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Abstract

A robot that interacts with a human has to be able to interpret information from

various input channels: it needs to understand and analyse the utterances by the

human, it has to keep track of its own environment using sensors, and it needs

to incorporate background knowledge about the task it was built for. Typically,

a human-robot interaction system has various specialised system components that

implement these abilities. Thus, the robot also needs to merge the information from

its input channels so that it is able to complete its assigned task. This integration

of information from input channels is called multimodal fusion.

This thesis presents two approaches for multimodal fusion for a robot that jointly

cooperates with a human partner. The first approach, which is called classical

multimodal fusion, focusses on processing human utterances. For that, the robot

processes speech and gestures of its human partner using methods from classical

artificial intelligence to yield logical representations of the utterances. Following

that, these representations are enhanced with further information from other input

modalities of the robot. In contrast to that, in the second approach the robot

generates representations for its own actions in relation to objects in its environment,

so-called embodied multimodal fusion. Here, the system uses the data from its input

channels to evaluate the relevance of its own actions for a given context.

After a literature review, this thesis discusses the theoretical basis of both multi-

modal fusion approaches and presents how these methods can be implemented on a

robot that is able to work together with a human on a common construction task,

for which it processes multimodal input. These implementations were used in three

human-robot interaction studies, in which näıve subjects worked together with the

robot. The experiments were executed to study different aspects of joint action

between human and robot.

The results of the experiments reveal several interesting facts: the first experiment

studies how the robot can explain building plans to the human. The results of the



study show that the users preferred a plan explanation strategy in which the robot

first names the target object and after that explains the single building steps. The

first as well as the second experiment study the generation of referring expression

in two different contexts. The results of the studies suggest that experiment partic-

ipants rate the robot as a better dialogue partner when the robot makes full use of

context information to generate referring expressions. Finally, the third experiment

studies how humans perceive different roles of the robot in the interaction. The

study shows that the users equally accept the robot as an instructor or as an equal

partner and simply adjust their own behaviour to the robot’s role.



Zusammenfassung

Ein Roboter, der mit einem Menschen interagieren soll, muss in der Lage sein Da-

ten aus unterschiedlichen Eingabekanälen zu verarbeiten: Er muss die Äußerungen

des Menschen verstehen und verarbeiten können, mit Sensoren seine Umgebung

überwachen und er muss mit Kontextinformationen über die Aufgabe, für die er

programmiert wurde, umgehen können. Üblicherweise werden diese unterschiedli-

chen Fähigkeiten in einem Mensch-Roboter-Interaktionssystem durch spezialisierte

Einzelteile realisiert. Daher muss der Roboter auch in der Lage sein die Informatio-

nen aus seinen Eingabekanälen zu integrieren. Diese Integration von Informationen

aus Eingabekanälen wird multimodale Fusion genannt.

In dieser Arbeit werden zwei Ansätze für multimodale Fusion für einen Roboter,

der mit einem Menschen zusammenarbeitet, vorgestellt. Der erste Ansatz, die so-

genannte classical multimodal fusion, ist auf die Verarbeitung von menschlichen

Äußerungen fokussiert. Hier verarbeitet der Roboter die Sprache und Gesten sei-

nes menschlichen Partners mit klassischen Methoden der künstlichen Intelligenz um

eine logische Repräsentation der Äußerungen zu erstellen. Anschließend wird die-

se Repräsentation mit Kontextinformationen von anderen Eingabemodalitäten des

Roboter angereichert. Im Gegensatz dazu generiert der Roboter bei dem zweiten

Ansatz, der sogennanten embodied multimodal fusion, Repräsentationen die seine

eigenen Handlungen in Bezug zu Objekten in seiner Umgebung stellen. Die Infor-

mationen aus den Eingabekanälen des Roboters, zu denen auch die menschlichen

Äußerungen gehören, verwendet der Roboter dazu, die Relevanz seiner eigenen Ak-

tionen für einen gegebenen Kontext zu bewerten.

Nach einer Literaturrecherche werden in dieser Arbeit zunächst die theoretischen

Grundlagen für die beiden vorgestellten Ansätze zur multimodalen Fusion diskutiert

und eine Implementierung auf einem Roboter vorgestellt, der in der Lage ist mit

einem Menschen zusammen an einer gemeinsamen Aufgabe zu arbeiten und dabei

multimodale Eingaben verarbeitet und auch multimodale Äußerungen generiert. Die



vorgestellten Implementierungen werden dazu verwendet um drei Mensch-Roboter-

Interaktionsexperimente durchzuführen, in denen unbefangene Versuchspersonen

mit dem Roboter zusammenarbeiten. Diese Experimente dienen dazu verschiede-

ne Aspekte der Zusammenarbeit zwischen Mensch und Roboter zu erforschen.

Die Experimente zeigen mehrere interessante Ergebnisse: Das erste Experiment

zeigt, dass die Benutzer es bevorzugen, wenn der Roboter beim Erklären von Bau-

plänen zuerst das zu bauende Zielobjekt benennt und erst danach die einzelnen

Bauschritte erklärt und nicht umgekehrt. Sowohl das erste als auch das zweite Ex-

periment zeigen, dass die Menschen den Roboter als besseren Dialogpartner wahr-

nehmen, wenn dieser beim Benennen von Objekten in seiner Umgebung Ausdrücke

verwendet, die Kontextinformation mit einbeziehen. Dies konnte in zwei verschie-

denen Kontexten gezeigt werden. Das dritte Experiment zeigt, dass die Versuchs-

personen keine klare Präferenz haben, welche Rolle der Roboter in der Interaktion

einnimmt (sei es als Instrukteur oder als gleichberechtigter Partner), sondern einfach

das eigene Verhalten an das des Roboters anpassen.
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Chapter 1

Introduction

The research area of human-robot interaction has the central goal to build robots that are able

to communicate with humans. For that, a robot must have many abilities: it needs to recognise

human utterances and the environment in which it is situated, it needs to have knowledge about

the context of the interaction it is involved in, and it needs to be able to manipulate objects

in its environment and to communicate to its human partner. Furthermore, the robot needs to

integrate all of this information in order to successfully interact with a human, a process that is

called multimodal fusion. The goal of multimodal fusion is to enable a robot to understand the

information from various input modalities and to combine this information into an integrated

representation so that the robot is able to perform its designated task.

For humans, multimodal fusion seems natural and easy to do, but consider the following

example to see how much context knowledge and various abilities you need for multimodal

fusion: you are sitting in a café. A woman at the table next to you points at your table and

asks “Can I borrow this from you?”. In this simple interaction you already need to be able to

understand the language the other person is speaking and you need to see that she is using a

pointing gesture to refer to an object on your table. Furthermore, you need to have context

knowledge: for example, if there is a salt shaker and a sugar sprinkler on your table, you

probably will have a look on the asker’s table to see if she wants to drink a coffee or to eat

soup. Thus, in multimodal fusion there are some challenges to master, which can be roughly

separated into three categories:

• Varying input data. Multimodal fusion for human-robot interaction needs to handle data

from very different input modalities. For example, the robot could have input channels

with which it recognises human utterances, such as speech and gestures, but at the same
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time it needs to handle information about its environment and about its assigned task,

such as data from object recognition and task planning.

• Unreliable input. Typically, the data from input modalities is erroneous and unreliable.

This is due to the fact that robots are situated in the real world, which is constantly

changing. Thus, reliable signal processing for human-robot interaction is a complicated

task that is hard to achieve.

• The human factor. Humans are very efficient when they interact with each other. The

utterances they use to communicate are very fast and hard to detect. Also, in spoken

language, people tend to use grammatically incorrect sentences or to leave out parts of

sentences. However, humans are still able to successfully communicate their intentions.

Researchers in human-robot interaction attempt to solve these challenges with different

approaches: on the one hand, they use methods from artificial intelligence, which use logical

calculus or rule-based approaches to reason about facts. On the other hand, they use statistical

methods that need data to train models, which can then be used to recognise unknown data.

Both of these approaches have been successfully applied in other fields, for example in expert

systems that use methods from artificial intelligence and in search engines that use statistical

methods to index and search the internet. However, we argue that these approaches do not

perform well in human-robot interaction, because methods from artificial intelligence need a

well-defined environment to work with, which is not true in the dynamically changing real world,

and statistical methods need huge amounts of annotated data, which is not only cumbersome

to collect but there is also the problem that humans all react differently when they interact

with a robot.

In the last years, there has been a new research direction in robotics, which is called em-

bodiment (or sometimes “nouvelle artificial intelligence”). The central idea of embodiment is

that an artificial agent that should show cognitive skills needs to have a physical body in the

real world. Embodiment defines intelligent behaviour as a reasonable reaction by the agent

to stimuli of its environment, which involves using sensors (eyes, ears, . . . ) and manipulators

(arms, legs, . . . ) to explore the environment. Embodiment has been mainly applied success-

fully to sensorimotor coordination, for example for bipedal walking, where the clever use of the

environment can be used to reach more stability. With these successes in mind, in this thesis we

follow a central question: can we combine embodiment with methods from artificial intelligence

to yield a more robust approach for multimodal fusion in human-robot interaction?
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1.1 Thesis Goals

The main goal of this work is to develop a new approach for multimodal fusion that is tai-

lored towards human-robot interaction. This approach should combine methods from artificial

intelligence with ideas from embodiment to yield a multimodal fusion method that is robust

enough to handle the uncertainties of the real world but still uses logical reasoning, for example

to process speech or to plan system actions.

To realise this goal, we are using a robot that is able to work together with a human on a

common task. On this robot, we first show an approach for multimodal fusion that is based

on methods from artificial intelligence. After that, we develop the theoretical basis for a new

multimodal fusion approach to show how data from low-level and high-level input channels can

be integrated in a general way. We implement this new approach for multimodal fusion on

the same robot as well so that we can compare the approaches to each other to analyse their

strengths and weaknesses.

Concretely, the new approach for multimodal fusion should have the following properties:

• Robustness. The environment of a robot is marked by uncertainty: the input sensors by

the robot can be disturbed or the recognition modules of the robot can report erroneous

results. Additionally, unexpected events can occur in the robot’s environment. The robot

needs to have strategies so that it can complete its assigned task robustly, even if it

encounters the problems mentioned above.

• Integration of environment-related and task-related data. A method for multimodal fusion

for human-robot interaction does not only need to integrate the information from human

utterances, for example speech and gestures. It also needs to be able to relate this

information to the current state of the robot’s environment and its assigned task. For

this, the method needs to make use of context information as much as possible.

• As fast as possible processing. Humans will only accept robots if the robot is reacting

fast to what they say or do. Most confusion in the interaction between human and robot

arises when the robot is either not reacting at all or if it needs too much time to react

on what the user says. Therefore, an approach for multimodal fusion for human-robot

interaction has to work not only in theory, it must also be possible to implement it on a

robot and to run with a reasonable speed.
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• Reusability. Setting up a robot to work in a given context is a labour-intensive and time-

consuming task. Therefore, it would be desirable to have robots that can work in different

contexts without completely changing them.

1.2 Thesis Constraints

The field of multimodal fusion is broad and in this work we do not have unlimited time.

Therefore, we have to make some constraints that define, how far we can go in this thesis:

• Collaborative robot. We develop approaches for multimodal fusion for a robot that works

together with a human. That means that the robot has pre-installed knowledge about the

common task it should achieve together with the human and it needs to be able to talk

about the task and to understand utterances by the human that relate to the common

goal. Human and robot will not have a free interaction about arbitrarily chosen topics.

• Goal-oriented robot. Our approaches for multimodal fusion should enable a robot to reach

defined goals. In our opinion, any intelligent agents needs to have a goal in order to show

a meaningful behaviour. That means that we do not develop methods that show how

multimodal fusion can be done in general, but we produce multimodal fusion approaches

with keeping in mind that they should work on a goal-oriented robot.

• Joint-Action Scenario. The main scenario for the thesis will be the scenario by the JAST

project, which mainly funded this work. The scenario is described in the background

section in Chapter 2.

• Input processing, not input recognition. The work in this thesis is oriented towards en-

abling a robot to process the utterances by a human and to integrate them with infor-

mation from the robot’s environment, but we will not develop new methods for input

recognition, for example speech or gesture recognition.

• Scenario language is English. We will focus on English language processing because of

the international direction of the project from which this thesis was funded.

1.3 Thesis Structure

Chapter 2 introduces the JAST project from which we use the robot to show implementations of

our multimodal fusion approaches. Furthermore, this chapter contains references to related work
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from multimodal dialogue systems, cognitive architectures and robot architectures, human-

robot interaction, spoken language processing, and embodiment, which influenced our work.

Chapter 3 describes the theoretical framework of the two approaches for multimodal fusion

that we developed for this thesis. The first approach uses methods from artificial intelligence

and is focussed on integrating human utterances, including speech and gestures. The second

approach combines ideas from artificial intelligence and embodiment. This approach is centred

around the idea that the robot as a cognitive agent should evaluate its own actions at any given

moment in an interaction to select the action it should execute next.

Chapter 4 gives an overview of the implementation of the two approaches for multimodal

fusion on the JAST robot. The chapter describes the software architectures of the two imple-

mentations and shows processing examples for an interaction between a human and the JAST

robot, which clarify how the different multimodal fusion approaches handle the data of the

robot’s input channels.

Chapter 5 presents three evaluation studies in which we used our two multimodal fusion

approaches. The results of these experiments show how both methods can be applied to realise

a successful human-robot interaction between näıve subjects and the JAST robot. Furthermore,

we use these studies to research various aspects of joint action.

Finally, Chapter 6 concludes this thesis with a list of the main contributions of this thesis.

It also gives an outlook on future research directions of the new multimodal fusion approach.

1.4 Terms and Abbreviations

Throughout this thesis we will use a set of terms, which are explained in this section. The

abbreviations that we used in the text are listed in Table 1.1.

• Input channels and modalities. We call each source that provides information about the

robot’s environment input channel or modality. An input channel or modality can be a

recognition module for human utterances (e.g. speech or gesture recognition), a component

for image processing (e.g. object recognition), or a module that provides information about

the robot’s task (e.g. task planner or goal inference).

• Objects, target objects, and pieces. For the evaluation of our approaches we are using

a scenario in which a human and a robot together build objects from a wooden toy

construction set. Hence, we have to clarify the meaning of several terms that relate to
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objects as concepts and objects in the case of the scenario. We use the term object when

we talk about objects as entities in a general way. The robot we are using to demonstrate

our implementation is able to work together with a human and to build assemblies from

a wooden toy construction set. We use the term target object when we talk about these

assemblies, and we use the term piece to talk about the single parts of the toy construction

set.

AI Artificial Intelligence

CCG Combinatory Categorial Grammar

CMF Classical Multimodal Fusion

EMF Embodied Multimodal Fusion

GOFAI Good Old-Fashioned Artificial Intelligence

HCI Human-Computer Interaction

HRI Human-Robot Interaction

Ice Internet Communication Engine

JAST Joint-Action Science and Technology

MF Multimodal Fusion

OAC Object Action Complex

Table 1.1: Abbreviations used in this thesis.
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Chapter 2

Background and Related Work

In this chapter, we set the background for our work. In Section 2.1, we introduce the JAST

project, in which most of this work was developed and implemented. After that, In Section 2.2

we review literature from various research directions that influenced our work.

2.1 The JAST project

JAST1 was a European project that was funded in the FP6 call for cognitive systems. The

acronym JAST stands for Joint-Action Science and Technology. The main goal of JAST was

to develop inanimate cognitive agents that are able to collaborate with a human on a common

task. For that, JAST united researchers from the fields of cognitive psychology, computational

linguistics, neurology, psycholinguistics, and robotics.

2.1.1 JAST Robot

In Munich at the Technische Universität München, a robot was built on which the research

results of JAST were implemented. Figure 2.1 shows the JAST robot, which has a pair of

manipulator arms with grippers, mounted in a position to resemble human arms, and an ani-

matronic talking head [78] capable of producing facial expressions, rigid head motion, and lip-

synchronised synthesised speech. The robot can recognise and manipulate pieces of a wooden

toy construction set called Baufix, which are placed on a table in front of the robot. A human

and the robot work together to assemble target objects from Baufix pieces, coordinating their

actions through speech (English or German), gestures, and facial expressions.

1For videos and pictures of JAST please refer to http://www6.in.tum.de/Main/ResearchJast
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Figure 2.1: The JAST robot.

2.1.2 JAST Robot Architecture

The architecture of the JAST robot is composed of a set of modules that implement its abilities.

The communication between the system parts is realised with the Internet Communication

Engine [45]. Figure 2.2 shows the last version of the JAST architecture that was used for the

final system evaluation [36]. The architecture is separated into four layers: the input layer holds

the input channels of the robot, modules in the interpretation layer take the information from

the input modules and process them so that the system components of the reasoning layer can

plan robot actions, which are then realised by the modules in the output layer. In the following,

we will give a short overview of the JAST robot and cite publications for system parts when

they are available. In Chapter 3 we will introduce system parts in more detail were it is needed.

The JAST robot observes its environment by using input channels for speech recognition,

object recognition [62, 61], gesture recognition [89, 90], and head tracking. The broker collects

the information from these channels centrally and distributes it to other parts of the robot. For
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Figure 2.2: JAST robot architecture.

example, the world model gets information from object recognition, keeps track of objects in the

robot’s environment, and provides interfaces to query this information. The second module that

gets information from the broker is multimodal fusion (MF)—the module that was developed

in this thesis. The task of multimodal fusion is to integrate the information from speech and

gesture recognition with information from the world model to build an integrated representation

for further processing. In the last version of the JAST robot architecture, multimodal fusion

was also used as a communicator between goal inference and dialogue manager. This architec-

ture layout was chosen because goal inference takes information from similar input channels

as multimodal fusion and computes the next robot actions based on this information. How-

ever, the dialogue manager needs representations of human utterances, which are generated by

multimodal fusion. Hence, dialogue manager and goal inference have no direct connection, but

multimodal fusion combines the information from the input channels with computations from

goal inference and sends it to dialogue manager. Goal inference is a module which is based on

the dynamic neural fields approach [30, 11] and its task was to select the robot’s actions based

on the actions by its human partner. For that, goal inference used information from speech,

gesture and object recognition and a task planning component that contains building plans and

keeps track of the current status of a chosen plan. Multimodal fusion combines information

from the input channels and goal inference and sends it to the dialogue manager, which imple-

ments the information-state based approach to dialogue planning [55]. The dialogue manager

controls the interaction between human and robot and calculates the next robot movements

and dialogue acts. For that, on the one hand the dialogue manager uses reference generation
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[41] to compute the referring expressions the robot should use when it talks to the human; these

expressions are embedded into sentences in the presentation planning module. On the other

hand, the dialogue manager sends instructions to the output coordinator that synchronises the

robots actions with the sentences the robot should say and sends instructions to the robot’s

head [32] and body separately. In literature, this generation of multimodal output is called

fission.

2.1.3 JAST Construction Task

For the evaluations of the JAST robot system, a task was defined in which a human and the

robot jointly construct target objects from Baufix pieces. Baufix pieces can either be cubes,

bolts, nuts, or slats. Cubes and bolts can be blue, green, red, or yellow, nuts are always orange,

and bolts and slats come in the three sizes small, medium, and large. Two target objects

were defined for the joint construction task, which are shown in Figure 2.3: a windmill (Figure

2.3(a)) and a railway signal (Figure 2.3(b)). The base of both target objects is the tower

(Figure 2.3(c)) that is combined with two slats and a red bolt to form the windmill or with the

so-called l shape (Figure 2.3(d)) to form the railway signal.

During construction, the workspace in front of the robot was divided into a working area

for the human and a working area for the robot, from which only human or robot were allowed

to pick up Baufix pieces, respectively. The JAST robot is not able to build windmill or railway

signal by itself, but it can hand over pieces from its workspace to the human. For the JAST

construction task, two initial table layouts exist that define which Baufix pieces have to be placed

in the human’s and robot’s workspaces at the beginning of the interaction. The table layouts

make sure that there are enough Baufix pieces that are similar to each other on both sides of

the table so that human and robot have to talk to each other about the pieces. Furthermore,

the layouts guarantee that there are Baufix pieces on the robot’s side of the table, which are

needed for the building plan, so that the robot has to hand over pieces to the human. We show

the table layouts in Appendix A.2.

For the three user evaluations that we present in this thesis, the JAST robot adopted

different roles in the interaction: in the first evaluation [34, 35], only the robot knew the

building plan of the two target objects. Thus, it had to instruct the human how to build the

windmill and the railway signal. In the second evaluation [41], human and robot both knew

the building plans. In this study, the robot was able to detect errors that were made by the

human and it was able to explain the error to the human and how to solve the problem. In the
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(a) Windmill (b) Railway signal

(c) Tower (d) L shape

Figure 2.3: Target objects of JAST construction task.

third evaluation, we compared two different robot behaviours: a proactive behaviour, in which

the robot assisted the human and preferably handed over Baufix pieces to the human, and an

instructive behaviour, in which the robot gave instructions to the user first and then handed

over pieces from its workspace to the human. For more details on these evaluations see Chapter

5.

2.2 Related Work

In this section, we review related work from diverse research areas. We are using the modularity

from multimodal systems (Section 2.2.1) for an approach for classical multimodal fusion that we

present in Section 3. From cognitive architectures and robot architectures, we take ideas about
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the setup of a cognitive robot, and get influences about data processing inside the system

(Section 2.2.2). Human-robot interaction (HRI) is based on multimodal systems and cognitive

architectures; thus, we review some of the influential HRI systems (Section 2.2.3). Finally,

we review approaches for spoken language processing (Section 2.2.4) and explain some of the

principles of embodiment which we incorporated in our work (Section 2.2.5).

2.2.1 Multimodal Dialogue Systems

Much of the work that is done now in human-robot interaction is based on work for multimodal

dialogue systems. The first system that is considered as a multimodal system was reported by

Bolt in the article “Put-That-There” [12]. The described system was the MIT media room,

which allowed a user to draw basic shapes, for example cubes and triangles, on a screen by

giving commands such as “put a triangle there” and pointing on the screen at the same time.

The system was able to recognise these commands and drew the corresponding shapes on

the screen. Speech and gesture recognition was basic at that time due to the constraints in

computing power. Bolt saw the application domain for this technology mainly in organising

ships in harbours or for military purposes.

“Put-That-There” was an example for a system that uses the so-called late fusion or se-

mantic fusion to integrate several modalities. These systems classify the input from several

channels with separate recognition modules and fuse the interpretations of the modules in a

central interpretation module. Some newer examples of multimodal dialogue systems that use

late fusion are SmartKom [80] and COMIC [13], and the classical MF approach we show in this

thesis also implements the late fusion approach. In contrast to the late fusion approach, multi-

modal systems that use early fusion, which is also called feature level fusion, mostly integrate

input channels that are closely bound to each other, for example speech and lip movements

or speech and pointing gestures. These modalities can be fused by combining features from

both modalities into one feature vector. This vector is used for training of statistical models,

which are then used for recognition of multimodal events. Examples for multimodal systems

that use early fusion are Quickset [26] and MATCH [47]. Quickset fused speech recognition

and pen input on a touch screen and was mainly used for military applications. For example,

in Quickset the user drew a circle on a map that was presented on a touch screen and said

“this is a hot spot zone” at the same time [87]. The system marked the corresponding area

as a dangerous zone afterwards. Quickset was developed at the Center for Human-Computer

Communication by several researchers including Sharon Oviatt, whose often cited article “Ten
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Myths of Multimodal Interaction” [64] reveals common misinterpretations of researchers in the

area of multimodal fusion.

The list of multimodal dialogue systems that were developed since “Put-That-There” is of

course much longer than the few systems we review here. For a more extensive list of multimodal

dialogue systems please refer to Sharma et al. [74], who discuss in their article why multimodal

systems are needed in human-computer interaction. They also provide an overview over different

input modalities, several fusion techniques, and applications for multimodal systems. Oviatt

provides a similar review of multimodal system in the article ”Multimodal Interfaces“ [65] that

focuses on the development and status of existing multimodal systems. Another excellent review

can be found in the dissertation by Pfleger [69].

There are a few properties of multimodal systems that we want to mention because they

influenced the ideas of this thesis: in these systems, only human utterances are regarded as

input modalities. Therefore, they are driven by the input of the human user, which means that

they are only reacting to what the human says or does. They do not include information from

other channels, which is probably due to the facts that computing power was low and that

the first multimodal systems were developed for non-embodied agents. Also, many of these

systems have in common that they are developed for a certain domain and can only be ported

to applications with changing substantial parts of the system. There are some exceptions, for

example Johnston et al. [47] present a framework for rapid prototyping of information systems

with speech and pen input and the researchers of the Talk project [58] describe a grammatical

framework for development of multimodal grammars. The work from Landragin et al. [54]

is also very interesting, as they are showing how they port MMIL, the MultiModal Interface

Language that is used for multimodal meaning representation, to a new domain.

2.2.2 Cognitive Architectures and Robot Architectures

Many concepts in our work are influenced by cognitive architectures and robot architectures,

which are related to each other but still differ in certain parts.

Cognitive architectures are templates for intelligent agents. They define processes that act

like intelligent systems or simulate certain aspects of intelligent systems. They were developed

by cognitive psychologists to implement models of human cognition. In the following, we will

review ACT-R as an example for such a cognitive architecture as it was originally intended.

ACT-R (adaptive control of thought-rational) [4] is one of the best-known cognitive architec-

tures. Researchers working on ACT-R strive to understand how humans organise knowledge
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and produce intelligent behaviour. Scientists can model aspects of human cognition with the

ACT-R framework. These aspects deal with very different tasks, for example memorisation of

texts, recognition of speech, or human communication. The models that evolve from the frame-

work are affected by the assumptions that the modeller has about human cognition. Classical

tests in cognitive psychology can prove if these assumptions were right. The system architec-

ture of ACT-R consists of several modules that process different kinds of information. For

example, the architecture contains modules that simulate the visual perception or the hand-eye

coordination of humans. The central component of the ACT-R architecture is the so-called

production module that contains a representation of the processes in the human brain. Further-

more, ACT-R has modules such as the declarative module, which simulates how information

can be obtained from memory, or the goal module, that keeps track about the progress of the

current task. Our work is influenced by ACT-R, because it shows that for a cognitive process,

not only the information from the visual and audible channels of cognitive agents are important,

they also need to incorporate their plans and goals.

To get a wider overview of the research about cognitive architectures, we refer to two publi-

cations that provide excellent surveys of the field. Byrne gives in [22] a description for cognitives

architectures in general and reviews the usefulness of cognitive architectures in human-computer

interaction (HCI). He argues that cognitive architectures can be used as design and evaluation

aid for HCI systems. Additionally, they can be used for training purposes because they copy

human behaviour and therefore are well-suited for the replacement of expensive human training

partners. Vernon et al. [79] give an overview of cognitive architectures and how they are used

to implement mental capabilities in computational agents. They start with a description of the

different paradigms that are used for the systems: the cognitivist approach and the emergent

approach. After that, they review cognitive systems that use either one of the two approaches

or try to implement a hybrid architecture that involves both of the approaches. The authors

also list the key features they believe an autonomous agent needs to exhibit: a reflection of the

brain regions and their connections in the architecture, perceptual categorisation, embodiment,

a minimal set of innate behaviours, and adaptive behaviour.

Robot architectures are related to cognitive architectures, but instead of modelling human

mental processes robot architectures are used to control the actions of a robot. For that, the

robot has to reason about the input information it gets from its sensors so that it can infer

which action it should execute next, similar to the perception modules that ACT-R uses in its

architecture.
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An interesting theory was proposed by Wyatt and Hawes [88]. They argue that the re-

cent advances in building cognitive architectures for robots can explain aspects of cognition in

nature. Wyatt and Hawes present an architecture for cognition, which is based on multiple

shared workspaces that are used to group processing of information in a cognitive system. The

hypotheses and representations that are posted by various parts of the system can be constantly

updated in parallel in these shared workspaces. Furthermore, they argue that the update of

hypotheses can be done by statistical methods, which has already been shown in the past.

Wyatt and Hawes also discuss the properties that a robot architecture for a cognitive system

should have: parallel processing, which is necessary since the processing times of the components

of a cognitive robot cannot be synchronised, asynchronous updating, because information from

different modalities arrives in the reasoning components at different times, multiple specialist

representations, since the fields of AI have spread in many directions and each field has its own

way to represent information, understandability, because robot systems are very complex and

thus the single parts must be described in a way that is semantically easy to understand, and

incrementability, since the robot systems must be extensible so that they can be used to solve

tasks they have not been built for in the first place.

This architecture as well as its software implementation BALT & CAST was developed in the

CoSy project [24]. CoSy stated three design principles for robot architectures: (i) concurrent

modular processing, the robot architecture has to consist of several modules that run in parallel.

This is necessary for example when several subtasks have to be completed at the same time.

(ii) Structured management of knowledge, the information inside the architecture is defined by

subarchitecture ontologies and general ontologies. This means that each subcomponent of the

system has its own representation for its knowledge. General ontologies are used to structure

subcomponents and the information flow between these components. (iii) Dynamic contextual

processing, the robot architecture has to have ways to control which components can influence

processing and when they are allowed to do it. This design principal is needed to ensure a

goal-oriented behaviour of the system.

To get an overview of the technological side of robot architectures, please refer to Mohamed

et al. [59] and Namoshe et al. [63], which give overviews for robot middlewares. Of the many

robot middlewares, Player/Stage [38] and YARP [31] are widely used in the robotics community.

Recently, Robot Open Source (ROS) [70] by the company Willow Garage got a lot of attention.

In the JAST project, Ice [45] was used for the communication between the subcomponents of

the system.
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2.2.3 Human-Robot Interaction

Multimodal systems and robot architectures are both closely related to human-robot interaction

(HRI), since you need processing of multimodal input as well as a technical architecture to enable

a robot to interact with a human in a way that is natural for the human. In the following, we

will review influential human-robot interaction systems.

The humanoid robot system that is developed at the University of Karlsruhe in the SFB588

(Sonderforschungsbereich 588, Humanoid Robots - Learning and Cooperating Multimodal Ro-

bots) is a good example for a standard HRI system [46, 21]. It is able to fuse speech and 3d

pointing gestures. For the fusion, it uses a rule-based approach with an independent parser

and application-specific rules. The Karlsruhe robot uses attribute value matrices for the repre-

sentation of speech and gesture input. It is able to navigate in a kitchen environment and to

understand multimodal commands by a human user.

Recent projects in HRI more and more focus on socially interactive robots that show the

social skills needed for a successful interaction with a human. Well-known examples for social

robots are for example Kismet [14, 15], Cogniron [28], or LiReC [23]. Dautenhahn [28] gives

an overview of socially interactive robots and also lists a range of domains for which a robot

needs more or less social skills. She gives examples such an autonomous robot for space mission,

which needs no social skills at all, and robots that serve as companions in the home to assist

the elderly, which need a wide range of social skills to get accepted by their owner.

Another recent HRI system was developed by the CoSy project [44]. CoSy used combinatory

categorial grammar for speech processing and proposed interesting approaches for incremental

speech processing and language grounding, which will be discussed in the next section.

2.2.4 Spoken Language Processing

HRI has the goal to make the interaction for the human as natural as possible. Therefore, any

HRI system needs to be able to handle spoken language, which has the problem that humans

tend to speak in grammatically incorrect sentences that are also sometimes incomplete. Ad-

ditionally, automatic speech recognition software often provides erroneous recognition results.

Thus, any HRI system needs methods for spoken language processing that deal with these

challenges and provide methods for robust processing.

Most approaches for incremental language processing work with the assumption that the

input to their system is well-formed. This way, they can use existing grammar formalisms
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from computational linguistics. However, we think that grammar plays a less important role

in holding the meaning of utterances than it is believed. This is for example backed up by a

study presented by Landauer et al. [53], who show that in the latent semantic analysis (LSA),

a method for summarising and representing the meaning of large text corpora, word order is

not important for the correct summary of written text.

Brick and Scheutz [16] present RISE, the robotic incremental semantic engine. RISE is able

to process syntactic and semantic information incrementally and to integrate this information

with perceptual and linguistic information. This way, the system is able to generate feedback

and actions already during the processing of utterances. The authors show an implementation

of RISE, which demonstrates that the system is able to work with erroneous and missing words.

However, they still assume that the humans who use their system produce sentences that are

grammatically correct.

Kruijff et al. [52] present their view of incremental processing for situated dialogue in human-

robot interaction. They show a complete chain of modules they are using for processing of

spoken input: parsing, referent resolution, dialogue moves, event structure, and cross-modal

binding. For parsing, they use combinatory categorial grammar [77], the same grammar for-

malism that we are using in our work. They are processing parallel interpretations that are

pruned by making use of the context. For example, when the human says “take the . . . ” then

the robot already knows from its context knowledge that probably the human wants it to pick

up an object that is in reach of its arms. Interesting is also the idea of the authors to pack the

representations of the open hypotheses that the system is currently processing. The approach

by Kruijff et al. is still based on the assumption that the utterances by the human are gram-

matically correct. The authors are also writing in their conclusions that this is a point in which

they want to make further investigations.

Schlangen and Skantze [71] describe “a general, abstract model of incremental dialogue

processing”. Their goal is to provide principles for designing new systems for incremental

speech processing. Their approach is based on a token-passing topology in which so-called

incremental units are passed from module to module inside their system. In each processing

module the content of the incremental unit is extended by additional information. For this

reason, certain operations can be applied to the incremental units, like the purge, update, and

commit operations. The incremental unit also stores meta information, including which module

changed the information in the unit so that the processing steps of an information unit can be

retraced. The authors also present an example for a system configuration in which they apply
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their design principles. However, it cannot be seen from the example how a system based on

the described principles is more powerful than system that use other approaches. Also, the

authors do not say anything about parallel processing or computational complexity.

2.2.5 Embodiment

Embodiment is a research area of artificial intelligence. The central idea behind embodiment

is the notion that any cognitive agent that shows intelligent behaviour needs a physical body

that is situated in the real world. The intelligence of embodied agents consists of showing

a meaningful behaviour in their environment. The article “Elephants Don’t Play Chess” by

Brooks [17] was one of the first that mentioned ideas from embodiment. One of these ideas was

that through embodiment the symbol grounding problem could be solved because embodied

agents can measure their environment with sensors and thus do not need a representation of

the world.

In their book “How the body shapes the way we think” [67] Pfeifer and Bongard define a set

of design principles for building embodied agents. For our work, we regard two of these principles

as important: the three constituents principle, which states that when building an embodied

agent, the developer needs to consider the agent’s environment, the so-called ecological niche,

the agent’s desired behaviour and tasks, and its form. If the agent shows a meaningful behaviour

that follows the defined tasks and for which it makes use of its environment, then Pfeifer and

Bongard refer to this as embodied intelligence. The second design principle we want to mention

is the principle of ecological balance, which states that the complexity of a body of an embodied

agent needs to match the complexity of the task it was designed for. For example, a robot that

can recognise complex objects but only needs to differentiate between simple colour patterns is

over-equipped. On the other hand, a robot that can only recognise colours cannot be used for

handling complex objects.

Research in embodiment yields progress in recent years, especially in processing of senso-

rimotor data or in robot motion control in unknown environments. However, Sloman argues

in [76] that the focus on embodiment has thrown back the research in artificial intelligence,

because there is no proof yet that embodiment can answer problems like language processing

and acquisition. He proposes to build hybrid systems that make use of ideas of classical AI

and embodiment. But that raises the question, how the combination of these two fields of AI

research can be combined?
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One idea that could answer this question comes from researchers that design representations

of objects and actions for embodied agents: Gibson [39] introduced the so-called Affordances.

For Gibson, Affordances are properties of objects, persons, animals, and the environment which

are different for each agent that interacts with these entities. For example, an elephant cannot

walk on water but a water flea can. Therefore, the surface of water has the Affordance “walk-

on-able” only for water fleas but not for elephants. We want to quote two sentences from

Gibson [39], which we took as guidelines for our work. The first quote states how complex a

representation of the environment of an agent needs to be:

It is never necessary to distinguish all the features of an object and, in fact, it would

be impossible to do so. Perception is economical.

Furthermore, Gibson also thought that the interaction between two agents can be explained

by Affordances:

Behaviour affords behaviour, and the whole subject matter of psychology and of the

social sciences can be thought of as an elaboration of this basic fact.

The European project Paco+ extended the basic idea of Affordances. The central idea of

this project was that for a cognitive agent objects and actions are intertwined and should not

be represented apart from each other. This is due to the notion that objects are only objects

because of the actions one can execute with them. For example, a glass can be used as a

container for liquids, but the same glass can also be a supporting stand for other objects when

it is turned upside down. Vice versa, actions cannot exist without the objects that they are

related to. Paco+ called this connection between objects and actions an object action complex

(OAC). Krüger [51] gives a formal definition of OACs, which states that an OAC consists of

a unique identifier, a prediction function that codes the systems belief on how the world will

change through the OAC, and a statistical measure that represents the success of the OAC

within a window of the past. Wı̈¿ 1
2 rg̈ı¿ 1

2 tter et al. [86] showed how OACs can be used to

explain how cognition emerged in primates. They argue that through the ability to predict

the outcome of an own action, agents can learn new actions; and they use OACs to model the

predictability of the agents world. Furthermore, Geib et al. [37] and Petrick et al. [66] show

how high-level planning algorithms can be linked to low-level robot control with OACs.

To conclude the related work chapter, we review two articles that stand for the debate

about whether embodiment or so-called good old-fashioned AI (GOFAI) will lead to intelligent
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autonomous agents. In his article “Today the Earwig, Tomorrow Man?”, Kirsh [50] gives an

good overview of the theory of action postulated by embodiment researchers. Some of the most

important arguments for this theory are ([50] pp. 167–168):

• Behaviour can be partitioned into task-oriented activities or skills which can be ordered

in an increasing level of complexity.

• Since the real world provides more information than what is needed for most behavioural

skills, e.g. walking or running, most of those skills do not require a comprehensive world

model and only a fraction of the world needs to be detected by the agent to successfully

execute most of these actions.

• Thus, the most difficult problem in embodiment is to coordinate the various behavioural

skills of an autonomous agent to achieve intelligent behaviour.

Kirsh arguments that these points are not necessarily false as long as one only considers simple

actions for which an intelligent agent does not need to have representations of concepts. For

example, he mentions a walking agent who can move in uneven terrain, for which the agent

needs to be able to react fast to unexpected surfaces changes. However, Kirsh also thinks

that complex actions that for example require planning cannot be implemented with purely

behavioural methods. Kirsh also mentions agent to agent interaction or language understanding

and generation as examples for this class of complex actions in which concepts are needed.

Brooks answered to this argumentation with his article “From Earwigs to Humans” [19] a

few years later, in which he gives an overview of examples that successfully employ methods of

embodiment to control autonomous intelligent robots. He argues that one has to completely

understand first how to control the low-level, behavioural skills of autonomous agents before

one will be able to build robots that can socially interact with humans and each other.

Our stance in this debate is oriented on Kirsh’s argumentation, but we also use approaches

from embodiment in our methodology: we argue that many of the low-level actions that a robot

has to perform are better solved with methods from embodiment, for example, picking up an

object and handing it over to a partner. However, we want to build a robot that is able to

plan its own actions and to talk about these plans with a human partner. Thus, we need to

use representations and concepts in our approach as well. The two approaches for multimodal

fusion, which we will present in the following chapter, mirror this balance between embodiment

and GOFAI.
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Chapter 3

Multimodal Fusion

Researchers in robot cognition are roughly separated into two competing groups: the one

group propagates that intelligent behaviour can only be reached with methods from classical

artificial intelligence (AI), the other group believes that embodiment will lead to an emergence

of cognitive skills in inanimate agents. The truth probably resides somewhere in the middle

between these extreme positions, as it was also proposed by Sloman [76], who postulates that

the focus on embodiment in recent years has slowed down AI research and that the combination

of ideas from classical AI and embodiment could lead to success.

Similar to robotics, research in multimodal fusion produced solutions that are based on

methods from classical AI and work for well-defined problems that follow certain patterns and

can be controlled with a set of rules. However, as it turned out, the same approaches for

multimodal fusion that work well for human-computer interaction (HCI) are not applicable for

Human-Robot Interaction (HRI) since the environment of a robot—i.e. the real world—is much

less predictable and cannot be easily described by a set of rules.

In this theoretic chapter, we will compare two approaches for multimodal fusion: one ap-

proach that is based on classical methods for multimodal fusion and another approach that

incorporates ideas from embodiment. From now on, we will call the two approaches classical

multimodal fusion (CMF) and embodied multimodal fusion (EMF), respectively. For compari-

son, we first discuss the prerequisites that are needed for CMF and EMF in Section 3.1. After

that, in Section 3.2 we describe a CMF approach that was implemented for the JAST project,

which relied on methods from classical AI. Finally, we propose a new approach for EMF that

combines ideas from embodiment and classical AI in Section 3.3. Both of the sections that
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describe the CMF and EMF approaches contain discussions about their respective advantages

and disadvantages.

3.1 Classical Multimodal Fusion vs. Embodied Multimodal

Fusion

In this section, we will explain the main differences between classical multimodal fusion (CMF)

and embodied multimodal fusion (EMF) to clarify how we define these terms. Mainly, there is

one major difference between the two approaches and all further differences arise from it: CMF

systems are focussed on the user input while EMF systems are focussed on the actions of an

embodied cognitive agent.

The goal of CMF is to generate representations that combine information from multiple

modalities, for example from speech and gestures. These representations are processed by

reasoning modules that represent the cognitive part of a system, usually a dialogue manager

or some sort of logical reasoning program. Therefore, the integrated representation of the

multimodal fusion component has to contain as much information from the single modalities

as possible.

Typically, systems that work with CMF, combine input from speech recognition with input

from a touch screen (which was often referred to as “gestures”). These systems are able to

resolve ambiguous sentences by using gesture input. For example Johnston et al. [48] showed

in the QuickSet project an application in which a human gave speech commands that were

accompanied by pen-based input on a map that was displayed on a touch screen. In one of the

examples that were presented in [48], the user said “FOLLOW THIS ROUTE” and draw a line

on the map. QuickSet was able to resolve the deictic expression “this” and to infer which route

to follow. Examples like this can be implemented with rule-based methods, because the input

from speech and gestures can be represented by grammars and follows certain patterns, since

the domain is very restricted.

Systems that use CMF are often centred around speech input that is enhanced with informa-

tion from other channels. This approach fits dialogue managers that implement the information

state-based approach well (for an example see [55]). These dialogue managers work excellently

in scenarios in which the dialogue can be defined by a closed set of states, for example in so-

called information kiosks, systems that provide information about a certain topic. One could

also say that CMF systems are “utterance-oriented”.
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In contrast to that, the EMF approach that we present later in this chapter is “action-

oriented”. The main idea behind this is that each cognitive agent is able to execute a defined

set of actions. For example, the JAST robot is able to pick up objects and hand them over to

a human, it can look and point to objects, and it can speak to the user. If the robot should

collaborate with a human in a meaningful way, it needs to produce the correct action at the

right time. For this reason, rather then focussing on the input by the human and how to

represent it, the robot should have a representation for its own actions and it should evaluate

which of these actions it should execute given the current context. For this evaluation, it can

use information from multiple modalities, which include of course human utterances, but the

robot also has information from other channels as we will see below.

3.2 Classical Multimodal Fusion

After this short comparison of CMF and EMF, in this section we will describe a CMF system

we developed for the JAST project. For JAST, this was the right choice because the reasoning

component of the JAST robot was an information-state based dialogue manager that needed

representations of user utterances as input. The CMF described in this section was used for

both of the JAST system evaluations that are published in [34], [35] and [41].

3.2.1 Overview

Figure 3.1 shows the processing steps of the CMF approach. Rectangular boxes represent

processing modules, rounded rectangular boxes are standing for context information that is

available to the processing modules. The single processing steps are as follows: first, the speech

by a human user is recognised with a speech recogniser. Following speech recognition, the output

of the speech recogniser is parsed by a grammar to translate it into a logical representation that

can be used to resolve the references in the human utterance (i.e. to find out which objects the

human is talking about). After reference resolution, the fusion module generates a hypothesis

that contains the logical form and information about the resolved entities in the logical form to

the output generation part of the robot, which consists of a dialogue manager and specialised

output generation modules, including reference generation and robot control.

The context information that is available to the system consists on the one hand of a

grammar that is used in the parsing and output generation steps and that can also be translated

into another grammar format for the speech recognition component. On the other hand, the
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Figure 3.1: Classical multimodal fusion in JAST. Rectangular boxes represent processing mod-

ules, rounded boxes stand for context information.

fusion module can access information from visual perception modules that provide information

about the objects that are laying in front of the robot and about gestures by the human

partner of the robot. In the following sections, we will give a more detailed description of these

processing steps.

3.2.2 Speech Recognition

In JAST, we used a commercial speech recognition system, Dragon Naturally Speaking, versions

9 and 101. The speech recognition software itself was not changed, since JAST had no focus

on improving speech recognition technology. Dragon Naturally Speaking comes with trained

recognition models for German and English, it performs well without any training but can

be adapted to certain speakers with a training program. Additionally, the speech recognition

output can be pruned by using a grammar that tells the software, which words and sentence

structures are allowed as recognition results, a step that is often referred to as post-processing

1http://www.nuance.de/naturallyspeaking/
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in speech recognition literature.

For the JAST user evaluations, we wrote a small grammar that limited speech recognition

to only recognise sentences that could be parsed by the combinatory categorial grammar (CCG)

we used in the parsing step (see next section for details). This limits the sentences the robot

can recognise, but vastly improves speech recognition results. Additionally, we used an exter-

nal sound card (type Tascam US-122L) and a high-quality head-mounted microphone (type

Sennheiser ME-3) to further improve speech recognition results.

3.2.3 Speech Processing

In JAST, we used combinatory categorial grammar (CCG) to parse and represent input sen-

tences from speech recognition. CCG was introduced by Ades [1] and Steedman [77]. It is an

extension to the categorial grammar, which is also called lexicalised grammar, of Ajdukiewicz

[2] and Bar-Hillel [7]. Traditional context-free grammar formalisms use a top-down approach

for parsing sentences, while combinatory grammars utilise a bottom-up approach, which brings

advantages in computability and grammar development. Due to the addition of combinatory

logic to the grammar formalism, CCGs produce a semantic representation of a sentence during

the parsing process. For JAST, we used a CCG that was implemented with OpenCCG [84],

which is a Java-based implementation of the CCG formalism. It is capable of both, parsing

and realising sentences; that means it can translate utterances into a logical form as well as

take a given logical form and convert it back to a sentence. OpenCCG generates hybrid logic

expressions for the parsed sentence instead of combinatory logic, as explained in [6]. Figure 3.2

shows such a hybrid logic formula that was parsed with the JAST grammar and represents the

sentence “take this yellow cube”.

@t1:action(take-verb ∧
〈mood〉 imp ∧
〈Actor〉 x1 : animate− being ∧
〈Patient〉 ( c1 : thing ∧ cube-np ∧

〈det〉 dem-prox ∧
〈num〉 sg ∧
〈HasProp〉 ( y1 : proposition ∧ yellow)))

Figure 3.2: Hybrid logic formula that was generated with a combinatory categorial grammar for

the sentence “take this yellow cube”. In hybrid logic, all entities (agents, actions, and objects) in

the sentence are marked with so-called nominals that uniquely identify each entity.
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Figure 3.3: The JAST gesture recognition can recognise three gesture types: pointing, grasping,

and holding out.

To understand this logic formula, we have to illustrate the two concepts of nominals and

diamond operators that are part of hybrid logics. Nominals can be seen as identifiers that are

used to name parts of the logical form. In the present case, nominals are used to name the

actions expressed in a sentence and the entities that are involved in the action. In the example,

the nominal t1:action is used to name the take action expressed in the sentence, while the

two nominals x1:animate-being and c1:thing name the actor that should execute the requested

action and the cube that should be taken, respectively. The use of nominals to identify actions

and entities is very useful for reference resolution, as we will see in the next section, which was

one reason to use the CCG formalism in JAST.

In the logical formula we can also see the diamond operators 〈mood〉, 〈Actor〉, 〈Patient〉,

〈det〉, and 〈num〉. These operators represent syntactic properties of the parsed sentence,

including such information as that the sentence was uttered in imperative mood or that a

proximal demonstrative was used as determiner to further specify a certain cube.

For the Master’s thesis that was written before this work, we developed a comprehensive

grammar for JAST and implemented it with OpenCCG. Please refer to [40] for a more detailed

overview of this previous work.

3.2.4 Gesture Recognition

The JAST gesture recognition identifies three types of gestures: a pointing gesture, a holding

out gesture, and a gripping gesture. Humans typically gesture very fast, which makes the

process of automatic gesture recognition a difficult task. Therefore, a human who uses the

JAST system has to hold the hand still for a moment so that the gesture recognition can

correctly determine which gesture was made. Unfortunately, this prevents a natural interaction

with the system, but as we will explain in the next section, the information from the gesture
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channel can be used to resolve ambiguous situations in speech processing. Figure 3.3 shows a

picture of the three gesture types that can be recognised; please refer to [89] and [90] for a more

detailed description of the technical implementation of the JAST gesture recognition.

3.2.5 Entity Resolution

The speech processing step, which was described in Section 3.2.3, yields a logical formula of

the analysed sentence that contains its grammatical structure and names all of its entities with

nominals. In the next step, these entities need to be resolved (i.e. they need to be grounded

in the real world) such that the dialogue manager can process them. For this, ambiguous

expressions need to be resolved and each entity that describes an object needs to be mapped

to the correct object(s) on the table in front of the robot.

For entity resolution, the classical approach for multimodal fusion uses the parsed spoken

utterance and input from gesture and object recognition. The resolution algorithm is composed

by the following steps: (1) analysis and enrichment of the logical formula that represents the

spoken utterance and of the input from gesture recognition, (2) processing of speech and gesture

in a rule engine that generates an integrated representation of both channels and resolves

ambiguous expressions, (3) mapping of objects of the world to object entities in the integrated

representation with information from object recognition.

(1) In the first step, the input from speech processing and gesture recognition is analysed

and enhanced with additional information:

• Deictic expressions in the logical formula are marked, for example pronouns or determi-

native articles.

• Definitive articles are marked because they can be a cue that the human was talking

about a specific object as in the example sentence “give me the cube.” which indicates

that the user was talking about the cube before.

• The main verb in the logical expression is extracted. Since in the JAST scenario we are

working mostly with imperative sentences, the main verb of most sentences gives a direct

clue on the next robot action.

• Finally, the list of nominals and object descriptions and the list of objects the user pointed

to are extracted from speech processing input and gesture recognition input, respectively.

These lists are used in the next step to determine if the integration of speech and gesture

can be resolved.
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rule

if

speech.hasDeicticExpression == true

&&

gesture.type == PointingGesture

&&

speech.getTalkedAboutObjects == gesture.getPointedAtObjects

&&

speech.getStartTime - gesture.getStartTime < 3000 milliseconds

then

generate new Hypothesis(

HypothesisType.Resolved,

speech.getLogicalForm(),

unifyObjectDescriptions(

speech.getTalkedAboutObjects,

gesture.getPointedAtObjects)

)

end

Figure 3.4: Rule that combines information from speech and gesture recognition, written in a

Java-style pseudo code.

(2) In the second entity resolution step, the analysed and enriched input from speech pro-

cessing and gesture recognition is introduced to the working memory of a rule engine. This

engine uses rules that consist of a precondition part and an action part; if the preconditions of

a rule are fulfilled it generates integrated representations for speech and gestures. Figure 3.4

shows one of the rules in a Java-style pseudo code, which is used to integrate a speech utterance

that contains a deictic expression with a gesture utterance. For that, in the preconditions part

the rule looks for a speech utterance with deictic expression and a pointing gesture, it compares

if the object descriptions of the objects the human has talked about are similar to the object

descriptions of the objects the human has pointed to, and it computes if speech and gesture

were uttered less than three seconds apart from each other. The value of three seconds is arbi-

trarily chosen and can be adjusted to the processing speed of the system. If these preconditions

hold, the rule generates a new integrated representation, a so-called fusion hypothesis, which is

resolved and contains the information from speech and gesture channel. Section 3.2.6 explains

the form of fusion hypotheses in more detail. The rule engine we implemented for JAST holds

a set of rules that cover all cases of interaction that can occur in the constrained JAST domain.
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At this point we will not explain more of the rules, for details on the technical implementation

and the scope of all rules please refer to Chapter 4.

(3) In the last step, the object entities of the generated hypotheses are mapped to objects

in the real world. For this, the multimodal fusion module has a connection to the JAST world

model over which it can query if the object recognition has information about objects that fit the

descriptions of the logical formula. If that is the case, the world model sends a unique identifier

for each object, which can then be stored in the fusion hypothesis together with nominals from

the logical formula of the speech utterance. Again, Section 3.2.6 provides more information

about fusion hypotheses.

The task of the multimodal fusion component is done when the three steps of the entity

resolution are completed. After this step, the generated fusion hypotheses can be sent to the

dialogue manager. To conclude this section about the classical multimodal fusion approach we

will first describe the fusion hypotheses in more detail and then discuss the advantages and

disadvantages of the approach in Section 3.2.7.

3.2.6 Fusion Hypothesis Representation

After the entity resolution step, multimodal fusion generates fusion hypotheses and sends them

to the dialogue manager. This section describes how these hypotheses are represented. A fusion

hypothesis consists of

• a hypothesis type, which describes if all objects in the logical form have been resolved or

not,

• the original logical form from the CCG-based speech parser,

• a set of object links, which map the nominals of the logical formula to object ids that were

obtained by the world model, and

• a relevance score that can be used to rank the hypotheses.

The hypothesis type can have one of the values Resolved, Ambiguous, Conflict, Unresolved,

or Nothing. The following examples illustrate the usage of the hypothesis class. Each example

shows preconditions (objects on table, gesture type, . . . ), how the hypothesis instance looks

like, and how it should be interpreted.
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Resolved Hypothesis

There are two cases when a hypothesis can be resolved: either the user says a sentence that

has no deictic references in it or the user refers to one or more objects and points at them at

the same time. The following three examples display this two cases.

First example for a resolved hypothesis

Preconditions: User says “take a cube”. The world model knows three cubes with ids cube14,

cube17, and cube18. In this case, nominal c1 of the object link points to all known cubes.

hypothesis {

type = Resolved,

logical form = "@t1:action(take-verb ^

<tense>pres ^

<voice>active ^

<Actor>x1:animate-being ^

<Patient>(c1:thing ^ cube-np ^

<det>a ^

<num>sg))"

object links = c1 -> [cube14, cube17, cube18]

score = 1.0

}

Second example for a resolved hypothesis

Preconditions: User says “take this cube” and points to a single cube. The world model identifies

the cube with id cube14. In this case, every object link contains only one id on the left side

that points to a world model id on the right side.

hypothesis {

type = Resolved,

logical form = "@t1:action(take-verb ^

<Actor>x1:animate-being ^

<Patient>(c1:thing ^ cube-np ^

<det>dem-prox ^

<num>sg))"

object links = c1 -> [cube14]

score = 1.0

}

Third example for a resolved hypothesis

The third example shows how two resolved deictic references are represented in a hypothesis.
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Preconditions: User says “take this cube and this bolt” and points to a single cube and a single

bolt. The world model knows the cube with id cube14 and the bolt with id bolt05. Here, the

object links contain two items, but both point only to one world model id.

hypothesis {

type = Resolved,

logical form = "@t1:action(take-verb ^

<tense>pres ^

<voice>active ^

<Actor>x1:animate-being ^

<Patient>(a1:sem-obj ^ and ^

<Arg1>(c1:thing ^ cube-np ^

<det>dem-prox ^

<num>sg) ^

<Arg2>(b1:thing ^ bolt-np ^

<det>dem-prox ^

<num>sg)))"

object links = c1 -> [cube14],

b1 -> [bolt05]

score = 1.0

}

Ambiguous Hypothesis

When the user points to two similar objects and it is not clear which one she is talking about,

multimodal fusion generates an ambiguous hypothesis.

Example for an ambiguous hypothesis

Preconditions: User says “take this cube” and points to two cubes. The world model identifies

the cubes with ids cube23 and cube25. Thus, in the object link nominal c1 links to both cubes

but it should only have a link to one of the cubes to become a resolved hypothesis.

hypothesis {

type = Ambiguous,

logical form = "@t1:action(@t1:action(take-verb ^

<Actor>x1:animate-being ^

<Patient>(c1:thing ^ cube-np ^

<det>dem-prox ^

<num>sg))"

object links = c1 -> [cube23, cube25]

score = 1.0

}
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Conflicting Hypothesis

In JAST, there is only one case for a conflicting hypothesis, when the user speaks about a

different object then she is pointing to.

Example for a conflicting hypothesis

Preconditions: User says “take this cube” and points to a bolt. The world model identifies a

cube with id cube16 and a bolt with id bolt25.

hypothesis {

type = Conflict,

logical form = "@t1:action(@t1:action(take-verb ^

<Actor>x1:animate-being ^

<Patient>(c1:thing ^ cube-np ^

<det>dem-prox ^

<num>sg))"

object links = c1 -> [bolt25]

score = 1.0

}

Unresolved Hypothesis

Unresolved hypotheses occur when the user refers to one (or more) object(s) with a deictic

expression(s), but does not point at any object(s). Unresolved hypotheses can also occur when

gesture recognition does not work correctly.

Example for an unresolved hypothesis

Preconditions: User says “take this cube” and does not point anywhere. The world model

identifies a cube with id cube16. However, in the object link, nominal c1 does not link to the

cube, because there was no pointing gesture by the human.

hypothesis {

type = Unresolved,

logical form = "@t1:action(@t1:action(take-verb ^

<Actor>x1:animate-being ^

<Patient>(c1:thing ^ cube-np ^

<det>dem-prox ^

<num>sg))"

object links = c1 -> []

score = 1.0

}
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When multimodal fusion sends its hypotheses to the dialogue manager, its work is done at

this point. The dialogue manager has to decide how the robot should react on the different

types of hypotheses. Thus, in the next section we will give a short summary of the CMF

approach and discuss its advantages and disadvantages.

3.2.7 Discussion

The CMF approach that we have presented above has a very clear structure, it processes the

input it gets from several modalities in a stepwise fashion. This is the main reason for the

advantages and disadvantages that we discuss in this section.

The advantages of this approach are:

• Ambiguous situations in the interaction can be resolved by combining the information

from speech and gesture recognition.

• Timing of speech and accompanying gestures can be represented in the rules that are

used in the rule engine we used to implement the CMF approach. This ensures that each

gesture is mapped to the right speech utterance.

• Fusion hypotheses are well defined and well-suited for processing with classical dialogue

managers that implement the information state-based approach for dialogue handling.

Also they contain the logical expression from the CCG parser which can be used for

output generation.

• The modular setup of the approach allows to port the system to other domains. Especially,

the utilisation of a rule engine can be used to change the behaviour of the robot, for

example by reordering rules, and also to use the same system for other applications by

loading a new set of rules.

On paper, this approach for multimodal fusion looks very convincing and it has also been

shown to work very well for projects that use speech and pen input in constraint domains,

see for example [26]. However, the method is not able to deal with the typical problems that

occur in HRI, for example that spoken language often does not follow grammatical rules and

that input recognition programs are not robust. Thus, the list of disadvantages of the CMF

approach is mainly related to its rigid structure:
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• There is no procedure to react on uncertain or not correctly recognised input. For example,

when speech recognition does not recognise the input sentence completely correct, this

error transfers through all processing steps. Of course, this means also that the robot can

never execute wrong actions, which makes CMF better suited for applications in which

wrong robot actions could potentially do damage to humans or objects.

• In general, the approach is too focussed on speech. One could say that this CMF method

is just an extended parser that parses speech and adds information from other modalities.

However, as the work by Clark [25] shows, in joint action, people often do not use as much

language as one would think.

• The approach is not only speech-focused, it is also “human utterance”-focused, which

means that it does not use any context information; it does not know in which state of

interaction human and robot are.

• The system is extensible, but adding a new modality to the domain would mean that not

only a completely new set of rules needs to be added to the rule engine, many of the old

rules would also need to be rewritten.

• The CMF approach, at least in its current form, does not include anticipative behaviour

of the robot. It only reacts when the user makes an utterance. However, without own

initiative the robot will never be able to successfully collaborate with a human.

• Finally, this approach has the typical symbol grounding problem: every time the human

mentions an object, it explicitly needs to be grounded in the robot’s knowledge of the

environment which consumes computing power and is an additional source for uncertainty

and errors.

Therefore, in the next section we present a new approach for multimodal fusion that uses

the innate abilities of the robot to overcome the disadvantages of the classical approach for

modality fusion.

34



3.3 Embodied Multimodal Fusion

3.3 Embodied Multimodal Fusion

In the last section, we have seen that classical approaches for multimodal fusion focus on the

integration of several channels of human utterances to yield an integrated representation that

can be used for further processing. This approach was successfully applied in information

systems or in multimodal devices, for example for computers that use speech recognition and

touch screen input. However, if you implement this approach on an interactive robot, the robot

can only react to user input, it is not able to proactively decide which action to execute next

without the user doing an action first. But obviously, for a real interactive behaviour it is

indispensable for a collaborative system to be able to decide on its own actions and when to

execute them.

For this reason, in this section we present a new modality fusion approach that is called

embodied multimodal fusion (EMF). The basic idea behind EMF is that the robot should

primary focus on its own actions and abilities and that it should use the information from the

human utterances (and from other input channels as we will see later in this section) to evaluate

which actions it can execute given a certain context. To illustrate this, think of the following

example:

Imagine a robot that can only move forward and move backward. The robot has two sensors,

one in the front and one in the back, that tell the robot how much space it has in front of and

behind it. This robot has the goal to be in motion all the time and that it does not touch

any obstacles in the environment. The robot can use context information from its sensors to

evaluate if it is better to move forward or backward, for example with a cost function that

says that its always better to go to the direction in which more empty space is available. This

would probably yield a movement pattern in which the robot moves back and forth in small

steps. That means, the robot focusses on the two actions it is able to do and it uses the context

information from its sensors to decide which of the two actions it should execute. At this point,

we want to remind the reader that we want to develop a method for multimodal fusion for a

goal-oriented robot. This means that we will have a robot that executes actions as long as it

has reached a chosen goal. If we need a robot that also can wait between two actions, then

waiting also needs to be one of the robot actions.

Since we are working with the JAST robot in this thesis, the actions the robot can execute

are more advanced: the robot is able to manipulate objects, it can recognise objects and

gestures, it can understand building plans, and it is able to talk about building steps and about
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the objects in its environment. Furthermore, the robot has the goal to build the target objects

that we showed in Figure 2.3, such as the windmill or the railway signal. For that, it needs to

follow plans together with a human partner. Thus, the robot needs a representation formalism

with which it can describe its own actions and their connection to objects, and it needs to be

able to interpret the information from modalities that display human utterances, but also from

modalities that present data about the state of the task and of the robot’s environment.

The next sections will show that in EMF we have to solve other problems than in CMF:

Section 3.3.1 shows how instead of an integrated representation for the input channels, EMF

uses a representation for the robot’s actions in combination with the objects in its environment.

After that, Section 3.3.2 describes how the information from input modalities is used to generate

actions and to evaluate their relevance given a context. Finally, Section 3.3.5 describes how the

robot can decide which action to execute next, before Section 3.3.6 discusses the advantages

and disadvantages of EMF.

3.3.1 Objects and Actions

The basic idea behind EMF is that the robot should evaluate at any given time, which actions

it is able to execute and how likely these actions are. Therefore, it is important to make some

thoughts about objects and actions at this point: how are objects and actions related to each

other? Which kinds of actions are there? How can combinations of objects and actions be

separated?

In the EMF approach, representations of relations between objects and actions are mainly

influenced by the European project Paco+ that we reviewed already in Section 2.2.5, but we

want to clarify the connection between objects and actions once more since it is one of the

cornerstones of this thesis. The central idea of Paco+ was that for any cognitive agent objects

and actions are inseparably intertwined. On the one hand, objects are only objects because of

the actions one can execute with them. For example, a cup can be used as a container that

holds liquids, but if the cup is turned upside down and some other object is placed on it, the

cup becomes a supporting stand. On the other hand, actions cannot exist by their own: only

when applied to the appropriate object, actions are “born” and “exist” in the world. Therefore,

objects and actions should not be examined apart from each other and Paco+ used the term

object action complex (OAC) to name this relation between objects and actions.

The Paco+ project saw OACs as a representation format that can be used in several levels

of processing in a cognitive agent. Therefore, the original definition of OACs also contains
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information about two states of the agent’s environment that represent the precondition and

the outcome of a transfer function, which is also part of the OAC [51]. In this thesis, we do not

need the full capabilities of OACs, but only a way to represent objects and actions in the EMF

approach; thus, from now on we will talk about OAClets by which we mean a complex of an

object and an action that has no further innate functions.

Definition 1. An OAClet is defined as a triple

(O,A,R) (3.1)

containing

• an object O which is associated to

• an action A and vice versa, and

• a relevance score R.

Objects and actions will be further defined in the following sections. The score R shows the

relevance of an OAClet given a context, it can be used to decide whether to execute an OAClet

or to sort a set of OAClets.

3.3.1.1 Objects

Each OAClet contains an object O that has a set of properties. We call these properties an

object description and we express the query to show the description of an object by

O.description() (3.2)

The examples we present to illustrate the EMF approach are taken from the JAST domain. The

environment of the JAST robot is quite restricted. Hence, the object representations are not

very complex. However, EMF could also be applied to richer domains that apply ontology-based

representations which are quite powerful in their expressiveness.

Objects are clearly defined in the JAST scenario: the robot knows Baufix objects, which are

used to build complex assemblies. Baufix objects are defined by their type, their colour, and/or

their size. A type can be one of the following: cube, bolt, slat, nut, tower, l-shape, windmill, or

railway signal. Since the robot is only able to recognise the more complex assemblies and their

substeps (tower, l-shape, windmill, railway signal) but cannot disassemble them or execute any

other actions with them than with other objects, we do not make a difference between simple

and complex objects. Object colours can have one of the following values: blue, green, orange,
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red, or yellow. The size of an object is one of the following: small, medium, or large. Type,

colour, and size of an object can not be combined randomly, which lies in the nature of the

Baufix pieces, for example nuts are always orange. We use the following expressions when we

want to formally describe that the type, size, or colour of an object O are queried1:

O.type() (3.3)

O.size() (3.4)

O.colour() (3.5)

Besides its object description, every object also has external properties that are defined through

their use in combination with an action. Therefore, we define a set of predicates that define

these action-related object properties:

instantiatedObject(O) (3.6)

abstractObject(O) (3.7)

planned(O) (3.8)

graspable(O) (3.9)

grasped(O) (3.10)

The first two of these predicates generally describe objects: An object O is called instantiated

object, if it physically exists in the environment of the robot and if it can be recognised by one of

the robot’s sensors. Instantiated objects are expressed by the predicate instantiatedObject(O).

In JAST, instantiated objects have an additional property, which is the object’s position on the

table in front of the robot and we write

O.position() (3.11)

to describe a query for the position of an object O. An object O is called abstract object, if

it has not been recognised by one of the robot’s sensors, but the robot needs to be able to

talk about it. Abstract objects are expressed by the predicate abstractObject(O). In JAST,

abstract objects are introduced when the robot loads a building plan and cannot see all objects

that are needed to complete the plan. For more details please refer to Section 3.3.3.2

1Please note: the query functions for an object’s colour and size are only applicable for simple objects.
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The rest of the action-related object property predicates describe objects in the context of

the JAST task: If an object O is needed to complete the next step of a plan it is called a

planned object and we express this by the predicate planned(O). Planned objects can be either

instantiated or abstract and the actions for planned objects change, depending on if they are

instantiated or abstract. If an object O is in reach of the robot’s arms, we express this by the

predicate graspable(O). Finally, if the position of an object O is in one of the robot grippers,

we express this by the predicate grasped(O).

3.3.1.2 Actions

To formally work with the action of an OAClet, we need to define some predicates and functions.

These are listed in Equations 3.12 to 3.14. Formally, we mark an action A by the predicate

action(A); furthermore, each action has a name and a type which can be queried by the functions

A.name() and A.type()

action(A) (3.12)

A.name() (3.13)

A.type() (3.14)

The type of an action is defined by using the action-related object predicates that were de-

fined in the last section. These predicates can be used to classify actions. An action classification

cannot be defined generally, because it depends on the abilities of the robot (or cognitive agent)

for which the classification is done. Therefore, we will show an example action classification for

the JAST robot. This robot can execute actions with its arms and its head:

• take, take an object

• give, take an object and give it to the human

• pointTo, point to an object on the table

• show, show an object that is already in the robot’s hand

• open [left/right] hand, open the left or right gripper

• close [left/right] hand, close the left or right gripper

• lookAt, use the head to look at an object or to the human
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Furthermore, the robot can generate speech output. Speech can be used in various ways

and for innumerable purposes. In this work, we will focus on only a few ways to use speech,

which are related to the task of the robot building an assembly object with the human:

• askFor, the robot can ask the human to put a certain object on the table

• tellAbout, the robot can tell the human to pick up a certain object

The classification that divides these actions by object predicates is displayed in Table

3.1. The table has two columns that are built by the domain-independent object predicates

instantiatedObject() and abstractObject(). The actions of the JAST robot can then be filled

in according to the domain-dependent predicates. Since there exist actions that can only be

applied to objects that are graspable, but there are also actions that can be applied to all

instantiated objects, the predicate graspable() also needs to be listed in its negated form. The

table does not show the two actions close hand and open hand, since those actions are not

related to objects, but to parts of the robot.

instantiatedObject() abstractObject()

graspable() give, lookAt, pointTo, take —

¬graspable() lookAt —

grasped() show —

planned() tellAbout askFor

Table 3.1: Action classification for the actions of the JAST robot.

Until now, we only described action types and how they can be classified. However, actions

also have temporal properties, i.e. each action has a start time and an end time, which can

be used to measure the duration of an action and also to express temporal relations between

two actions. In equations 3.15 to 3.18, we define a set of predicates that formally describe the

temporal relations between actions, where A stands for the set of all actions. These predicates

are similar to those defined in Allen’s temporal logic [3].

precedes() : (A× A)→ bool (3.15)

precedes() returns true if the end time of an action A is earlier than the start time of a second

action A′.

succeeds() : (A× A)→ bool (3.16)
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succeeds() returns true if the start time of an action A is later than the end time of an action

A′.

includes() : (A× A)→ bool (3.17)

includes() returns true if the start time of an action A is earlier than the start time of an action

A′ and the end time of A is later than the end time of A′.

includedBy() : (A× A)→ bool (3.18)

includedBy() returns true if the start time of an action A is later than the start time of an

action A′ and the end time of A is earlier than the end time of A′.

To shortly summarise this section: actions and objects are closely coupled together and can

only exist in parallel. We use OAClets to represent combinations of objects and actions. An

OAClet consists of an object O, an action A, and a relevance score R. Object descriptions consist

of an object’s type, size, colour, and a position in case of instantiated objects; the combination

of type and other properties is not random but follows the objects innate features. Action A

can only be applied to object O when certain preconditions are met. These preconditions can

be expressed by object predicates which are either domain-independent or domain-dependent.

Furthermore, actions also have a start time and an end time, which can be used to express the

temporal relations between two actions.

3.3.2 Input Channels

In the last section, we have shown how objects and actions are represented in EMF. Now,

we will explain how the information from various input channels can be used to generate and

evaluate OAClets; or to phrase it differently, in this section we will show how context information

influences the robot in its decision which action to execute next.

In the EMF approach we are following one of the design principles that were established

by the CoSy project [44]: concurrent modular processing. In Cosy, this principle was applied

on robot architectures, which have to consist of single modules that run in parallel. With this

design, complicated tasks can be split into subtasks that are executed in parallel by specialised

parts of the system, for example the vision system may track a human while the actuator

control makes sure that the robot does not collide with the human. This design principle also

implies that the system consists of several specialised subarchitectures, which can be renewed
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or extended easily due to the modular architecture design. In the EMF approach, we apply this

design principle on how we process information from input channels. In contrast to the CMF

approach, in which the data was processed in a stepwise fashion, EMF uses the input data to

constantly update the relevance of the robot’s OAClets in parallel.

EMF can handle input from diverse modalities such as object recognition, task planning,

robot body input, speech recognition, and gesture recognition. For this, it separates these

channels into two categories: action-generating channels and action-evaluating channels. The

first category, action-generating channels, are modalities that provide information that is valid

for a longer time, for example from object recognition, task planning, and robot body input.

OAClets are generated by the information from these channels. The latter category of action-

evaluating input channels stands for modalities that are used to compute the relevance scores

from a list of OAClets. Speech recognition and gesture recognition are the two channels that

belong to this category in the case of JAST. In the following sections we will give formal

definitions for action-generating and action-evaluating channels and demonstrate how these

apply to the modalities of the JAST domain.

3.3.3 Action-Generating Channels

Action-generating channels (AGC) are input modalities that provide information through which

OAClets can be generated. This means that these channels provide information about objects

and about object predicates, as they were defined in Section 3.3.1. Informally speaking, AGCs

have a function that generates OAClets. This is formally expressed in Definition 2.

Definition 2. We define an action-generating channel as an input modality that has a function

G : S→ S′ (3.19)

where S and S′ are states of the world and S holds all preconditions that allow the generation

of an OAClet that is part of S′.

Furthermore, we need definitions for functions to generate and update OAClets, and a

function with which we can query, if a certain action or object is part of an OAClet. While the

function to generate a new OAClet is external, the update function and the query function are

class functions of all OAClets.

Definition 3. We define the function generate() as a function that takes an object O, an action

A, and a relevance score R, and generates a new OAClet with the given values.

generate() : (O×A× S)→ OAClet(O,A,R) (3.20)
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Definition 4. We define the function update() as a function that is part of an OAClet, which

takes new values for the OAClet’s object, action, or relevance score and exchanges it inside the

OAClet.

OAClet.update() : OAClet→ OAClet (3.21)

Definition 5. We define the function contains() as a function that is part of an OAClet. The

function takes an object O or an action A and returns a boolean value, depending on whether

O or A are part of the OAClet.

OAClet.contains() : X→ bool where X ∈ {O,A} (3.22)

In the JAST scenario, there are three modalities that are AGCs: object recognition, task

planning, and robot body input. In the following sections, we will show how these input channels

generate OAClets so that the robot can assess at each time point during an interaction, which

actions it can execute and how likely they are.

3.3.3.1 Object Recognition

The JAST object recognition provides information about objects that are laying on the table

in front of the JAST robot. This information consists of the objects’ type, its properties, its

position, and a unique ID that identifies the object (which is basically the objects “name”).

The object information is updated as fast as possible, which effectively means several times

per second. However, the objects on the table are usually not moving very often, thus the

information from object recognition can be seen as semi-permanent.

Object recognition generates three types of events: either a new object is recognised, an

already known object changes its location on the table in front of the robot, or an object

disappears from the table. Therefore, we need to define how the EMF approach handles these

three events and how the action-generating function G is defined for object recognition in these

three cases. First, we look at the event when object recognition sends information about a new

object. In that case, EMF executes a series of steps to handle this event:

(1) Match with OAClets that contain abstract objects. In the first step, EMF looks into the

set of currently available OAClets, to see if there are any OAClets that contain abstract objects

that match the object description of the new instantiated object. Remember, abstract objects

are objects that are not visible to the robot, but it is able to talk about them, for example

because they are part of a building plan. If the object description of the new object matches

the object description of the abstract object, the action of the OAClet is changed. This is
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expressed by function GupdateAbstObj in Equation 3.23.

GupdateAbstObj : if
∃oaclet(abstractObject(O),A,R)∧
∃instantiatedObject(O′)∧
O.description() = O′.description()
→ oaclet.update(O′,A′,R)

(3.23)

were the new action A′ needs to be chosen from Table 3.1 to match the instantiated object O′.

Actions for abstract objects are for example the action askFor that can be used by the robot

to ask for an object that is needed for a plan. If the fusion module finds such actions with

matching object descriptions, the action can be deleted and replaced by new actions in the next

step.

(2) Determine suitable action type for object and generate OAClets. Depending on the

location of the newly recognised object, a set of new OAClets has to be generated. The actions of

these OAClets can be determined using Table 3.1. This is expressed by function GgenerateOAClet

in Equation 3.24.

GgenerateOAClet : if
∃instanitatedObject(O)
→ generate(O,A,R)

(3.24)

Consider the following example that clarifies this step: object recognition recognises a yellow

cube that is in reach of the robot and has ID o001. In this case EMF generates five new OAClets

0.3, give(cube(o001, yellow))
0.3, lookAt(cube(o001, yellow))
0.3, pointTo(cube(o001, yellow))
0.3, show(cube(o001, yellow))
0.3, take(cube(o001, yellow))

The example shows the OAClets in the order relevance, action(object(properties)). The num-

ber of the relevance score is not important right now, it will be explained in more detail in

Chapter 4. If the cube is not reachable by the robot, EMF only generates the OAClet

0.3, lookAt(cube(o001, yellow))

The second type of object recognition event—change of an object’s location—is easier to

handle than the introduction of new objects. In this case, EMF first needs to lookup if the

object predicates of the object that changed location have changed. If that is the case, the

actions of all OAClets that contain the object that changed location need to be updated or
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deleted according to Table 3.1. This is expressed by function GchangedObjLoc in Equation 3.25.

GchangedObjLoc : if
∃instantiatedObject(O)∧
O.location.hasChanged = true∧
∃oaclet(O,A,R)
→ oaclet.update(O,A′,R)

(3.25)

OAClets have to be deleted in two cases: when an object changes location and thus certain

actions cannot be applied to the object any more, and when an object disappears from the

table in front of the robot. This is expressed by function GdeleteOAClet in Equation 3.26.

GdeleteOAClet : if
¬∃instantiatedObject(O)
→ delete(∀oaclet.contains(O))

(3.26)

3.3.3.2 Task Planning

Usually, multimodal fusion components make no use of input from a planning component, for

example in the CMF approach that was presented in Section 3.2. However, every cognitive agent

that should execute sensible actions needs to be goal-directed, a property that was also noted

by Hawes et al. in [44]. The goal of the robot in the JAST scenario is to build Baufix assemblies

together with the human. Thus, the goal of the robot is closely related to an assembly plan

and an integration of the information from the JAST task planner in the multimodal fusion

component is crucial for successful action selection and execution.

The JAST task planner follows a standard approach: plans are saved in a tree structure,

where each leaf represents a Baufix piece that is needed for the plan. Nodes represent substeps

of the plan and the root node represents the completely assembled object. Figure 3.5 shows

an example plan tree for a Baufix windmill. When the planner gets the information about an

executed plan step (i.e., an object was taken from the table) it is able to determine to which part

of the plan the plan step belongs and if a subplan was completed. It can also give information

about the objects that are needed to complete the currently active plan step.

The main problem while using the task planner is that the JAST robot has a very limited

view on its environment. It cannot tell if the human completed a plan step correctly or not,

it has to guess the current state of the plan by other clues. For this reason, in one of the

JAST system evaluations we asked the subjects to explicitly tell the robot when they finish

a plan substep or a complete plan [34, 35]. However, this often led to confusion among the

experiment participants. Thus, for the EMF approach we decided to take only the information

about disappearing objects from object recognition as a clue about finished plan steps.
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windmill

tower smallSlat1 smallSlat2 yellowBolt

blueCube redCube greenBolt

Figure 3.5: Assembly plan for a Baufix windmill, represented in a tree structure.

The task planner generates two types of events that are relevant for EMF: on the one hand,

when loading a new plan, new OAClets need to be generated and old OAClets need to be

reevaluated. On the other hand, if a substep of a plan is completed, the existing OAClets need

to be reevaluated as well. Thus, the task planner is an AGC as well as an AEC.

First, we look at the case when the task planner loads a new plan. For this, EMF gets

information by the task planner about which plan was loaded, what the building steps of that

plan are, and which instantiated objects are needed to build these steps. EMF needs to check

for each of the objects of the building plan, if it already knows an OAClet, which has an

instantiated object and from which the object description is similar to the object description

of the planned object. If EMF does not know such an object, it has to generate a new OAClet

with an abstract object. This is expressed by function GgenerateAbstrOAClet in Equation 3.27.

GgenerateAbstrOAClet : if
∃planned(O)∧
¬∃oaclet(instantiatedObject(O′),A′,R′)∧
O.description() = O′.description()
→ generate(O,A,R)

(3.27)

If EMF already knows an OAClet with an instantiated object that has the same object de-

scription as the object from the plan, EMF updates the relevance score of this OAClet. This is
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expressed by function REPlanInstOAClet in Equation 3.28.

REPlanInstOAClet : if
∃planned(O)∧
∃oaclet(instantiatedObject(O′),A′,R′)∧
O.description() = O′.description()
→ oaclet.update(O′,A′,R)

(3.28)

The completion of a substep of a plan triggers the second task planner event. In this case,

no new OAClets need to be generated, but the already existing OAClets need to be reevaluated.

This reevaluation is similar to the update that was shown in equation 3.28, but in this case EMF

makes no difference between OAClets with instantiated or abstract objects, which is expressed

in equation 3.29.
GupdateP lanOAClet : if

∃planned(O)∧
∃oaclet(O′,A′,R′)∧

O.description() = O′.description()
→ oaclet.update(O′,A′,R)

(3.29)

To illustrate the formal description of processing of task planner input, consider the following

example: human and robot should build a windmill together, following the plan that was

presented in Figure 3.5. Object recognition identifies six objects on the table in front of the

robot, a blue cube, a yellow cube, a green bolt, a yellow bolt, and two small slats. For these

objects, EMF has already generated a set of OAClets (the set is shortened here, only one action

per object is displayed):

0.3, give(cube(o001, blue))
0.3, give(cube(o002, yellow))
0.3, give(bolt(o003, green))
0.3, give(bolt(o004, yellow))
0.3, give(slat(o005, small))
0.3, give(slat(o006, small))

When the user loads the plan for the windmill, EMF adds a new OAClet for an abstract

red cube, since this Baufix piece is also needed to build the target object. The action for this

action is selected from Table 3.1. Furthermore, EMF raises the relevance scores of all OAClets

that contain an object with an object description that fits to one of the pieces that is needed

to build a windmill. In the example, all pieces that are needed to build the tower, which is

the first substep of the windmill, are raised to a value of 0.9 all relevance scores of OAClets

with objects that are needed later in the plan are raised to a value of 0.6. As we will show in

Chapter 4, a rating function does the reevaluation in the actual implementation of the EMF

approach on the JAST robot.
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0.9, give(cube(o001, blue))
0.9, give(cube(o002, yellow))
0.9, give(bolt(o003, green))
0.6, give(bolt(o004, yellow))
0.6, give(slat(o005, small))
0.6, give(slat(o006, small))
0.6, askFor(abstract(cube(red))

To summarise this section: we believe that task planning is essential for any goal-directed

behaviour of a cognitive robot and thus must be included in multimodal fusion. The information

from the task planner can on the one hand be used to generate OAClets with abstract objects;

on the other hand, the knowledge about pieces that are needed to complete a building plan can

be used to reevaluate the relevance score of already existing OAClets.

3.3.3.3 Robot Body Input

Since the new approach for multimodal fusion is centred around the actions of the robot, there is

an additional input channel that is usually not considered in multimodal fusion: the information

that is generated by the robot itself. Since the robot is able to measure information about its

own current status, for example it can evaluate the position of its joints, this information can

also be used to generate OAClets. This idea goes back to Pfeifer [67] who states in one of his

design principles for embodied agents that they are also generating sensor input which can be

fed back into their reasoning system.

In case of the JAST robot, the available input information is rather limited. At the time of

writing this thesis, there is one interface that can be used to get information about how much

the robot grippers are opened and another interface works as a trigger to tell the rest of the

system when the robot is moving. However, even this little information can be used to generate

OAClets that relate the actions close and open to the left or right robot gripper respectively.

This cannot be expressed formally with our current set of definitions. However, we want to give

an example: if the left gripper is open then only the OAClet

1.0, close(gripper(left))

is active. The action of the OAClet has to be changed every time when the grippers is opened

or closed.

The robot body input channel has much potential. For JAST, we did not exploit this

modality too much, but in future versions of the system it would be thinkable to for example
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publish the pose information of the arms, which could be used to decide if the robot needs to

move to defined positions given a certain context.

3.3.4 Action-evaluating Channels

In contrast to action-generating input channels, there are those modalities that are solely used

to reevaluate already generated OAClets. Thus, one could say that the information from these

action-evaluating channels (AEC) is used by one partner of the interaction to direct the atten-

tion of the other partner to certain objects or actions. This follows the work by Clark [25], who

pointed out that in joint action most activities can be divided into the two classes directing-to

and placing-for. Both of these activity classes are used to draw the partner’s attention to ac-

tions or objects either by concretely directing the attention to them or by placing the objects

(or sometimes agents also place themselves) in the visual field of the partner. Formally, we

express an AEC according to Definition 6.

Definition 6. We define an action-evaluating channel as an input modality that has a function

RE : OAClet→ OAClet (3.30)

which takes an OAClet and reevaluates the relevance score of that OAClet.

In the JAST project, two modalities, which have been relevant for the CMF approach al-

ready, can be counted as AECs: speech recognition and gesture recognition. These modalities

have in common that they represent information from human utterances and that the informa-

tion from these channels is only valid for a short period of time.

3.3.4.1 Speech Processing

In the EMF approach, speech is similarly processed as in the CMF approach, which was also

described in Section 3.2.3: the input of a speech recognition software is parsed with CCG to

yield a logical formula. After the parsing step, unlike in the CMF approach, EMF directly uses

the logical expressions to reevaluate relevance scores of existing OAClets. In this section, we will

show how this reevaluation is formally defined. Furthermore, we show how the use of OAClets

can increase the robustness of the system in case of grammatically not correct sentences.

The approach described here assumes that the human utterances in the interaction with the

robot mainly consist of imperative sentences, in which the humans directly express what they

want the robot to do. These sentences are parsed with a grammar to yield logical expressions.

Figure 3.6 shows the hybrid logic formula for the input sentence “take a yellow cube”.
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@t1:action(take-verb ∧
〈mood〉 imp ∧
〈Actor〉 x1 : animate− being ∧
〈Patient〉 ( c1 : thing ∧ cube-np ∧

〈det〉 indef ∧
〈num〉 sg ∧
〈HasProp〉 ( y1 : proposition ∧ yellow)))

Figure 3.6: Hybrid logic formula for the sentence “take a yellow cube”.

In this example, you can see that the action as well as the object mentioned in the sen-

tence are marked by the nominals t1:action and c1:thing, respectively. These nominals can be

automatically extracted and can be used to reevaluate OAClets that contain similar actions

and objects as the extracted ones. Please note, that the object that was extracted from the

hybrid logic formula is abstract, while the objects from the OAClets can either be instantiated

or abstract. This is expressed by function REreevaluateActionAndObject in Equation 3.31

REreevaluateActionAndObject : if
∃action(A)∧
∃abstractObject(O)∧
∃oaclet(A′,O′,R′)∧
A.name() = A′.name()∧
O.description() = O′.description()
→ oaclet.update(A,O,R)

(3.31)

Until now, we were only looking at the case in which speech processing parses a whole

sentence, similar to what we described in Section 3.2.3. With EMF, you can also reevaluate

OAClets with only partially or wrongly recognised sentences. For this, in Equations 3.32 and

3.33 we define the two functions REreevaluateAction and REreevaluateObject with which OAClets

can be reevaluated with the information of a single action, object, or even object property that

was recognised by speech recognition. In Chapter 4 we will demonstrate some examples that

use these functions.

REreevaluateAction : if
∃action(A)∧
∃oaclet(A′,O′,R′)∧
A.name() = A′.name()
→ oaclet.update(A,O,R)

(3.32)
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REreevaluateObject : if
∃abstractObject(O)∧
∃oaclet(A′,O′,R′)∧
O.description() = O′.description()
→ oaclet.update(A,O,R)

(3.33)

In summary, one can say that speech processing in EMF is still based on traditional tech-

niques from computational linguistics, but it differs from CMF because it uses the information

from parsed sentences to directly evaluate the robot’s actions. Furthermore, EMF is equipped

with the basic tools to implement a strategy to reevaluate OAClets based on only partially

recognised sentences, which increases the robustness of the approach.

3.3.4.2 Gesture Recognition

In CMF approaches, gesture recognition is usually one of the key modalities, or to put it

differently: gestures are most of the time the only other input modality that are integrated

with speech. In these approaches, gesture recognition is used to resolve ambiguous situations

in which information from speech is not enough to fully resolve an utterance. However, when

working with a robot in the real world, gesture recognition often is not working robustly and

recognition results are poor.

Furthermore, two publications from the JAST project show that in joint action gestures

might be of less importance than it is usually reported in literature. Foster et al. showed in

[33] that the analysis of a data corpus revealed that in situations in which two persons work

together and in which both see objects they are working with, they preferably use haptic-

ostensive references for objects rather then pointing at them, which means, that they pick up

the object to steer the partner’s attention to it. Additionally, de Ruiter et al. showed in [29]

that people use iconic gestures to describe objects that are redundant with the information in

the speech and does not add any new information to what they have said.

In EMF, gesture recognition is used to reevaluate OAClets. At this point, we should define

three update functions for reevaluating OAClets, which cover the three types of gestures that

the JAST gesture recognition can process: pointing, holding out, and grasping. However, in

practice only pointing gestures are used by the human to direct the robot’s attention to Baufix

objects. Therefore, in Equation 3.34 we only define update function REreevaluatePointedToObject,

which is similar to function REreevaluateObject that was defined in Equation 3.33, but handles
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instantiated instead of abstract objects.

REreevaluatePointedToObject : if
∃instantiatedObject(O)∧
∃oaclet(A′,O′,R′)∧
O.description() = O′.description()
→ oaclet.update(A,O,R)

(3.34)

In Chapter 4, we will provide more information and examples in gesture recognition. For

now, we want to draw your attention to the fact that the use of OAClets in the EMF approach

improves the robustness of the system, because even if gesture recognition fails to deliver any

results, the robot is still able to complete its tasks, which stands in contrast to CMF.

3.3.5 Action Selection

The EMF approach enables the robot to represent its own actions and to evaluate how relevant

they are given a context. However, this yields a new problem, which does not arise in the CMF

approach: the robot needs to decide when it wants to execute an OAClet and it needs to define

which OAClet it should choose for execution. In CMF, this decision is easy to make. Every

time when the human says an utterance to the robot, it reacts on the utterance with an action.

This behaviour is not sufficient for a true interaction, the robot needs to proactively take part in

the interaction and to anticipate its next own actions. Therefore, we need to develop strategies

that help the robot to decide, which OAClet it should execute at a given time. In this thesis,

we will not be able to completely solve this issue, but we present our view on action selection

and show an implementation for an action selection mechanism in Chapter 4.

We see three events that could trigger that the robot chooses an OAClet for execution:

• Triggering by a dedicated modality that is only responsible for choosing the right moment

to execute an OAClet. This could be for example a human that helps the robot, how it is

done in Wizard of Oz experiments1, or a component that recognises human social signals

that for example measures how long the human looks at the robot and draws conclusions

from this measurement.

• Triggering by one of the action-generating or action-evaluating channels. All modalities,

which are used to generate or evaluate OAClets, generate events that could also be cues

for the robot to select one of the OAClets for execution. For example, the human could

give the robot a direct command, which certainly is an obvious cue for action selection.

1In Wizard of Oz experiments, subjects interact with a computer or robot system that is controlled by a

human being, but the subjects believe that the system is autonomous.
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• Triggering by a mathematical model. The robot could use the relevance scores of the

OAClets to decide which and when to select an OAClet. A simple model would be to

execute OAClets when their score increases over a certain threshold or a more advanced

statistical model could be trained by using the input data by the modalities.

For JAST, we developed an action selection strategy that uses cues from several modalities

to trigger the selection of an OAClet for execution. Furthermore, we use an effective strategy

to select the right OAClet in the case when the relevance scores of several OAClets are similar.

The triggers for the OAClet selection mechanism are:

• Direct command of the human. When the human gives a direct command , for example

“give me a blue bolt”, to the robot, the action selection strategy tests if an OAClet that

fits the command exists and executes it right away. When the robot cannot find an

OAClet that directly fits to the human order, EMF uses the information of the analysed

utterance to reevaluate the remaining OAClets. This might lead to a situation in which

EMF triggers one of the other action selection mechanisms.

• Pieces disappear from table. Since Baufix pieces only disappear from the table when the

robot hands them over to the human or when the human picks up one of the pieces, this

is a trigger for the OAClet selection mechanism. In this case, EMF first waits for the

update information from the task planner and then calls the mechanism.

• Time-controlled external trigger. We did some experiments with an external trigger that

calls the OAClet selection mechanism every time when the robot does not get input from

any of the modalities for a predefined time. However, we discovered that this trigger is not

trivial to set up. Therefore, we decided not to use an external trigger for OAClet selection

in this thesis. In the outlook in Chapter 6 we discuss some of the possible directions in

which we want to go with the external trigger in the future.

Finally, we shortly describe the rather simple but effective OAClet selection mechanism,

we are using: when EMF selects an OAClet for execution directly because of an command by

the human, the mechanism simply executes this OAClet. In all other cases, the mechanism

filters all OAClets with the highest relevance scores. If the resulting list contains more than

one OAClet, the mechanism sorts the remaining entries according to an action priority list. For

example the action give could have the highest priority, so that the robot always hands over

pieces to the human before executing other OAClets. This is inspired by the task hierarchies
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that were introduced by Sentis and Kathib [73]. Section 4.3.4 discusses the OAClet selection

mechanism in more detail.

3.3.6 Discussion

Similar to the discussion in Section 3.2.7, in this section we will discuss the advantages and

disadvantages of the approach for embodied multimodal fusion we presented above.

The main difference between the CMF and EMF approaches is that the central idea of EMF

is that the robot should represent its own actions in combination with objects. This leads to the

situation, in which the multimodal fusion module has to integrate more modalities than before,

which also means that the module needs to handle more tasks than in CMF, for example by

using the task planner and by incorporating action selection mechanisms. We argue that this

is an advantage, because, despite losing some of the modularity of the CMF approach, at the

same time the robustness of the system increases and the information of the input channels is

optimally used. Furthermore, we see the following advantages:

• In EMF, the symbol grounding problem does not exist, since as soon as an object is

recognised this information is represented in OAClets, which deletes an explicit symbol

grounding step. Of course, one could also argue that in EMF we ground objects as soon as

the multimodal fusion module gets information about objects from its input modules—in

case of JAST those modules are object recognition and task planning. Hence, EMF has

a symbol grounding step, but executes it at an earlier processing stage as in the CMF

approach.

• Although the new approach is not as modular as the old approach, it is even more ex-

tensible. New context-providing modules can always be added to the system, because

the representation of OAClets is not coupled to a certain input modality, which is unlike

in the CMF approach, where utterance representation is closely linked to speech recog-

nition. Furthermore, in EMF, OAClet evaluation is separated from OAClet generation,

which makes it possible for developers to add new action-evaluating or action-generating

channels to the system.

• If one of the input modules fails, in EMF the robot is still able to generate and evaluate

OAClets; also the focus on speech does not exist any more in the new approach. This

increases the robustness of the system.
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• EMF is well-suited for statistical methods. These methods could be used to train the

parameters that define the robot’s behaviour or they could be used as an action selection

mechanism.

• Finally, the new approach combines Information from modules that are based on logic,

for example the task planner, and from modules that use statistical methods, for example

object recognition. This property is again made available through the use of OAClets,

which was also noted in [37] and [66].

Of course there are also disadvantages in EMF:

• The robot can potentially execute the wrong action at the wrong time. This means that

EMF cannot be used for applications in which it is crucial that the robot never makes any

errors. However, we see that EMF can be extended, for example with a list of actions the

robot is not allowed to execute, which has to be altered given the current context. Also,

if there are certain actions in an application, which the robot should never execute, then

those actions or action-object combinations can be restricted in EMF.

• In the current form of EMF, there is no way to influence, when the robot executes an

action. For example in the case of the JAST construction task, there are situations in

which the human has to assemble the target objects, which takes some time. In these

cases the robot should wait for the human to finish, before continuing with the interaction.

However, we think that this also means that the robot needs to be equipped with a module

that monitors the human’s actions, which is not the case in the current version of the

JAST robot.

• EMF has no memory, for example it does not record the things that have already been

said. This knowledge would be needed for example to resolve anaphora or to generate

referring expressions that make reference to the past. However, we think that this problem

could be solved by using external modules that provide memory, for example a dialogue

history, which could be another source of input to multimodal fusion.

• Finally, EMF is harder to port to new domains than CMF. With that, we do not mean

the theory of action-generating and action-evaluating channels but the concrete imple-

mentation of the approach for the JAST robot.
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Chapter 4

Implementation

In this chapter, we give an overview for the implementation of the two approaches for multi-

modal fusion that we developed in this thesis. First, in Section 4.1 we show the interfaces of the

JAST robot architecture that we use for communication between input modules, multimodal

fusion, and output modules. After that, we introduce the implementations for the CMF ap-

proach in Section 4.2 and the for the EMF approach in Section 4.3. Both of the latter sections

also contain processing examples to demonstrate the differences between the two methods.

4.1 JAST Robot Architecture

The JAST robot architecture, which we showed in Figure 2.2, consists of a set of modules

that implement the robot’s abilities. The communication between these modules is imple-

mented with the middleware Internet Communication Engine (Ice)1 [45], which is designed as

a communication layer for components of a distributed system. For that, Ice supports various

operating systems and programming languages. In JAST, we are using components that are

running on Linux and Windows and are programmed in C++, Java, Prolog, and Python.

Ice has an own language to define interfaces for the communication between components of

a distributed system. In the following, we will describe some of the interfaces that were defined

for the JAST robot. We will only describe the interfaces that are relevant for our work.

4.1.1 Commonly Used Definitions

The environment of the JAST robot is encoded in its architecture by a set of constructs that

can by applied in all interface definitions. In JAST, locations can be described precisely by

1Ice is availble for download at http://www.zeroc.com
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table coordinates or imprecisely by a semantic description. Figure 4.1 depicts the constructs

for these descriptions.

Baufix objects are described by type, colour, and size. However, in JAST, we have two views

on objects, one view from object recognition and another view from the world model. Figure

4.2 shows the Ice definitions for these two views: objects from object recognition are described

with an OrecObject, which contain an ID that was generated during the recognition process

and the exact coordinates of the object on the table in front of the robot. The robot uses the

coordinates for example when it picks up an object. The object view by the world model is

described in the structure InstantiatedObject. An instantiated object contains an ID by the

world model, which is for example used by multimodal fusion and dialogue manager, and a

semantical representation of the objects location, for example “TableArea→User”. OrecObject

and InstantiatedObject both have an object description that contains their type and other

properties, which are stored in the structure ObjectDesc.

enum LocationType {
User , RobotHand , Table , Assembled , UnknownLocation , AnyLocation

} ;

enum TableArea {
UserArea , RobotArea , CommonArea , OutsideArea , AnyArea

} ;

Figure 4.1: Ice interfaces for locations on the table in front of the robot.

4.1.2 Interfaces for Input Modalities

Figure 4.3 shows the interface for speech recognition, which sends an n-best list of recognised

sentences. It stores the best hypothesis in the string top and the rest of the alternative recogni-

tion results in a separate list of strings. Furthermore, speech recognition sends two timestamps

that mark when the human started and ended to speak.

Figure 4.4 shows the interfaces for gesture recognition, which has two several separate meth-

ods over which it sends information. In multimodal fusion we use only two of these interfaces.

Gesture recognition uses the interface handMoved when it recognises a hand in the viewing

sight of the robot, and it uses the interface handPositionStable to publish a recognised gesture

when the human holds the hand still. The latter interface sends a list of so-called GestureHy-

potheses, which contains the three gesture types that gesture recognition can classify along with
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struct ObjectDesc {
ObjectType type ;

ObjectPropMap props ;

} ;

struct OrecObject {
ObjectDesc d e s c r i p t i o n ;

TableCoordinates coords ;

s t r i n g orec Id ;

} ;

struct In s tan t i a t edOb j e c t {
s t r i n g worldId ;

ObjectDesc desc ;

Locat ion l o c ;

} ;

Figure 4.2: Object descriptions in Ice.

a confidence score of each gesture.

For multimodal fusion, the world model is the interface to object recognition. The world

model can either directly publish object recognition events or multimodal fusion can query

information that is stored in the world model. Figure 4.5 shows the world model publishing

interfaces. It uses the interface objectIntroduced, to send information when a new object appears

on the table, and it uses the interfaces objectChangedLocation and objectChangedCoordinates

when human or robot move an object around on the table. World model publishes the semantic

location and the coordinates of objects separately to be consistent with the two views on objects.

Figure 4.6 shows the world model query interfaces. Here we only show the two interfaces we

are using, which is on the one hand the interface getObjectIds, which sends a list of object ids

that fit to a given object description, and on the other hand the interface getInstantiatedObject,

which returns an instantiated object for a given world model id.

void recognizedTurn ( s t r i n g top ,

: : I c e : : St r ingSeq a l t e r n a t i v e s ,

: : j a s t : : common : : Timestamp startTime ,

: : j a s t : : common : : Timestamp endTime ) ;

Figure 4.3: Ice interface for speech recognition.
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void handMoved ( : : j a s t : : common : : TableCoordinates coords ,

: : j a s t : : common : : Timestamp time ) ;

void handPos i t ionStab le ( GestureHypothes i sL i s t hypotheses ,

: : j a s t : : common : : Timestamp time ) ;

Figure 4.4: Ice interfaces for gesture recognition.

void ob j ec t In t roduced ( s t r i n g ob jec t Id ,

: : j a s t : : common : : Locat ion loc ,

: : j a s t : : common : : Timestamp time ) ;

void objectChangedLocation ( s t r i n g objec t Id ,

: : j a s t : : common : : Locat ion oldLoc ,

: : j a s t : : common : : Locat ion newLoc ,

: : j a s t : : common : : Timestamp time ) ;

void objectChangedCoordinates ( s t r i n g ob jec t Id ,

: : j a s t : : common : : TableCoordinates oldCoords ,

: : j a s t : : common : : TableCoordinates newCoords ,

: : j a s t : : common : : Timestamp time ) ;

Figure 4.5: Publishing Ice interfaces for world model.

4.1.3 Interfaces to Reasoning Components

In this section, we review the interfaces from multimodal fusion to the reasoning layer of the

JAST robot architecture. Figure 4.7 shows the interfaces to the dialogue manager. CMF uses

the interface setInput to send the fusion hypotheses which were presented in Section 3.2.6 and

are also shown in their Ice definition in Figure 4.7.

EMF uses information from the task planner and Figure 4.8 shows the interfaces for that.

Task planner has many interfaces, but we use only the interfaces getRequiredPieces, to query the

Baufix pieces that are needed for the currently loaded building plan, interface getBasicSteps,

to query the building steps of the plan, and interface userAssembledPieces to tell task planner

when the user finished a substep of the plan.

4.1.4 Interfaces to Output Components

Finally, we show the interfaces to the output components of the JAST robot. Figure 4.9 shows

the interfaces to the robot arms. With these interfaces we can control all the actions the robot

can execute, for example open or close one of the robot’s hand, pickUp an object, or moveAway

the robot arms to their default position. The figure also shows the interfaces we use to query
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: : I c e : : St r ingSeq getObjec t Ids ( : : j a s t : : common : : ObjectDesc desc ,

: : j a s t : : common : : Locat ion l o c ) ;

: : j a s t : : common : : In s tan t i a t edOb j e c t g e t In s t an t i a t edOb j e c t ( s t r i n g id ) ;

Figure 4.6: Query Ice interfaces for world model.

struct Hypothes is {
HypothesisType type ;

s t r i n g l f ;

ObjectLinkSet o b j e c t l i n k s ;

: : j a s t : : common : : In s tan t i a t edOb j e c t i n s t o b j ;

: : j a s t : : l i s t e n e r : : GoalInferenceOutput giOutput ;

} ;

void s e t Input ( Hypothes is hyp ) ;

Figure 4.7: Ice hypothesis definition and interface for dialogue manager.

the robot status, for example getGripperWidth sends the information how much the robot’s

grippers are currently opened, and we use the interface isReachable to check if a certain object

is reachable by a given robot hand.

4.2 Classical Multimodal Fusion

In this section, we describe the processing flow in the CMF approach.

4.2.1 Overview

Figure 4.10 shows an overview for the processing in the CMF approach. The central reasoning

component of CMF is the so-called working memory that uses a rule engine to generate fusion

hypotheses. The multimodal fusion module translates the input from speech recognition and

gesture recognition into speech and gesture elements which the working memory can process. For

the translation, multimodal fusion uses a CCG to parse the spoken utterances. The recognised

gestures can be translated directly. Furthermore, the working memory uses the interfaces to

the world model to get information about objects on the table. When the working memory has

completed a fusion hypothesis, it sends the hypothesis to the dialogue manager.
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: : j a s t : : common : : ObjectDescList ge tRequ i redPieces (

: : j a s t : : common : : ObjectType t a r g e t ) ;

Bas i cS t epL i s t ge tBas i cSteps ( : : j a s t : : common : : ObjectType obj ,

s t r i n g s t ep Id ) ;

void userAssembledPieces ( : : I c e : : St r ingSeq p i e c e Id s ,

: : j a s t : : common : : ObjectType r e s u l t ) ;

Figure 4.8: Ice interfaces for task planner.

enum Hand {
HandLeft , HandRight , HandAny

} ;

void c l o s e (Hand h ) ;

double getGripperWidth (Hand h ) ;

void g ive (Hand h ) ;

bool i sReachab le (Hand h ,

: : j a s t : : common : : TableCoordinates coords ) ;

void moveaway ( ) ;

void open (Hand h ) ;

void pickUp (Hand h ,

: : j a s t : : common : : TableCoordinates coords ) ;

void point (Hand h ,

: : j a s t : : common : : TableCoordinates coords ) ;

void putDown(Hand h ,

: : j a s t : : common : : TableCoordinates coords ) ;

void show (Hand h ) ;

void take (Hand h ) ;

Figure 4.9: Ice interfaces for robot body.

4.2.2 Speech Processing with OpenCCG

In this thesis, we will only shortly explain the single steps of the parsing process. Please refer

to [40] for a more detailed description of CCG and OpenCCG. Shortly, the steps in the parsing

process are: loading of a grammar, parsing of all hypotheses from speech recognition, filtering

of complete sentences, and information extraction of the generated logical form of the complete

sentence.

When no complete sentence was parsed, we are using a strategy to extract as much infor-

mation from the speech recognition result as possible. For that we split the recognition result

into bigrams and parse these sentence parts. We extract information from these sentence parts
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Figure 4.10: Overview for processing in the classical multimodal fusion approach.

if possible or repeat the parsing process with single words if no information extraction was

possible with bigrams. The extracted information is then represented in speech elements, as we

will show in the following section.

4.2.3 Speech and Gesture Elements

The information of the parsed sentences and the recognised gestures has to be packed into

speech and gesture elements before the working memory can process them. The extracted

information from the parsed sentences is

• deictic expression, which are a cue for the working memory that it needs a pointing gesture

to resolve the sentence that contains the expression.

• definite article, which is a cue that either a gesture that refers to a certain object or only

one object that fits to the object description in the spoken sentence needs to be present

to resolve the utterance.

• logical formula that was generated during the parsing process, which is needed by dialogue

manager and output generation.

• nominals in the logical formula, which stand for objects. These are stored with the object

descriptions that fit to the nominal and to the object description in the spoken utterance.

Similar to verbal utterances, gestures are translated to a gesture element. This element

contains
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• a gesture type, which can be pointing, holding out, or grasping.

• coordinates of the place on the table on which the gesture was executed. This can be a

cue on which object the user really pointed at in case he/she pointed at several objects

at once.

• a list of objects the human pointed to. This list contains the world model id of the objects

as well as the corresponding instantiated objects which contains the object description

and the object position.

Besides this modality-specific information, speech and gesture elements both additionally

hold a start and end time that are needed by the working memory to decide if a speech and a

gesture element should be joined together.

4.2.4 Working Memory

The working memory is the heart of the CMF approach: it fuses the data from speech, gesture,

and object recognition and generates fusion hypotheses. The working memory is implemented

with Drools [20], a Java-based rule engine. The engine can work with facts, which is why

we translate speech and gestures into basic elements that consist of statements. Additionally

to this information, we introduce timestamps that contain the current time into the working

memory on a regular basis. This way, the working memory can handle time points as facts,

which is used in some of the rule definitions. For example the timestamp can be used to delete

speech and gesture elements that are too old.

For JAST, the rule engine contains 13 rules that cover the fusion of spoken utterances and

gestures for the user evaluations in which CMF was used. Appendix A.1 shows the complete

listing of rules, in the following list we document what the rules do and which kind of fusion

hypothesis they generate.

• Rule “pointing gesture” handles a single pointing gesture that is older than a defined

timeout. Sets the gesture element inactive and generates no hypothesis.

• Rule “deictic speech and pointing gesture, resolved” fuses a sentence with a deictic expres-

sion and a pointing gesture that have timestamps that are close to each other, generates

a resolved hypothesis.
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• Rule “deictic speech and pointing gesture, unresolved” fuses a sentence with a deictic

expression and a pointing gesture that have timestamps that are close to each other, but

generates an unresolved hypothesis.

• Rule “deictic speech and pointing gesture, conflict” fuses a sentence with a deictic ex-

pression and a pointing gesture that have timestamps that are close to each other, but

have object descriptions that do not fit to each other, which thus generates a conflicting

hypothesis.

• Rule “deictic speech and pointing gesture, ambiguous” fuses a sentence with a deictic

expression and a pointing gesture that have timestamps that are close to each other, but

generates an ambiguous hypothesis, for example because the user points at two similar

objects at the same time.

• Rule “speech, deictic expression, no gesture” generates an unresolved hypothesis, because

it has a speech element with a deictic expression in it, but cannot find a gesture element.

• Rule “speech, no deictic expression, definite determiner, ambiguous” generates an am-

biguous hypothesis, because it has a speech element with a definite determiner but no

gesture element to resolve the situation.

• Rule “speech, no deictic expression, no definite determiner, resolved” generates a resolved

hypothesis, because it found a speech element with no deictic expression or definite de-

terminer.

• Rule “speech, no deictic expression, definite determiner, resolved” generates a resolved

hypothesis, for example when the user says “give me the cube” and there is only one cube.

• Rule “speech, no deictic expression, no definite determiner, unresolved” generates an

unresolved hypothesis, because the user talked about objects the robot cannot see.

• Rule “speech, no deictic expression, definite determiner, unresolved” generates an unre-

solved hypothesis, because the user talked about a specific object the robot cannot see.

• Rule “set old utterances inactive”, this rule sets speech and gesture elements inactive that

are older than a defined timestamp, so that the other rules do not use these utterances.

• Rule “nothing happened for TIMEOUT msecs”, this rule simply prints a message when

no new gesture and speech items were added to the working memory for a time duration

that is defined in variable TIMEOUT.
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4.2.5 Processing Example

To conclude the section about the implementation of CMF, we present an example in which

the human speaks a sentence that contains a deictic expression and makes a pointing gesture,

which are then unified by CMF.

In the example, a red cube, a yellow cube, and a yellow bolt are laying in front of the robot.

The yellow cube and the yellow bolt are laying close to each other. Object recognition has

correctly recognised the three objects and published the results to the world model. World

model assigned the IDs o001 to the red cube, o002 to the yellow cube, and o003 to the yellow

bolt. The human says to the robot “give me this cube” and points on the table. Gesture

recognition cannot classify the pointing gesture precisely and publishes that it found a pointing

gesture with which the human pointed to the yellow cube and the yellow bolt.

Speech recognition has recognised the spoken utterance correctly and sends it to CMF. CMF

parses the sentence with CCG which yields the logical expression that we present in Figure 4.11.

From this expression, CMF extracts information and builds a speech element, which is shown

in Figure 4.12.

@g1:action(give-verb ∧
〈mood〉 imp ∧
〈Actor〉 x1 : animate− being ∧
〈Patient〉 ( c1 : thing ∧ cube-np ∧

〈det〉 dem-prox ∧
〈num〉 sg )∧

〈Recipient〉 ( p1 : animate− being ∧ pron ∧
〈num〉 sg ∧
〈pers〉 1st ))

Figure 4.11: Hybrid logic formula that was generated with a combinatory categorial grammar

for the sentence “give me this cube”.

CMF also generates a gesture element for which it combines information from gesture and

object recognition. We show the gesture element in Figure 4.13.

Speech and gesture element also contain timestamps, when the utterances started and ended.

For the example, we assume that both elements were not more than three seconds apart. CMF

introduces the speech and gesture element into the working memory which uses rule “deictic

speech and pointing gesture, resolved” to generate a resolved hypothesis. We show the rule in

Figure 4.14.
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St r ing top == ” g ive me t h i s cube” ;

S t r ing [ ] a l t e r n a t i v e s == empty ;

boolean ha sDe i c t i c == true ;

private boolean hasDefDet == fa l se ;

private St r ing mainVerb == ” g ive ” ;

private St r ing log ica lForm ; // see Figure o f l o g i c a l e x p r e s s i o n

private Document document ; // see Figure o f l o g i c a l e x p r e s s i o n

Hashtable<Str ing , ObjectDesc> idsAndObjects == c1 : th ing −> cube ;

Figure 4.12: Example for a speech element in the working memory.

S t r ing type == Point ing ;

private TableCoordinates coords == 1 , 1 ;

private Hashtable<Str ing , ObjectDesc> pointedAtIds ==

o002 −> cube , ye l low

o003 −> bolt , ye l low ;

private Vector<In s tant ia t edObjec t> p i e c e s ;

Figure 4.13: Example for a gesture element in the working memory.

The rule generates a resolved hypothesis, because all preconditions of the rule are fulfilled:

the spoken sentence has a deictic expression, the gesture is a pointing gesture, and the object

descriptions from the spoken utterance and the pointed at objects can be unified. Figure 4.15

shows the generated resolved hypothesis that CMF sends to dialogue manager. Please note,

that the nominal in the object link points to the correct world model ID after the unification

process.

4.3 Embodied Multimodal Fusion

In this section, we present our implementation for the EMF approach. We give a short overview

and highlight some of the details. Finally, we give a processing example for an interaction

between human and robot.

4.3.1 Overview

Figure 4.16 shows an overview of the processing flow in EMF. In EMF, the multimodal fusion

component gets information from more input modules than in the CMF approach: the figure

shows the AGCs object recognition, task planner, and robot body on the top, and the AECs
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r u l e ” d e i c t i c speech and po in t ing gesture , r e s o l v e d ”

when

speech : Speech ( ha sDe i c t i c == true , a c t i v e == true )

g e s tu r e : Gesture ( type == ” Point ing ” , a c t i v e == true )

t imer : Timestamp ( )

// t e s t i f o b j e c t s t a l k e d about and po in ted at match

eva l ( getHypothesisType ( speech . getIdsAndObjects ( ) ,

g e s tu r e . getPointedAtIds ( ) ) == HypothesisType . Resolved )

then

i n s e r t (

new FusionHypothes is (

HypothesisType . Resolved ,

speech . getLogicalForm ( ) ,

speech . getDocument ( ) ,

un i fyHashtab l e s ( speech . getIdsAndObjects ( ) ,

g e s tu r e . getPointedAtIds ( ) ) ,

getEmptyInstant iatedObject ( ) ,

getEmptyGoalInferenceOutput ( )

)

) ;

speech . s e tAct iv e ( fa l se ) ;

update ( speech ) ;

g e s tu r e . s e tAct i ve ( fa l se ) ;

update ( ge s tu r e ) ;

end

Figure 4.14: Example for a rule in the working memory.

speech recognition and gesture recognition on the bottom of the input modules. Multimodal

fusion uses the information from these channels to generate and evaluate OAClets. For this,

multimodal fusion has an OAClet container. From the OAClet container, an action selection

and execution mechanism chooses OAClets for execution that fit to the current situation.

4.3.2 OAClets

An efficient implementation of the representation of OAClets is crucial for EMF, because the

more actions and objects the robot can handle, the more OAClets it has to generate and evaluate

at any given point in time. Therefore, we need to find strategies so that the robot can add

new OAClets or evaluate them without having to look at all OAClets every time it gets new
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hypothes i s {
type = Resolved ,

l o g i c a l form = @g1 : ac t i on ( give−verb ˆ

<mood>imp ˆ

<Actor>x1 : animate−being ˆ

<Patient >(c1 : th ing ˆ cube−np ˆ

<det>dem−prox ˆ

<num>sg ) ˆ

<Recip ient >(p1 : animate−being ˆ pron ˆ

<num>sg ˆ

<pers>1s t ) )

ob j e c t l i n k s = c1 : th ing −> [ o002 ]

s c o r e = 1 .0

}

Figure 4.15: Example for a resolved hypothesis.

information from the input modalities.

In our implementation of the EMF approach, we chose to store actions and objects as

separate entities that have links to each other. That means, the robot has a list of actions it

can execute, which EMF loads at the beginning of an interaction. Only when object recognition

sends information about objects on the table or when the task planner wants to generate an

OAClet with an abstract object, EMF generates links from the new object to the appropriate

actions. For this, every action has a list of objects it is related to and vice versa. This way,

when EMF gets information about a particular action it can reevaluate all objects related to

that action in one step without needing to reevaluate other actions. In the same way, when

EMF gets updates for an object and needs to reevaluate all OAClets related to this object, it

simply calculates the new relevance score of that object and all actions related to that objects

are also automatically updated.

To clarify this, consider the following example: the JAST robot knows the actions take, give,

lookAt, PointAt, tellAbout, and askFor. When we place an object in the robot’s workspace,

object recognition sends information about this instantiated object and EMF generates links

between the actions take, give, lookAt, and pointAt and the instantiated object. Figure 4.17(a)

shows these links. If we move the instantiated object from the robot’s workspace to the human’s

workspace, EMF has to disconnect the object from the actions that the robot can only execute

with graspable objects. In the example this are the actions take, give, and pointAt. Figure

4.17(b) shows this new link configuration. Finally, when the task planner sends information
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Figure 4.16: Overview for processing in the embodied multimodal fusion approach.

about an abstract object that is needed for the current plan, but EMF cannot find an object

on the table that fits to the object description of the abstract object, EMF generates links from

actions askFor and tellAbout to the abstract object. Figure 4.17(c) shows these new links.

4.3.3 Relevance Calculation

EMF stores actions and objects separately to represent OAClets, thus it also needs to split

the relevance score of an OAClet and store it separately in the action and object entities. In

our implementation, every action and object holds their own relevance score for the current

context. This means, that EMF needs to calculate the relevance scores of OAClets on the fly

and cannot simply readout the score from a list. This has the advantage that the relevance score

of OAClets can be influenced by application-specific guidelines. For example, the importance

of input channels can be set differently, depending on whether the channel is more relevant for

a domain or how robust the input processing from the channel is. In our EMF implementation,

we calculate the relevance score of an OAClet with the formula in Equation 4.1.

r = a + o (4.1)

Where r stands for the relevance score, and a and o are the current scores for the action

and the object of the OAClet. When an AEC sends information to multimodal fusion, EMF

reevaluates the relevance scores of an action or object according to the formula in Equation 4.2.
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Figure 4.17: Examples for links between actions and objects.

v = v + ci (4.2)

Where v stands for the old value of the action or object and ci is the confidence value

for input channel i from which the information for the reevaluation came. In our current

implementation we have set the values for the input channels by hand to the following values:

• 0.4 speech recognition, we still regard speech as the most important input channel

• 0.25 object recognition, has the same value as task planner

• 0.25 task planner, has the same value as object recognition, since we want to give all

AGCs the same importances
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• 0.1 gesture recognition, has only a low value because the results from gesture recognition

are not very reliable.

The sum of the channel confidence values sums up to 1 so that we can normalise the OAClet

relevance scores. EMF treats input by the robot body separately because it is not linked to

objects on the table.

4.3.4 Action Selection

We already explained our action selection mechanism in Section 3.3.5. In the implementation

the algorithm for action selection follows these steps:

1. Get set of OAClets with highest values.

2. If number of selected OAClets is above pre-defined threshold k, display message that no

OAClet can be selected.

3. If number of selected OAClets is below pre-defined threshold k, chose OAClet that has

action with highest priority.

For the last step in this algorithm the robot uses a priority list in which the actions the

robot can execute are sorted by their priority. The list can be used to control the robot’s

behaviour. For example, if the list has the order give > tellAbout > askFor the robot would

show a rather active behaviour, because it would try to give the user an object, and only if that

is not possible (or not likely enough) it would tell the user which Baufix piece to take next or it

would ask for a piece that is needed for the current plan but is not on the table. If the priority

list is ordered differently, for example tellAbout > give > askFor the robot would show a more

passive behaviour, or it could also be configured to make sure that all pieces for the current

building plan are on the table before the interaction starts, by applying the priority sorting

askFor > give > tellAbout. This method is influenced by hierarchical robot control that was

introduced by [73] and for example implemented in [56] and [42].

4.3.5 Processing Example

To conclude the section about the EMF implementation, we present an example for an inter-

action between human and robot and show how EMF handles the information from the input

channels. For this, we use the JAST construction task that was introduced in Section 2.1.3,

specifically we look at the case that the robot builds a windmill together with the human.
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At the start of the interaction, the table in front of the robot is set up according to the

windmill initial table layout which is presented in Figure A.1 of the appendix. To make the

example more appealing, we leave out a red cube which should be placed in the human’s

workspace and is needed for the windmill’s tower. This means, we have a green cube and a

blue cube, two small slats and a medium slat in the robot’s workspace. On the human’s side

there is a yellow cube, a yellow bolt, a green bolt, a red bolt, and an orange nut.

For the example, the robot has the following task hierarchy: give > askFor > tellAbout >

pointAt > take > lookAt. That means, the robot should preferably handover pieces to the

human, when this cannot be done than it should ask for pieces that are needed for the current

building plan, or tell the users that pieces for the loaded target object are on their side, and

so on. Furthermore, we use the confidence values for the input channels that were already

listed above: 0.4 speech recognition, 0.25 object recognition, 0.25 task planner, 0.1 gesture

recognition. Object recognition has classified all objects on the table correctly, but the robot

has not loaded a plan yet. Therefore, EMF generates the list of OAClets presented in Figure

4.18.

0.25, give(cube(blue)) 0.25, take(cube(blue))

0.25, give(cube(green)) 0.25, take(cube(green))

0.25, give(slat(middle)) 0.25, take(slat(middle))

0.25, give(slat(small)) 0.25, take(slat(small))

0.25, give(slat(small)) 0.25, take(slat(small))

0.25, pointAt(cube(blue)) 0.25, lookAt(cube(blue))

0.25, pointAt(cube(green)) 0.25, lookAt(cube(green))

0.25, pointAt(slat(middle)) 0.25, lookAt(slat(middle))

0.25, pointAt(slat(small)) 0.25, lookAt(slat(small))

0.25, pointAt(slat(small)) 0.25, lookAt(slat(small))

0.25, lookAt(bolt(green))

0.25, lookAt(bolt(red))

0.25, lookAt(bolt(yellow))

0.25, lookAt(cube(red))

0.25, lookAt(cube(yellow))

0.25, lookAt(nut(orange))

Figure 4.18: EMF example, step 1.

The relevance scores of all OAClets are equally set to 0.25 since the information about the
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objects came from object recognition and no plan was loaded yet. To inrease the readability

of the example we are not normalising the relevance scores of the OAClets. Furthermore, we

ordered the list of OAClets: in the first double-columned paragraph you can see the OAClets

that are related to objects on the robot’s workspace, in the second single-columned paragraph

you can see the OAClets that are related to objects on the human’s workspace. In the next step,

the robot loads the plan for the windmill. Because of this, EMF reevaluates all OAClets that

contain objects that are part of the windmill and generates new OAClets for abstract objects

and planned objects.

0.75, give(cube(blue)) 0.50, give(slat(small))

0.75, take(cube(blue)) 0.50, take(slat(small))

0.75, pointAt(cube(blue)) 0.50, pointAt(slat(small))

0.75, lookAt(cube(blue)) 0.50, lookAt(slat(small))

0.75, askFor(cube(red)) 0.50, give(slat(small))

0.75, tellAbout(bolt(green)) 0.50, take(slat(small))

0.75, lookAt(bolt(green)) 0.50, pointAt(slat(small))

0.50, lookAt(slat(small))

0.50, lookAt(bolt(red))

0.50, tellAbout(bolt(red))

. . .

Figure 4.19: EMF example, step 2.

In Figure 4.19, we only show new OAClets or reevaluated OAClets to save space. You can

see here that EMF increases all OAClets that are related to Baufix pieces for the windmill by

0.25, the confidence value of task planner. Additionally EMF increases OAClets that are related

to pieces of the tower by another 0.25 points, which is part of the windmill and has to be build

first. Furthermore, it generates the OAClets askFor(cube(red)), tellAbout(bolt(green)), and

tellAbout(bolt(red)) so that the robot can ask the human to put the missing pieces on the table

and tell the human that the green bolt and the red bolt are needed for the windmill, which are

out of reach of the robot arms.

Since give is the action with the highest priority, the robot choses to execute the action

give(cube(blue)). Thus, object recognition sends the information that the blue cube disap-

peared. EMF sends this information to the task planner, which checks the current plan, finds

the information that the blue cube is part of the tower, and sends information to EMF that the

red cube and the green bolt are the pieces which are needed in the next building step. EMF
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uses this information to reevaluate the relevance scores of all OAClets that are related to the

green bolt or to the red cube and it deletes the OAClets that are related to blue cubes because

of the input from object recognition. We show the reevaluated OAClets after these updates in

Figure 4.20.

1.0, askFor(cube(red)) 0.50, give(slat(small))

1.0, tellAbout(bolt(green)) 0.50, take(slat(small))

1.0, lookAt(bolt(green)) 0.50, pointAt(slat(small))

0.50, lookAt(slat(small))

0.50, give(slat(small))

0.50, take(slat(small))

0.50, pointAt(slat(small))

0.50, lookAt(slat(small))

0.50, lookAt(bolt(red))

0.50, tellAbout(bolt(red))

. . .

Figure 4.20: EMF example, step 3.

If the human does not pick up the green bolt, EMF chooses OAClet askFor(cube(red))

for execution, because it has the highest relevance score and task priority. This means, the

robot asks the human to put the missing red cube on the table. We assume that the human

is collaborative, follows the robot’s suggestion, and adds a red cube to the human’s workspace.

Object recognition sends information about the new instantiated object and EMF uses the data

to update and generate OAClets. Figure 4.21 shows the reevaluated OAClets after these steps.

EMF generates the new OAClets tellAbout(cube(red)) and lookAt(cube(red)), which are

also immediately reevaluated and increased by 0.25 points. Thus, the robot chooses OAClet

tellAbout(cube(red)) for execution since it has the highest relevance score and task priority. This

means the robot tells the human that the red cube is needed for the windmill in the next step.

The human picks up the red cube, object recognition sends information about the disappeared

object, EMF sends this information to the task planner, which then sends information that the

green bolt is needed to complete the tower. This leads to the list of reevaluated OAClets in

Figure 4.22.

To shorten this example, we assume that the human picks up the green bolt at this point.

EMF sends the information about the disappearing object to the task planner again, which
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1.25, tellAbout(cube(red)) 0.50, give(slat(small))

1.25, lookAt(cube(red)) 0.50, take(slat(small))

1.0, tellAbout(bolt(green)) 0.50, pointAt(slat(small))

1.0, lookAt(bolt(green)) 0.50, lookAt(slat(small))

0.50, give(slat(small))

0.50, take(slat(small))

0.50, pointAt(slat(small))

0.50, lookAt(slat(small))

0.50, lookAt(bolt(red))

0.50, tellAbout(bolt(red))

. . .

Figure 4.21: EMF example, step 4.

1.25, tellAbout(bolt(green)) 0.50, give(slat(small))

1.25, lookAt(bolt(green)) 0.50, take(slat(small))

0.50, pointAt(slat(small))

0.50, lookAt(slat(small))

0.50, give(slat(small))

0.50, take(slat(small))

0.50, pointAt(slat(small))

0.50, lookAt(slat(small))

0.50, lookAt(bolt(red))

0.50, tellAbout(bolt(red))

. . .

Figure 4.22: EMF example, step 5.

then sends the information that the two small slats and the red bolt are needed to complete

the windmill. Figure 4.23 shows the list of OAClets after these updates.

Since EMF has many OAClets with the same relevance score now, it does not directly

choose one of the OAClets for execution in the next step. Thus, the human helps the robot,

points to one of the small slats and says “give me this slat”. EMF gets the information about

the utterances from speech and gesture recognition and uses it to reevaluate the appropriate

OAClets, which we show in Figure 4.24.

Please note that through the information from speech recognition, EMF increases the values

of all OAClets that are related to small slats and adds 0.4 points to all OAClets with small

slats and 0.4 points to all OAClets with action give. However, the user also pointed to one of
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0.75, give(slat(small)) 0.75, give(slat(small))

0.75, take(slat(small)) 0.75, take(slat(small))

0.75, pointAt(slat(small)) 0.75, pointAt(slat(small))

0.75, lookAt(slat(small)) 0.75, lookAt(slat(small))

0.75, lookAt(bolt(red)) 0.75, tellAbout(bolt(red))

. . .

Figure 4.23: EMF example, step 6.

1.65, give(slat(small)) 1.15, take(slat(small))

1.55, give(slat(small)) 1.15, pointAt(slat(small))

1.25, take(slat(small)) 1.15, lookAt(slat(small))

1.25, pointAt(slat(small)) 0.75, lookAt(bolt(red))

1.25, lookAt(slat(small)) 0.75, tellAbout(bolt(red))

. . .

Figure 4.24: EMF example, step 7.

the slats, thus EMF also raises the score of the OAClets that related to this specific slat by

0.1 points. Therefore, in the next step EMF chooses the OAClet give(slat(small)) with the

highest priority for execution. The robot gives the small slat to the human, object recognition

sends information about the disappeared object, EMF sends this information to task planner,

and so on. The following steps until the windmill is completed are similar to the steps we have

already seen. Thus, we conclude the processing example at this point.
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Chapter 5

Evaluation

In this chapter, we present the results of three studies, in which we used the two approaches

for classical and embodied multimodal fusion that we developed in this thesis. The scenario

of all three studies was the JAST construction task that we explained in Chapter 2. This

allows us to study different aspects of joint action between human and robot, and to compare

the results. The studies were all designed as in-between subject experiments and followed a

similar experiment procedure: first, we asked the experiment participants to build the target

objects windmill and railway signal with the robot. After that, the subjects had to fill out a

user questionnaire that asked them about their subjective opinion of the interaction. In the

questionnaire, we used similar questions for all three studies and only adjusted the questions

that were not applicable in the context of the particular studies.

Besides the subjective measurements from the user questionnaire, we also collected objective

measurements in all three studies, for example the duration it took the participants to build

windmill and railway signal or the number of times the users asked the robot to repeat its

last utterance. In all three evaluations, we used these objective measurements to make predic-

tions about the subjective ratings of the experiment participants. This way, we for example

found that subjects who had to ask the robot for repetition because they did not understand

the robot’s utterances, significantly more often rate the quality of their interaction with the

robot worse than users who did not have to ask for repetition. The idea of aligning objective

to subjective measurements goes back to techniques for evaluating spoken language dialogue

systems that generally require a large-scale user study, which can be a time-consuming process

both for the experimenters and for the experimental subjects. In recent years, techniques have
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been introduced that are designed to predict user satisfaction based on more easily measured

properties of an interaction such as dialogue length and speech recognition error rate.

In our studies we used a PARADISE-style method to predict user satisfaction from objec-

tive measurements. The PARADISE framework (PARAdigm for DIalogue System Evaluation

[83]) describes a method for using data to derive a performance function that predicts user

satisfaction scores from the results on other, more easily computed measures. PARADISE uses

stepwise multiple linear regression to model user satisfaction based on measures representing

the performance dimensions of task success, dialogue quality, and dialogue efficiency, and has

been applied to a wide range of systems e.g. [81, 57, 60]. The idea behind this process is that

the resulting performance function that uses easy to collect objective measurements makes it

possible to evaluate HRI systems automatically and to improve the quality of the system with

keeping user satisfaction in mind, but without having to conduct extensive user studies in every

development step.

The first two studies in this chapter were conducted as part of the JAST project. In these

studies, we used the CMF approach. The third study was executed additionally as part of this

thesis to show the applicability of the EMF approach. The various aspects of joint action that

were researched in the studies were:

• In the first study (Section 5.1), the robot took the role of an instructor. For this, the

human had no building plan for windmill and railway signal, such that the robot had to

give instructions to the human how to execute the single building steps. In this study, we

altered the strategy for describing the plan and also the strategy for generating referring

expressions.

• In the second study (Section 5.2), human and robot were equal partners and both had a

building plan for the target objects. However, the building plan of the human contained

an error, so that the robot had to be able to detect when the human executed that error

and to give an explanation to the human, what the error was and how it could be solved.

In this study, we again altered the strategy for generating referring expressions.

• In the third study (Section 5.3), human and robot were again equal partners and both had

a building plan for windmill and railway signal. Here, we used the EMF approach which

enables the robot to show anticipatory behaviour. In this study, we altered the robot

behaviour to see if the subjects prefer a robot that directly starts to hand over pieces to

the human when building the target objects and only gives instructions when necessary,

80



5.1 Evaluation 1

or if the users prefer a robot that first gives instructions on which pieces to pick up and

then hands over pieces itself.

5.1 Evaluation 1

The first evaluation we are presenting here was published in [34, 35]. In this study human and

robot built the two target objects windmill and railway signal together, following the building

plan that can be seen in Appendix A.3.1. These building plans consist of named subplans, for

example the railway signal is built of a tower (which was called snowman in this study) and

an L shape. However, in this study only the robot knew the building plan, so it had to give

instructions to the human on how to assemble the Baufix pieces to build the target objects,

while also handing over the right pieces that fit to the instructions.

In this study, we varied two aspects in the robot behaviour. Firstly, the robot used different

task description strategies when it gave instructions to the human. We implemented a pre-order

task description strategy, in which the robot first announced the name of the subplan to build

and then gave the instructions how to build that subplan; and we implemented a post-order

task description strategy, in which the robot first gave the instructions and then named the

finished subplans and target objects when they were completed. Figure 5.1 shows examples for

dialogues in which the robot uses the two task description strategies.

Secondly, the robot used different strategies for generation of referring expressions. When

humans work together and have to manipulate objects in a shared work space, they use spoken

utterances when they refer to these objects. These utterances are called referring expressions.

Generation of referring expressions is one of the core tasks in the research area of natural

language generation (NLG). The goal here is to generate expressions with which an entity can

be uniquely identified from a set of entities. The first referring expression generation strategy

that we implemented for the first evaluation was based on the incremental algorithm by Dale

and Reiter [27], which selects a set of attributes of a target object to single it out from a set

of distractor objects. Attributes are selected repeatedly until only the target object remains in

the distractor set. However, this algorithm makes no use of context information, but Foster et

al. [33] noted a type of multimodal reference which is particularly useful in embodied, task-based

contexts: haptic-ostensive reference, in which an object is referred to as it is being manipulated

by the speaker. Therefore, we implemented a new referring expression generation strategy that

makes use of context information, for example the robot said “I give you this cube” instead of
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Pre-order description strategy, basic reference strategy

SYSTEM First we will build a windmill. Okay?

USER Okay.

SYSTEM To make a windmill, we must make a snowman.

SYSTEM [picking up and holding out red cube] To make a snowman, insert the green bolt

through the end of the red cube and screw it into the blue cube.

USER [takes cube, performs action] Okay.

Post-order description strategy, full reference strategy

SYSTEM First we will build a windmill. Okay?

USER Okay.

SYSTEM [picking up and holding out red cube] Insert the green bolt through the end of this

red cube and screw it into the blue cube.

USER [takes cube, performs action] Okay.

SYSTEM Well done. You have made a snowman.

Figure 5.1: Sample dialogue excerpts showing the various description and reference generation

strategies.

“I give you a cube” when handing over a Baufix cube from the table to the human. Figure

5.1 shows more examples for referring expressions that were generated with the two strategies,

which are underlined in the text.

5.1.1 System Set-up

In this section, we explain how the JAST robot was configured for the first study. Since we

already introduced the system in Chapter 2, here we highlight the differences of the system for

this study to the final version of the system.

In this study, we used the CMF approach that was configured with the rules that we listed

in Section 4.2.4. We had problems with speech recognition in this study, thus the spoken

utterances by the experiment participants were typed in by the experimenter. However, the

participants were not aware of this fact. Multimodal fusion generated the fusion hypotheses

82



5.1 Evaluation 1

that we presented in Section 3.2.6 with input from speech, gesture, and object recognition.

Once the dialogue manager had selected a response to the input by multimodal fusion, it

sent a high-level specification of the desired response to the output planner, which in turn

sent commands to produce appropriate output on each of the individual channels to meet the

specification: linguistic content (including appropriate multimodal referring expressions), facial

expressions and gaze behaviours of the talking head, and actions of the robot manipulators.

Here, output generation used the two strategies for generating referring expressions.

Once the system had described a plan step, the user responded, using a combination of the

available input modalities. The user’s contribution was processed by the input modules and

the CMF approach, a new hypothesis was sent to the dialogue manager, and the interaction

continued until the target object had been fully assembled.

5.1.2 Experiment design

Using a between-subjects design, this study compared all of the combinations of the two de-

scription strategies with the two reference strategies, measuring the fluency of the resulting

dialogue, the users’ success at building the required objects and at learning the names of new

objects, and the users’ subjective reactions to the system.

In this experiment, each subject built the same three objects in collaboration with the JAST

system, always in the same order. The first target was the windmill (Figure 2.3(a)), which had

a sub-component called a snowman (Figure 2.3(c)) (which was referred to as tower in later

iterations of the system). Once the windmill was completed, the system then described how to

build an L shape (Figure 2.3(d)). Finally, the robot instructed the user on building a railway

signal (Figure 2.3(b)), which combines an L shape with a snowman.

Before the system explained each target object, the experimenter first configured the work-

space with exactly the pieces required to build it. The pieces were always distributed across

the two work areas in the same way to ensure that the robot would always hand over the same

pieces to each subject. For the windmill, the robot handed over one of the cubes and one of the

slats; for the L shape, it handed over both of the required slats; while for the railway signal, it

handed over both cubes and both slats. For objects requiring more than one assembly operation

(i.e., all but the L shape), the system gave names to all of the intermediate components as they

were built. For example, the windmill was always built by first making a snowman and then

attaching the slats to the front. When the railway signal was being built, the system always

asked the user if they remembered how to build a snowman and an L shape. If they did not
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remember, the robot explained again; if they did remember, the robot simply asked them to

build another one using the pieces on the table.

For the purpose of this experiment, we constrained the possible user inputs to a limited range

of (German) speech commands. Users were informed as part of their instructions that these

were the only commands that the system would understand. The allowed speech commands

were as follows:

• hallo and guten Tag (good day) in response to greetings from the system;

• ja (yes) or nein (no) to answer questions;

• okay or fertig (done) to indicate that a requested assembly operation has been completed;

and

• wie bitte? (pardon me? ) to request that the last system utterance be repeated.

5.1.3 Subjects

43 subjects (27 male) took part in this experiment; the results of one additional subject were

discarded because the system froze halfway through the interaction. The mean age of the

subjects was 24.5, with a minimum of 14 and a maximum of 55. Of the subjects who indicated

an area of study, the two most common areas were Informatics (12 subjects) and Mathematics

(10). On a scale of 1–5, subjects gave a mean assessment of their knowledge of computers at

3.4, of speech recognition systems at 2.3, and of human-robot systems at 2.0. Subjects were

compensated for their participation in the experiment.

5.1.4 Data Acquisition

Independent variables In this study, we manipulated two independent variables, descrip-

tion strategy and reference strategy, each with two different levels. The two possible description

strategies were pre-order and post-order, while the two possible reference strategies were basic

and full. Users were assigned to conditions using a between-subjects design, so that each sub-

ject interacted with the system using a single combination of description strategy and reference

strategy throughout. Subjects were assigned to each combination of factors in turn, following

a Latin-square design. As shown in Table 5.1, 10 subjects interacted with the system that

combined the post-order description strategy with the full reference strategy, while each of the

other combinations was used by 11 subjects.
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Table 5.1: Distribution of subjects.

Pre-order Post-order

Basic 11 11

Full 11 10

Dependent variables We measured a wide range of dependent values in this study: objective

measures based on the logs and recordings of the interactions, as well as subjective measures

based on the users’ ratings of their experience. The objective metrics fall into the following

three classes, based on those used by [83] and [57]: dialogue efficiency (the length and timing

of the interaction), dialogue quality (indications of problems), and task success.

The dialogue efficiency measures concentrated on the timing of the interaction: the time

taken to complete the three construction tasks, the number of system turns required for the

complete interaction, and the mean time taken by the system to respond to the user’s requests.

We considered four measures of dialogue quality. The first two measures looked specifically

for signs of problems in the interaction, using data automatically extracted from the logs: the

number of times that the user asked the system to repeat its instructions, and the number

of times that the user failed to take an object that the robot attempted to hand over. The

other two dialogue quality measures were computed based on the video recordings: the number

of times that the user looked at the robot, and the percentage of the total interaction that

they spent looking at the robot. We considered these gaze-based measures to be measures of

dialogue quality since it has previously been shown that, in this sort of task-based interaction

where there is a visually salient object, participants tend to look at their partner more often

when there is a problem in the interaction [5].

The task success measures addressed user success in the two main tasks undertaken in these

interactions: assembling the target objects following the robot’s instructions, and learning and

remembering to make a snowman and an L shape. We measured task success in two ways,

corresponding to these two main tasks. The user’s success in the overall assembly task was

assessed by counting the proportion of target objects that were assembled as intended (i.e., as

in Figure 2.3), which was judged based on the video recordings. To test whether the subjects

had learned how to build the sub-components that were required more than once (the snowman

and the L shape), we recorded whether they said yes or no when they were asked if they

remembered each of these components during the construction of the railway signal.
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In addition to the above objective measures, we also gathered a range of subjective measures.

After the interaction, the subjects also filled out a user satisfaction questionnaire, which was

based on that used in the user evaluation of the COMIC dialogue system [85], with modifications

to address specific aspects of the current dialogue system and the experimental manipulations in

this study. There were 47 items in total, each of which requested that the user choose their level

of agreement with a given statement on a five-point Likert scale. The items were divided into

the following categories: opinion of the robot as a partner (21 items addressing the ease with

which subjects were able to interact with the robot), instruction quality (6 items specifically

addressing the quality of the assembly instructions given by the robot), task success (11 items

asking the user to rate how well they felt they performed on the various assembly tasks), and

feelings of the user (9 items asking users to rate their feelings while using the system). At

the end of the questionnaire, subjects were also invited to give free-form comments. Appendix

A.4.1 shows the full questionnaire in German and English.

5.1.5 Hypotheses

For each of the experimental manipulations, we had a hypothesis as to its effect on users’

interactions:

H1 Subjects will find assembly plans described using the pre-order strategy easier to follow

than those described by the post-order strategy.

H2 Subjects will find instructions generated using the full reference strategy easier to follow

than instructions generated using the basic reference strategy.

Since we gathered a wide range of subjective and objective measures in this study, we did not

make specific predictions as to which specific measure the experimental manipulations will have

an effect.

5.1.6 Results

None of the demographic factors (age, gender, area of study, experience with computers) affected

any of the results presented here. To determine the impact of the two independent measures on

each of the dependent measures, we performed an ANOVA analysis on each class of dependent

measures, using both of the independent measures as categorical predictors—in no case was

there a significant interaction between the two factors. We list the primary significant factor

for each independent measure below, giving the significance values from the ANOVA analysis.
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5.1.6.1 Description strategy
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Figure 5.2: Number of repetition requests, divided by description strategy.

The primary difference between the two description strategies (pre-order vs. post-order) was

found on one of the dialogue quality measures: the rate at which subjects asked the system to

repeat itself during an interaction. As shown in Figure 5.2, subjects in the pre-order condition

asked for instructions to be repeated an average of 1.14 times over the course of an interaction,

while subjects who used the post-order version of the system asked for repetition 2.62 times

on average—that is, more than twice as frequently. The ANOVA analysis indicated that the

difference between the two means is significant: F1,39 = 8.28, p = 0.0065.

5.1.6.2 Reference strategy

• Es war einfach den Anweisungen des Roboters zu folgen.

It was easy to follow the robot’s instructions.

• Der Roboter gab zu viele Anweisungen auf einmal.

The robot gave too many instructions at once.

• Die Anweisungen des Roboters waren zu ausführlich.

The robot’s instructions were too detailed.

Figure 5.3: Questionnaire items addressing the understandability of the robot’s instructions.

The choice of referring expression strategy had no significant effect on any of the objective

measures. However, this factor did have an impact on users’ responses to a set of items from
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Figure 5.4: Robot understandability rating, divided by reference strategy.

Table 5.2: Dialogue efficiency results.

Mean (Stdev) Min Max

Length (sec) 305.1 (54.0) 195.2 488.4

System turns 13.4 (1.73) 11 18

Response time (sec) 2.79 (1.13) 1.27 7.21

the questionnaire which specifically addressed the understandability of the robot’s instructions.

The relevant items are shown in Figure 5.3. The responses of subjects to these three items

was different across the two groups. Subjects using the system which employed full referring

expressions tended to give higher scores on the first question and lower scores on the second

and third, while subjects using the system with basic referring expressions showed the opposite

pattern. The mean perceived understandability—i.e., the mean of the responses on these three

items, using an inverse scale for the latter two—was 3.44 for the system with basic references

and 4.10 for the system with full references; these results are shown in Figure 5.4. The ANOVA

analysis indicated that the difference between the two means is significant: F1,39 = 8.32, p =

0.0064.

5.1.6.3 Dialogue efficiency

The results on the dialogue efficiency measures are shown in Table 5.2. The average subject

took 305.1 seconds—that is, just over five minutes—to build all three of the objects, and an

average dialogue took 13 system turns to complete. When a user made a request, the mean

delay before the beginning of the system response was about three seconds, although for one

user this time was more than twice as long. This response delay resulted from two factors.

First, preparing long system utterances with several referring expressions (such as the third

88



5.1 Evaluation 1

Table 5.3: Dialogue quality results.

Mean (Stdev) Min Max

Repetition requests 1.86 (1.79) 0 6

Failed hand-overs 1.07 (1.35) 0 6

Looks at the robot 23.55 (8.21) 14 50

Time looking at robot (%) 27 (8.6) 12 51

and fourth system turns in Figure 5.1) takes some time; second, if a user made a request during

a system turn (i.e., a barge-in attempt), the system was not able to respond until the current

turn was completed. These three measures of efficiency were correlated with each other: the

correlation between length and turns was 0.38; between length and response time 0.47; and

between turns and response time 0.19 (all p < 0.0001).

5.1.6.4 Dialogue quality

Table 5.3 shows the results for the dialogue quality measures: the two indications of problems,

and the two measures of the frequency with which the subjects looked at the robot’s head.

On average, a subject asked for an instruction to be repeated nearly two times per interaction,

while failed hand-overs occurred just over once per interaction; however, as can be seen from the

standard-deviation values, these measures varied widely across the data. In fact, 18 subjects

never failed to take an object from the robot when it was offered, while one subject did so

five times and one six times. Similarly, 11 subjects never asked for any repetitions, while five

subjects asked for repetitions five or more times. On average, the subjects in this study spent

about a quarter of the interaction looking at the robot head, and changed their gaze to the

robot 23.5 times over the course of the interaction. Again, there was a wide range of results

for both of these measures: 15 subjects looked at the robot fewer than 20 times during the

interaction, 20 subjects looked at the robot between 20 to 30 times, while 5 subjects looked at

the robot more than 30 times.

The two measures that count problems were mildly correlated with each other (R2 =

0.26, p < 0.001), as were the two measures of looking at the robot (R2 = 0.13, p < 0.05);

there was no correlation between the two classes of measures.

5.1.6.5 Task success

Table 5.4 shows the success rate for assembling each object in the sequence. Objects in italics

represent sub-components, as follows: the first snowman was constructed as part of the wind-
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Table 5.4: Task success results.

Object Rate Memory

Snowman 0.76

Windmill 0.55

L shape 0.90

L shape 0.90 0.88

Snowman 0.86 0.70

Railway signal 0.71

Overall 0.72 0.79

mill, while the second formed part of the railway signal; the first L shape was a goal in itself,

while the second was also part of the process of building the railway signal. The Rate column

indicates subjects’ overall success at building the relevant component—for example, 55% of the

subjects built the windmill correctly, while both of the L shapes were built with 90% accuracy.

For the second occurrence of the snowman and the L shape, the Memory column indicates the

percentage of subjects who claimed to remember how to build it when asked. The Overall row

at the bottom indicates subjects’ overall success rate at building the three main target objects

(windmill, L shape, railway signal): on average, a subject built about two of the three objects

correctly.

The overall correct-assembly rate was correlated with the overall rate of remembering ob-

jects: R2 = 0.20, p < 0.005. However, subjects who said that they did remember how to build

a snowman or an L shape the second time around were no more likely to do it correctly than

those who said that they did not remember.

5.1.6.6 Paradise Study

We applied a PARADISE-style process to our data. For that, we built models to predict the

results of the subjective user satisfaction measures, based on the objective measures. The

results indicate that the most significant contributors to user satisfaction were the number of

system turns in the dialogues, the users’ ability to recall the instructions given by the robot,

and the number of times that the user had to ask for instructions to be repeated. The former

two measures were positively correlated with user satisfaction, while the latter had a negative

impact on user satisfaction; however the correlation in all cases was relatively low.

To determine the relationship among the factors, we employed the procedure used in the

PARADISE evaluation framework. The PARADISE model uses stepwise multiple linear re-

gression to predict subjective user satisfaction based on measures representing the performance
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Table 5.5: Predictor functions for PARADISE study of first evaluation.

Measure Function R2 Significance

Robot as partner 3.60 + 0.53 ∗N(Turns)− 0.39 ∗N(Rep) 0.12 Turns: p < 0.01,

−0.18 ∗N(Len) Rep: p < 0.05,

Length: p ≈ 0.17

Instruction quality 3.66− 0.22 ∗N(Rep) 0.081 Rep: p < 0.05

Task success 4.07 + 0.20 ∗N(Mem) 0.058 Mem: p ≈ 0.07

Feelings 3.63 + 0.34 ∗N(Turns)− 0.32 ∗N(Rep) 0.044 Turns: p ≈ 0.06,

Rep: p ≈ 0.08

Overall 3.73− 0.36 ∗N(Rep) + 0.31 ∗N(Turns) 0.062 Rep: p < 0.05,

Turns: p ≈ 0.06

Emotion change 0.07 + 0.14 ∗N(Turns) + 0.11 ∗N(Mem) 0.20 Turns: p < 0.05,

−0.090 ∗N(Rep) Mem: p < 0.01,

Rep: p ≈ 0.17

dimensions of task success, dialogue quality, and dialogue efficiency, resulting in a predictor

function of the following form:

Satisfaction =

n∑
i=1

wi ∗N(measurei)

The measurei terms represent the value of each measure, while the N function transforms

each measure into a normal distribution using z-score normalization. Stepwise linear regression

produces coefficients (wi) describing the relative contribution of each predictor to the user

satisfaction. If a predictor does not contribute significantly, its wi value is zero after the

stepwise process.

Using stepwise linear regression, we computed a predictor function for each of the subjective

measures that we gathered during our study: the mean score for each of the individual user

satisfaction categories (Table 5.6), the mean score across the whole questionnaire (the last line

of Table 5.6), as well as the difference between the users’ emotional states before and after the

study (the last line of Table 5.6). We included all of the objective measures as initial predictors.

The resulting predictor functions are shown in Table 5.5. The following abbreviations are

used for the factors that occur in the table: Rep for the number of repetition requests, Turns

for the number of system turns, Len for the length of the dialogue, and Mem for the subjects’

memory for the components that were built twice. The R2 column indicates the percentage of

the variance that is explained by the performance function, while the Significance column gives

significance values for each term in the function.

91



5. EVALUATION

Although the R2 values for the predictor functions in Table 5.5 are generally quite low,

indicating that the functions do not explain most of the variance in the data, the factors that

remain after stepwise regression still provide an indication as to which of the objective measures

had an effect on users’ opinions of the system. In general, users who had longer interactions

with the system (in terms of system turns) and who said that they remembered the robot’s

instructions tended to give the system higher scores, while users who asked for more instructions

to be repeated tended to give it lower scores; for the robot-as-partner questions, the length of

the dialogue in seconds also made a slight negative contribution. None of the other factors

contributed significantly to any of the predictor functions.

5.1.7 Discussion

That the factors included in Table 5.5 were the most significant contributors to user satisfaction

is not surprising. If a user asks for instructions to be repeated, this is a clear indication of a

problem in the dialogue; similarly, users who remembered the system’s instructions were equally

clearly having a relatively successful interaction.

In the current study, increased dialogue length had a positive contribution to user satisfac-

tion; this contrasts with results such as those of [57], who found that increased dialogue length

was associated with decreased user satisfaction. We propose two possible explanations for this

difference. First, the system analysed by [57] was an information-seeking dialogue system, in

which efficient access to the information is an important criterion. The current system, on

the other hand, has the goal of joint task execution, and pure efficiency is a less compelling

measure of dialogue quality in this setting. Second, it is possible that the sheer novelty factor

of interacting with a fully-embodied humanoid robot affected people’s subjective responses to

the system, so that subjects who had longer interactions also enjoyed the experience more.

Support for this explanation is provided by the fact that dialogue length was only a significant

factor in the more subjective parts of the questionnaire, but did not have a significant impact on

the users’ judgements about instruction quality or task success. Other studies of human-robot

dialogue systems have also had similar results: for example, the subjects in the study described

by [75] who used a robot that moved while talking reported higher levels of engagement in the

interaction, and also tended to have longer conversations with the robot.

While the predictor functions give useful insights into the relative contribution of the objec-

tive measures to the subjective user satisfaction, the R2 values are generally lower than those

found in other PARADISE-style evaluations. For example, [82] reported an R2 value of 0.38,
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the values reported by [81] on the training sets ranged from 0.39 to 0.56, [57] reported an R2

value of 0.71, while the R2 values reported by [60] for linear regression models similar to those

presented here were between 0.22 and 0.57. The low R2 values from this analysis clearly sug-

gest that, while the factors included in Table 5.5 did affect users’ opinions—particularly their

opinion of the robot as a partner and the change in their reported emotional state—the users’

subjective judgements were also affected by factors other than those captured by the objective

measures considered here.

In most of the previous PARADISE-style studies, measures addressing the performance of

the automated speech recognition system and other input processing components were included

in the models. For example, the factors listed by [60] include several measures of word error rate

and of parsing accuracy. However, the scenario that was used in the current study required

minimal speech input from the user (see Figure 5.1), so we did not include any such input-

processing factors in our models.

5.2 Evaluation 2

In the second study, which was published in [41], we implemented an algorithm for generating

referring expressions in the context of errors. Unlike the first evaluation, human and robot were

equal partners in this study, which means they both had a building plan for the target objects.

However, the building plan of the human had a deliberate error in it. The robot had to detect

when the human did an error, and it had to explain to the human, what the error was and how

to solve it.

In this study, we once more tested two different strategies for generation of referring expres-

sions: a constant reference strategy that was based on [27], and an adaptive reference strategy

that made use of the context of the interaction. For more details on the reference generation

algorithms please refer to [41]. In the context of the HRI system, a constant reference strategy

is sufficient in that it makes it possible for the robot’s partner to know which item is needed. On

the other hand, while the varied forms produced by the more complex mechanism can increase

the naturalness of the system output, they may actually be insufficient if they are not used in

appropriate current circumstances—for example, “this cube” is not a particularly helpful ref-

erence if a user has no way to tell which “this” is. As a consequence, the system for generating

such references must be sensitive to the current state of joint actions and—in effect—of joint

attention. The difference between the two systems is a test of the adaptive version’s ability to
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adjust expressions to pertinent circumstances. It is known that people respond well to reduced

expressions like “this cube” or “it” when another person uses them appropriately [8]. With

this study, we wanted to find out if the robot system can also achieve the benefits that situated

reference could provide.

5.2.1 System Set-up

In this study, we used the full JAST robot system as it was described in Section 2.1. Especially,

here we integrated a module called goal inference, a component that is based on dynamic neural

fields [30, 11, 10], which selects the robot’s next actions based on the human user’s actions and

utterances. Given a particular assembly plan and the knowledge of which objects the user has

picked up, this module can determine when the user has made an error.

For this study, we used the CMF approach to process user input. However, the multimodal

fusion component also played a role as communicator between goal inference and dialogue

manager. For that, the fusion module processed the human utterances with the CMF approach

to generate a fusion hypothesis, but also translated and sent the input to goal inference. When

goal inference finished processing the input, it sent back robot control instructions on which

action the robot should execute next. Multimodal fusion then combined the instructions from

goal inference with the own fusion hypothesis and sent this data to the dialogue manager.

5.2.2 Experiment Design

This study used a between-subjects design with one independent variable: each subject inter-

acted either with the system that used the constant strategy to generate referring expressions

(19 subjects), or else with the system that used the adaptive strategy (22 subjects).1

Each subject built the two target objects in collaboration with the system—windmill and

railway signal. For both target objects, the user was given a building plan on paper. To induce

an error, both of the plans given to the subjects instructed them to use an incorrect piece: a

yellow cube instead of a red cube for the windmill, and a long (seven-hole) slat instead of a

medium (five-hole) slat for the railway signal. The subjects were told that the plan contained

an error and that the robot would correct them when necessary, but did not know the nature

of the error.

1The results of an additional three subjects in the constant-reference condition could not be analysed due

to technical difficulties.
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When the human picked up or requested an incorrect piece during the interaction, the

system detected the error and explained to the human what to do in order to assemble the

target object correctly. When the robot explained the error and when it handed over the

pieces, it used referring expressions that were generated using the constant strategy for half of

the subjects, and the adaptive strategy for the other half of the subjects.

The participants stood in front of the table facing the robot, equipped with a headset

microphone for speech recognition. The pieces required for the target object—plus a set of

additional pieces in order to make the reference task more complex—were placed on the table,

using the same layout for every participant. The layout was chosen to ensure that there would

be points in the interaction where the subjects had to ask the robot for building pieces from

the robot’s workspace, as well as situations in which the robot automatically handed over the

pieces. Appendix A.2 shows the table layouts for windmill and railway signal. Along with the

building plan mentioned above, the subjects were given a table with the names of the pieces

they could build the objects with.

5.2.3 Subjects

41 subjects (33 male) took part in this experiment. The mean age of the subjects was 24.5, with

a minimum of 19 and a maximum of 42. Of the subjects who indicated an area of study, the

two most common areas were Mathematics (14 subjects) and Informatics (also 14 subjects).

On a scale of 1 to 5, subjects gave a mean assessment of their knowledge of computers at

4.1, of speech recognition systems at 2.0, and of human-robot systems at 1.7. Subjects were

compensated for their participation in the experiment.

5.2.4 Data Acquisition

At the end of a trial, the subjects responded to a usability questionnaire consisting of 39 items,

which fell into four main categories: intelligence of the robot (13 items), task ease and task

success (12 items), feelings of the user (8 items), and conversation quality (6 items). The items

on the questionnaire were based on those used in the first user evaluation, but were adapted

for the scenario and research questions of the current study. The questionnaire was presented

using software that let the subjects choose values between 1 and 100 with a slider. We show

the full questionnaire in Appendix A.4.2. In addition to the questionnaire, the trials were also

video-taped, and the system log files from all trials were kept for further analysis.
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5.2.5 Hypotheses

We made no specific prediction regarding the effect of reference strategy on any of the objective

measures: based on the results of the first evaluation, there is no reason to expect an effect

either way. Note that—as mentioned above—if the adaptive version makes incorrect choices,

that may have a negative impact on users’ ability to understand the system’s generated ref-

erences. For this reason, even a finding of no objective difference would demonstrate that the

adaptive references did not harm the users’ ability to interact with the system, as long as it

was accompanied by the predicted improvement in subjective judgements.

5.2.6 Results

We analysed the data resulting from this study in three different ways. First, the subjects’

responses to the questionnaire items were compared to determine if there was a difference

between the responses given by the two groups. A range of summary objective measures were

also gathered from the log files and videos—these included the duration of the interaction

measured both in seconds and in system turns, the subjects’ success at building each of the

target objects, the number of times that the robot had to explain the construction plan to

the user, and the number of times that the users asked the system to repeat its instructions.

Finally, we compared the results on the subjective and objective measures to determine which

of the objective factors had the largest influence on subjective user satisfaction.

5.2.6.1 Subjective Measures

The subjects in this study gave a generally positive assessment of their interactions with the

system on the questionnaire—with a mean overall satisfaction score of 72.0 out of 100—and

rated the perceived intelligence of the robot particularly highly (overall mean of 76.8). Table 5.6

shows the mean results from the two groups of subjects for each category on the user satisfaction

questionnaire, in all cases on a scale from 0–100 (with the scores for negatively-posed questions

inverted).

To test the effect of reference strategy on the usability questionnaire responses, we performed

a Mann-Whitney test comparing the distribution of responses from the two groups of subjects

on the overall results, as well as on each sub-category of questions. For most categories, there

was no significant difference between the responses of the two groups, with p values ranging

from 0.19 to 0.69 (as shown in Table 5.6). The only category where a significant difference was

found was on the questionnaire items that asked the subjects to assess the robot’s quality as a
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Table 5.6: Overall usability results of second evaluation.

Constant Adaptive M-W

Intell. 79.0 (15.6) 74.9 (12.7) p = 0.19, n.s.

Task 72.7 (10.4) 71.1 (8.3) p = 0.69, n.s.

Feeling 66.9 (15.9) 66.8 (14.2) p = 0.51, n.s.

Conv. 66.1 (13.6) 75.2 (10.7) p = 0.036, sig.

Overall 72.1 (11.2) 71.8 (9.1) p = 0.68, n.s.

Table 5.7: User responses to questionnaire items addressing the robot’s quality as a conversational

partner. The questions were posed in German; the table also shows the English translation.

Statement Constant Adaptive M-W

Ich fand den Roboter schwierig zu verstehen. 21.5 (26.3) 14.5 (15.9) p = 0.58

I found the robot difficult to understand.

Der Roboter hat nicht verstanden was ich gesagt habe. 18.9 (29.6) 21.1 (31.0) p = 0.60

The robot didn’t understand what I said.

Manchmal wenn der Roboter mit mir gesprochen hat, 24.8 (28.7) 16.6 (20.1) p = 0.47

konnte ich nicht verstehen, was er meinte.

Sometimes, when the robot talked to me,

I didn’t understand what it meant.

Wenn der Roboter mich nicht verstand, 34.7 (23.7) 50.4 (28.8) p = 0.091

dann war mir klar, wie ich reagieren musste.

When the robot did not understand me,

it was clear what I had to do.

Ich habe nicht verstanden was der Roboter gesagt hat. 9.9 (16.1) 8.9 (11.0) p = 0.81

I didn’t understand what the robot said.

Ich wusste zu jedem Zeitpunkt der Unterhaltung, 37.6 (25.1) 61.6 (29.6) p = 0.012

was ich machen oder sagen konnte.

At each point in the conversation,

I knew what I could do or say.

conversational partner; for those items, the mean score from subjects who heard the adaptive

references was significantly higher (p < 0.05) than the mean score from the subjects who

heard references generated by the constant reference module. Of the six questions that were

related to the conversation quality, the most significant impact was on the two questions which

assessed the subjects’ understanding of what they were able to do at various points during the

interaction.

Table 5.7 shows the six conversation quality questions, along with the mean responses from

subjects from the two groups and the standard deviation of each. The final column of the

table shows the p value from a Mann-Whitney test (two-tailed) comparing the distribution of
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responses from the two groups of subjects. On almost all of these questions, the responses

of the subjects who experienced the adaptive references were more positive than those who

experienced constant references, although not in general significantly so: the adaptive reference

subjects gave higher responses to questions 4 and 6, and lower responses to all of the other

(negatively-posed) questions except for question 2. The most pronounced difference was on

the two questions which assessed the subjects’ understanding of what they were able to do at

various points during the interaction (questions 4 and 6).

5.2.6.2 Objective Measures

Based on the log files and video recordings, we computed a range of objective measures. These

measures were divided into three classes, again based on those used in the PARADISE dialogue

system evaluation framework [81]:

• Two dialogue efficiency measures: the mean duration of the interaction as measured

both in seconds and in system turns,

• Two dialogue quality measures: the number of times that the robot gave explanations,

and the number of times that the user asked for instructions to be repeated, and

• One task success measure: how many of the (two) target objects were constructed as

intended (i.e., as shown in Figure 2.3).

For each of these measures, we tested whether the difference in reference strategy had a signif-

icant effect, again via a Mann-Whitney test. Table 5.8 illustrates the results on these objective

measures, divided by the reference strategy.

The results from the two groups of subjects were very similar on all of these measures: on

average, the experiment took 404 seconds (nearly seven minutes) to complete with the constant

strategy and 410 seconds with the adaptive, the mean number of system turns was close to 30 in

both cases, just over one-quarter of all subjects asked for instructions to be repeated, the robot

gave just over two explanations per trial, and about three-quarters of all target objects (i.e. 1.5

out of 2) were correctly built. The Mann-Whitney test confirms that none of the differences

between the two groups even came close to significance on any of the objective measures.
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Table 5.8: Objective results (all differences n.s.).

Measure Constant Adaptive M-W

Duration (s.) 404.3 (62.8) 410.5 (94.6) p = 0.90

Duration (turns) 29.8 (5.02) 31.2 (5.57) p = 0.44

Rep requests 0.26 (0.45) 0.32 (0.78) p = 0.68

Explanations 2.21 (0.63) 2.41 (0.80) p = 0.44

Successful trials 1.58 (0.61) 1.55 (0.74) p = 0.93

Table 5.9: Predictor functions for PARADISE study of second evaluation.

Measure Function R2 Significance

Robot as partner 3.60 + 0.53 ∗N(Turns)− 0.39 ∗N(Rep) 0.12 Turns: p < 0.01,

−0.18 ∗N(Len) Rep: p < 0.05,

Length: p ≈ 0.17

Instruction quality 3.66− 0.22 ∗N(Rep) 0.081 Rep: p < 0.05

Task success 4.07 + 0.20 ∗N(Mem) 0.058 Mem: p ≈ 0.07

Feelings 3.63 + 0.34 ∗N(Turns)− 0.32 ∗N(Rep) 0.044 Turns: p ≈ 0.06,

Rep: p ≈ 0.08

Overall 3.73− 0.36 ∗N(Rep) + 0.31 ∗N(Turns) 0.062 Rep: p < 0.05,

Turns: p ≈ 0.06

Emotion change 0.07 + 0.14 ∗N(Turns) + 0.11 ∗N(Mem) 0.20 Turns: p < 0.05,

−0.090 ∗N(Rep) Mem: p < 0.01,

Rep: p ≈ 0.17

5.2.6.3 Paradise Study

In the preceding sections, we presented results on a number of objective and subjective measures.

While the subjects generally rated their experience of using the system positively, there was

some degree of variation, most of which could not be attributed to the difference in reference

strategy. Also, the results on the objective measures varied widely across the subjects, but

again were not generally affected by the reference strategy. In this section, we examine the

relationship between these two classes of measures in order to determine which of the objective

measures had the largest effect on users’ subjective reactions to the HRI system.

As in the first evaluation, we used multiple linear regression to compute predictor functions.

Table 5.9 shows these functions that were derived for each of the classes of subjective measures

in this study, using all of the objective measures from Table 5.8 as initial factors. The R2

column indicates the percentage of the variance in the target measure that is explained by the

predictor function, while the Significance column gives significance values for each term in the

function.
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In general, the two factors with the biggest influence on user satisfaction were the number of

repetition requests (which had a uniformly negative effect on user satisfaction), and the number

of target objects correctly built by the user (which generally had a positive effect). Aside from

the questions on user feelings, the R2 values are generally in line with those found in previous

PARADISE evaluations of other dialogue systems [81, 57], and in fact are much higher than

those found in the first evaluation.

5.2.7 Discussion

The subjective responses on the relevant items from the usability questionnaire suggest that the

subjects perceived the robot to be a better conversational partner when it used contextually

varied, situationally-appropriate referring expressions than when it always used a baseline,

constant strategy; this supports the main prediction for this study. The result also agrees

with the findings of the first evaluation. These studies together support the current effort in

the natural-language generation community to devise more sophisticated reference generation

algorithms.

On the other hand, there was no significant difference between the two groups on any of

the objective measures: the dialogue efficiency, dialogue quality, and task success were nearly

identical across the two groups of subjects. A detailed analysis of the subjects’ gaze and

object manipulation behaviour immediately after various forms of generated references from

the robot also failed to find any significant differences between the various reference types.

These overall results are not particularly surprising: studies of human-human dialogue in a

similar joint construction task [9] have demonstrated that the collaborators preserve quality

of construction in all cases, though circumstances may dictate what strategies they use to do

this. Combined with the subjective findings, this lack of an objective effect suggests that the

references generated by the adaptive strategy were both sufficient and more natural than those

generated by the constant strategy.

The analysis of the relationship between the subjective and objective measures analysis

has also confirmed and extended the findings from the first evaluation. In that study, the

main contributors to user satisfaction were user repetition requests (negative), task success,

and dialogue length (both positive). In the current study, the primary factors were similar,

although dialogue length was less prominent as a factor and task success was more prominent.

These findings are generally intuitive: subjects who are able to complete the joint construction

task are clearly having more successful interactions than those who are not able to complete
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the task, while subjects who need to ask for instructions to be repeated are equally clearly

not having successful interactions. The findings add evidence that, in this sort of task-based,

embodied dialogue system, users enjoy the experience more when they are able to complete the

task successfully and are able to understand the spoken contributions of their partner, and also

suggest that designers should concentrate on these aspects of the interaction when designing

the system.

5.3 Evaluation 3

In the third study, we tested the EMF approach for the first time on the JAST robot to see if

the method not only works in theory but also on a real system with näıve subjects that have

not seen the robot before. Since we used EMF here, we were able to easily implement two

different robot behaviours to compare the user ratings of these behaviours to each other. We

call these behaviours instructive behaviour, because in this setting the robot first instructs the

user which pieces to pick up and after that hands over pieces itself, and proactive behaviour,

because in this setting the robot first hands over pieces itself and then gives instructions to the

user.

In a way, this study can be seen as a comparison of the first two evaluations, since the

robot takes over different roles: on the one hand, the robot plays the role of an instructor as

in the first evaluation and on the other hand, the robot plays the role of an equal partner as

in the second evaluation. Therefore, in this study we were mainly interested to find out if the

participants generally preferred one of the two robot behaviours and also if the users adapt

their role to that of the robot.

5.3.1 System Set-up

In this study, we used the EMF approach as we described it in Sections 3.3 and 4.3. However,

we did not use the full spectrum of the capabilities of the JAST robot since they where not

needed for this experiment. The robot had to generate and evaluate OAClets with the following

actions:

• give, the robot hands over an Baufix piece from its own workspace to the human.

• tellAbout, the robot tells the human to pick up a piece from the human’s workspace,

because it fits a building step of the currently loaded plan.
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• askFor, the robot asks the human to put a certain Baufix piece on the table, because it

is needed for the current plan and the robot cannot detect it with its object recognition.

• tellBuild, the robot asks the human to build one of the substeps of the currently loaded

plan. For example the windmill has one substep, the tower. When the robot registers

that the human picked up all pieces needed to build the tower, it asks the human to build

it and put it on the table.

• thankFor, the robot thanks the human for the piece the human puts on the table. This

action is added in an OAClet to the OAClet container when the robot executes one of the

actions askFor or tellBuild so that the robots thanks the human, when the needed piece

appears on the table.

As we already started to explain in the introduction, in this experiment, the robot showed

two different behaviours: in the instructive behaviour setting, the robot preferably executed

action tellAbout and thus gave instructions to the user first and then handed over pieces to

the experiment participants. In the proactive behaviour, the robot was configured so that it

preferably executed the action give and handed over Baufix pieces to the human.

The implementation of the EMF approach made it easy to realise these two different robot

behaviours through reconfiguration of the action priority list that we introduced in Section

4.3.4. For the instructive behaviour we configured the task hierarchy with

tellAbout > give > askFor > tellBuild > thankFor

In comparison to that we configured the task hierarchy for the proactive behaviour with

give > tellAbout > askFor > tellBuild > thankFor

As you can see, the only difference in the two hierarchies are the first two elements. However,

this small change already resulted in a notably different behaviour of the robot, which we also

show in the dialogue example in the next section.

5.3.2 Experiment Design

This study used a between-subjects design with one independent variable: each subject in-

teracted either with a system that used the proactive robot behaviour setting, or else with a

system that used the instructive robot behaviour. Each subject built the two target objects
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in collaboration with the system, always in the same order, first the windmill, after that the

railway signal. For both target objects, the user was given a building plan on paper.

The participants stood in front of the table facing the robot, equipped with a headset

microphone for speech recognition. The pieces required for the target object were placed on the

table, using the same layout for every participant. The layout was chosen to ensure that there

would be enough similar Baufix pieces on both sides of the table for every subplan of the target

objects so that the robot could either perform the action give and handover an object from its

side of the table or the action tellAbout and instruct the users to pick up an object from their

side of the table. For example, for the tower there was a red cube in both table areas, so that

the robot could either hand over the cube from its side or instruct the subjects to pick up the

cube from their side. Appendix A.2 shows the table layouts for windmill and railway signal.

Along with the building plan mentioned above, the subjects were given a table with the names

of the pieces they could build the objects with.

Additionally, subjects got instructions that they could speak with the robot. In this study,

the experiment participants could either ask the robot for one of the pieces in the robot’s

workspace by giving a direct order, for example by saying “gib mir einen blauen Würfel” (“give

me a blue cube”), or they could ask the robot to repeat its last utterance by saying “wie

bitte?”, (“pardon me?”). Figure 5.5 shows two example dialogues between human and robot in

the proactive and instructive behaviour settings, which we extracted from two of the experiment

videos. From the dialogues you can clearly see that the robot gave more instructions in the

instructive behaviour setting.

5.3.3 Subjects

40 subjects (27 male) took part in this experiment. The mean age of the subjects was 27.2,

with a minimum of 17 and a maximum of 59. Of the subjects who indicated an area of study,

the two most common areas were Mathematics (11 subjects) and Informatics (8 subjects). On

a scale of 1 to 5, subjects gave a mean assessment of their knowledge of computers at 3.7, of

speech recognition systems at 1.9, and of human-robot systems at 1.6. For their participation

in the experiment, the subjects got the chance to win a voucher for an online shop.

5.3.4 Data Acquisition

At the end of a trial, the subjects responded to a usability questionnaire consisting of 29 items,

which fell into four main categories: feelings of the user (10 items), intelligence of the robot (7
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Instructive behaviour setting

SYSTEM Nehmen sie bitte die mittlere Leiste. (Please pick up a medium slat.)

USER [picks up medium slat]

SYSTEM Nehmen sie bitte die Mutter. (Please pick up a nut.)

USER [picks up nut]

SYSTEM Ich gebe ihnen eine gelbe Schraube. (I will give you a yellow bolt.)

SYSTEM [picks up yellow bolt and hands it over to human]

USER Gib mir die kleine Leiste. (Give me a small slat.)

SYSTEM Ich gebe ihnen eine kleine Leiste. (I will give you a small slat.)

SYSTEM [picks up small slat and hands it over to human]

SYSTEM Sie haben alle Teile für einen Buchstaben genommen. Können sie ihn bitte zusam-

menbauen und auf die Arbeitsfläche legen. (You picked up all pieces for an l shape. Could

assemble it and place it on the workspace, please.)

Proactive behaviour setting

SYSTEM Ich gebe ihnen eine kleine Leiste. (I will give you a small slat.)

SYSTEM [picks up small slat and hands it over to human]

USER [picks up medium slat]

USER [picks up nut]

SYSTEM Ich gebe ihnen eine gelbe Schraube. (I will give you a yellow bolt.)

SYSTEM [picks up yellow bolt and hands it over to human]

SYSTEM Sie haben alle Teile für einen Buchstaben genommen. Können sie ihn bitte zusam-

menbauen und auf die Arbeitsfläche legen. (You picked up all pieces for an l shape. Could

assemble it and place it on the workspace, please.)

Figure 5.5: Sample dialogue excerpts showing the proactive and instructive robot behaviour.

items), robot behaviour (6 items), and task success (6 items). The items on the questionnaire

were based on those used in the previous user evaluations, but were adapted for the scenario and
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research questions of the current study. The questionnaire was presented using software that

let the subjects choose values between 1 and 100 with a slider. We show the full questionnaire

in Appendix A.4.3. In addition to the questionnaire, the trials were also video-taped, and the

system log files from all trials were kept for further analysis.

5.3.5 Hypotheses

Since we are comparing different robot behaviours in this study, we had two hypotheses how

these behaviours affect user ratings:

H1 Subjects who work with the robot in the proactive behaviour setting, generally asses their

interaction with the robot more positive.

H2 Subjects who work with the robot in the proactive behaviour setting also display a more

proactive behaviour, while subjects using the instructive robot will take a more passive

role in the interaction.

Since we gathered a wide range of subjective and objective measures in this study, we did not

make specific predictions as to which specific measure the experimental manipulations will have

an effect.

5.3.6 Results

In this study, we analysed the collected data in several ways. First, we compared the subjective

answers of the experiment participants to the user questionnaire to find out if there are any

significant differences between the answers of the group that worked with the proactive robot

and the group that worked with the instructive robot. Second, we compared the objective

measurements that we took from the system logs and the videos to find differences between

the two groups. Third, we made a PARADISE-style calculation to find which of the objective

measurements could potentially predict the subjective answers by the experiment participants.

5.3.6.1 Subjective Measurements

We applied a Mann-Whitney test on the answers to the user questionnaire to find if the different

robot behaviours had a significant effect on the ratings by the two participant groups. Generally,

subjects gave a positive feedback of an average 83 of 100 points on the questions that asked them

if they liked working with the robot. However, the participants rated the robot’s intelligence
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with only 56.35 points, but the standard deviation was quite high for this question with 26.16

points. There was no significant difference in these questions between the two groups.

We found significant differences (p-value < 0.05) in the ratings for 4 of the 29 statements of

the user questionnaire, which are displayed in Table 5.10. Here, one of these statements belongs

to the category feelings of the user (“I found the robot easy to use.”), two statements of the

statements belongs to category intelligence of the robot (“I knew what I could say or do at

each point in the conversation.”, “It was clear what to do when the robot did not understand

me.”), and one statement belongs to category robot behaviour (“The robot gave too many

instructions.”).

Table 5.10: Statements with significant differences between user groups of user questionnaire for

third evaluation.

Statement Proactive Instructive M-W

Ich fand, der Roboter war einfach zu benutzen. 83.80 (12.81) 90.80 (13.03) p ≈ 0.043

I found the robot easy to use.

Ich habe zu jedem Zeitpunkt in der Konversation 71.05 (30.32) 90,10 (12.04) p ≈ 0.038

gewusst was ich tun oder sagen kann.

I knew what I could say or do

at each point in the conversation.

Wenn der Roboter mich nicht verstand, 70.65 (21.46) 57.33 (15.26) p ≈ 0.034

dann war mir klar was ich tun musste.

It was clear what to do

when the robot did not understand me.

Der Roboter gab zu viele Anweisungen. 33.95 (28.21) 16.71 (21.95) p ≈ 0.026

The robot gave too many instructions.

5.3.6.2 Objective Measures

We collected a set of objective measurements from the automatically generated system log files

and from annotations of the videos we took during the experiments. All in all, we had four

different objective measurements:

• the number of verbal utterances by the subjects, which is the number of times the users

asked the robot for a certain Baufix piece or to repeat its last utterance,

• the number of instructions the robot gave to the subjects, i.e. only the instructions in

which the robot told the human which piece to pick up next from the workspace,
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• the overall duration the subjects needed to build windmill and railway signal, and

• the number of times the subjects picked up an Baufix piece from their side of the table,

where the robot did not instruct them to pick up the object.

We were able to gather the first two measurements from the system log files; we annotated

the videos of the experiment participants with Anvil [49] to collect the the remaining two

measurements. Not all subjects agreed that we videotaped them, thus we only have video data

for 32 of the 40 subjects, 15 videos of participants who used the proactive robot and 17 videos

of participants who used the instructive robot.

We show the results of the objective measurements in Table 5.11. We computed if there

is a significant difference between the two user groups, again via a Mann-Whitney test. We

found a significant difference for the number of robot instructions, which is not surprising,

but shows that the robot gave significantly more instructions to the user in the instructive

behaviour setting. Furthermore, users who worked with the robot in the proactive behaviour

setting significantly picked up more Baufix pieces without getting instructions from the robot

to do so.

Table 5.11: Objective results for third evaluation.

Measure Instructive Proactive M-W

No. user utterances 1.65 (1.69) 1.25 (1.94) p ≈ 0.33

No. robot instructions 10.3 (1.49) 4.60 (2.28) p < 0.01

Duration (s.) 265.86 (46.22) 258.80 (51.32) p ≈ 0.82

No. anticipative user actions 0.76 (0.90) 4.80 (1.97) p < 0.01

5.3.6.3 Paradise Study

To complete the result analysis of this study, we made a PARADISE study to compute if the

objective measurements we collected in the third evaluation could predict the subjective state-

ments of the user questionnaire. Table 5.12 shows the predictor functions that we calculated

using stepwise multiple linear regression. For the calculation we used all four objective measure-

ments, which are abbreviated in the table with Dur (duration to build both target objects),

Pickup (number of anticipatory pick up actions by experiment participant), Utt (number of

utterances by experiment participant), and Inst (number of robot instructions).

The calculated predictor functions show that all of the objective measurements influence

user satisfaction in one way or the other:
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Table 5.12: Predictor functions for PARADISE study of third evaluation.

Measure Function R2 Significance

Feelings 324.68 + 0.77 ∗N(Dur) + 27.35 ∗N(Pickup) 0.27 Dur: p ≈ 0.16

−40.26 ∗N(Utt) + 20.96 ∗N(Inst) Pickup: p ≈ 0.16

Utt: p < 0.01

Inst: p ≈ 0.13

Intelligence 405.02 + 0.58 ∗N(Dur)− 18.70 ∗N(Utt) 0.15 Dur: p ≈ 0.10

Utt: p < 0.05

Behaviour 487.33− 10.96 ∗N(Pickup) 0.12 Pickup: p ≈ 0.05

Task success 447.74 + 0.40 ∗N(Dur)− 17.54 ∗N(Utt) 0.23 Dur: p ≈ 0.10

Utt: p < 0.01

• The number of user utterances has a strongly negative influence on the three categories

feelings of the user (abbreviated with Feelings in table), intelligence of the robot (abbr. In-

telligence), and task success. However, the duration to build both target objects had a

slight positive effect in the same three categories.

• The number of anticipatory pick up actions by the user had an positive influence on

category feelings of the user and a negative influence on category robot behaviour.

• The number of robot instructions had a strong positive influence on the category feelings

of the user, but not on the other categories.

The R2 values of this study are in the same range as the values of the previous studies and

thus confirm the findings of the first two evaluations. However, the values are not as high as

those reported in [81, 57].

5.3.7 Discussion

The results of this study show an interesting correlation: we expected that the experiment

participants will prefer the proactive robot over the instructive robot. However, the data

suggests that the users accept both robot roles and simply take the counterpart in the interaction

with the robot. This can be seen from the significant answers to the statements of the user

questionnaire, where the users that worked with the proactive robot answered more positive to

the statement “I knew what I could say or do at each point in the conversation”. This indicates

that the subjects showed a more proactive behaviour themselves and followed the building

plan more when the robot gave less instructions. In contrast to that, the users who worked

with the instructive robot rated the statement “The robot gave too many instructions” lower
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than the users from the other group, which means that they wanted to hear more instructions

by the robot, even though the robot already gave them significantly more instructions. This

supports our claim that the users took the counterpart role to the robot. One of the objective

measurements also supports our opinion: users who worked with the proactive robot also showed

a proactive behaviour and executed anticipatory pick up actions significantly more often than

users of the other group. These results are in line with research from cognitive psychology and

cognitive neuroscience. Sebanz et al. review in [72] a set of studies from these fields, which also

prove that humans attune their actions when working together.

The results of the calculated PARADISE predictor functions are not very surprising. How-

ever, it is interesting to note that the number of anticipatory pick up actions had a positive

influence on the statements in the category feelings of the user and a negative effect on the

category robot behaviour. In our opinion, this shows that the users prefer to show their own

initiative. That means that they would rather work with the proactive robot, which supports

hypothesis H1 that we stated in Section 5.3.5. The negative effect of this measurements on the

assessment of the robot’s behaviour can in our opinion be explained with robot errors during

the interaction: when the robot made an error and for example gave the wrong instructions to

the user or stopped working (which could happen sometimes during the experiments because

of wrongly recognised Baufix pieces), the users had to pick up the pieces to finish building the

target objects without getting instructions by the robot.

The number of user utterances also had a negative influence on the user satisfaction. This

can be easily explained: in this experiment the EMF approach was configured so that the users

did not have to speak with the robot, as long as the system performed well. The users only

had to talk to the robot when they either did not understand the robot’s utterances and had

to ask for repetition or they needed to give a direct command to the robot to ask for a piece of

the robot’s workspace, which almost only happened when the robot made an error. Thus, the

number of user utterances is a clear indicator for problems during the experiment. This result

confirms the findings of the first two evaluations, where the number of repetition requests also

had a negative influence on user satisfaction.
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Chapter 6

Conclusion

In the last chapter of this thesis, we take a step back to get an overview of the presented

work and to discuss its contribution to the field of human-robot interaction. In Section 6.1, we

summarise this thesis and list the main contributions of our work. After that, in Section 6.2,

we compare the properties of the two proposed approaches for multimodal fusion and discuss

their applicability for human-robot interaction. Finally, in Section 6.3 we provide an outlook

on future development of multimodal fusion for human-robot interaction.

6.1 Summary

In this thesis, we compared two approaches for multimodal fusion for human-robot interaction

(HRI). A robot that should interact with a human, needs multimodal fusion to interpret and

merge information from different modalities that recognise human verbal and non-verbal ut-

terances, recognise objects in the robot’s environment, or store information about the robot’s

task.

In Section 2, we presented related work, which originates from diverse research fields, includ-

ing multimodal dialogue systems, cognitive and robot architectures, human-robot interaction,

spoken language processing, and embodiment. The literature review raised two questions: (1)

multimodal dialogue systems use methods from classical artificial intelligence (AI), for example

rule-based processing, to integrate events from different modalities to a unified representation.

This approach works well in structured environments, as for example in screen-based informa-

tion systems that combine information from speech recognition and touch-based gestures. Can

multimodal dialogue systems also be used for human-robot interaction? (2) The research area

embodiment takes a contrary position to the notion of AI that intelligence can be implemented
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detached from a body. The basic idea of embodiment is that intelligence cannot exist without

a body and that an embodied agent can exploit its environment to synthesise intelligent be-

haviour. In the last decade, robots that implement their sensorimotor coordination based on

this paradigm have shown substantial progress in moving in unstructured environments and

handling objects. However, the question remains if high-level AI problems, such as multimodal

fusion and natural language processing, can be implemented with methods from embodiment?

Based on these two observations, we developed two approaches for multimodal fusion, one

approach based on methods from classical AI and another approach based on embodiment,

which we introduced theoretically in Chapter 3:

• The classical multimodal fusion (CMF) implements a human-centred view on a robot’s

input data and is based on methods from artificial intelligence. In CMF, the fusion process

is triggered by a verbal utterance of the human. When the human talks to the robot,

CMF processes the spoken utterance in several steps: first, CMF analyses the recognised

string that it gets from the robot’s speech recognition module in a parsing step. For that,

it uses a combinatory categorial grammar [77], which analyses the syntactic structure of

the human utterance and generates a logical formula that represents its semantic content.

CMF then uses this logical representation in a reference resolution step to ground the

objects that the human has talked about to objects that the human has pointed to or to

objects that the robot can see in its environment. For this, CMF uses a rule engine, which

uses information from gesture and object recognition to generate a unified representation,

called fusion hypothesis, which represents the information from the speech, gesture, and

object recognition channels. CMF finally sends this information to a dialogue manager,

which calculates the robot’s next actions and multimodal output to the human.

• The embodied multimodal fusion (EMF) implements a robot-centred view on the robot’s

input channels. The data representation in EMF is based on the notion that for an

embodied agent actions and objects are inseparably intertwined. Thus, the objects in

the robot’s environment define the actions that it can execute with these objects and the

actions define the purpose of the objects. This connection between objects and actions

is called object-action complex (OAC), which was described in more detail in [51]. Since

we did not use the full definition of OACs, in our work we talked about OAClets. In

EMF, we defined two types of input channels for the robot: EMF uses action-generating

channels to generate a list of OAClets, which represent the possible actions that the robot
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can execute in a given situation. When the robot has filled its list of OAClets, EMF uses

action-evaluating channels to calculate the relevance of these OAClets in a given context.

We described the theoretical background for both channel types and introduced object

recognition and task planning as examples for action-generating channels and speech

and gesture recognition as example for action-evaluating channels. Finally, we showed

an action selection algorithm, which uses a combination of thresholds and an action

hierarchy to determine which of the robot’s OAClets should be selected for execution in

a given situation.

Our goal was to compare CMF and EMF and to research their advantages and disadvantages.

In order to make the two approaches comparable, we implemented both of them on the human-

robot interaction system of the project Joint Action Science and Technology (JAST). The robot,

which we introduced in Section 2.1.1 and can be seen in Figure 2.1, has a humanoid form. It

consists of two industrial robot arms that are setup to resemble human arms and an animatronic

head which is capable of presenting lip-synchronised speech and basic emotions to a human user.

This robot has different input channels, namely speech, gesture, and object recognition. The

task of the robot is to work together with a human on a common construction task in which

they both assemble target objects together. For that, the robot has an additional input channel,

the task planner, which stores information about building plans for target objects.

After introducing the theoretical background of CMF and EMF, in Chapter 4 we presented

a description of the implementation of both approaches on the JAST human-robot interaction

system. CMF’s implementation is based on a rule engine that combines speech and gesture

events with information from object recognition, as described above. We presented the rules

that we are using in the implementation of CMF on the JAST system. In the EMF approach,

the implementation has to be efficient, since the robot-centred data view leads to more computa-

tion. Here, we presented how OAClets need to be stored efficiently to enable action-generating

and action-evaluating channels to efficiently add new OAClets and compute their relevance,

respectively. Furthermore, we presented the implementation of the EMF action selection algo-

rithm in more detail.

In Chapter 5, we presented several experiments, in which CMF and EMF were used. All

of these experiments were based on the JAST common construction task and we used both

multimodal fusion approaches in different settings to show their functionality and applicability

in various scenarios:
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• In the first study, we used the CMF approach. Here, the robot took the role of an

instructor that explained the human how to build certain target objects. We varied the

strategy to explain the plans as well as the strategy to generate referring expression to

talk about objects in the environment of the robot. The users in this experiment clearly

preferred the robot that used a plan explaining strategy in which it first named the target

object and then explained single building steps. Additionally, we found that users who

heard the robot that used a referring expression generation strategy, which made use of

the context of the current situation, rated the robot as a better dialogue partner.

• In the second study, we used a modified version of CMF. Here, human and robot were

equal partners and both had a building plan for the target objects. However, we included

a deliberate error in the human’s building plan so that the experiment participants did

an error during the construction. The robot was able to recognise when the participants

made an error and it explained to the users how to solve the error. We varied the robot’s

strategy to generate referring expressions in its utterances and were able to confirm the

findings from the first evaluation: users who heard the robot using a referring expression

generation method that made use of context information, assessed the dialogue with the

robot as more pleasant.

• In the third study, we used EMF to implement different robot behaviours. Here, human

and robot were again equal partners and both had an error-free building plan. In one

version of the system the robot took the role of an instructor and told the participants

which pieces to pick up; in the other version, the robot took the role of an assistant,

handed over pieces to the human when needed, and only gave instructions if necessary.

The experiment participants did not have a clear preference in one of the two robot

behaviours. However, we found that the users adjusted their behaviour to the robot’s

actions and took the counterpart to the robot’s behaviour. We also found that in this

kind of interaction, talking with the robot was not preferred by the users.

6.2 Discussion

The most prominent differences in CMF and EMF are their different ways to represent data

and their planning horizons. In this section, we will compare these two properties for both

approaches and then discuss how CMF and EMF differ in robot behaviour, application area,

fault tolerance, and expandability.
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6.2.1 Representation

CMF and EMF have different ways to represent and handle data from the robot’s input channels.

Representation is a widely discussed topic in the AI and embodiment communities. Classical AI

is based on knowledge representations for objects, properties, categories and relations between

objects. These representations need to be expressive enough to completely map a given domain,

but at the same time logical inference on the represented facts needs to be computable. In

contrast to that, most embodiment researchers support the idea that representation is not

needed for an embodied agent to show intelligent behaviour. Brooks writes in [18] that AI

researchers reduce the problems that they want to solve until they can represent them in

an adequate way. This way, in Brooks’ opinion, an established scientific approach—dividing

complex problems in smaller problems—is abused to give the illusion of generating artificial

intelligent systems. Harvey argues in [43] that artificial intelligence can only be generated by a

physical system that has inputs and outputs, but no explicit representations. This system uses

physical impulses to transport information from the input channels to the appropriate output

channels to generate an intelligent reaction to the inputs. He also proposes an evolutionary

approach to learn such a system.

CMF and EMF both use explicit representations to represent and process the data from the

robot’s input channels, even embodied multimodal fusion. When it comes to representations, we

have a quite practical attitude, which has two reasons: (1) multimodal fusion for human-robot

interaction is a domain that has to handle spoken language and planning. To the best of our

knowledge, there are no methods from embodiment that have solved these high-level cognitive

skills. Thus, we have to use classical approaches for speech processing and the considerate reader

may also have noticed that even embodied multimodal fusion uses a combinatory categorial

grammar to parse the structure of a given input sentence. (2) Even if one is not convinced

that internal representations of external realities do not exist, we still need to represent data in

the computers that we are using to process the robot’s input data. Harvey arguments in [43]

that evolutionary systems do not explicitly develop representations, which is true, but in the

end the computer still has to represent data with binary patterns. Thus, our position in this

discussion is that as long as we are not developing computers that can reproduce the properties

of a human brain, we are forced to work with representations.

Coming back to representations in CMF and EMF, we see that CMF has a human-centred

data representation. Specifically, CMF has a speech-centred representation, because in this

approach the spoken language of the human is the central element around which CMF build its
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fusion hypotheses. This representation is oriented on the data representation of classical state-

based dialogue managers. In contrast to this, EMF implements a robot-centred representation

of the robot’s input data. Here, the robot is seen as an autonomous agent that has defined

goals and a set of actions. Thus, the internal representation of this agent is based on actions

in combination with objects in the robot’s environment. EMF uses the data from the robot’s

input channels to calculate which of the robot’s actions should be executed to reach the given

goals.

6.2.2 Planning Horizon

Depending on if the robot needs to reach longterm or immediate goals, it has to plan more

or fewer actions in advance to reach these goals. Furthermore, when human and robot have

to define new goals together, the robot needs to be able to plan its actions to reach the new

goals and compute their reachability. CMF and EMF are essentially different in their planning

horizons: in CMF, we are able to integrate planning components that compute the robot’s

actions for long-term goals.

The rigid structure of the rules that CMF uses for interpreting multimodal input, implement

an implicit prediction of the effect of robot actions to the world state, given a specific input.

This property is indispensable for long-term goal planning. Furthermore, CMF uses a dialogue

manager to communicate with the human, which enables the robot to discuss future plans with

its interaction partner. In contrast to that, EMF can only process immediate goals, because

it directly incorporates input data to find the next actions for the robot to execute. Thus, a

discussion about hypothetical future goals is impossible. However, the robot is able to react

fast and robust to short term changes of immediate goals when using EMF.

6.2.3 Robot Behaviour

The behaviour of the robot changes significantly, due to the different views on the input data in

both approaches as well as their varying planning horizons. In CMF, verbal utterances of the

human are the central information element and the fusion process is built around speech. The

robot reacts to these utterances in a predictable and deterministic way, just as it is programmed

into the rules in the rule engine. That means, in CMF we have a similar situation as in classical

user-initiated dialogue systems in which the system handles orders or information requests by

the user. However, this also means that the robot is not able to react to situations in which

the human does not act as encoded in the rules by the system developer or in which one of the
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modalities of the robot fails, which might lead to situations where none of the preconditions of

the rules can be fulfilled.

In the EMF approach, the robot reacts not only to the verbal utterances of the human, but

also to the data from other input channels. For example, the robot can react to non-verbal

actions of the human, such as picking up a building piece from the human’s workspace. That

means, the robot shows a behaviour that is similar to mixed-initiative dialogue systems, where it

can follow the human’s orders as well as decide by itself which action to execute next. However,

it has to be noted that using EMF the behaviour of the robot cannot be controlled as easily

as in the CMF approach. This is due to the parallel processing of the input data and the fact

that the robot works in an unstructured environment and reacts to unstructured input.

6.2.4 Application Area

CMF is applicable in domains in which the robot has a clearly defined task, the actions of the

robots can be defined in a precise way, and the environment of the robot can be completely

monitored with sensors. Furthermore, the application of CMF is reasonable in domains in

which the robot should strictly follow the orders by a human and should rather omit executing

an action before doing it wrong. Thus, CMF is best used in applications, in which the robot

supports a human who has been instructed how to handle the robot. This would be for example

an industrial scenario in which the robot collaborates with a worker or a medical scenario in

which a doctor controls the robot to assist him/her in an operation.

EMF is applicable in scenarios, in which the robot cannot completely monitor its environ-

ment, but still has to execute a set of actions, and in which it is important that the robot

finishes its task, while it is not important in which order it executes subtasks. Here, the robot

should follow the orders by the human user, but also be able to autonomously fulfil its assigned

tasks. An example for such a scenario would be a household robot that gets the order to clean

a table from dirty dishes. Here, the robot can clear the dishes in any order, it is only relevant

that it achieves its task.

The different planning horizons of CMF and EMF also influence the application areas of

the two approaches. CMF is well-suited for applications that require planning of complex goals

and backtracking in case of errors. That makes CMF the right approach for multimodal fusion

in industrial scenarios, in which the robot needs to reach long-term goals that need accurate

planning and precise execution of intermediate steps. EMF is applicable in areas in which a

short-term planning horizon is sufficient and a quick reaction to changes in the environment
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is more important. A typical example for such an application would be a robot that socially

interacts with humans in public spaces. Here, the robot needs to be able to meet certain ground

rules of social interaction, such as greeting the human.

6.2.5 Fault Tolerance

A fault tolerant system can react robustly to errors. The types of errors that we are dealing

with in multimodal fusion are of two kinds: on the one hand, we have unexpected situations

in the interaction, for example the user can pick up a wrong building piece or say a sentence

that does not fit into the current context. On the other hand, there can be errors in the system

itself, for example modalities can deliver false data or completely break down.

In the current implementation, CMF is not able to react to errors in the interaction or in

the system. User input errors could be caught by appropriately implemented rules, but if one

of the modalities breaks, CMF is not able to work properly. In EMF, the robot is working, even

if one of its modalities breaks down. In that case, it will use the information from its remaining

modalities to solve its assigned task. However, EMF is—in the implementation presented here—

not able to detect errors in the interaction. The system uses every input by the human, also

faulty inputs, and interprets them in its calculation to determine its next actions.

6.2.6 Expandability and Implementation

In this section, we look at the expandability of the two approaches, for example to add a

new modality to the robot’s input sensors or extend the capabilities of one of the existing

modalities. For that, we enumerate the system parts that need to be changed to extend both

approaches. Additionally, we analyse the process of implementing CMF or EMF on a different

robot. We highlight the duration to implement a first working version, the steps to analyse a

given scenario and adapt the approaches, and the integrability of the two approaches in already

existing systems.

To extend CMF by a new modality, a developer has to write a new set of rules that handle

the events of the new modality as well as change the old rule set in order to fuse the events from

the new modality with the already existing information. However, the general processing with

a rule engine is not affected by adding or changing a modality. Due to its modular structure,

implementing the CMF approach on a new system is relatively easy. The implementation here

can be done in a step-by-step manner. Here, the programmer has to analyse the scenario in

which the new robot works in full detail before starting to implement the CMF approach,
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which is time-consuming. Also, it will take a long time to get to an initial running version of

the system, because many components have to work in order for the system to run in CMF. In

return, the CMF approach is well-suited to be implemented in already existing systems, again

due to its modular structure.

EMF can be easier extended than CMF. Due to the parallel processing of the input data, ev-

ery modality works independently from other input channels. Thus, existing and new modalities

can be added or removed to the processing system at all times. The generation and evaluation

of OAClets from each modality does not change when another modality is added to or removed

from the robot. The developer has to analyse the action-generating and action-evaluating prop-

erties of a new modality that should be added to the robot. Furthermore, he/she has to make

sure that the calculation of relevance values in the new modality is normalised with the rele-

vance calculation of the already existing modalities. Furthermore, the developer has to control

the thresholds and action hierarchy in the action selection mechanism, when a new modality is

added.

One main disadvantage of EMF is that it is not as easily portable to new robots as the CMF

approach. As it was described by Pfeifer in [68] as a design principle for embodied systems,

EMF uses synthetic methodology, which means that the developer understands the robot while

building the system. In EMF, we have to understand and analyse a robot’s input channels

to find out whether they are action-generating or action-evaluating channels, while we are

implementing the fusion process. However, EMF has the advantage that with its methodology

the developer can rather quickly produce a working prototype of a new robot system, even if not

all of the input channels are already working. In contrast to CMF however, the EMF developer

will have to invest more time into fine-tuning the final integrated system, which is again due to

the parallel processing of input data in EMF that can lead to unwanted side effects.

6.2.7 Take Home Messages

After this discussion of the advantages and disadvantages of CMF and EMF, we believe that

embodied multimodal fusion is the approach that is better suited for human-robot interaction.

This is mainly due to the fact that in the near future we will not be able to completely predict

the behaviour of the humans the robot is interacting with as well as to completely monitor the

unstructured environment of the robot with sensors, two preconditions that classical multimodal

fusion needs in order to function properly. Using EMF, a robot can react robustly to errors or

missing input, also EMF is tailored to the available input modalities of the robot and makes the

119



6. CONCLUSION

best use of the given input data. However, classical multimodal fusion also has its justification

in certain application areas, in which the environment can be completely monitored, the input

data is holistically known, and the robot needs to precisely follow a given plan and the human’s

instructions. Thus, we can learn some important lessons from this work:

1. If you need a robot that can be precisely controlled by human orders using language and

other modalities, use classical multimodal fusion. The CMF approach demonstrates that

the robot can be programmed to exactly follow the input by the human and a given

construction task that is defined by a plan.

2. If you need a robot that can solve given tasks autonomously and in a robust way, use

embodied multimodal fusion. The EMF approach showed that the robot can process

input by a human and also adjust its actions accordingly, but it mainly works on its

assigned tasks until the task is finished.

3. Embodiment can be the basis for robust data processing. Decision making should be based

on artificial intelligence. Both of the introduced approaches have their advantages and

we believe that a combination of aspects of CMF and EMF will lead to an approach for

multimodal fusion that can overcome the deficiencies of the two methods.

6.3 Future Work

We believe that in the future a combination of methods from embodiment and AI will be a

powerful combination for a multimodal fusion, which on the one hand processes input data

robustly and fault tolerant and on the other hand uses logical calculus to select the robot’s next

actions. This approach will enable the robot to solve challenges such as revising actions that

have led to an error or replanning actions in case of new situations in the interaction. Further-

more, the robot could use a more active approach to fill its knowledge about the environment

with missing data by asking the user questions in case of uncertainties about the current state

of the environment.

Concretely, we want to develop an approach for multimodal fusion, which uses the parallel

data processing of EMF to generate representations of user inputs, task information, and envi-

ronment status. These representations will then be processed with CMF. For this, we need to

solve the following challenges: (1) The human-centred data view of CMF and the robot-centred

data view of EMF need to be combined into one representation format. (2) The robot needs to
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keep a dialogue history in which it stores the information about the interaction with its human

partner. This can be used to recognise and solve errors in the interaction. (3) We need to model

the timing of the robot. For example, we need to consider when the robot should react to the

human’s utterances and actions to make the interaction more natural for the human, and we

need to empirically study, how the robot can influence the interaction by strategically altering

the speed in which it executes actions.
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Appendix A

Appendix

A.1 CMF Rules

package de . tum . in . j a s t . i n t e r p r e t a t i o n

import de . tum . in . j a s t . i n t e r p r e t a t i o n . DisappearedObject ;

import de . tum . in . j a s t . i n t e r p r e t a t i o n . Gesture ;

5 import de . tum . in . j a s t . i n t e r p r e t a t i o n . Goa l In fe rence ;

import de . tum . in . j a s t . i n t e r p r e t a t i o n . Speech ;

import de . tum . in . j a s t . i n t e r p r e t a t i o n . Utterance ;

import de . tum . in . j a s t . i n t e r p r e t a t i o n . WorldModelObject ;

import j a s t . common . In s tant i a t edObjec t ;

10 import j a s t . common . Location ;

import j a s t . common . LocationType ;

import j a s t . common . Timestamp ;

import j a s t . l i s t e n e r . GoalInferenceOutput ;

import j a s t . r eason ing . HypothesisType ;

15 import j a s t . r eason ing . ObjectLink ;

import java . u t i l . Co l l e c t i o n s ;

import f unc t i on de . tum . in . j a s t . i n t e r p r e t a t i o n . Helper . getEmptyDocument ;

import f unc t i on de . tum . in . j a s t . i n t e r p r e t a t i o n . Helper . getEmptyObjectl inks ;

20 import f unc t i on de . tum . in . j a s t . i n t e r p r e t a t i o n . Helper . getHypothesisType ;

import f unc t i on de . tum . in . j a s t . i n t e r p r e t a t i o n . Helper . generateObjectLinks ;

import f unc t i on de . tum . in . j a s t . i n t e r p r e t a t i o n . Helper . generateObjectLinksSpeech ;

import f unc t i on de . tum . in . j a s t . i n t e r p r e t a t i o n . Helper . getNumberOfObjects ;

import f unc t i on de . tum . in . j a s t . i n t e r p r e t a t i o n . Helper . idsReso lved ;

25 import f unc t i on de . tum . in . j a s t . i n t e r p r e t a t i o n . Helper . un i fyHashtab les ;

import f unc t i on de . tum . in . j a s t . i n t e r p r e t a t i o n . Helper . getEmptyGoalInferenceOutput ;

import f unc t i on de . tum . in . j a s t . i n t e r p r e t a t i o n . Helper . getEmptyInstant iatedObject ;

# g loba l v a r i a b l e s

30 g l oba l java . lang . Long TIMEOUT;

g l oba l java . lang . Long ATTENTIONSPAN;

g l oba l java . lang . Long WAITINGFORGOALINFERENCE;

g l oba l java . lang . Long SINGLEGESTURE;

35 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

// o n l y g e s t u r e //

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

ru l e ” po int ing ge s ture ”

when

40 ges ture : Gesture ( type == ”Point ing ” , a c t i v e == true , s i ng l eGes tu r e == f a l s e )

t imer : Timestamp ( )

eva l ( Math . abs ( t imer . msec − ges ture . getStartTime ( ) . msec ) > SINGLEGESTURE. longValue ( ) )

then

45 System . out . p r i n t l n ( ”RuleBase : r u l e ’ po int ing ge s ture ’ ” ) ;

ge s ture . s e tAct ive ( f a l s e ) ;

g e s ture . s e tS ing l eGes tu r e ( true ) ;

update ( ge s ture ) ;

50 end
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// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

// d e i c t i c s p e e c h and g e s t u r e //

55 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

ru l e ” d e i c t i c speech and po int ing gesture , r e so l v ed ”

when

speech : Speech ( hasDe i c t i c == true , a c t i v e == true )

ge s ture : Gesture ( type == ”Point ing ” , a c t i v e == true )

60 timer : Timestamp ( )

// t e s t i f o b j e c t s t a l k e d a b o u t and p o i n t e d a t ma t ch

eva l ( getHypothesisType ( speech . getIdsAndObjects ( ) , g e s ture . getPointedAtIds ( ) ) == HypothesisType . Resolved )

then

65 System . out . p r i n t l n ( ”RuleBase : r u l e ’ d e i c t i c speech and po int ing gesture , r e so l v ed ’ ” ) ;

i n s e r t ( new FusionHypothesis ( HypothesisType . Resolved ,

speech . getLogicalForm ( ) ,

speech . getDocument ( ) ,

70 un i fyHashtab les ( speech . getIdsAndObjects ( ) , g e s ture . getPointedAtIds ( ) ) ,

getEmptyInstant iatedObject ( ) ,

getEmptyGoalInferenceOutput ( )

)

) ;

75

speech . s e tAct ive ( f a l s e ) ;

update ( speech ) ;

ge s ture . s e tAct ive ( f a l s e ) ;

update ( ge s ture ) ;

80 end

ru l e ” d e i c t i c speech and po int ing gesture , unreso lved ”

when

speech : Speech ( hasDe i c t i c == true , a c t i v e == true )

85 ge s ture : Gesture ( type == ”Point ing ” , a c t i v e == true )

t imer : Timestamp ( )

// t e s t i f o b j e c t s t a l k e d a b o u t and p o i n t e d a t ma t ch

eva l ( getHypothesisType ( speech . getIdsAndObjects ( ) , g e s ture . getPointedAtIds ( ) ) == HypothesisType . Unresolved )

90 then

System . out . p r i n t l n ( ”RuleBase : r u l e ’ d e i c t i c speech and po int ing gesture , unreso lved ’ ” ) ;

i n s e r t ( new FusionHypothesis ( HypothesisType . Unresolved ,

speech . getLogicalForm ( ) ,

95 speech . getDocument ( ) ,

un i fyHashtab les ( speech . getIdsAndObjects ( ) , g e s ture . getPointedAtIds ( ) ) ,

getEmptyInstant iatedObject ( ) ,

getEmptyGoalInferenceOutput ( )

)

100 ) ;

speech . s e tAct ive ( f a l s e ) ;

update ( speech ) ;

ge s ture . s e tAct ive ( f a l s e ) ;

105 update ( ge s ture ) ;

end

ru l e ” d e i c t i c speech and po int ing gesture , c o n f l i c t ”

when

110 speech : Speech ( hasDe i c t i c == true , a c t i v e == true )

ge s ture : Gesture ( type == ”Point ing ” , a c t i v e == true )

t imer : Timestamp ( )

eva l ( getHypothesisType ( speech . getIdsAndObjects ( ) , g e s ture . getPointedAtIds ( ) ) == HypothesisType . Con f l i c t )

115 then

System . out . p r i n t l n ( ”RuleBase : r u l e ’ d e i c t i c speech and po int ing gesture , c o n f l i c t ’ ” ) ;

i n s e r t ( new FusionHypothesis ( HypothesisType . Conf l i c t ,

speech . getLogicalForm ( ) ,

120 speech . getDocument ( ) ,

un i fyHashtab les ( speech . getIdsAndObjects ( ) , g e s ture . getPointedAtIds ( ) ) ,

getEmptyInstant iatedObject ( ) ,

getEmptyGoalInferenceOutput ( )

)

125 ) ;

speech . s e tAct ive ( f a l s e ) ;

update ( speech ) ;

ge s ture . s e tAct ive ( f a l s e ) ;

130 update ( ge s ture ) ;

end
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ru l e ” d e i c t i c speech and po int ing gesture , ambiguous”

when

135 speech : Speech ( hasDe i c t i c == true , a c t i v e == true )

ge s ture : Gesture ( type == ”Point ing ” , a c t i v e == true )

t imer : Timestamp ( )

eva l ( getHypothesisType ( speech . getIdsAndObjects ( ) , g e s ture . getPointedAtIds ( ) ) == HypothesisType . Ambiguous )

140 then

System . out . p r i n t l n ( ”RuleBase : r u l e ’ d e i c t i c speech and po int ing gesture , ambiguous ’ ” ) ;

i n s e r t ( new FusionHypothesis ( HypothesisType . Ambiguous ,

speech . getLogicalForm ( ) ,

145 speech . getDocument ( ) ,

un i fyHashtab les ( speech . getIdsAndObjects ( ) , g e s ture . getPointedAtIds ( ) ) ,

getEmptyInstant iatedObject ( ) ,

getEmptyGoalInferenceOutput ( )

)

150 ) ;

speech . s e tAct ive ( f a l s e ) ;

update ( speech ) ;

ge s ture . s e tAct ive ( f a l s e ) ;

155 update ( ge s ture ) ;

end

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

160 // d e i c t i c s p e e c h b u t no g e s t u r e //

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

ru l e ” speech , d e i c t i c express ion , no ge s ture ”

when

speech : Speech ( hasDe i c t i c == true , a c t i v e == true )

165 timer : Timestamp ( )

eva l ( Math . abs ( speech . getStartTime ( ) . msec − t imer . msec ) > ATTENTIONSPAN )

then

System . out . p r i n t l n ( ”RuleBase : r u l e ’ speech , d e i c t i c express ion , no ge s ture ’ ” ) ;

170

i n s e r t ( new FusionHypothesis ( HypothesisType . Unresolved ,

speech . getLogicalForm ( ) ,

speech . getDocument ( ) ,

generateObjectLinksSpeech ( speech . getIdsAndObjects ( ) , f a l s e ) ,

175 getEmptyInstant iatedObject ( ) ,

getEmptyGoalInferenceOutput ( )

)

) ;

180 speech . s e tAct ive ( f a l s e ) ;

update ( speech ) ;

end

ru l e ” speech , no d e i c t i c express ion , d e f i n i t e determiner , ambiguous”

185 when

speech : Speech ( hasDe i c t i c == fa lse , hasDefDet == true , a c t i v e == true )

t imer : Timestamp ( )

eva l ( idsReso lved ( speech . getIdsAndObjects ( ) ) == HypothesisType . Ambiguous )

190 then

System . out . p r i n t l n ( ”RuleBase : r u l e ’ speech , no d e i c t i c express ion , d e f i n i t determiner , ambiguous ’ ” ) ;

// i n s e r t ( new F u s i o n H y p o t h e s i s ( H y p o t h e s i s T y p e . Ambiguous ,

i n s e r t ( new FusionHypothesis ( HypothesisType . Resolved ,

195 speech . getLogicalForm ( ) ,

speech . getDocument ( ) ,

generateObjectLinksSpeech ( speech . getIdsAndObjects ( ) , true ) ,

getEmptyInstant iatedObject ( ) ,

getEmptyGoalInferenceOutput ( )

200 )

) ;

speech . s e tAct ive ( f a l s e ) ;

update ( speech ) ;

205 end

ru l e ” speech , no d e i c t i c express ion , no d e f i n i t determiner , r e so l v ed ”

when

speech : Speech ( hasDe i c t i c == fa lse , hasDefDet == fa lse , a c t i v e == true )

210 timer : Timestamp ( )

eva l ( idsReso lved ( speech . getIdsAndObjects ( ) ) != HypothesisType . Unresolved )

then
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System . out . p r i n t l n ( ”RuleBase : r u l e ’ speech , no d e i c t i c express ion , no d e f i n i t determiner , r e so l v ed ’ ” ) ;

215

i n s e r t ( new FusionHypothesis ( HypothesisType . Resolved ,

speech . getLogicalForm ( ) ,

speech . getDocument ( ) ,

generateObjectLinksSpeech ( speech . getIdsAndObjects ( ) , true ) ,

220 getEmptyInstant iatedObject ( ) ,

getEmptyGoalInferenceOutput ( )

)

) ;

225 speech . s e tAct ive ( f a l s e ) ;

update ( speech ) ;

end

ru l e ” speech , no d e i c t i c express ion , d e f i n i t determiner , r e so l v ed ”

230 when

speech : Speech ( hasDe i c t i c == fa lse , hasDefDet == true , a c t i v e == true )

t imer : Timestamp ( )

eva l ( idsReso lved ( speech . getIdsAndObjects ( ) ) == HypothesisType . Resolved )

235 then

System . out . p r i n t l n ( ”RuleBase : r u l e ’ speech , no d e i c t i c express ion , d e f i n i t determiner , r e so l v ed ’ ” ) ;

i n s e r t ( new FusionHypothesis ( HypothesisType . Resolved ,

speech . getLogicalForm ( ) ,

240 speech . getDocument ( ) ,

generateObjectLinksSpeech ( speech . getIdsAndObjects ( ) , true ) ,

getEmptyInstant iatedObject ( ) ,

getEmptyGoalInferenceOutput ( )

)

245 ) ;

speech . s e tAct ive ( f a l s e ) ;

update ( speech ) ;

end

250

ru l e ” speech , no d e i c t i c express ion , no d e f i n i t determiner , unreso lved ”

when

speech : Speech ( hasDe i c t i c == fa lse , hasDefDet == fa lse , a c t i v e == true )

t imer : Timestamp ( )

255

eva l ( idsReso lved ( speech . getIdsAndObjects ( ) ) == HypothesisType . Unresolved )

then

System . out . p r i n t l n ( ”RuleBase : r u l e ’ speech , no d e i c t i c express ion , no d e f i n i t determiner , unreso lved ’ ” ) ;

260 i n s e r t ( new FusionHypothesis ( HypothesisType . Unresolved ,

speech . getLogicalForm ( ) ,

speech . getDocument ( ) ,

generateObjectLinksSpeech ( speech . getIdsAndObjects ( ) , true ) ,

getEmptyInstant iatedObject ( ) ,

265 getEmptyGoalInferenceOutput ( )

)

) ;

speech . s e tAct ive ( f a l s e ) ;

270 update ( speech ) ;

end

ru l e ” speech , no d e i c t i c express ion , d e f i n i t determiner , unreso lved ”

when

275 speech : Speech ( hasDe i c t i c == fa lse , hasDefDet == true , a c t i v e == true )

t imer : Timestamp ( )

eva l ( idsReso lved ( speech . getIdsAndObjects ( ) ) == HypothesisType . Unresolved )

then

280 System . out . p r i n t l n ( ”RuleBase : r u l e ’ speech , no d e i c t i c express ion , no d e f i n i t determiner , unreso lved ’ ” ) ;

i n s e r t ( new FusionHypothesis ( HypothesisType . Unresolved ,

speech . getLogicalForm ( ) ,

speech . getDocument ( ) ,

285 generateObjectLinksSpeech ( speech . getIdsAndObjects ( ) , true ) ,

getEmptyInstant iatedObject ( ) ,

getEmptyGoalInferenceOutput ( )

)

) ;

290

speech . s e tAct ive ( f a l s e ) ;

update ( speech ) ;

end
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295

// ∗∗∗∗∗∗∗∗∗∗∗∗∗//

// o t h e r r u l e s //

// ∗∗∗∗∗∗∗∗∗∗∗∗∗//

ru l e ” s e t old ut t e rance s i n a c t i v e ”

300 when

utterance : Utterance ( a c t i v e == true )

t imer : Timestamp ( )

eva l ( Math . abs ( utte rance . getStartTime ( ) . msec − t imer . msec ) > TIMEOUT. longValue ( ) )

305 then

System . out . p r i n t l n ( ”RuleBase : r u l e ’ s e t o ld ut t e rance s i n a c t i v e ’ ” ) ;

ut te rance . s e tAct ive ( f a l s e ) ;

update ( utte rance ) ;

310 end

ru l e ” nothing happened f o r TIMEOUT msecs”

when

timer : Timestamp ( )

315 utte rance : Utterance ( a c t i v e == f a l s e )

eva l ( Math . abs ( utte rance . getStartTime ( ) . msec − t imer . msec ) > TIMEOUT. longValue ( ) )

then

// S y s t em . o u t . p r i n t l n ( ” Ru l eB a s e : r u l e ’ n o t h i n g h a p p e n e d f o r TIMEOUT mse c s ’ ” ) ;

320 r e t r a c t ( utte rance ) ;

end

// some q u e r i e s f o r t h e o u t s i d e w o r l d t o g e t d a t a f r om t h e w o r k i n g memory

query ” a l l hypotheses ”

325 hypothes i s : FusionHypothesis ( )

end

query ” r e so l v ed hypotheses ”

hypothes i s : FusionHypothesis ( type == ”Resolved ” )

330 end

query ” a l l speech ”

speech : Speech ( )

end

335

query ” s i n g l e g e s tu r e s ”

ge s ture : Gesture ( s i ng l eGes tu r e == true )

end

340 query ” disappeared ob j e c t s ”

d i s ob j e c t : DisappearedObject ( a c t i v e == f a l s e )

end

A.2 Table Layouts

In Figures A.1 and A.2 we show the two initial table layouts that were used for the JAST user

evaluations. The Baufix pieces were chosen in a way so that the robot had to hand over pieces

to the human, the user had to ask the robot for one of the pieces at one point. Furthermore,

there were enough duplicate or similar pieces on the table to generate ambiguous situations

so that human and robot had to either use pointing gestures or produce elaborated referring

expressions to refer to certain objects.

A.3 Target Object Building Plans

A.3.1 Regular Plans

A.3.2 Plans with Errors
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Figure A.1: Initial table layout of Baufix pieces for building a windmill.
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Figure A.2: Initial table layout of Baufix pieces for building a railway signal.

128



A.4 User Questionnaires

Bitte folgen Sie den Schritten dieses Bauplans, so dass Sie am Ende
die Windmühle in der rechtesten Box gebaut haben.

Turm Windmühle

Figure A.3: Regular building plan for the windmill.

Bitte folgen Sie den Schritten dieses Bauplans, so dass Sie am Ende
das Bahnsignal in der rechtesten Box gebaut haben.

Buchstabe Turm Bahnsignal

Figure A.4: Regular building plan for the railway signal.

A.4 User Questionnaires

A.4.1 Evaluation 1

Task Success

1. Ich habe mit dem Roboter erfolgreich zusammengearbeitet.

I was able to work with the robot successfully.
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Bitte folgen Sie den Schritten dieses Bauplans, so dass Sie am Ende
die Windmühle in der rechtesten Box gebaut haben.

Wir haben absichtlich eine Fehler in diesem Bauplan eingebaut.
Wenn der Roboter Sie verbessert, dann folgen Sie bitte seinen Anweisungen.

Turm Windmühle

Figure A.5: Building plan for the windmill that contains an error.

Bitte folgen Sie den Schritten dieses Bauplans, so dass Sie am Ende
das Bahnsignal in der rechtesten Box gebaut haben.

Wir haben absichtlich eine Fehler in diesem Bauplan eingebaut.
Wenn der Roboter Sie verbessert, dann folgen Sie bitte seinen Anweisungen.

Buchstabe Turm Bahnsignal

1

2

Figure A.6: Building plan for the railway signal that contains an error.

2. Ich habe mit dem Roboter verschiedene Objekte zusammengebaut.

I was able to build several objects with the robot.

3. Der Roboter hat mir beigebracht, wie man bestimmte Objekte zusammenbaut.

The robot instructed me how to build certain objects.

4. Ich weiß jetzt wie man einen “Schneemann” baut.

I know how to build a “snowman”.
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5. Ich weiß jetzt wie man eine “Windmühle” baut.

I know how to build a “windmill”.

6. Ich weiß jetzt wie man einen “Buchstaben L” baut.

I know how to build an “l-shape”.

7. Ich weiß jetzt wie man eine “Bahnsignal” baut.

I know how to build a “railway signal”.

Usability

1. Es war einfach mit dem Roboter zusammenzuarbeiten.

It was easy to work with the robot.

2. Es war einfach zu verstehen welche Bauteile ich benutzen sollte.

It was easy to understand which assembly pieces I had to use.

3. Es war einfach zu verstehen wie die Bauteile zusammengefügt werden mussten.

It was easy to understand how the pieces needed to be assembled.

4. Es war einfach sich zu erinnern wie die verschiedenen Objekte zusammengebaut werden.

It was easy to remember how to assemble the different target objects.

5. Die verschiedenen Aufgaben waren zu schwierig.

The different tasks were to difficult.

6. Die Namen für die Objekte waren eingängig.

The target object names were plausible.

Opinion About the Robot

1. Der Roboter konnte verstehen was ich sage.

The robot understood what I said to it.

2. Der Roboter hat schnell auf meine Äußerungen reagiert.

The robot responded quickly to my requests.

3. Wenn der Roboter Bauteile aufgenommen hat, dann schien mir das sinnvoll.

It seemed reasonable to me when the robot picked up assembly pieces.

4. Ich fand es hilfreich, dass mir der Roboter Bauteile gereicht hat.

I found it useful when the robot handed over assembly pieces to me.

5. Die Bewegungen der Roboterarme sahen natürlich aus.

The robot movements looked natural to me.

6. Die Bewegungen des Roboterkopfs sahen natürlich aus.

The robot head movements looked natural to me.

7. Ich fand die Bewegungen des Roboterkopfs hilfreich.

The robot head movements were helpful.

8. Ich fand die Stimme des Roboters leicht zu verstehen.

I found the robot’s voice easy to understand.

9. Der Roboter gab mir nützliche Anweisungen.

The robot gave helpful instructions.
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10. Es war einfach den Anweisungen des Roboters zu folgen.

It was easy to follow the instructions by the robot.

11. Der Roboter gab zu viele Anweisungen auf einmal.

The robot gave too many instructions at once.

12. Die Anweisungen des Roboters waren zu ausführlich.

The robot’s instructions were to detailed.

13. Immer wenn der Roboter über Bauteile gesprochen hat, wusste ich genau, von welchem Bauteil

er spricht.

When the robot talked about objects, I always knew which objects it meant.

Interaction

1. Der Roboter hat sich so verhalten wie ich es erwarten würde.

The robot worked the way I expected it to.

2. Ich habe zu jedem Zeitpunkt in der Konversation gewusst was ich tun oder sagen kann.

I knew what I could say or do at each point in the conversation.

3. Ich habe immer gewusst wann ich zu sprechen anfangen musste.

I knew when to begin speaking.

4. Wenn der Roboter mich nicht verstand, dann war mir klar was ich tun musste.

It was clear what to do when the robot did not understand me.

5. Der Roboter war kooperativ während wir zusammengearbeitet haben.

The robot was cooperative during our collaboration.

6. Der Roboter war flexibel während wir zusammengearbeitet haben.

The robot was flexible during our collaboration.

7. Ich hatte das Gefühl, dass ich den Roboter kontrollieren kann.

I had the feeling, I could control the robot.

8. Ich war verwirrt als ich den Roboter benutzte.

I felt confused when using the robot.

9. Ich war verwirrt als ich den Roboter benutzte.

I felt frustrated when using the robot.

10. Ich fand, der Roboter war einfach zu benutzen.

I found the robot easy to use.

Dialogue

1. Ich fand die Konversation einnehmend.

I found the conversation engaging.

2. Ich fand es aufregend mit dem Roboter zu interagieren.

I found it exciting to interact with the robot.

3. Ich war so in der Interaktion mit dem Roboter versunken, dass ich ganz die Zeit vergessen habe.

I was so engaged in the interactions that I lost track of time.
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4. Ich war angespannt als ich mit dem Roboter zusammengearbeitet habe.

I felt tense when using the robot.

5. Ich musste mich wirklich konzentrieren, während ich den Roboter benutzte.

I really had to concentrate to use the robot.

6. Ich fand die Konversation mit dem Roboter langweilig.

I found the conversation boring.

General Questions

1. I habe gerne mit dem Roboter zusammengearbeitet.

I liked using the robot.

2. Ich fand der Roboter war freundlich.

I found the robot was friendly.

3. Der Roboter schien über die Aufgabe Bescheid zu wissen.

I found the robot to be knowledgeable.

4. Der Roboter erschien mir intelligent.

The robot appeared to be intelligent.

5. Der Roboter gab mir gute Anweisungen.

The robot gave me good instructions.

A.4.2 Evaluation 2

Task Success

1. Ich habe mit dem Roboter erfolgreich zusammengearbeitet.

I was able to work with the robot successfully.

2. Ich habe mit dem Roboter verschiedene Objekte zusammengebaut.

I was able to build several objects with the robot.

3. Die verschiedenen Aufgaben waren zu schwierig.

The assembly tasks were too difficult.

4. Es war einfach zu verstehen wie die Bauteile zusammengef̈ı¿ 1
2
gt werden mussten.

It was easy to understand how to put the pieces together.

5. Es war einfach zu verstehen welche Bauteile ich benutzen sollte.

It was easy to understand which pieces to use

Goal Inference

1. Wenn der Roboter Bauteile aufgenommen hat, dann schien mir das sinnvoll.

It seemed natural when the robot picked up objects from the table.

2. Ich fand es hilfreich, dass mir der Roboter Bauteile gereicht hat.

I found it helpful when the robot picked up objects from the table.

3. Der Roboter schien zu verstehen was ich wollte.

The robot seemed to understand what I wanted.
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4. Der Roboter schien zu verstehen warum, wenn ich Bauteile vom Tisch aufnahm.

When I picked pieces up the robot seemed to know why.

5. Wenn ich ein falsches Bauteil aufnahm, dann war der Roboter in der Lage mich zu korrigieren.

When I picked up a wrong piece the robot was able to correct that.

Feeldings Towards The Robot

1. Ich war verwirrt als ich den Roboter benutzte.

I felt confused when using the robot.

2. Es war einfach mit dem Roboter zusammenzuarbeiten.

It was easy to work with the robot.

3. Ich fand, der Roboter war einfach zu benutzen.

I found the robot easy to use.

4. Ich fand die Konversation einnehmend.

I found the conversation engaging.

5. Ich fand es aufregend mit dem Roboter zu interagieren.

I found it exciting to interact with the robot.

6. Ich war angespannt als ich mit dem Roboter zusammengearbeitet habe.

I felt tense when using the robot.

7. Ich musste mich wirklich konzentrieren, während ich den Roboter benutzte.

I really had to concentrate to use the robot.

8. Ich fand die Konversation mit dem Roboter langweilig.

I found the conversation boring.

9. I habe gerne mit dem Roboter zusammengearbeitet.

I liked using the robot.

10. Der Roboter erschien mir intelligent.

The robot appeared to be intelligent.

Interaction

1. Der Roboter konnte verstehen was ich sage.

The robot understood what I said to it.

2. Der Roboter hat schnell auf meine Äußerungen reagiert.

The robot responded quickly to my requests.

3. Ich fand die Stimme des Roboters leicht zu verstehen.

I found the voice of the robot easy to understand.

4. Immer wenn der Roboter über Bauteile gesprochen hat, wusste ich genau, von welchem Bauteil

er spricht.

When the robot talked about objects, I always knew which objects it meant.

5. Ich habe zu jedem Zeitpunkt in der Konversation gewusst was ich tun oder sagen kann.

I knew what I could say or do at each point in the conversation.
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6. Ich habe immer gewusst wann ich zu sprechen anfangen musste.

I knew when to begin speaking.

7. Wenn der Roboter mich nicht verstand, dann war mir klar was ich tun musste.

It was clear what to do when the robot did not understand me.

8. Der Roboter hat sich so verhalten wie ich es erwarten würde.

The robot worked the way I expected it to.

9. Der Roboter schien über die Aufgabe Bescheid zu wissen.

I found the robot to be knowledgeable.

A.4.3 Evaluation 3

Task Success

1. Ich habe mit dem Roboter erfolgreich zusammengearbeitet.

I was able to work with the robot successfully.

2. Der Roboter hat mir beim Zusammenbauen der Windmühle gut geholfen.

The robot helped me well to build the windmill.

3. Der Roboter hat mir beim Zusammenbauen des Bahnsignals gut geholfen.

The robot helped me well to build the railway signal.

4. Die verschiedenen Aufgaben waren zu schwierig.

The assembly tasks were too difficult.

5. Es war einfach zu verstehen wie die Bauteile zusammengefügt werden mussten.

It was easy to understand how to put the pieces together.

6. Es war einfach zu verstehen welche Bauteile ich benutzen sollte.

It was easy to understand which pieces to use

Feeldings Towards The Robot

1. Ich war verwirrt als ich den Roboter benutzte.

I felt confused when using the robot.

2. Es war einfach mit dem Roboter zusammenzuarbeiten.

It was easy to work with the robot.

3. Ich fand, der Roboter war einfach zu benutzen.

I found the robot easy to use.

4. Ich fand die Konversation einnehmend.

I found the conversation engaging.

5. Ich fand es aufregend mit dem Roboter zu interagieren.

I found it exciting to interact with the robot.

6. Ich war angespannt als ich mit dem Roboter zusammengearbeitet habe.

I felt tense when using the robot.

7. Ich musste mich wirklich konzentrieren, während ich den Roboter benutzte.

I really had to concentrate to use the robot.
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8. Ich fand die Konversation mit dem Roboter langweilig.

I found the conversation boring.

9. I habe gerne mit dem Roboter zusammengearbeitet.

I liked using the robot.

10. Der Roboter erschien mir intelligent.

The robot appeared to be intelligent.

Interaction

1. Der Roboter konnte verstehen was ich sage.

The robot understood what I said to it.

2. Der Roboter hat schnell auf meine Äußerungen reagiert.

The robot responded quickly to my requests.

3. Ich fand die Stimme des Roboters leicht zu verstehen.

I found the voice of the robot easy to understand.

4. Immer wenn der Roboter über Bauteile gesprochen hat, wusste ich genau, von welchem Bauteil

er spricht.

When the robot talked about objects, I always knew which objects it meant.

5. Ich habe zu jedem Zeitpunkt in der Konversation gewusst was ich tun oder sagen kann.

I knew what I could say or do at each point in the conversation.

6. Wenn der Roboter mich nicht verstand, dann war mir klar was ich tun musste.

It was clear what to do when the robot did not understand me.

7. Der Roboter hat sich so verhalten wie ich es erwarten würde.

The robot worked the way I expected it to.

8. Der Roboter schien über die Aufgabe Bescheid zu wissen.

I found the robot to be knowledgeable.

Robot Behaviour

1. Wenn der Roboter Bauteile aufgenommen hat, dann schien mir das sinnvoll.

When the robot handed over pieces, it seemed useful to me.

2. Ich fand es hilfreich, dass mir der Roboter Bauteile gereicht hat.

I found it helpful, when the robot handed over pieces to me.

3. Der Roboter hat ein eher aktives Verhalten gezeigt.

The robot showed an active behaviour.

4. Der Roboter hat ein eher passives Verhalten gezeigt.

The robot showed an passive behaviour.

5. Der Roboter gab zu viele Anweisungen.

The robot gave too many instructions.

6. Die Anweisungen des Roboters waren ausreichend.

The instructions by the robot were sufficient.
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Representation and integration: Combining robot control, high-level planning, and action

learning. In Proceedings of the International Cognitive Robotics Workshop (CogRob 2008)

at ECAI, 2008. 19, 55

[67] R. Pfeifer, J. Bongard, and S. Grand. How the body shapes the way we think: a new view

of intelligence. The MIT Press, 2007. 18, 48

[68] R. Pfeifer, F. Iida, and J. Bongard. New robotics: Design principles for intelligent systems.

Artificial Life, 11(1-2):99–120, 2005. 119

[69] N. Pfleger. Context-based multimodal interpretation: an integrated approach to multimodal

fusion and discourse processing. PhD thesis, Universität des Saarlandes, 2007. 13

[70] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,

and A. Ng. ROS: an open-source Robot Operating System. In International Conference

on Robotics and Automation, 2009. 15

143



REFERENCES

[71] D. Schlangen and G. Skantze. A general, abstract model of incremental dialogue processing.

In Proceedings of the 12th Conference of the European Chapter of the Association for

Computational Linguistics (EACL-09), 2009. 17

[72] N. Sebanz, H. Bekkering, and G. Knoblich. Joint action: bodies and minds moving to-

gether. Trends in Cognitive Sciences, 10(2):70–76, 2006. 109

[73] L. Sentis and O. Khatib. Task-oriented control of humanoid robots through prioritization.

In Proceedings of the IEEE-RAS/RSJ International Conference on Humanoid Robots, 2004.

54, 72

[74] R. Sharma, V. I. Pavlovic, and T. S. Huang. Toward multimodal human-computer inter-

face. Proceedings of the IEEE, 86(5):853–869, 1998. 13

[75] C. L. Sidner, C. Lee, C. D. Kidd, N. Lesh, and C. Rich. Explorations in engagement for

humans and robots. Artificial Intelligence, 166(1–2):140–164, 2005. 92

[76] A. Sloman. Some Requirements for Human-like Robots: Why the recent over-emphasis on

embodiment has held up progress. Creating Brain-like Intelligence, pages 248–277, 2009.

18, 21

[77] M. Steedman. The syntactic process. MIT Press, Cambridge, MA, USA, 2000. 17, 25, 112

[78] A. J. N. van Breemen. iCat: Experimenting with animabotics. In Proceedings of AISB

2005 Creative Robotics Symposium, 2005. 7

[79] D. Vernon, G. Metta, and G. Sandini. A survey of artificial cognitive systems: Implications

for the autonomous development of mental capabilities in computational agents. IEEE

Transactions on Evolutionary Computation, 11(2):151–180, 2007. 14

[80] W. Wahlster. SmartKom: Foundations of Multimodal Dialogue Systems. Springer, 2006.

12

[81] M. Walker, C. Kamm, and D. Litman. Towards developing general models of usability

with PARADISE. Natural Language Engineering, 6(3–4):363–377, 2000. 80, 93, 98, 100,

108

[82] M. A. Walker, J. Fromer, G. D. Fabbrizio, C. Mestel, and D. Hindle. What can I say?:

Evaluating a spoken language interface to email. In Proceedings of CHI 1998, 1998. 92

144



REFERENCES

[83] M. A. Walker, D. J. Litman, C. A. Kamm, and A. Abella. PARADISE: A framework for

evaluating spoken dialogue agents. In Proceedings of ACL/EACL 1997, 1997. 80, 85

[84] M. White. Efficient realization of coordinate structures in combinatory categorial grammar.

Research on Language & Computation, 4(1):39–75, 2006. 25

[85] M. White, M. E. Foster, J. Oberlander, and A. Brown. Using facial feedback to enhance

turn-taking in a multimodal dialogue system. In Proceedings of HCI International 2005,

2005. 86
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