
Reconfigurable Cache for Real-time MPSoCs: Scheduling and Implementation

Gang Chen, Biao Hu, Kai Huang , Alois Knoll, Kai Huang, Di Liu, Todor Stefanov, and Feng Li

Abstract

Shared cache in modern multi-core systems has been considered as one of the major factors that degrade system pre-
dictability and performance. How to manage the shared cache for real-time multi-core systems in order to optimize
the system performance while guaranteeing the system predictability is an open issue. In this paper, we present a
reconfigurable cache architecture which supports dynamic cache partitioning at hardware level and a framework that
can exploit cache management for real-time MPSoCs. The proposed reconfigurable cache allows cores to dynamically
allocate cache resource with minimal timing overhead while guaranteeing strict cache isolation among the real-time
tasks. The cache management framework automatically determines time-triggered schedule and cache configuration for
each task to minimize cache misses while guaranteeing the real-time constraints. We evaluate the proposed framework
with respect to different numbers of cores and cache modules and prototype the constructed MPSoCs on FPGA. Our
experiments show that, our automatic framework brings significant benefits over the state-of-the-art cache management
strategies when testing 27 benchmark programs on the constructed MPSoCs.

Keywords:
Cache interference, dynamic cache partitioning, scheduling, real-time multi-core systems.

1. Introduction

Over the past few decades, both the speed and the num-
ber of transistors in a dense integrated circuit of proces-
sors doubled approximately every two years. This trend is
commonly known as the Moore’s Law. However, the ac-
cess speed of the off-chip memory did not follow the same
trend. To bridge the performance gap between the off-chip
memory and processor, the cache component is included in
nearly all processors to transparently store frequently ac-
cessed instructions and data. Since the access speed of the
cache component is much faster than the off-chip memory,
the cache component can effectively alleviate the perfor-
mance gap between the processor and the off-chip memory
by exploiting the temporal and spatial locality properties
of programs.

Nowadays, the computing systems are increasingly mov-
ing towards multi-core platforms for the next computing
performance leap. Increasing the number of cores increases
the demanded memory access speed. The performance
gap between memory and processor is further broadened
in multi-core platforms. To alleviate the increasing high
latency of the off-chip memory, multi-processor system-on-
chip (MPSoC) architectures are typically equipped with
hierarchical cache subsystems. For instance, both ARM
Cortex-A15 series [1] and openSPARC series [2] all use
small L1 caches for individual cores and a relatively large
L2 cache shared among different cores. In such hierarchi-
cal cache subsystems, the shared cache can be accessed
by all cores so that several important advantages can be
achieved, such as increased cache space utilization and

data-sharing opportunities.

At the same time, the shared caches also bring several
drawbacks. The main disadvantage of shared caches is that
uncontrolled cache interference can occur among cores, be-
cause all cores are allowed to freely access the entire shared
caches. A graphic example of uncontrolled cache interfer-
ence is illustrated in Fig. 1. In this example, the data
element b0 is loaded into shared cache when core 1 needs
to access the data element b0. One cache line is occupied
by core 1 for future usage. Later, when core 2 needs to
access another data element b1 which is mapped in the
same place of b0, the cache line occupied by b0 is replaced
by b1. This will result in a cache miss for the later access
of b0 on core 1. As a result, scenarios may occur where
one core may constantly evict useful cache lines belonging
to another core, while such cache evictions cannot bring
a significant improvement for itself. Such cache interfer-
ences will cause the increase in the miss rate [3], leading to
a corresponding decrease in the performance. In addition,
uncontrolled cache interferences also result in unfairness [4]
and the lack of Quality-of-Service (QoS) [5]. For example,
a low priority application running on one core may rapidly
occupy the entire shared cache and evict most of the cache
lines of higher priority applications co-executed on another
core.

Multi-core platforms have been used to realize a wealth
of new products and services across many domains due
to the average high performance. However, safety-critical
real-time embedded systems failed to be benefited by this
trend. In safety-critical real-time embedded systems in-
cluding avionic and automotive systems, failures may lead

Preprint submitted to Elsevier December 15, 2015

Figure 1: A graphic example of cache interference.

to disastious consequences, such as losses of lifes. There-
fore, the safety-critical systems must be certified to ensure
their reliability before being applied. System predictabil-
ity is one of the most important principles for the devel-
opment of the certifiable computing platforms [6]. In ad-
dition, system predictability is also one of the foundamen-
tal requirements for the real-time correctness. The timing
correctness of real-time systems usually depends on worst-
case execution time (WCET) analysis of programs. In
the modern real-time computing theory, WCETs of indi-
vidual tasks can be calculated as a prior to compute the
schedulability of the complete system. Unfortunately, this
assumption is not even true in a modern multi-core plat-
form equipped with a shared cache. The main problem is
that the behavior of shared cache is hard to predict and
analyze statically [7, 8] in multi-core systems. Cache in-
terferences as shown in Fig. 1 are extremely difficult to
accurately analyze[8], thus resulting in difficulties of esti-
mating the WCETs of the application program. How to
tackle the shared cache in the context of real-time systems
is still an open issue [7] and the difficulty actually prohibits
an efficient use of multi-core computing platfoms for real-
time systems. For instance, to resolve the predictability
problem for multi-core computing platfoms, avionics man-
ufacturers usually turn off all cores but one for their highly
safety-critical subsystems [9, 6]. The work in [10] also re-
ports that inter-core cache interferences on a state-of-the-
art quad-core processor increased the task completion time
by up to 40%, compared to when it runs alone in the sys-
tem. Therefore, it is crucial to design an interference-free
shared cache memory component to improve the perfor-
mance and predictability of multi-core systems.

Cache partitioning is a promising technique to tackle the
aforementioned problem [3, 11, 12], which partitions the
shared L2 cache into separate regions and designates one
or a few regions to individual cores. Cache partitioning
also has the advantage that it can provide spatial isolation
of the cache, which is required by safety standards such
as ARINC 653 in the avionic domain. According to [3],
cache partitioning technique can be classified as software-
based and hardware-based approach. The software-based
approach, which is also known as page coloring, assigns dif-
ferent cache sets to different partitions by exploiting the
translation from virtual to physical memory addresses. Al-
though the software-based approach has been extensively
studied in the community and can derive some promising
results to improve the system performance for general pur-
pose computing systems [13, 14, 15, 16, 17] and guarantee
system prediction for safety real-time computing systems

[6, 10, 18, 19], it has three important limitations: first,
it requires significant modifications of the virtual memory
system, a complex component of the OS. Second, one main
problem for page-coloring based techniques is the signifi-
cantly large timing overhead when performing recoloring.
This timing overhead on the one hand prohibits a frequent
change of the colors of pages [20, 13], on the other hand
makes color changes of tasks whose execution time is less
than the page-change overhead not worthy. Thus, soft-
ware cache partitioning approach can only work well when
recoloring is performed infrequently [3]. Third, the page-
coloring techniques [6, 10, 19] partition the cache by sets
at OS-level, cooperating OS timing overhead also needs to
be carefully considered in real-time systems. Besides, the
state-of-the-art studies [6, 10, 18, 19] implement and eval-
uate the proposed approaches in a general-purpose operat-
ing system Linux (OS) patched with real-time extensions.
Due to the complexity of the Linux kernel, the impacts of
kernel activities, which have a considerable effect on real-
time tasks, are hard to be predicted and evaluated. In con-
trast, hardware-based approach usually assigns cache ways
within each cache set to different partitions with minimal
timing overhead. However, most of the hardware-based
cache partitioning approaches in the literature can only
be used in uni-processor systems [21, 22, 23] or cannot
strictly guarantee the cache space isolation among real-
time applications [24].

Combining real-time task scheduling and task-level
cache partitioning allocation is however more involved. On
the one hand, the WCET of a task depends on the allo-
cated cache size. On the other hand, the maximal cache
budget that can be assigned to a task depends on the
cache sizes occupied by other tasks that are currently run-
ning on the other cores, i.e., depending on the scheduler.
Furthermore, the performance (e.g., cache miss, energy
consumption, and execution time) of running tasks may
have different requirements and may be sensitive to the
amount of used cache because memory access patterns of
tasks vary greatly from task to task. In principle, the
task scheduling and the cache size allocation interrelate to
each other with respect to the system performance, such
as cache misses [20] and energy consumption [25]. There-
fore, a sophisticated framework is needed to find the best
trade-off between them in order to improve the system
performance [25].

In this paper, we present a dynamic partitioned cache
memory for multi-core systems and implement dynamic
cache partitioning on top of our customized reconfigurable
cache hardware component. This paper summarizes and
extends the results built in [26]. In this cache architec-
ture, the cache resources are strictly isolated to prevent the
cache interference among cores. Therefore, the proposed
cache can provide predictable cache performance for real-
time applications. To efficiently use cache resources, the
proposed cache allows cores to dynamically allocate cache
resource according to the demand of applications. Based
on the proposed dynamic partitioned cache memory, we

tackle schedule-aware cache management scheme for real-
time multi-core system. We present an integrated frame-
work to study and verify the interactions between the task
scheduling and the shared cache interference. For a given
set of tasks and a mapping of the tasks on a multi-core
system, our framework can generate a fully deterministic
time-triggered non-preemptive schedule and a set of cache
configurations during the compilation time. During run-
time, the cache is reconfigured by the scheduler according
to offline computed configurations. The generated sched-
ule and the cache configurations together minimize the
cache miss of the cache subsystem while preventing dead-
line misses and cache overflow. With the customized re-
configurable cache component and share-clock multi-port
timer component, our framework can generate multi-core
system with different cache modules (different cache con-
figurations with respect to cache lines, size, associativity)
and prototype on Altera FPGA. The contributions of our
work are as follows:

• A parameterized dynamic patitioned cache memory
is developed for the real-time multicore systems. The
cache size, line size, and associativity of the cache
memory can be parameterized during compile time
while the partition of the cache can be reconfigured
in a flexible manner during runtime. We also design a
complete set of APIs with atomic operation, such that
the application tasks can reconfigure their cache sizes
during runtime. In contrast to most existing work [27,
28, 29, 30, 31, 25] in the literature, which is devoted
to analyze theoretical proposals and the simulation of
reconfigurable caches, the proposed cache is physically
implemented and prototyped on FPGA.

• We conduct the front-end chip design for the proposed
reconfigurable cache by using Synopsys design com-
pilers [32] with the SMIC 130nm standard technol-
ogy library [33], and find the implementation of the
proposed cache is practical in terms of chip area and
power consumption.

• We propose an integrated cache management frame-
work that improves the execution predictability
for real-time MPSoCs. The proposed framework
can automatically generate fully deterministic time-
triggered non-preemptive schedule and cache config-
urations to optimize the system performance under
real-time constraints. We develop a share-clock multi-
port timer component that enables the time-triggered
schedule to be implemented on the MPSoCs generated
from our framework.

• We prototype and evaluate the generated MPSoCs
on Altera Statrix V FPGA using 27 real-time bench-
marks. We also analyze and discuss the experimental
results under different hardware environments with
respect to the number of cores and cache settings.

The rest of the paper is organized as follows: Section 2
reviews related work in the literature. Section 3 presents
some background principles. Section 4 overviews the pro-
posed framework and Section 5 describes the proposed syn-
thesis approach. Section 6 illustrates the proposed hard-
ware infrastructures and Section 7 explains how the pro-
posed framework works. Experimental evaluations are pre-
sented in Section 8 and Section 10 concludes the paper.

2. Related Work

Real-Time Cache Partitioning: Shared cache inter-
ference in a multi-core system has been recognized as
one of the major factors that degrade the average per-
formance [13], as well as predictability of a system [6, 8].
Many works have been done in general-purpose comput-
ing to optimize different performance objectives by clev-
erly partitioning shared cache, including cache perfor-
mance [34, 35] and energy consumption [24]. In the con-
text of real-time systems, cache partitioning technique
have been explored mostly by using software-based solu-
tion [36, 37, 6, 10, 19]. In [36, 37], the off-chip memory
mapping of the tasks is altered to guarantee the spatial
isolation in the cache by using compiler technology. How-
ever, altering tasks’ mapping in the off-chip memory is
far from trivial, which requires significant modifications
of the compilation tool chain. In addition, the partition-
ing of the task can only be statically suppressed in fixed
cache set regions due to the pre-decided memory map-
ping, which also prevents the efficient usage of the limited
cache resource. Recently, the techniques [6, 10, 19] on the
multi-core cache management in the context of real-time
systems have been proposed by using page-coloring, which
partitions the cache by sets at OS-level. However, page-
coloring based techniques usually suffer from a significant
timing overhead inherent to changing the color of a page,
which results in that making decision of changing the color
of a page cannot be frequent. The authors in [13] reported
that the observed overhead of page-coloring based dynamic
cache partitioning reaches 7% of the total execution time
even after conducting the optimization to reduce the recol-
oring times. Distinct to above set-based cache partition-
ing techniques, we present a reconfigurable cache architec-
ture to execute dynamic way-based cache partitioning in
hardware level. Our approach can dynamically change the
cache size with minimal overhead (scaling to cycles). Be-
sides, compared to set-based cache partitioning techniques,
our way-based reconfigurable cache can turn off the whole
unused ways to save static energy [27, 24]. Therefore, our
way-based reconfigurable cache can also bring benefits for
low-power design.
Reconfigurable Cache: Numbers of general or applica-
tion specific reconfigurable cache architectures have been
proposed in the literature. Albonesi et al. [27] proposed
a selective ways cache architecture for uni-processor sys-
tem, which can disable a subset of the ways in a set asso-
ciative cache during periods of modest cache activity and

enable the full cache to remain operational for more cache-
intensive periods. By collecting cache performance of ap-
plications on runtime, Suh at al. [28] proposed a general
dynamic partitioning scheme for the set associative cache.
The simulation based evaluation shows the potentials for
performance improvement. Benitez et al. [29] proposed
amorphous cache aimed at improving performance as well
as reducing energy consumption. As opposed to the tradi-
tional cache architectures, the proposed cache architecture
uses homogenous sub-caches which can be selectively turn-
off according to the workload of the application and reduce
both its access latency and power consumption. Based on
the cache architecture in [24], Sundararajan et al. [30] pre-
sented a set and way management cache architecture for
efficient run-time reconfiguration.

Most of above work [27, 28, 29, 30] is devoted to analyze
theoretical proposals and the simulation of reconfigurable
caches. Thus, their systems are only tailored at simula-
tion. Only few research work [24, 21, 22, 23] is devoted to
the physical implementation of the proposed cache models.
Zhang et al. [24] proposed a reconfigurable cache architec-
ture where the cache ways configuration could be tuned
via the combination of configuration register and physical
address bits. Fig. 2 illustrates a four-way set-associative
reconfigurable cache architecture proposed in [24]. In this
architecture, the cache ways selection during the reconfig-
uration is related to the address bits of the application,
which cannot guarantee the strict cache isolation among
real-time applications. As shown in Fig. 2, one way is
selected when Reg0= 0 and Reg1= 0. However, which
exact one way is selected is also determined by two phys-
ical address bits A18 and A19. The overlapped address
mapping of the real-time applications on these two phys-
ical address bits A18 and A19 will result in cache inter-
ference. In addition, the number of the allocated cache
ways can only be configured to be a power of two, which
prevents the efficient usage of the limited cache ways. Gil
et al. [21, 22] presented one general-purpose reconfigurable
cache design only for uni-processor systems to be imple-
mented on FPGA. Besides, the proposed reconfigurable
cache design [21, 22] can only work as direct mapped cache
or 2-way set associative cache. Thus, this cache design is
quite limited for usage. Motorola M*CORE processor [23]
supports a configurable unified set-associative cache whose
four ways could be individually shutdown to reduce dy-
namic power during cache accesses. Besides, the cache
in M*CORE processor [23] can be configured as different
functional cache (instruction cache, data cache, or unified
cache). However, M*CORE processor is developed for uni-
processor systems. It is not easy to extend such reconfig-
urable cache into multi-core systems due to synchroniza-
tion and atomic operation issues as stated in Section 6.1.

In this paper, we propose a parameterized reconfig-
urable cache architecture for real-time multi-core system
and physically implement it on FPGA. In this architec-
ture, cache ways can be tuned without constraints and
can be efficiently and dynamically partitioned and allo-

A0A4A5A16A17A18A19A32

A17

A18

Reg0

Reg1

C0 C1 C2 C3

Way Selection Control Signal

Combinational Logic
Address

Figure 2: Illustration of four-way set-associative reconfigurable cache
architecture in [24].

cated to applications, which can guarantee that the cache
resource is strictly isolated among real-time applications
to prevent the cache interference. Besides, our reconfig-
urable cache memory supports parameterized design. The
cache size, line size, and associativity of the cache memory
can be parameterized during compile time. The reconfig-
urable cache memory can be automatically generated by
setting the parameters, e.g., cache size, line size, and asso-
ciativity. Thus, the proposed reconfigurable cache memory
supports hardware generation. The dynamic partitioned
cache memory can be interfaced and executed with CPUs
for embedded systems such as Altera NIOS II processor.
We provide one physicial prototype on FPGA and this
prototype will serve us a real (not simulation) reconfig-
urable cache for studying and validating cache manage-
ment strategies on the real-time multi-core system under
different cache configurations.

Time-triggered Scheduling: Time-triggered execution
models can offer a fully deterministic real-time behav-
ior for safety-critical systems. Current practice in many
safety-critical system domains, such as electric vehicles [38]
and avionics systems [39], favors a time-triggered ap-
proach [40]. Sagstetter et al. [41] presented a sched-
ule integration framework for time-triggered distributed
systems tailored to the automotive domain. The pro-
posed framework uses two-step approach, where a local
schedule is computed first for each cluster and the lo-
cal schedules are then merged to the global schedule, to
compute the schedule for the entire FlexRay network and
task schedule on ECUs. To optimize the control perfor-
mance of distributed time-triggered automotive systems,
Goswami et al. [42] presented an automatic schedule syn-
thesis framework, which generates time-triggered schedul-
ing for tasks on processor and messages on bus. Nghiem et
al. [43, 44] presented an implementation of PID controller
using time-triggered scheduling paradigm and showed the
effectiveness of such time-triggered implementation. Based
on time-triggered scheduling, Jia et al. [45] presented
an approach to compute message scheduling based on
Satisfiability Modulo Theories (SMT) for Time-Triggered
Network-on-Chip. All above techniques are evaluated by
simulation. In [46], Ayman et al. describe a two-stage
search technique which is intended to support the con-

figuration of time-triggered schedulers for single-processor
embedded systems. However, none of them apply time-
triggered scheduling and cache management jointly on
real-time multi-core platform in order to achieve timing
predictability and system performance.

3. Background

3.1. Way-based Cache Partitioning

Our cache management scheme implements dynamic
way-based cache partitioning on FPGA. As shown in
Fig. 3, the shared cache is partitioned in the ways. Each
core can dynamically tune the number of selective-ways.
For example, core 2 can select the 3rd and 6th way by call-
ing the cache reconfiguration APIs. In this work, we imple-
ment cache partitioning on our customized reconfigurable
cache component and dynamically assign cache ways to
tasks.

Core1 Core2 Core3 Core4

Figure 3: Way-based Cache Partitioning.

3.2. Task Model

We consider the functionality of the entire system as a
task set τ = {T1, ..., Tn}, which consists of a set of inde-
pendent periodic tasks. We use wij to denote the worst
case execution time (WCET) of task Ti ∈ τ with j ways
shared cache allocated and Wi = {wi1, wi2, ..., wiu} to de-
note the WCET profile of task Ti, where u is the total
number of ways in the shared cache (cache capacity). In
this paper, a measurement-based WCET estimate tech-
nique is used to determine WCET. Timing predictability
is highly desirable for safety-related applications. We con-
sider a periodic time-triggered non-preemptive scheduling
policy, which can offer a fully deterministic real-time be-
havior for safety-critical systems. Note that we consider
non-preemptive scheduling as it is widely used in indus-
try practice, especially in the case of hard real-time sys-
tem [47]. Furthermore, non-preemptive scheduling elimi-
nates the cache-related preemption delays (CPRDs), and
thus alleviates the need for complex and pessimistic CRPD
estimation methods. We use R to denote the set of the
profiles for all tasks in task set τ . A task profile ri ∈ R
is defined as a tuple ri =< Wi, si, hi, di >, where si, hi,
di are respectively the start time, period, and deadline of
the task Ti. We consider implicit-deadline systems [48, 49]
where the deadline of each real-time task is equal to its pe-
riod. This classic system setting has been widely used and
studied in the real-time community [49, 50, 51].

Platform Spec

C1

Shared Cache

Mapping Spec

Shared Cache

T1…

Task Spec

Tn Cache size
W

CET

M
iss#

T1

Cache Configuration
Time-triggered

Scheduling
IPs in Verilog

Code Generation Quartus

Synthesis Approach for Scheduling and Cache Management IP library

FPGA

C2 C2C1

Tn

Figure 4: System Design Framework.

4. Framework Overview

In this section, we give an overview of our system de-
sign framework depicted in Fig. 4, which takes both real-
time scheduling and cache partitioning into consideration
to study and verify the interactions between the multi-
core real-time scheduling and shared cache management.
As shown in Fig. 4, the input specifications of the proposed
framework consist of the following three parts:

1. Platform Specification describes the settings of a mul-
tiprocessor platform, such as the number of cores, the
settings of L2 cache with respect to cache size, line
size and associativity.

2. Mapping Specification describes the relation between
all tasks in the task specification and all cores in the
platform specification. The mapping specifications
can be written by hand or automatically generated
by design space exploration tools.

3. Task Specification describes task timing requirements
and task profile information (i.e., the WCETs and
cache miss number under different cache size). We
describe the details about how to profile each task
in Section 7.

As output, the synthesis approach can generate cache size
allocation and time-triggered scheduling for each task ac-
cording to the input specifications, by which the total cache
miss number is minimized. Based on this optimal schedule
and cache allocation, tasks can be scheduled with insertion
of cache size allocation instructions. Task code can be gen-
erated by integrating this optimal approach into real-time
scheduler. At the same time, parameterized reconfigurable
cache IP and share-clock mutli-port timer IP can be gen-
erated according to the settings in platform specification.

5. Synthesis Approach for Scheduling and Cache
Management

This section presents the synthesis approach for timing
schedule and cache management. We reuse the approach
in [11] to model the scheduling and cache interference,

and formulate the problem as integer linear programming
(ILP) to minimize the cache miss of the system. With this
formulation, the cache size allocation and time-triggered
scheduling for each task can be generated automatically,
which could avoid deadline miss and cache overflow.

5.1. Time-Triggered Task Scheduling

Time-triggered non-preemptive schedule is considered in
this paper to achieve full predictability of the system. For
each task Ti with the profile < Wi, si, hi, di >, the k-th
instance of task Ti starts at si + k · hi. Wi contains the
WCETs of the task with different cache configurations. We
use a set of binary variables cij to describe the amount of
cache allocated to the task Ti: cij = 1 if exactly j cache
ways are allocated to Ti and cij = 0 otherwise. In this case,
the actual WCET of Ti can be obtained as

∑u
j=1 cijwij ,

where u is the total number of ways of the shared cache.
To formulate the scheduling problem by means of ILP, we
have to gurantee the following timing constraints.

For deadline constraint, task Ti has to finish no later
than its deadline:

si +

u∑
k=1

cikwik ≤ di

The non-preemptive constraint requires that any two
tasks mapped to the same core must not overlap in time.
Let binary variable denote the execution order of task Ti
and Tj : zijpp̃ = 1 if the i-th instance of task Tp finishes
before the start of j-th instance of Tp̃, and 0 otherwise.
Hr and Hpp̃ denote the hyper-period of all tasks and the
hyper-period of only task Tp and Tp̃ (i.e., LCM of periods
of Tp and Tp̃), respectively. TS(Tp) denotes the set of
tasks that are mapped to the same core as Tp does. ξ
denotes the overhead of task switch. The non-preemption
constraint can thereby be expressed as follows.

∀Tp, Tp̃ ∈ TS(Tp), i = 0, ..., (
Hpp̃

hp
− 1), j = 0, ..., (

Hpp̃

hp̃
− 1):

i · hp + sp +

u∑
k=1

cpkwpk − (1− zijpp̃)Hr + ξ ≤ j · hp̃ + sp̃ (1)

j · hp̃ + sp̃ +

u∑
k=1

cp̃kwp̃k − zijpp̃Hr + ξ ≤ i · hp + sp (2)

The constraints (1) and (2) ensure that either the instance
of Tp runs strictly before the instance of Tp̃, or vice verse.

5.2. Cache Management Constraints

The next step is to add the cache management con-
straints, which guarantee the feasibility of cache manage-
ment, i.e., at any point in time, the sum of cache ways
allocated to the tasks currently being executed does not
exceed the cache capacity. To avoid cache overflow, we
recall the following lemma in [11], which indicates that a
finite number of time instants, i.e., at the start of any task,
should be checked for the cache overflow.

Lem. 1. If the cache does not overflow at the start in-
stant of any task within one hyper-period, the cache never
overflows.

By using the similar approach in [11], periodical square
wave function (PSWF) is used to model the resource de-
mand of task in the time domain. According to [11], we
can use periodical square wave function (PSWF) to indi-
cate if the task is running at the specific time instance.
For task Tp with start time sp and execution time ep, the
cache demand at the instant t can be defined as:

PSWF (t, Tp) =

⌊
t− sp
hp

⌋
+ 1−

⌈
t− sp − ep

hp

⌉
The PSWF above indicates that task Tp requires the cache
only in interval [sp + i · hp, sp + ep + i · hp]. According to
Lem. 1, we can guarantee to avoid cache overflow by check-
ing the start instant of any task within one hyper-period.
Thus, we can formulate cache management constraints as
follows.
∀Tp, i = 0, ..., (Hr

hp
− 1):

u∑
k=1

cpk · k +
∑

Tp̃ /∈TS(Tp)

PSWF (sp + i · hp, Tp̃)

u∑
k=1

cp̃k · k ≤ u

The term of PSWF (sp+i ·hp, Tp̃)
∑u

k=1 cp̃k · k represents
cache requirements of the task Tp̃ at the start time of Tp.
One may notice it is non-linear term. We can transform
this non-linear term into a set of linear constraints using
the approach presented in [11]. Besides, each task must
have exactly one cache configuration.

u∑
k=1

cik = 1

To minimize the cache miss number in one hyper-period,
the following objective function is used:

CM =
∑
∀Ti

Hr

hi

u∑
j=1

cijCM
ij

where u and CM ij
cache represent the cache capacity (in

the number of ways) and the cache miss of task Ti under
j-way cache configuration, respectively.

6. Proposed Hardware Infrastructure

In this section, we present one FPGA-based multi-core
system which supports dynamic cache partitioning and
time-triggered scheduling. A major benefit of choosing
FPGA for prototyping our multi-core system is the high
configurability of the processor. This allows us to evaluate
the proposed integrated scheduling and cache management
framework under various hardware configurations with dif-
ferent cache sizes and varied arithmetic units. Fig. 5 illus-
trates the proposed multi-core system on FPGA, where
the cache is shared among cores. We adopt the NIOS II
core in the system. Modules highlighted with white color

in Fig. 5 indicate the hardware components specifically de-
signed and implemented for our framework. The system
consists of several NIOS II cores along with reconfigurable
cache IP which supports dynamic cache partitioning and
share-tick timer IP for time-triggered scheduling.

Nios II

Shared Cache
(Way-based cache partition)

SDRAM Controller

Share-tick Timer & Interrupt

Nios II

FPGA

......

Figure 5: System architecture.

6.1. Design Consideration and Challenge

Cache coherency problem is one of critical design consid-
erations for the dynamic way-based cache partition infras-
tructure. According to the Altera NIOS II datasheet [52],
the current NIOS architecture does not provide hardware
cache coherency. When creating multiprocessor systems,
software for each processor is required to locate in its own
unique region of off-chip memory to avoid to implement
cache coherency [52]. NIOS II SBT provides a simple
scheme of memory partitioning that allows multiple pro-
cessors to run their software from different regions of the
same off-chip memory [52]. Besides, according to the state-
of-the-art research work in [53], current cache coherence
strategies are not suitable for real-time systems. In this
paper, we mainly focus on studying the cache interference
among the cores, and follow this official design from Al-
tera to create our multi-core system. Actually, this kind of
memory architecture known as Partitioned Global Address
Space (PGAS) has been widely accepted in the embed-
ded community for efficiency reasons and real-life examples
come from Adapteva Parallella multi-core chip E16G301
and E64G401 [54]. Note that inter-core cache interference
still exists although software on each core runs in different
regions of the same off-chip memory1. Besides, the pro-
posed shared cache architecture is multi-port cache, which
allows NIOS cores to access the cache concurrently.

Another important part that should be carefully con-
sidered is atomic operations. In general, to adaptively
change the cache size, one core needs a two-phase opera-
tion, i.e., inquiry and allocation (as shown in Fig. 6). In
the inquiry phase, the core needs to check which ways are
available at the current moment. Then, based on the in-
quiry results, the core can acquire cache resource in the

1Unique region of each processor on off-chip memory is larger
than the total cache size

Figure 6: Atomic operations.

allocation phase. Normally, this procedure works well in
a uni-processor system due to no core interference. How-
ever, in multi-core systems, when one core is checking the
cache resource state, the cache management logic might be
conducting cache allocation for other cores. This may lead
to the fallacious cache resource state inquiry, because the
results of the on-going cache allocation fail to be synchro-
nized to the current cache resource state. Therefore, in a
multi-core system, the APIs for adjusting the cache size
should be guaranteed to be atomic for implementing syn-
chronization primitives. Hence, we develop a component,
called cache ways management unit (CWMU) to execute
cache ways allocation and release, which grantees the of-
fered APIs atomicity.

The implementation of the replacement policy for the
way-based partitioning cache is another design challenge.
To efficiently use the limited cache resource, the proposed
cache architecture allows each core to dynamically tune its
cache ways without any constraint. This will result in that
the cache ways occupied by one core might not be adjacent
to each other. As shown in Fig. 3, the 3rd and 6th ways
are occupied by core 2. Therefore, standard replacement
policies cannot be applied. In this paper, we develop block
reference field logic (BRFL) to maintain this discontinuous
cache ways distribution.

To Core0

To CoreN

…

Shared
by N Cores

To SDRAM

C
o

re-C
ach

e-Sw
itch

(C
C

S)

Cache
Controller

Cache
Controller

…

CWMU

…

…
…

CCU

Way S-1

Way S-2

Way 1

Way 0

…
…

CWB

Figure 7: Reconfigurable cache architecture.

6.2. Reconfigurable Cache Architecture

This section presents an overview of the proposed re-
configurable shared cache architecture. The reconfig-
urable shared cache component allows cores to dynami-
cally change the number of owned cache ways. As de-
picted in Fig. 7, the proposed reconfigurable shared cache
consists of cache ways management unit (CWMU), cache
control unit (CCU), core to cache switch (CCS), and cache
ways block (CWB). In the proposed architecture, cache
ways management unit (CWMU) controls the cache ways
allocation according to the reconfiguration request of the
cores. The reconfiguration port of CWMU is shared by all
cores. Cache control unit (CCU) manages the cache mem-
ory accesses by instantiating N cache controllers for N-core
system. Core to cache switch (CCS) can dynamically con-
nect cores to cache ways blocks according to ways mask
register of each core, which is maintained by CWMU ac-
cording to the private cache ways pool of the cores. Cache
ways blocks (CWB) are memory blocks used for tag and
data storage.

6.3. Cache Ways Management Unit (CWMU)

Cache ways management unit (CWMU) is used to man-
age cache ways in a centralized manner, by which each
core can send reconfiguration command to dynamically
regulate its cache ways. CWMU is connected to N NIOS
cores by avalon slave interface (ASI) and a round-robin ar-
biter is automatically created between N NIOS cores and
CWMU by Altera SOPC builder. As shown in Fig. 8, when
CWMU receives one command from one NIOS core, the
CMD decoder component can distinguish the core ID (i.e.,
identity which core sends this command) and its command
type (i.e., identity command types in Tab. 1). If it is allo-
cation ways command, ways IDs will be fetched from the
global ways pool. Then, the fetched ways IDs are put into
the cache ways pool of the distinguished core. Then, core
to cache switch (CCS) is controlled to connect cache ways
to the distinguished core according to the cache ways pool.
Before fetching ways IDs from global ways pool, the logic
will check whether there are enough ways in the pool. If no
enough ways exist in the pool, cache overflow error will be
returned to the distinguished core. Note that the approach
in [11] can be applied to calculate one safe cache configu-
ration for real-time applications, which can guarantee that
cache overflow error will never occur. In contrast to the
procedure of allocation ways command, release ways com-
mand will fetch ways IDs from the cache ways pool of the
distinguished core to the global ways pool. Ways occupied
by the distinguished core and replacement information are
correspondingly updated at this point. Note that due to
this centralized management scheme, cores do not need
to inquiry the cache state any more before the allocation
operation. Therefore, the APIs for cache reconfigurations
are atomic.

CMD
Decoder

A
SI

Allocation Ways

Global Ways Pool

Release Ways

Core0 Ways Pool

CoreN Ways Pool

…

input

output

Figure 8: Cache ways managment unit (CWMU).

6.4. Cache Control Unit (CCU)

Cache control unit (CCU) instantiates N cache con-
trollers for an N-core system, where each core owns one
cache controller. Cache controller is used to maintain the
access for its corresponding NIOS core. Thus, this shared
cache allows NIOS cores to access the cache concurrently.
For cache controller, we employ the write-through pol-
icy for each write operation. Cache write-through policy
is inherently tolerant to soft errors due to its immediate
update feature [55]. The cache architecture with write-
through policy has been adopted in many real-life high-
performance processors such as Niagara processor [56],
IBM POWER5 processor [57], and Itanium processor [58].

Fig. 9 depicts the block diagram of cache controller.
Transactions from NIOS cores are injected through the
cache ports, which is instantiated as avalon slave interface
(ASI). Evictions, refills and write-through are asserted
from off-chip memory port, which is instantiated as avalon
master interface (AMI). The data-width of both ASI and
AMI in our case is 32 bit. The supported maximum burst
of both ports depends on the cache line size. Thus, muxs
and demuxs in ASI and AMI are used to packet and de-
packet bytes in the corresponding cache line size. The con-
trol logic performs hit/miss check, returns the read data,
and asserts evictions and refills. The victim cache line is
selected by the block reference field logic (BRFL) during
the refill phase. The implementation of the partitioned
replacement policy is presented in Section 6.5.

Mux

De-Mux

ASI

Control Logic

BRFL

AM
I

Ca
ch

e
Po

rt

CCS

Ways Pool
Of

f-c
hi

p
M

em
or

y

Figure 9: Cache controller (CC).

6.5. Implementation of Partitioned FIFO Replacement
Policy

When a new data must be stored in a cache memory
and all cache ways have been occupied, one of the existing
cache line must be selected for replacement. Standard re-
placement policies include LRU, FIFO, etc. As the cache
with the FIFO replacement policy could support accurate

quantitative WCET estimations [59] and prevent timing
anomalies [60] for the real-time applications, we consider
FIFO cache replacement policy in our design. In addition,
the FIFO replacement policy has been widely used in the
state-of-the-art processors such as ARM 11 processor and
Intel X86 processor [59].

As mentioned in Section 6.1, dynamic cache partitioning
may result in that cache ways occupied by one core might
not be adjacent to each other. To maintain the discon-
tinuous cache ways distribution, the block reference field
logic (BRFL), as shown in Fig. 10, is proposed to perform
victim selection for cache write operations. The reference
field contains selection reference memory (SRM) and valid
bits memory (VBM). The references of the next selection
of victim cache lines are stored in the selection reference
memory (SRM). SRM can be instantiated by one FPGA
dual port memory block with the depth Q and width
Log2(u), where Q and u denote cache depth and cache
associativity, respectively. When the core release ways, all
the contents of SRM should be cleared to initial reference.
In general, we can clean the content of SRM one by one.
Assuming each clean operation will cost one clock, clean-
ing all the content of SRM will cost Q clocks. Therefore,
this solution will significantly increase the timing overhead
of reconfiguration. To minimize timing overhead of cache
reconfiguration, we propose one solution in this paper to
reset SRM by using VBM, which can be instantiated as
Q-bit register and be cleared in one clock. By using this
similar approach, the cache ways can be flushed in one
clock when the core release the ways. We use one bit valid
register to associate with each reference in SRM. When we
read a reference from one location of SRM, the valid bit
register acts as a toggle to determine the output. Based
on the current reference, the write control logic (WCL)
updates the write data for reference field on each cache
write operation and write the next selection to reference
field of SRM and VBM, making that ways are selected in
FIFO replacement manner.

M
U

X

1

1

1

W
C

L

Wr

Data

Clk

Wr

Ref

R
e

fe
re

n
ce

 Fie
ld

Ways Pool

Initial Reference

Controlled by CWMU

Clk

Wr

Address Selection
Ref Victim

V
B

M

Clk

Addr

Data

Wr

Rd

q

rst

SR
M

Clk

Addr

Data

Wr

Rd

q

Figure 10: Block reference field logic (BRFL).

6.6. Share-clock Multi-port Timer IP

To support the dynamic timekeeping functionality in
the time-triggered scheduling, a free-running counter and

timers per processor are required. For the single processor
system, this role is adequately served by the NIOS timer
peripheral. While this is sufficient for a single core system,
it does not work well with multiple processors due to a syn-
chronization problem. In a multi-core system, we should
guarantee that all the cores in the system are triggered in
one global timer. Only in that way, the tasks on different
cores can be precisely triggered and well synchronized.

Per Core
Decrementer

A
SI

A
SI

…

Core0
Register

CoreN
Register

Global
Register

Global
Timer

Per Core IRQ
Generation

Core0
Register

CoreN
Register

…

Figure 11: Share-clock Timer IP.

Fig. 11 shows the block diagram of the share-clock multi-
port timer, in which each port is connected to one NIOS
core by avalon slave interface (ASI). The share-clock multi-
port timer provides each core with a dedicated 32-bit
decrementer, which decrements based on the shared global
timer. Here, the shared global timer expires every constant
time (e.g., 1ms), which triggers each decrementer to decre-
ment once. When one decrementer expires, an interrupt
is generated to the corresponding core. Each core can dy-
namically control the period by setting its register, which
triggers the task in different point. The global register is
used to synchronize the cores to be launched at the same
point. Only when all cores call the APIs to start timer, the
global register is set to 1. Each core keeps waiting until
this global register is active.

7. Task Profiling and Software Implementation

The aim of the task profiling is to identify the WCET
and cache miss number with different cache size for a given
task set. According to the system architecture shown
in Fig. 5, the bus for accessing the off-chip memory is
shared by all cores via the round-robin arbiter. This shared
bus interference under the round-robin arbiter can be ef-
ficiently analyzed by techniques in [61] to estimate the
WCET of a task. In this paper, we use measurement-based
approach in [10] to estimate the WCET of a task. Re-
garding cache miss, we can obtain it from the customized
performance counter by calling the related APIs in Tab. 1.

Table 1: APIs Supported by Reconfigurable Cache

allo ways(way num) Allocate cache ways to cores
rel ways(way num) Release cache ways from cores

clc perf cnt() Clear the performance counter
get hit cnt() Get the value of cache hit counter
get miss cnt() Get the value of cache miss counter
get state() Return ways state, error state

Tab. 1 lists all the atomic APIs currently supported by
reconfigurable cache IP. We refer to the implementation of
time-triggered scheduler in [46] and implement the time-
triggered scheduler with the share-clock multi-port timer
on the NIOS-based multi-core system. To minimize the
cache miss of the system, the synthesis approach in Sec-
tion 5 can generate the task-level cache size configurations
and time-triggered scheduler. According to the generated
configurations, tasks can be scheduled with inserting cache
configuration instructions (see Tab. 1) in each task invo-
cation. High performance code can be generated by this
approach.

8. Experimental Evaluations

In this section, we present the results obtained with an
implementation of the proposed framework, as well as the
performance of the proposed hardware platform. In our
framework, the CPLEX [62] solver is used to solve the
ILP problems for our synthesis approach. We implement
the proposed time-triggered cache reconfigurable multi-
core system on the Altera DE5 board equipped with Sta-
trix V FPGA, which is based on the NIOS II multi-core
architecture. In the multi-core architecture, we adopt the
fast NIOS II core equipped with 512 bytes private L1 in-
struction cache and 512 bytes private L1 data cache. The
private L1 cache module is provided by Altera and in-
tegrated in NIOS processor. All cores are shared with
the unified L2 cache, which is an instance of the pro-
posed reconfigurable cache IP. By cooperating with the
proposed share-clock mutli-port timer, we implement the
partitioned time-triggered scheduling on each core accord-
ing to [46]. Time-triggered scheduling on each core is im-
plemented in a bare-metal manner. The global tick of the
shared clock timer is 1ms. To guarantee the predictability
of the implementation of the scheduler, we reserve 1 fixed
way for each core for the scheduler implementation (e.g.,
task switch).

Table 2: Benchmark sets for two-core system

Core 1 Core 2
Set 1 Sobel, Fir Histogram, Lms
Set 2 Fir2dim, Pbmsrch Blackscholes, Fir
Set 3 Lms, FFT Nsichneu, Sobel
Set 4 Lms, Histogram, FFT Fir, Aes, Sobel

Set 5
Lms, Histogram FFT, Sobel

Corner turn,Pbmsrch Nsichneu, Fir

To evaluate the effectiveness of our framework and hard-
ware platform, we use 27 benchmark programs selected
from MiBench [63] (Qsort, Dijkstra, Pbmsrch, FFT),
CHStone [64] (Adpcm, Aes, Gsm, Sha, Mpeg2), DSP-
stone [65] (Dot product, Fir2dim, Fir, Biquad, Lms,
Matrix, N complex update), PARSEC [66] (Blackscholes),
UTDSP [67] (Histogram, Spectral, Lpc, Decode), Ver-
abench [68] (Beamformer, Corner turn), and some other

research works [69, 70] (Sobel, Nsichneu, Qurt, Fdct). To
avoid the selected tasks to saturate fast, we made some
adaptations to the input scales of some benchmarks, such
that they comply with the specified cache size. Tab. 2 and
Tab. 3 respectively list the task sets used in our experi-
ments for two-cores system and four-core system, which
are combinations of the selected benchmarks. According
to [25], we specify the task mappings based on the rule
that the total execution time of each core is comparable.

8.1. Speed and Area Measurements

First of all, we compare the different types of caches with
respect to their maximum operating frequency and area in
terms of logic and memory usage. Different types of caches
are synthesized on Altera Stratix V FPGA with Quartus
II (version 13.0) to obtain area and critical path delay
(maximum operating frequency Fmax) numbers. The ef-
fect of increased cache depth, associativity, line size, and
port number will be examined for all cache types. Tab. 4
summarizes the results for different types of caches. The
’cache settings’ column is organized as form of associa-
tivity/depth/line size. For example, 4/128/256 indicates
4-ways cache architecture with 128 cache depth and 256-
bit line size. Fmax indicates the maximum frequency that
the constructed multi-core system can run on.

Table 4: Speed and Area Measurements on Stratix V FPGA

Port Cache Combinational Total Fmax

Number Settings ALUTs Registers (MHz)

Two Core

4/256/256 11510 8899 168.41
4/512/256 14453 11461 159.41
8/256/256 17619 10506 151.10
8/512/256 21609 14604 152.14

Four Core

8/256/256 29809 18683 140.29
8/512/256 36074 24831 134.34
16/256/256 39821 22014 126.90
16/512/256 49225 31234 125.83

For increase in depth address and ways number, the
number of combinational ALUTs and registers also in-
creases. As explained in Section 6.5, to flush cache ways
and reset the replacement reference in one cycle, we sep-
arate the valid bit of each line from memory block and
implement it in customized memory block which supports
clearing contents globally. Thus, the increment of address
depth will result in the increment of the number of valid
bit, which leads to more logic resource in combinational
ALUTs and registers. Regarding the ways number, the
contributing factors are the core-cache-switch circuitry,
FIFO replacement policy circuitry, and wide logical OR,
all of which grow with the increased ways number. Re-
garding the maximum operating frequency Fmax, we no-
tice that 2-core cache is faster than 4-core cache and the
cache architecture with less associativity is faster than the
one with more associativity.

8.2. Physical Chip Synthesis Results

In this section, we report physical chip synthesis results
for the proposed dynamic partitioned cache memory. The
proposed cache memory is implemented in synthesizable

Table 3: Benchmark sets for four-core system

Core 1 Core 2 Core 3 Core 4
Set 1 Lms,FFT Fir2dim,Pbmsrch Matrix1,N complex Fir,Biquad

Set 2
Fir,Mpeg2 Biquad Lms,Gsm Fdct,Sobel
Histogram Qurt Qsort Dijkstra,Aes

Set 3
Matrix,FFT Fir2dim Biquad Beamformer

Spectral estimation Sobel Decode Histogram

Set 4
Corner turn Fir Histogram Nsichneu
Dotproduct Sha Nsichneu Lms

Set 5
Fdct, Lpc Histogram,Sha FFT,Adpcm Blackscholes
Fir2dim Sobel,decode Corner turn Fir

Figure 12: Chip area for dual-core caches with the varying cache way
numbers.

Verilog HDL code and synthesized by using Synopsys de-
sign compilers [32] with the SMIC 130nm standard tech-
nology library [33]. We use ARM Artisan 130nm memory
IPs [71] to generate RAM blocks for our cache. Consider-
ing that the proposed cache memory supports way-based
dynamic cache partitioning, we mainly focus on studying
how the cache way numbers impact chip design process
in terms of chip area and power consumption. We con-
duct the experiments to report the chip area and power
consumption 2 of the proposed cache memory under dif-
ferent configurations. In the experiment, we implemented
4 different configurations for the dual-core caches mem-
ory, where the cache way numbers are varied from 4 to
32. The cache depths and cache lines are fixed as 1024
and 128, respectively. For comparison, a standard shared
cache without dynamic partitioning functionality is also
developed and verified by using the same experiment se-
tups. Considering chip manufacturing technology we used
(i.e., 130nm technology), we restrict the frequency of all
cache designs at 400MHz and report the chip area and
power consumption under this speed level.

Fig. 12 and Fig. 13 illustrate the chip area and power
consumption for different types of caches, respectively. As

2Considering that the workload of cache subsystem is application-
specific and it is difficult to develop one specific test bench to obtain
switching information of the cache component, we assume the switch
percentage of the devices in our design is 100%.

Figure 13: Power consumption for dual-core caches with the varying
cache way numbers.

shown in Fig. 12, the chip density is mainly contributed by
the memory blocks in both cache architectures because the
cache is mainly composed by the memory blocks. Com-
paring to the standard cache without dynamic cache par-
titioning, the total density overhead of our cache imple-
mentation ranges from 7% to 13% and maily comes from
memory and combinational blocks. This density overhead
is introduced with the addition of selection reference mem-
ory (SRM) in FIFO replacement policy circuitry and the
routing logic in core-cache-switch circuitry. Another im-
portant observation is that the chip area is nearly increased
linearly with the ways configurations. The cache with 32-
ways configuration occupies 7X chip area than the cache
with 4-ways configuration. Fig. 13 depicts the power con-
sumption for both cache architectures under the different
cache ways configurations. The main power overhead is
caused by the increase of registers for cache controller.
The power overhead of our cache design ranges from 0.3%
to 10%. Thus, our cache design has a close power con-
sumptions with respect to the standard cache design. Be-
sides, the more cache ways we configure, the more power
the cache memory will consume. From the results, we can
see that reducing one more cache ways can on average re-
duce 148 mW power consumption. This means turning off
cache ways can significantly reduce the power consumption
of the system. This brings another potential research di-

rection about how to dynamically manage the cache ways
resource to achieve energy efficiency for the cache subsys-
tem.

8.3. Functionality Verification

We implemented a functional test to verify the correct-
ness of the reconfigurable cache prototype implementa-
tion. This verification is based on memory reuse code,
as shown in Fig. 14, which can mimic the behavior
of cache access behavior. According to the test pre-
sented in Fig. 14, the program firstly access the ar-
ray b[Cache Depth ∗Ways Num][Line Size], whose size
equals the predefined cache, in the first for loop. The
parameter Cache Depth, Ways Num, and Line Size are
denoted as the cache depth, cache way number, and the
word number of cache line, respectively. After the first
loop, the assigned N -ways cache (N < Ways Num) will
remain the last visted N × Cache Depth× Line Size ar-
ray data elments. For example, if we assign one cache
way to this functional test program, this one-way assigned
cache will be occupied by the array data elments from
b[Cache Depth ∗ (Ways Num− 1)][0] to b[Cache Depth ∗
Ways Num−1][Line Size−1]. In the second while loop,
the array b[Cache Depth ∗Ways Num][Line Size] is re-
visted in the reverse order for the sake of cache resue. The
more the cache is assigned, the more cache resue can be
achived which in turn can lead to less cache miss.

1 unsigned int b [Cache Depth∗Ways Num] [L i n e S i z e] ;
2 unsigned int i , temp ;
3 // Load data in to cache
4 for (i =0; i<Cache Depth∗Ways Num ; i ++){
5 temp=b [i] [0] ;
6 }
7 // s t a r t to reuse cache
8 while (i >0){
9 temp=b [i] [0] ;

10 i−−;
11 }

Figure 14: The code for functionality verification.

This functional test is conducted on the two-core sys-
tem with 2MB reconfigurable shared cache (8 ways, 8192
cache depth, 256 bit line size), which is implemented on
the Altera DE5 development board equipped with Statrix
V FPGA. The results as shown in Fig.15 are obtained by
real measurements on FPGA implementation. By call-
ing cache reconfiguration listed in Tab. 1, we implement
memory reuse code under different cache ways. Fig. 15
shows cache miss numbers and execution times under dif-
ferent cache ways. We can see that both cache miss num-
bers and execution times predictably decrease linearly with
reconfigured cache ways. By increasing one way, cache
miss numbers decrease linearly with step 8192 (i.e., cache
depth). This is expected since 8192 more cache lines are
buffered for memory reuse when increasing one way.

Lets give a quantitative analysis to this result. Accord-
ing to the test in Fig. 14, each cache access in the first

Figure 15: # Cache miss and execution time for memory reuse code.

for loop always result in cache miss. Thus, there should
be 8192 × 8 cache misses to happen during the data load
phase (i.e., the first for loop in Line 4-6). According to the
analysis we state above, only N × 8192 cache lines can be
reused during the cache reuse phase (i.e., the second while
loop in Line 8-11). Thus, we will get another (8−N)×8192
cache misses during the cache reuse phase. Totally, we are
expected to get (16−N)× 8192 cache misses if we assign
N cache ways to this test program. From this analysis,
we can see the cache miss number should decrease linearly
with reconfigured cache ways.

It is worthy noting that our cache works as a unified
shared cache in the experiment setup. Instruction access
will also result in additional cache miss numbers. Thus,
the measured cache miss number is a rough number which
do not take instruction access into account. To eliminate
the impact of the cache miss caused by instruction access,
we use the array with the large size (2M byte) in the test
program and set our cache with the large size in this ex-
periment to relieve the impact of instruction access and
make our verification more accurate. By these settings,
the cache miss caused by instruction access can be ignored
comparing to the cache miss caused by data access. From
the result as shown in Fig. 15, we can see that cache miss
numbers are expected to decrease linearly with reconfig-
ured cache ways. We also calculate the cache miss differ-
ences between the expectation and measurement, which is
caused by instruction access. The maximum cache miss
difference normalized with respect to the expected cache
miss is up to 0.39%, which is very small. This means our
cache works as the expected manner and the reconfigura-
tion functionality of the designed cache is correct.

8.4. Timing Predictability

The purpose of this experiment is to verify how effective
the proposed framework is in avoiding cache interference.
In this experiment, we evaluate the system timing pre-
dictability on the two-core platform with 256KB cache (8
ways with 32KB size for each way, 256 bit line size). The
specified multi-core platform is physically implemented on
Altera DE5 development board equipped with Statrix V
FPGA. All the results are collected by real measurements
on FPGA implementation. We run 4 tasks on different

cores simultaneously (Pmbsrch and Lms are on core 1,
while Sobel and Ncomplex are on core 2). For compar-
ison, we also developed one single port standard shared
cache without cache partitioning, which is shared by all
core. For this cache architecture, the entire cache space
is competitively used by all tasks. For our reconfigurable
cache, the schedule and cache configuration are automati-
cally generated by our synthesis approach to optimize the
cache miss: 1 way for Pmbsrch, 7 ways for Lms, 7 ways
for Sobel, 1 way for Ncomplex.

Fig. 16 shows the observed execution time and cache
miss of each task invocations for the four tasks for two
cache architectures. From the results, we can make the fol-
lowing observations: (1) All tasks on our proposed cache
run in a stable manner and the execution time of all task
do not exceed their WCETs that are estimated with cache
space isolation. The execution time and cache miss of all
tasks on our proposed cache are steady. It means that the
timing of tasks on our proposed cache can be well pre-
dicted. As one comparison, we can see the execution time
and cache miss of all tasks on standard shared cache vary
significantly. Without cache isolation, tasks compete for
the shared cache and useful cache lines for one task on one
core may be evicted by one task on another core. This
cache interference will result in poor timing predictabil-
ity. (2) Because only one way is assigned to Pmbsrch and
Ncomplex, we get a direct-mapped cache during the execu-
tion of Pmbsrch and Ncomplex. On standard shared cache,
Pmbsrch and Ncomplex can still use the whole cache size
although inter-core cache interferences exist, which may
lead to less cache miss compared to direct-mapped cache.
Note that, the system predictability is the prerequisite in
real-time systems. Only when the system predictability is
guaranteed, we can then consider how to improve perfor-
mance. In this experiment, we aim to evaluate the sys-
tem timing predictability. One interesting observation is
that, even with smaller cache miss, the execution time of
pmbsrch and ncomplex on standard shared cache is still
greater than the one on our proposed cache. This may
be caused by the fact that, all cores share standard cache
via only one port, which will degrade the performance. In
contrast, our proposed cache is a multi-port cache, which
allows cores to access cache concurrently. Note that the
scope of this experiments is to verify the proposed cache
architecture can avoid the cache interference. The stabil-
ity of task execution as shown in Fig. 16 has presented
how the proposed cache architecture can avoid the cache
interference to achieve the system predictability.

8.5. Runtime Performance

Then, we evaluate the effectiveness of the proposed au-
tomatic cache management framework under timing pre-
dictability requirement. In this experiment, we imple-
ment the cache management scheme and scheduling on two
hardware platforms: two-core system with 256KB shared
unified L2 cache (8 ways with 32KB size for each way, 256

bit line size) and four-core system with 256KB shared uni-
fied L2 cache (16 ways with 16KB size for each way, 256
bit line size). In the two hardware platforms, each NIOS
core runs at 125Mhz. Tab. 2 and Tab. 3 list the task sets
used in our experiments and the task mapping information
for the two-core system and the four-core system, respec-
tively. We physically implement two hardware platforms
on FPGA and execute benchmark code on speciflied hard-
ware platform. We compared the cache miss numbers with
the following technique:

• EQUAL: Equal partitioning cache on cores.

• CORE-OPT: According to the cache reservation tech-
nique in the state-of-the-art work [10], a portion of
cache partitions are statically reserved for each core
to prevent inter-core cache interference. For fairness
comparison, we integrate this cache reservation tech-
nique [10] into our framework to generate optimal
cache reservations for each core.

• TASK-OPT: Our synthesis approach.

Fig. 17 shows the total cache miss number in one hyper-
period of the approaches normalized w.r.t EQUAL. All re-
sults are collected by implementing the cache management
scheme and scheduling obtained from the corresponding
approach on the proposed multi-core system. From the
result measured by real hardware, we can see cache reser-
vation technique (CORE-OPT) fails to improve system per-
formance of most benchmark sets. This is because tasks
assigned on the same core might have different require-
ments and sensitivity to the allocated cache amount, and
a designed region with a constant size to individual cores
cannot fully meet the features of the tasks. In contrast to
the cache reservation technique (CORE-OPT), our synthe-
sis approach (TASK-OPT) partitions the cache in task level
and integrates cache partitioning globally with scheduling.
We can observe that our synthesis approach (TASK-OPT)
outperforms the cache reservation technique (CORE-OPT).
Our approach (TASK-OPT) can on average reduce 14.93%
(up to 22.03%) and 12.56% (up to 18.6%) cache miss with
respect to CORE-OPT on 2-core and 4-core architectures,
respectively.

8.6. Reconfiguration Overhead Measurement

Finally, we conduct experiments to measure the timing
overhead for cache reconfiguration operations. According
to Section 6.3, the port of cache ways management unit
(CWMU) is shared by all cores. To inject traffic on the
shared bus, we implement allocation and release cache con-
figuration instructions in infinite loop concurrently on the
interference core. To measure the timing overhead, al-
location and release cache configuration instructions are
implemented for 10000 times on the target core. In each
iteration, we implement allocation-release cache configura-
tion instruction pair to avoid the cache overflow. And we
directly read the time stamp counter and report the av-
erage latency as the timing overhead of allocation-release

(a) lms (b) pmbsrch

(c) ncomplex (d) sobel

Figure 16: Cache partition and no cache partition.

instruction pair. According to our experiment, the average
timing overhead of one allocation-release cache configura-
tion instruction pair is 16 cycles, which is ignorable when
comparing to OS-based cache partitioning.

9. Discusssion

According to the state-of-the-art survey in [7, 3], how
to manage the shared cache in a predictable and efficient
manner under real-time requirements is still an open is-
sue. As one of the uniqueness of our approaches, we pro-
vide not only a reconfigurable cache architecture, which
enables us to use the shared cache in a predictable and
efficient manner, but also one schedule-aware cache man-
agement scheme. Besides, we also provide a physical im-
plementation on both of hardware and software to evaluate
the usability of our approaches. In this section, we sum-
marizes the features that is currently supported and also
discuss the next steps for our approaches.

We propose a parameterized reconfigurable cache archi-
tecture, so called dynamic partitioned cache memory, for
real-time multi-core system and physically implement it
on FPGA. The dynamic partitioned cache memory is in-
terfaced to Altera NIOS II based multi-core system. In
principle, our cache can be implemented at any level of
caches (L1 or L2) in the cache hierarchy. Due to the tech-

nology limitations stemmed from Altera NIOS II soft-core
processor, we currently do not implement cache coherency
protocol on the proposed cache. Besides, according to the
state-of-the-art research work in [53], current cache coher-
ence strategies are not suitable for the real-time system.

Another aspect for improvement is to enable write-back
policy on the proposed dynamic partitioned cache mem-
ory. Currently, the proposed shared cache architecture is
multi-port cache with using write-through policy, which
allows NIOS cores to access the cache concurrently. By
using write-through policy, the data in cache is always
consistent to the off-chip memory. Thus, the cache ways
can be released immediately and we can conduct the cache
reconfiguration with the minimal timing overhead. How-
ever, if write-back policy is adopted, all dirty data in the
released cache ways need to write back to off-chip memory
during the cache reconfiguration phase. This will result
in a significant timing overhead for the cache reconfigu-
ration. Therefore, how to integrate write-back policy on
the proposed dynamic partitioned cache memory would be
one interesting future work.

10. Conclusion

In this paper, we present a reconfigurable cache architec-
ture which supports dynamic cache partitioning at hard-

(a) # Cache Miss on Two-core System

(b) # Cache Miss on Four-core System

Figure 17: # Cache Miss Reduction on Different Hardware Platform.

ware level and a framework that can exploit cache man-
agement for real-time MPSoCs. By using the proposed
cache, the cache resource can be strictly isolated to pre-
vent the cache interference among cores. Furthermore,
the proposed cache supports dynamic cache partitioning
and allows cores to dynamically allocate cache resource
according to the demand of applications, which will en-
able us to efficiently use cache resources. In contrast to
most existing work [27, 28, 29, 30, 31, 25] in the literature,
which is devoted to analyze theoretical proposals and the
simulation of reconfigurable caches, the proposed cache is
physically implemented and prototyped on FPGA. This
prototype will bridge the gap between simulation and real
systems, and will serve us a real (not simulation) recon-
figurable cache for studying and validating cache manage-
ment strategies on the real-time multi-core system under
different cache settings. The proposed framework opti-
mally integrates time-triggered scheduling and dynamic
cache partitioning such that the shared cache can be used
in a predictable and efficient manner. Experimental re-
sults in the FPGA using a diverse set of applications and
different number of cores and cache modules demonstrate
the effectiveness of the proposed framework.

References

[1] ARM Cortex-A15 series, http://www.arm.com/products.
[2] OpenSPARC, http://www.opensparc.net/.
[3] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, M. Prieto,

Survey of scheduling techniques for addressing shared resources
in multicore processors, ACM Computing Surveys (2012) 4:1–
4:28.

[4] S. Kim, D. Chandra, D. Solihin, Fair cache sharing and parti-
tioning in a chip multiprocessor architecture, in: Proceedings
of 2004 13th International Conference on Parallel Architecture
and Compilation Techniques (PACT), 2004, pp. 111–122.

[5] R. Iyer, Cqos: A framework for enabling qos in shared caches
of cmp platforms, in: Proceedings of the 18th Annual Interna-
tional Conference on Supercomputing, 2004.

[6] B. Ward, J. Herman, C. Kenna, J. Anderson, Making shared
caches more predictable on multicore platforms, in: Proceed-
ings of 2013 25th Euromicro Conference on Real-Time Systems
(ECRTS), 2013.

[7] A. Abel, F. Benz, J. Doerfert, B. Drr, S. Hahn, F. Haupenthal,
M. Jacobs, A. Moin, J. Reineke, B. Schommer, R. Wilhelm,
Impact of resource sharing on performance and performance
prediction: A survey, in: Proceedings of 24th Conference on
Concurrency Theory (CONCUR), 2013.

[8] N. Guan, M. Stigge, W. Yi, G. Yu, Cache-aware scheduling and
analysis for multicores, in: Proceedings of 2009 ACM Interna-
tional Conference on Embedded Software (EMSOFT), 2009.

[9] S. Fisher, Certifying applications in a multi-core environment:
The world’s first multi-core certification to sil 4, White paper,
SYSGO AG (2014).

[10] H. Kim, A. Kandhalu, R. Rajkumar, A coordinated approach
for practical os-level cache management in multi-core real-time
systems, in: Proceedings of 2013 25th Euromicro Conference on
Real-Time Systems (ECRTS), 2013.

[11] G. Chen, K. Huang, J. Huang, A. Knoll, Cache partitioning and
scheduling for energy optimization of real-time mpsocs, in: Pro-
ceedings of 24th IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP), 2013.

[12] G. Chen, B. Hu, K. Huang, A. Knoll, K. Huang, D. Liu, Shared
l2 cache management in multicore real-time system, in: Pro-
ceedings of 22nd Annual IEEE International Symposium on
Field-Programmable Custom Computing Machines (FCCM),
2014.

[13] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, P. Sadayappan,
Gaining insights into multicore cache partitioning: Bridging
the gap between simulation and real systems, in: Proceedings
of IEEE 14th International Symposium on High Performance
Computer Architecture (HPCA), 2008.

[14] S. Cho, L. Jin, Managing distributed, shared l2 caches through
os-level page allocation, in: Proceedings of the 39th An-
nual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), 2006.

[15] B. N. Bershad, D. Lee, T. H. Romer, J. B. Chen, Avoiding
conflict misses dynamically in large direct-mapped caches, ACM
SIGOPS Operating Systems Review (1994) 158–170.

[16] W. Jing, R. Fan, The research of hibernate cache technique
and application of ehcache component, in: Proceedings of 2011
IEEE 3rd International Conference on Communication Software
and Networks (ICCSN), 2011, pp. 160–162.

[17] L. Zhang, E. Speight, R. Rajamony, J. Lin, Enigma: Architec-
tural and operating system support for reducing the impact of
address translation, in: Proceedings of 2010 24th ACM Inter-
national Conference on Supercomputing (ICS), 2010.

[18] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo,
R. Pellizzoni, Real-time cache management framework for
multi-core architectures, in: Proceedings of 2013 IEEE 19th
Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2013.

[19] N. Suzuki, H. Kim, D. de Niz, B. Andersson, L. Wrage,
M. Klein, R. Rajkumar, Coordinated bank and cache coloring
for temporal protection of memory accesses, in: Proceedings

of 2013 IEEE 16th International Conference on Computational
Science and Engineering (ICESS), 2013.

[20] H. Cook, M. Moreto, S. Bird, K. N. Dao, D. Patterson,
K. Asanovic, A hardware evaluation of cache partitioning to
improve utilization and energy-efficiency while preserving re-
sponsiveness, in: Proceedings of 40th ACM/IEEE International
Symposium on Computer Architecture (ISCA), 2013.

[21] A. Gil, J. Benitez, M. Calvino, E. Gomez, Reconfigurable cache
implemented on an fpga, in: Proceedings of 2010 International
Conference on Reconfigurable Computing and FPGAs (ReCon-
Fig), 2010, pp. 250–255.

[22] A. Santana Gil, F. Quiles Latorre, M. Hernandez Calvino,
E. Herruzo Gomez, J. Benavides Benitez, Optimizing the phys-
ical implementation of a reconfigurable cache, in: Proceedings
of 2012 International Conference on Reconfigurable Computing
and FPGAs (ReConFig), 2012, pp. 1–6.

[23] A. Malik, B. Moyer, D. Cermak, A low power unified cache ar-
chitecture providing power and performance flexibility, in: Pro-
ceedings of the 2000 International Symposium on Low Power
Electronics and Design (ISLPED), 2000, pp. 241–243.

[24] C. Zhang, F. Vahid, W. Najjar, A highly configurable cache for
low energy embedded systems, ACM Transactions on Embed-
ded Computing Systems (2005) 363–387.

[25] W. Wang, P. Mishra, S. Ranka, Dynamic cache reconfiguration
and partitioning for energy optimization in real-time multi-core
systems, in: Proceedings of 2011 48th ACM/EDAC/IEEE De-
sign Automation Conference (DAC), 2011.

[26] G. Chen, B. Hu, K. Huang, A. Knoll, D. Liu, T. Stefanov,
Automatic cache partitioning and time-triggered scheduling for
real-time mpsocs, in: Proceedings of the 2014 9th International
Conference on Reconfigurable Computing and FPGAs (ReCon-
fig), 2014.

[27] D. Albonesi, Selective cache ways: on-demand cache resource
allocation, in: Proceedings of 1999 32nd Annual International
Symposium on Microarchitecture (MICRO), 1999, pp. 248–259.

[28] G. E. Suh, L. Rudolph, S. Devadas, Dynamic partitioning of
shared cache memory, Journal of Supercomputing 28 (1) (2004)
7–26.

[29] D. Benitez, J. Moure, D. Rexachs, E. Luque, A reconfig-
urable cache memory with heterogeneous banks, in: Proceed-
ings of Design, Automation Test in Europe Conference Exhibi-
tion (DATE), 2010, pp. 825–830.

[30] K. T. Sundararajan, T. M. Jones, N. Topham, A reconfig-
urable cache architecture for energy efficiency, in: Proceedings
of the 8th ACM International Conference on Computing Fron-
tiers (CF), 2011.

[31] S. Mittal, Z. Zhang, J. Vetter, Flexiway: A cache energy saving
technique using fine-grained cache reconfiguration, in: Proceed-
ings of 2013 IEEE 31st International Conference on Computer
Design (ICCD), 2013.

[32] Synopsys Design Compilers, http://www.synopsys.com.
[33] Semiconductor Manufacturing International Corporation,

http://www.smics.com.
[34] M. Qureshi, et al., Utility-based cache partitioning: A low-

overhead, high-performance, runtime mechanism to partition
shared caches, in: Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2006.

[35] D. Sanchez, et al., Vantage: Scalable and efficient fine-grain
cache partitioning, in: Proceedings of 2011 38th Annual Inter-
national Symposium on Computer Architecture (ISCA), 2011.

[36] A. Wolfe, Software-based cache partitioning for real-time appli-
cations, Journal of Computer and Software Engineering (1994)
315–327.

[37] F. Mueller, Compiler support for software-based cache parti-
tioning, in: Proceedings of ACM SIGPLAN Workshop on Lan-
guage, Compiler, and Tool Support for Real-Time Systems,
1995.

[38] M. Lukasiewycz, S. Steinhorst, F. Sagstetter, W. Chang,
P. Waszecki, M. Kauer, S. Chakraborty, Cyber-physical systems
design for electric vehicles, in: Proceedings of 2012 Euromicro
Conference on Digital System Design (DSD), 2012.

[39] C. Lin, H.-M. Yen, Y.-S. Lin, Development of time triggered
hybrid data bus system for small aircraft digital avionic system,
in: Proceedings of IEEE/AIAA 26th Digital Avionics Systems
Conference (DASC), 2007.

[40] S. Baruah, G. Fohler, Certification-cognizant time-triggered
scheduling of mixed-criticality systems, in: Proceedings of 2011
IEEE 32nd Real-Time Systems Symposium (RTSS), 2011.

[41] F. Sagstetter, M. Lukasiewycz, S. Chakraborty, Schedule inte-
gration for time-triggered systems, in: Proceedings of 2013 18th
Asia and South Pacific Design Automation Conference (ASP-
DAC), 2013.

[42] D. Goswami, M. Lukasiewycz, R. Schneider, S. Chakraborty,
Time-triggered implementations of mixed-criticality automotive
software, in: Proceedings of the 15th Conference for Design,
Automation and Test in Europe (DATE), 2012.

[43] T. Nghiem, G. J. Pappas, R. Alur, A. Girard, Time-triggered
implementations of dynamic controllers, ACM Transactions on
Embedded Computing Systems (TECS) (2012) 58:1–58:24.

[44] T. Nghiem, G. J. Pappas, R. Alur, A. Girard, Time-triggered
implementations of dynamic controllers, in: Proceedings of the
6th ACM/IEEE International Conference on Embedded Soft-
ware (EMSOFT), 2006.

[45] J. Huang, J. Blech, A. Raabe, C. Buckl, A. Knoll, Static
scheduling of a time-triggered network-on-chip based on smt
solving, in: Proceedings of the 15th Design, Automation Test
in Europe Conference Exhibition (DATE), 2012.

[46] A. Gendy, M. Pont, Automatically configuring time-triggered
schedulers for use with resource-constrained, single-processor
embedded systems, IEEE Transactions on Industrial Informat-
ics (2008) 37–46.

[47] N. Guan, W. Yi, Z. Gu, Q. Deng, G. Yu, New schedulability
test conditions for non-preemptive scheduling on multiprocessor
platforms, in: Proceedings of 2008 Real-Time Systems Sympo-
sium (RTSS), 2008.

[48] C. L. Liu, J. W. Layland, Scheduling algorithms for multipro-
gramming in a hard-real-time environment, Journal of the ACM
(JACM) (1973) 46–61.

[49] I. Lee, J. Y.-T. Leung, S. H. Son, Handbook of Real-Time and
Embedded Systems, CRC Press, 2007.

[50] S. Baruah, M. Bertogna, G. Buttazzo, Multiprocessor Schedul-
ing for Real-Time Systems, Springer, 2015.

[51] J. Lee, K. G. Shin, I. Shin, A. Easwaran, Composition of schedu-
lability analyses for real-time multiprocessor systems, IEEE
Transactions on Computers (TC) (2015) 941–954.

[52] Creating multiprocessor nios systems tutorial,
http://www.altera.com.

[53] A. Pyka, M. Rohde, S. Uhrig, A real-time capable first-level
cache for multi-cores, in: Proceedings of 2013 1st Workshop on
High-performance and Real-time Embedded Systems (HiRES),
2013.

[54] Adapteva Parallella, http://www.adapteva.com/parallella/.
[55] J. Dai, L. Wang, An energy-efficient l2 cache architecture using

way tag information under write-through policy, IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 21 (1)
(2013) 102–112.

[56] P. Kongetira, K. Aingaran, K. Olukotun, Niagara: a 32-way
multithreaded sparc processor, IEEE Micro 25 (2) (2005) 21–
29.

[57] D. H. Jim Mitchell, G. Ahrens, Ibm power5 processor-based
servers: A highly available design for business-critical applica-
tions, White paper, IBM (2005).

[58] N. Quach, High availability and reliability in the itanium pro-
cessor, IEEE Micro 20 (5) (2000) 61–69.

[59] N. Guan, X. Yang, M. Lv, W. Yi, Fifo cache analysis for wcet
estimation: A quantitative approach, in: Proceedings of Design,
Automation Test in Europe Conference Exhibition (DATE),
2013.

[60] M. Paolieri, E. Quinones, F. J. Cazorla, G. Bernat, M. Valero,
Hardware support for wcet analysis of hard real-time multi-
core systems, in: Proceedings of 2009 36th Annual International
Symposium on Computer Architecture (ISCA), 2009.

[61] H. Shah, K. Huang, A. Knoll, Weighted execution time analy-
sis of applications on cots multi-core architectures, Tech. Rep.
TUM-I1339 (2013).

[62] IBM ILOG CPLEX, http://www.ibm.com/software/.
[63] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,

T. Mudge, R. B. Brown, Mibench: A free, commercially rep-
resentative embedded benchmark suite, in: Proceedings of 2001
IEEE International Workshop on Workload Characterization
(WWC), 2001.

[64] CHStone, http://www.ertl.jp/chstone/.
[65] Dspstone, http://www.ice.rwth-aachen.de/.
[66] C. Bienia, Benchmarking modern multiprocessors, Ph.D. thesis,

Princeton University (2011).
[67] UTDSP, http://www.eecg.toronto.edu/UTDSP.html/.
[68] Versabench, http://groups.csail.mit.edu/versabench.
[69] H. Nikolov, et al., Systematic and automated multiprocessor

system design, programming, and implementation, IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems (2008) 542–555.

[70] Malardalen real-time research center, http://www.es.mdh.se/.
[71] ARM Artisan Physical IP Solutions, http://www.artisan.com.

