(e),n (2)

where ε is the amount of energy needed to transfer a token
with unit size along a path with unit distance.

Incorporating DVS-enabled processors. Dynamic Volt-
age Scaling (DVS) is a popular technique to reduce the task
processing power. In our framework, different DVS modes
of a DVS-enabled processor can also be incorporated. Each
mode of a processor is defined as a separate processor type.
In this case, multiple processors may reside in the same
location in the architecture graph. Additional constraints are
introduced to guarantee that different modes of the same
processor are not enabled simultaneously. Assume that a
processor has L DVS modes, the following constraints are
introduced, saying that two tasks, which are mapped to
different modes of the same processor, can not be executed
simultaneously:

pi,j + pj,i = 1, if xi,m = xj,n = 1,∀m,n ∈ L, ti, tj ∈ T

V. HEURISTIC ALGORITHM

Since the computational complexity of ILP grows rapidly
as the problem becomes more complex, an efficient heuristic
algorithm is necessary. Because of the high complexity and
huge search space in the problem, we target on providing
a scalable algorithm, where the user can configure the
algorithm base to their need. The proposed approach is an
extended Simulated Annealing (SA)[11] algorithm called
SA-TA (SA with Timing Adjustment (TA)), the pseudo code
of which is provided in algorithm 1. A mapping is denoted
in algorithm 1 using π : T → P .

Instead of starting the SA optimization from a random
mapping, we first computes a baseline mapping, which
is a rather intuitive yet very good mapping serving as
the starting point of the SA optimization process. The
hardware architecture is also taken into consideration right
from beginning. The concept of desirability is adopted from
[10], which is defined as the difference between the cheapest
assignment (in terms of processing power only) for a specific
task ti and the second cheapest assignment for ti. The idea
of desirability is to consider the task with highest gain
first, in order to prevent its preferred processor from being
occupied by other tasks. Before computing the mapping,
all tasks in the task graph are sorted in decreasing order
of desirability. For the motivating example, the mapping



sequence is t1, t4, t2, t3. The task with highest desirability
t† is first assigned to a processor p† with lowest processing
energy (the preferred type). If multiple processors of the
same type exist, the one that minimizes the communication
cost of t† is chosen, assuming that tasks communicating with
t† are mapped to their preferred type nearest to p†. Consider
the motivating example, task t1 is assigned to processor
p1,2 instead of p1,1, since p1,2 is closer to p2,x, which is
preferred by task t2. The next task to be assigned (denoted
by ti) is allocated to the processor that has enough resources
(e.g. memory) and minimizes the total energy considering
the communication with tasks that are mapped previously.
Assume Qi is the set of already allocated tasks which have
dependency with ti, the processor minimizes the following
term is chosen to execute ti:

E = Ep+Ecom = Ei,π(i)+
∑
j∈Qi

εWπ(i),π(j)Dπ(i),π(j) (3)

This procedure is done until all tasks are allocated. For the
motivating example, the optimal solution shown in figure 2f
is directly found in baseline mapping.

Algorithm 1 SA-TA Heuristic Algorithm
//input: task graph TG, architecture graph AG
procedure TASKALLOCATION(TG,AG)

step← 0, T ← T0
π = baselineMapping()
πopt ← π,Eopt = computeEnergy(π)
while i < N do

π′ = neighbor(π)
E = computeEnergy(π)
E′ = computeEnergy(π′)
if E′ < E then

π ← π′, E ← E′

πta = timingAdjustment(π′)
Eta = computeEnergy(πta)
if isFeasible(πta) and Eta < Eopt then

πopt ← πta, Eopt ← Eta
end if

else
if P (E,E′, T ) > random() then

π ← π′, E ← E′

end if
end if
T ← λT, i← i+ 1

end while
return: πopt, Eopt

end procedure

Starting from the baseline mapping, in each optimization
iteration of SA-TA, a neighbor solution π′ (a solution is
in our case a task-to-processor mapping) of the current
solution π is generated by the neighbor() function. In our
algorithm, the neighbor() function removes the mapping

of a randomly selected task from π and re-map it to a
random processor. Then, the energy consumption of the
newly generated mapping (E′) and that of the original
mapping (E) is computed. An acceptance probability
function P (E,E′, T ) is used to determine if the transition
from π to π′ is accepted, where T is a global parameter
called temperature. The P function we used is:

P (E,E′, T ) =

{
1 if E′ < E

e(E−E
′)/T otherwise

When the new mapping is more energy-efficient (E′ < E), it
is always accepted. When the new mapping is worse than the
current mapping, probability still exists that it is accepted.
This feature is essential for SA algorithm to prevent it from
being stuck at a local optimum. This optimization process
continues until it reaches the total number of iterations N
configured by the user. The temperature T is decreased after
each iteration by multiplying itself with a cooling factor λ
(λ < 1), which is computed based on N :

λ = (Tn/T0)(1/N)

where T0 is a very large and Tn is a very small number
compared with E and E′. The temperature is initialized to
T0 and will reduce to Tn as the optimization completes.
We extend the SA algorithm by introducing a timing ad-
justment phase, whose aim is to fine-tune the timing of
an accepted mapping π′ to meet the timing constraints.
TA keeps the mapping unmodified if π′ meets the deadline
already. Otherwise, it examines mappings near π′ to find a
new solution that can improve the timing. The details of TA
will be introduced shortly. The adjusted mapping πta is then
checked for feasibility (i.e. if all timing/system constraints
are met) and the feasible mappings are compared to find
the best mapping so far. Note that TA has no impact on the
searching path of the SA algorithm. The output of the entire
algorithm is the global best mapping with the corresponding
task execution schedule.

Timing Adjustment. After explaining the major steps
in the heuristic, we now present the details of TA phase.
To obtain the timing properties, we use a level-based list
scheduling algorithm to schedule the task graph. Any other
schedulers (e.g. the one used in [5]) can also be adopted.
As mentioned before, the goal of timing adjustment is to
explore the search space near an accepted mapping π′ to
find a feasible mapping πta that minimizes E(πta)−E(π′).
This step is done as follows. Iterating over each of the tasks,
we remove the assignment of a task ti and check if a speedup
can be obtained by re-mapping ti to another processor. If the
current mapping is already the fastest, we proceed with the
next task. Otherwise, the re-mapping of ti with the highest
efficiency is remembered (but is not adopted directly). The
efficiency η is defined as the ratio of the speedup gain and



the energy lost.

η =
Ci,π′(i) − Ci,πta(i)

E(πta)− E(π′)

Where C denotes the execution times. This procedure is
done for all tasks. Then the re-mapping with the highest
efficiency among all tasks is applied. Note that the efficiency
defined above is possibly a negative quantity, which means
we find a new mapping that achieves both speedup and
energy reduction. Hence, negative efficiency is considered
’higher’ than positive efficiency. This procedure continues
until the deadline is met or no improvement can be found for
all tasks. In the former case, the final mapping is the output
of timing adjustment, and in the later case, the problem is
reported as unfeasible. In extreme cases, timing adjustment
phase can be applied directly upon baseline mapping to
obtain fast results.

VI. EXPERIMENTS

To evaluate the performance of our approach, we use tgff
[12] to generate a set of synthetic task graphs with 20± 10
nodes (tasks). We also use a real-work task graph from
automatic target recognition taken from [9]. The execution
cycles of each task on each feasible processor are generated
randomly using tgff. Execution time and energy consumption
can then be calculated according to the frequency and power
of the corresponding processor. For communication cost,
the token sizes are randomly generated, and λ is defined
in such a way that the total communication energy takes
approximately 20% of system energy [8], [9]. Here the total
communication cost is estimated by assuming the distance
between each pair of communicating tasks to be the average
distance in the architecture graph. The hardware model is
the same as used in the motivating example, i.e. a 3x3 mesh
MPSoC with 5 types of processors.

We use 10 task graphs in total and compare the following
three cases: ILP1 is the ILP formulation without consid-
ering communication energy, i.e. the objective function is
minimizing Ep; ILP2 is the ILP formulation that minimizes
system energy Ep + Ecom; the Heuristic is a simplified
version of SA-TA that applies timing adjustment directly
upon baseline mapping, i.e. the SA based optimization is
completely bypassed. Figure 3 summarizes the experimental
results. As can be seen, for all task graphs, the processing
energy in ILP2 is higher than in ILP1. Nevertheless, by
sacrificing processing energy, a higher amount of commu-
nication energy is saved, resulting in a drop in system-wide
energy consumption. Averaging over 10 TGs, 15% energy
saving is achieved. The simplified heuristic algorithm also
outperforms ILP1. The reason is that the communication
energy is considered and the Ep−Ecom tradeoff is partially
explored (recall that the tasks are iteratively mapped based
on partial mapping using equation 3). On average, 11%
energy is saved compared to ILP1.

Figure 3. Experimental Results for Evaluating Tradeoff between Ep and
Ecom

In the next step, we focus on evaluation of the heuristic
algorithm. As pointed out in section III, existing work
that uses a step-wise approach ignoring the Ep − Ecom
tradeoff may lead to sub-optimal solutions. For comparison,
we implement a special step-wise version of the heuristic
(denoted by Algo A), in which the tasks are first assigned
to their preferred types of processors and the SA algorithm
afterwards only search for better spatial alternatives. Algo B
is the proposed SA-TA heuristic with a random mapping as
starting point. Algo C is SA-TA with baseline mapping as
the starting point.

For each task graph, the heuristic is executed 1000 times,
from which the average result is taken. The energy con-
sumption is normalized to the global optimum of respective
task graph obtained from ILP2 (denoted by Eopt). Figure
4 summarizes the results averaging over 10 task graphs,
with x axis showing the number of optimization iterations
and the y axis showing the normalized energy consumption.
Comparing Algo A and Algo B, we observe that the unified
approach outperforms the step-wise approach in almost all
cases. The only case in which the step-wise approach shows
a better performance is when the number of optimization
steps are extremely small (100 steps). However, this use
case is rare since the SA-based optimization is not expected
to perform well due to limited iterations. The results also
shows clearly the benefit of baseline mapping. For example,
with a 100-iterations SA, an average result of 110%Eopt
is obtained from Algo C and the result is only 120%Eopt
for Algo B. As the refinement steps increase, both Algo B
and Algo C show performance close to the global optimum
(e.g. 102%Eopt is achieved with 1000 iterations), whereas
the performance of Algo A is far from that (only 111%Eopt).

The top-most curve in figure 4 (labeled by Far Neighbor)
illustrates the results when two nodes in the task graph are
re-mapped randomly in the neighbor() function. As it can be
seen, the performance degrades dramatically compared with



Figure 4. Performance Evaluation of Heuristic Algorithm without Timing
Constraints

the the other cases, in which only one task is re-mapped.
This effect complies with the general rule of SA algorithm
that the neighbor() function should provide a new solution
relatively close to the original solution [11].

In the experiments mentioned before, no timing constraint
is introduced. Now we add deadline constraints to the sink
tasks so that the complete algorithm can be evaluated.
Besides the average energy consumption, another important
metric is the success rate of the algorithm, which is the rate
that at least one valid solution that meets timing constraints
is found at the end of the algorithm. During the experiments,
we found out that the baseline mapping is already a valid
solution in most cases, resulting in a constant 100% success
rate. Since the effectiveness of baseline mapping is already
demonstrated in figure 4, we use algo B (SA starting from
random mapping) in this experiment, so that we can focus
on evaluating effectiveness of SA-TA. The solid curves show
the energy consumption normalized to the global optimum
under respective timing constraints. The dashed curves show
the success rate in percentage. We compare the performance
of two configurations: a Pure SA configuration, in which
the accepted solutions that violate the timing constraints
are abandoned, and a SA-TA setup, in which the accepted
solutions are refined by TA step.

Figure 5a, 5b and 5c summarize the results under different
deadline constraints: d1 = 1.3dmin, d2 = 1.2dmin and
d3 = 1.1dmin, respectively, where dmin is the global mini-
mum source-to-sink delay obtained from ILP2. Comparing
these results, we observe that the performance of pure SA
algorithm degrades rapidly as the timing constraints become
tighter. Figure 6 compares the performance at medium effort
(500 iterations in SA) with different deadlines. As can
be seen, the average energy consumption increases from
106.7%Eopt to 119.1%Eopt as the deadline reduces from d1
to d3. In the mean time, the success rate drops dramatically
from 94.4% to 45.2%. The reason lies in the fact that the
pure SA concentrates on finding better (concerning energy)
solutions, a lot of which are however abandoned because

Figure 5. Performance Evaluation of Heuristic Under Timing Constraints

of violation of deadlines. The performance is significantly
improved by introducing the TA phase. While the SA
algorithm leads the way to the energy-efficient solution, the
TA step actively looks around to find a near solution that
meets timing constraints. It can be seen in figure 6 that the
performance of SA-TA are 104.7%Eopt in presence of d1 and
105.5%Eopt for d3. With 1000 iterations, SA-TA achieves
the results 102.8%Eopt, 102.6%Eopt and 104.1%Eopt, un-
der constraint d1, d2 and d3 respectively.

We also performed experiments using SA-TA with base-
line mapping. We observe that the performance both in
terms of energy consumption and success rate can still be
slightly improved. These experimental results verify that
the performance of SA-TA algorithm is very close to the
global optimum even under very stringent timing constraints.
Further performance improvement can be achieved in two
ways. First, the optimization iterations can be increased.
Second, the heuristic can be executed multiple times for
the same problem in order to discover a concrete optimal
solution. The high execution speed of our algorithm makes
it convenient to do so. While the typical solving time of ILP



Figure 6. Performance Comparison over Different Deadline Constraints

Execution Time (ms) for TG3 (26 nodes, 28 edges)
#Iterations No TC, 1.3dmin, 1.2dmin, 1.1dmin,

No TA with TA with TA with TA
100 7 8 10 11
500 26 58 85 77

1000 45 107 136 320

Table I
EXECUTION TIME OF SA-TA HEURISTIC

is multiple minutes up to several hours (in the complexity
of our experimental setup), execution of SA-TA takes less
than a second. The average execution time (in milliseconds)
under several configurations (e.g. the number of iterations,
with/without TA) is measured and presented in table I. Due
to the space restriction, we present only the results for the
most complex task graph used in the experiment (TG3). The
execution time is measured on a work station with 2.2GHz
CPU and 1GB memory. Since the TA procedure terminates
when the deadline is met, the execution time under tighter
deadline constraints may become longer. Comparing with
recent work [13], in which the proposed heuristic takes
seconds to allocate task graphs of much smaller size, our SA-
TA algorithm achieves much higher execution speed, which
is the key to enable efficient Design Space Exploration
(DSE).

VII. RELATED WORK

Energy-aware task allocation for multiprocessor systems
has been extensively studied in existing work. In this section,
we review several relevant approaches and provide a compar-
ison concerning three main factors, namely if the hardware
platform is homogeneous or heterogeneous, whether or not
task-dependencies are considered, and if the communication
cost is considered (table II).

Xian et al studied the scheduling problem for a set of
independent tasks on homogeneous MPSoCs [14]. Since the
actual execution time of a real-time task may vary, e.g.
depending on different inputs, the authors suggest taking the
probabilistic distribution of the execution time into account
to derive energy-efficient schedules. Chen et al presented a
compiler-based application mapping framework in [4]. Their

target applications are array-based loop-intensive applica-
tions and they focus on homogeneous MPSoCs with 2D-
mesh topology. In [9], Xu et al proposed an algorithm for
mapping task graphs onto chip multiprocessors. The authors
exploited simultaneous application of pipelining and parallel
execution to schedule task graphs in an energy-efficient
manner under QoS constraints. Baruah and Anderson con-
sidered the problem of synthesizing multiple periodic tasks
on identical multiprocessors [15].

Design techniques aiming at reducing the communication
power have also been investigated. To name a few, Kim
and Horrowitz applied the DVS policy on network links
and suggested to use links with scalable voltage/frequency
levels [16]. The idea is to dynamically adjust the supply
voltage depending on the current network load. Shin et al
considered the task allocation problem in the context of
scalable links [5]. The task mapping is computed using a
genetic algorithm based approach and only homogeneous
platforms are considered. In this paper, we consider only
systems with static network links. The case for systems with
DVS-enabled links is left for future work.

While the work mentioned above considers only homo-
geneous multiprocessor systems, the case for heterogeneous
systems has become an active research topic in recent years.
Yu et al [17] studied the task allocation problem for a set of
independent tasks. Yang et al [18] presented an approxima-
tion scheme to derive near-optimal solutions for the same
problem. In [6], Goraczko et al addressed the problem with
task dependencies and proposed an ILP formulation. Our
work is different from [6] in following aspects: First, their
target platforms are loosely coupled multiprocessor systems,
whereas we focus on MPSoCs with on-chip network, in
which the network structure plays a key role. Second, they
ignored the communication latency/energy and we explicitly
take that into account. In addition, we provide an efficient
heuristic for fast computation of task mapping.

The authors in [10] consider also the case for het-
erogeneous systems with communication cost. One major
difference is that [10] focuses on run-time task mapping
whereas we focus on static allocation. In order to enable
runtime allocation, the task implementation for each possible
processor type must be available and stored in the system,
which introduces considerable overhead and therefore lim-
its the applicability of their approach. Also, the runtime
scheduling overhead can not be underestimated. Another
difference is that the task mapping is done stepwise in [10].
The task-to-processor-type mapping is firstly determined
solely depending on processing energy is kept fixed in later
steps. Our work uses a unified approach to find the task
mapping based on system-wide energy. The advantage of
using a unified approach has been demonstrated clearly in
[13]. However, the heuristic proposed in [13] needs to solve
multiple instances of modified ILP, leading to potentially
very slow execution speed. The SA based heuristic presented



reference Hetero. task dep. comm. cost
[14] × × ×
[4] ×

√
×

[9] ×
√ √

[5] ×
√ √

[17]
√

× ×
[18]

√
× ×

[6]
√ √

×
[10]

√ √ √

[13]
√ √ √

This Work
√ √ √

Table II
COMPARISON OF RELATED WORK

in this paper improves the execution speed.

VIII. CONCLUSION AND OUTLOOK

This paper presents algorithms for energy-aware task
allocation on heterogeneous multiprocessor systems. An im-
provement to existing work is that we explicitly considered
the tradeoff between processing and communication power
and use an unified approach to pursue the system-level
optimal task mapping and execution schedule. The proposed
ILP formulation can compute the global optimal mapping
but suffer from large execution time. The SA-TA algorithm
achieves performance very close to the global optimum even
under tight timing constraints (less than 5% above global
optimum using 1000-iteration SA-TA). In the mean time,
execution time is significantly reduced.

One limitation of the current work is the simplified energy
model. To incorporate a more precise energy model, the
leakage power should be considered and the power man-
agement features of the processor e.g clock gating should
be taken into account. Another direction of future work is
to consider the other side of the problem, that is, how to
find the optimal platform configuration such as processor
type and memory size for a certain task set. This is a typical
design space exploration problem. The high execution speed
of the SA-TA heuristic enables rapid DSE.

ACKNOWLEDGMENT

This work has been supported in part by the Euro-
pean research project ACROSS under the Grant Agreement
ARTEMIS-2009-1-100208.

REFERENCES

[1] J. Ceng, J. Castrillón, W. Sheng, H. Scharwächter, R. Leupers,
G. Ascheid, H. Meyr, T. Isshiki, and H. Kunieda, “MAPS: an
integrated framework for MPSoC application parallelization,”
in DAC, 2008.

[2] W. Wolf, “The future of multiprocessor systems-on-chips.” in
DAC, 2004.

[3] J. Hu and R. Marculescu, “Energy- and performance-aware
mapping for regular noc architectures,” IEEE Transactions on
CAD of Integrated Circuits and Systems, April 2005.

[4] G. Chen, F. Li, S. W. Son, and M. T. Kandemir, “Application
mapping for chip multiprocessors,” in DAC, 2008.

[5] D. Shin and J. Kim, “Power-aware communication optimiza-
tion for networks-on-chips with voltage scalable links,” in
CODES+ISSS, 2004.

[6] M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyan-
tha, and F. Zhao, “Energy-optimal software partitioning in
heterogeneous multiprocessor embedded systems,” in DAC,
2008.

[7] T. A. AlEnawy and H. Aydin, “Energy-aware task allocation
for rate monotonic scheduling,” in RTAS, March, 2005.

[8] L. P. H. Wang, X. Zhu and S. Malik, “Orion: A power-
performance simulator for interconnection networks,” in IEEE
MICRO, 2002.

[9] R. Xu, R. G. Melhem, and D. Mossé, “Energy-aware schedul-
ing for streaming applications on chip multiprocessors,” in
RTSS, 2007.

[10] P. K. F. Hölzenspies, J. Hurink, J. Kuper, and G. J. M. Smit,
“Run-time spatial mapping of streaming applications to a
heterogeneous multi-processor system-on-chip (MPSOC),” in
DATE, 2008.

[11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, 1983.

[12] http://ziyang.eecs.umich.edu/ dickrp/tgff/, “TGFF.”

[13] P. Ghosh, A. Sen, and A. Hall, “Energy efficient application
mapping to noc processing elements operating at multiple
voltage levels,” in NOCS, 2009.

[14] C. Xian, Y.-H. Lu, and Z. Li, “Energy-aware scheduling for
real-time multiprocessor systems with uncertain task execu-
tion time,” in DAC, 2007.

[15] J. H. Anderson and S. K. Baruah, “Energy-efficient synthesis
of periodic task systems upon identical multiprocessor plat-
forms,” in ICDCS, 2004.

[16] J. Kim and M. Horowitz, “Adaptive supply serial links with
sub-1 v operation and per-pin clock recovery,” in IEEE
International Solid-State Circuits Conference, 2002.

[17] Y. Yu and V. Prasanna, “Power-aware resource allocation
for independent tasks in heterogeneous real-time systems,”
in ICPDS, Dec. 2002.

[18] C.-Y. Yang, J.-J. Chen, T.-W. Kuo, and L. Thiele, “An approx-
imation scheme for energy-efficient scheduling of real-time
tasks in heterogeneous multiprocessor systems,” in DATE,
2009.


