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Abstract— This paper, for the first time, proposes a solution
for the problem of in-hand object recognition via surface
textures. In this study, a robotic hand with an artificial skin on
the fingertips was employed to explore the texture properties
of various objects. This was conducted via the small sliding
movements of the fingertips of the robot over the object surface
as a human does. Using our proposed robust tactile descriptors,
the robotic system is capable of extracting information-rich data
from the raw tactile signals. These features then assist learning
algorithms in the construction of robust object discrimination
models. The experimental results show that the robotic hand
distinguished between different in-hand objects through their
texture properties (regardless of the shape of the in-hand
objects) with an average recognition rate of 97% and 87%
while employing SVM and PA as an online learning algorithm,
respectively.

I. INTRODUCTION
A. Motivation

The human body is covered with skin, which provides us
with the sense of touch. Thousands of cutaneous receptors
inside of the skin, as well as proprioceptive sensors in
joints and muscles, assist us to perceive the ambient world,
inferring the physical properties of objects through hand-
object interactions. Based on this ability, future robots are
envisioned to have a sound haptic system like humans.
To achieve this goal, many roboticists have focused their
efforts on advancing tactile sensor technology in the last few
decade [1]-[5]. However, in contrast to the rapid progress of
tactile sensors, the research in processing and learning tactile
information is still in the early stage.

B. Background

Previously, researchers simply employed customized tools
or robotic end-effectors equipped with various technolog-
ical tactile sensors to classify objects via their materials.
The object material can be characterized and differentiated
based on surface texture, stiffness, and thermal information
obtained through tactile sensing. However, to the best of
our knowledge, so far there is no research paper addressing
object discrimination via their physical properties while the
objects are in the hand of a robot. Jamali er al. fabricated
a biologically inspired artificial finger composed of silicon
within which were two PVDF pressure sensors and two strain
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Fig. 1.
objects with an identical shape. It moves any of the fingertips to slide over
the objects surface.

The Shadow Hand is exploring the texture properties of the in-hand

gauges. The finger was mounted on a robotic gripper and was
scraped over eight materials. The Majority voting learning
method was employed to find the optimal technique for
the texture recognition problem [6]. Hu et al. used Support
Vector Machine (SVM) to classify five different fabrics by
sliding a finger-shaped sensor over the surfaces [7]. A robot
actively knocks on the surface of the experimental objects
with an accelerometer-equipped device to discriminate stone,
mulch, moss, and grass from each other with a lookup table
and k-nearest neighbors (k-NN) [8]. Different kinds of paper
have been identified by Principle Component Analysis (PCA)
technique during pushing and sliding of tactile sensor on the
paper. To classify cotton, linen, silk, and denim fabrics, Song
et al. designed a mechanism to generate the relative motion
at a certain speed between the PVDF film and surface of the
perceived fabric. In this study neural network and K-means
clustering algorithms were used for fabric surface texture
recognition [9]. Dallaire er al. [10] managed to classify 28
different surfaces such as Aluminum, Plexiglas, and Kitchen
towel via Bayesian non-parametric learning approach. In
this respect, a three axis accelerometer was placed on a
stylus, which was then mounted above a rotating turn-table
on which the surface was placed. Ten different surfaces
were detected through an artificial neural network by sliding
an accelerometer mounted prob over the surfaces such as
wooden flooring, short hair carpet, and tile linoleum flooring
[11]. A humanoid robot was equipped with an artificial finger
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nail with an attached 3-axis accelerometer in order to classify
20 different surfaces through Support Vector Machine (SVM)
and k-nearest neighbor (k-NN) learning techniques. To do
this the fingernail was used to scratch the surfaces. Faster
scratch usually turned out to have a higher recognition
accuracy. Additionally, combination of multiple scratches
was more accurate than a single scratch [12]. In order to
classify 117 textures, one BioTac sensor was placed on a
customized tool and a vibration-free linear staged [13]. The
index finger of Shadow Hand having a BioTac sensor was
employed to discriminate 10 different objects [14]. In this
study, the base and wrist of the robotic hand were fixed
on a table. Moreover, all joints in the hand and wrist were
deactivated (except 2 joints of the index finger).

C. Contribution

In contrast to the previous works, the focus of this
paper is that of in-hand object recognition through texture
properties. In this scenario, an anthropomorphic hand with
an artificial skin on fingertips was employed. The robotic
hand explored the texture properties of the in-hand objects
while moving any of fingertips to slide over the surface of
the in-hand objects, as human does. Using our proposed
novel tactile descriptors, the robotic hand extracted high-
informative features from the perceived tactile data to con-
struct discriminative texture models for the task of in-hand
object classification.

II. SYSTEM DESCRIPTION
A. Robotic Skin

The BioTac! is a multi-modal robotic skin. When the
sensor moves over an object, the generated vibration can
be measured by a dynamic pressure sensor (P4c) with the
sampling data rate of 2 KHz. The BioTac has 19 impedance-
sensing electrodes (Ei,...,Ei9) distributed over the surface
of the rigid part. These electrodes are capable of measuring
the deformation that arises when normal forces are applied to
the surface of the skin with 50 Hz sampling rate (see Fig. 2).

B. Robotic Hand

The Shadow Hand? is an advanced Robotic Hand Sys-
tem with five fingers and 20 active degrees of freedom in
total. This enables the robot to have a range of movement
equivalent to that of a human hand (see Fig. 1).

Fig. 2. The Shadow Robotic Hand is equipped with the BioTac sensors
on each fingrtip.

Uhttp://www.syntouchllc.com/
Zhttp://www.shadowrobot.com/

III. TACTILE PERCEPTION AND DATA
COLLECTION

Humans can discriminate in-hand objects by perceiving
texture properties (without consideration of the shape of the
objects) whilst moving any of the fingertips to slide over the
surface of the objects.

A. Experimental Objects Properties

In this work 20 everyday objects were selected. 10 objects
with an identical geometrical shape property (in this case
a spherical shape), including a Red and Yellow balls with
almost same smooth surface texture, a Rough textured ball,
an Orange, an Apple, a Colorful ball with smooth surface, a
Rough spherical sponge, a Pine ball and a String ball (both
with an irregular texture), and a Mirror ball (see Fig. 1).
Also, 10 objects with different complex shapes, including
a Soft sponge, a Memory sponge, a Toothbrush, a Floor
brush, a Rough textured star, a Nespresso coffee capsule, a
Spray, a Paper box, a Cream tube, and a Plastic baby feeder
(see Fig. 3). In both set of objects, the difference in the
texture properties varied from relatively similar to noticeably
different.

Fig. 3. The Shadow Hand is exploring the texture properties of the in-hand
objects with complex shapes. It moves any of the fingertips to slide over
the objects surface.

B. Data Collection

Training Data Collection: The Shadow Hand held each
of the objects with three fingers including thumb, small, and
ring finger. In order to perceive the texture properties of each
in-hand object, the robotic hand used its index and middle
fingers to slide over the surface of the object for 2 seconds.
The sensory data was measured by the BioTac using each of
the 19 electrodes (Ey,...,Ej9) and the pressure sensor (Pac)
(in total 40 tactile signals from the output of two BioTac
sensors). The entire procedure was repeated 10 times for
each experimental object.

Test Data Collection: In this case, the robotic Hand used
the small, ring, and middle fingers to keep the objects in
hand. The thumb and index finger were used to explore the
texture properties of each experimental object. The rest of the
procedures were the same as described for the training data
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collection. However, the exploratory behavior was repeated
20 times for each of the experimental object.

C. Feature Extraction Techniques

The human-like exploratory/sliding movements carried
out by the Shadow Hand to perceive the relevant tactile
data about the texture properties of in-hand objects. The
exploratory motion generated two types of tactile data which
were measured by the pressure sensor (Pyc) (with 2 KHz
sampling rate) and the impedance sensing electrode array
(Ei,...,E19) (with 50 Hz sampling rate). In order to design
robust tactile descriptors, we considered the tactile informa-
tion measured by the pressure sensor corresponded to high-
frequency texture information. In addition, we assumed that
the tactile data sensed by the impedance sensing electrodes
was related to the lower frequency changes in the textures.
These two types of tactile data provide information especially
about non-uniform or transitional periods in the overall
structure.

D. Pre-Processing

Before computing the feature descriptors, pre-processing
of each signal was required. In this respect the mean value
of each obtained signal during exploratory behavior (for 2
second) was subtracted with the original raw signal (zero
mean) to maximize useful information and minimize the
effect of artifacts.

E. Proposed Feature Descriptors

In the earlier works, researchers employed the Fourier
transform technique [13], [14] to interpret the obtained tactile
information for texture classification. However, the Fourier
transform is not appropriate for analyzing non-stationary
signals in which textures are irregular or non-uniform. Short
time Fourier transform or Wavelet might be the most ap-
propriate techniques to analyze non-stationary signals [15],
[16]. However, these methods deal with a large number of
data points, thereby causing difficulties at the classification
step. More features require more training samples resulting
in the growth of the computational complexity as well as
the risk of over-fitting. To overcome these issues, in [17]
and [18], we proposed a set of fundamental tactile descriptor
inspired by Hjorth parameters [19]. In this study, we used
the fundamental parameters to construct a new set of robust
feature descriptor. These parameters are called Activity, Mo-
bility, and Complexity. Although these parameters are defined
in the time domain, they can be interpreted in the frequency
domain as well. The first parameter (1) is the total power
of the signal. It is also the surface of the power spectrum
in the frequency domain (Parseval’s relation). The Mobility
parameter, defined in (2), is determined as the square root of
the ratio of the variance of the first derivative of the signal to
that of the signal. This parameter is proportional to standard
deviation of the power spectrum. It is an estimate of the mean
frequency [20]. The last parameter in (3) gives an estimate of
the bandwidth of the signal, which indicates the similarity
of the shape of the signal to a pure sine wave. Since the

calculation of the Hjorth parameters is based on variance,
the computational cost of this method is sufficiently low,
which makes them appropriate for the real-time task.

Activity = Variance (S(n)) = NZ(SH - §)2 (D

Mobility = 2)

mobility ( dfi(:) )

mobility <S(n)) @

Complexity =

where S(n) is the input signal either impedance electrodes
(E1,...,Ej9) or the the pressure sensor signal (P4c) during 2
seconds exploratory movements. N is the number of the data
sample. For (P4¢) with 2 KHz sampling rate N = 4000 and
for each electrode array (Ei,...,Ej9) with 50 Hz sampling
rate, N=100.

Furthermore, when the fingers of the Shadow Hand came
into contact with the surface of an object, the change in
fluid pressure of the artificial skin linearly correlated with
the output of the impedance sensing electrodes. However,
when the fingertips were sliding, the relationship between
the electrode array and fluid pressure was no longer linear
and was monotonically related to each other in a non-
linear manner. Therefore, both linear correlation coefficient
Eq.(4) and non-linear correlation coefficient Eq.(5) between
impedance-sensing electrodes and dynamic pressure sensor
were considered as tactile feature data:

N

Z ((PAC)n - PAC) ~ ((Ek),, - Ek)

Pcorr(Pac,Ey) = = o) o (B )

o (x),

SCOVV(PAC,Ek) =1- m

&)

where N is the number of data points, K = 19 is the number
of impedance electrodes (for the BioTac k= 1,...,19), and
Ry is the difference between the rank of (P4c¢) and the rank
of (Ek)

Final Feature Descriptors: The total feature descriptors
for one finger include the computed Activity, complexity,
and complexity of the output of the dynamic pressure sensor
(Pac), mean value of the Activity, complexity, and complex-
ity of each impedance sensing electrode (Ej,...,Ej9) and the
mean value of the linear and non-linear correlation coefficient
between each impedance sensing electrode, and the dynamic
pressure sensor. Each calculated feature vector had 8 data
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points per trial sample defines as

[Activity(PAc) Complexity(Pac), Mobility (Pac),

- Z Activity(Ey), Z Complexity(Ey),

— Z Mobility(Ey), Z Pcorr(Pac, Ey),

X ];1 Scorr(Pac, Ek)} (6)
The final proposed feature descriptor was the concatenation
of the total descriptors (6) of the two fingers, index and
middle fingers for the training and thumb and index fingers
for the testing data collection. Each calculated final feature
vector had 16 data points per each trial sample.

IV. Robot Learning Methodologies

Support Vector Machine (SVM): The first common
learning method that was evaluated was Support Vector
Machine (SVM). More formally, given labeled training data
(supervised learning), the algorithm constructs a hyper-plane
or set of hyper-planes in a high dimensional space in order
to classify new examples.

Passive Aggressive Online Learning (PA): In this study
the Passive Aggressive (PA) online learning algorithm was
employed. The PA is a margin based online or open-
ended learning technique with low computational complexity
compare to the batch learning algorithms. PA continuously
constructs and updates the learning models. The constructed
learning models, at each time step, are used to generate the
corresponding prediction for the current received samples.
The received true labels are then used as a feedback to update
the learning models for the upcoming coming new samples.

Expectation Maximization (EM): The Expectation Maxi-
mization (EM) algorithm was employed to categorize objects
via their textures. EM is an unsupervised and iterative
algorithm that generalizes k-means to a probabilistic setting
in two steps. The Expectation step computes the cluster prob-
ability of each data sample and the Maximization step uses
these probabilities to estimate the distribution parameters.
Since there is no supervised training step, an initial model
needs to be construct with a random set of parameters. After
the model is initialized, EM optimizes the set of parameters
until it finds a local maximum of log-likelihood. Convergence
is ensured since the algorithm is guaranteed to increase the
log-likelihood at each iteration.

V. RESULTS

A. Object Classification Results By SVM

Identical Shape Objects: The SVM classifier and the
linear kernel method was used to discriminate the identical-
shape objects through surface texture properties (see Fig. 1).
In order to obtain the best regularizer value, C, for SVM,
5-fold cross validation (CV) was used. In this respect,

2This technique is known as a PAI [21].

the collected training data set was randomly split into 5
folds and during each evaluation, 4 of those were used for
training and one was used for testing. This procedure was
repeated 10 times to obtain an average performance on the
evaluation sets. The entire process was repeated 20 times
using different values for C to find the one with the lowest
CV error. The SVM with optimal parameters was then re-
trained on entire training data set to construct the learning
models. The constructed learning models were used by the
Shadow Hand to predict on the unseen separately collected
test set. In this scenario, the Shadow Hand successfully
classified the objects via their texture properties with 97%
recognition accuracy, substantially higher than the chance
classifier. Fig. 4 shows the confusion matrix obtained from
the classification procedure. The confusion matrix indicates
how often a given object or surface was miss-classified as
another object/surface. Perfect classification would result in
a diagonally-filled table. However, Fig. 4 shows that most
errors involve objects with similar surface texture properties.
For instance, the Yellow ball was confused with the Red
and Colorful ball as they have very smooth surface textures.
Moreover, the Rough ball was identified as the Spongy ball
since both objects share almost identical texture properties.

Complex Shape Objects: The Shadow Hand employed
SVM with linear kernel method to discriminate complex
shape objects through texture properties (see Fig. 3). The
optimal regularizer value was obtained from 5-fold cross val-
idation, the detailed procedure of which has been explained
above. The classifier was trained with the training data set of
the complex shape objects. The constructed learning models
were used to predict the surface textures of the objects
in the testing data set. In this case, the Shadow Robotic
Hand achieved 97.5% classification accuracy. Regarding to
the confusion matrix (see Fig. 5), the Spray and the Coffee
capsule were confused with each other as they have sim-
ilar material properties. The confusion matrix also shows
that in one trial the Rough star was miss-classified as the
Toothbrush. These two objects are sharing similar texture
properties.

Complex and Identical Shape Objects : The Shadow
Hand used the SVM to classify all 20 objects in Fig. 1)
and Fig. 3) via their surface textures without consideration
of their geometrical properties. The SVM with the best
regularizer value was trained with the entire combined col-
lected training data. The constructed object models were
then evaluated by predicting on the combined testing set.
The Shadow Hand successfully discriminated 20 multiple
shape objects with 96% recognition accuracy. The confusion
matrix (see Fig. 6) illustrates that the classification of the
objects through surface texture properties depends only on
the texture properties of the objects. It means that a robotic
system can discriminate objects via their texture properties
without considering the visual and geometrical information
about the objects. The performance of the object classifi-
cation depends only on how well and accurate the robotic
system can perceive and interpret the texture properties of
the objects.
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B. Object Classification Results Using PA

The Shadow Robotic Hand used PA algorithm as an
online learning approach in order to construct surface texture
models whilst receiving training samples over time (one
sample of each object per time 7). In this experiment, the
value for C was fixed to 1. The training data set was
provided sequentially. The recognition rates at each time
t was computed by applying the currently trained models
on the test data (r = 1,---,10). The above procedure was
applied on the collected training data with multiple shape
objects. The constructed learning models was then evaluated
by predicting on the testing data collected with the identical
shape, complex shape, and multiple shape objects, separately.
Fig. 7 shows the classification accuracy rate corresponding
to Identical Shape Objects, Complex Shape Objects, and
Multiple Shape Objects. By looking at the obtained results,
it is obvious that the Shadow Hand was able to recognize
identical, complex, and multiple shape objects via surface
textures with high average recognition rate substantially
better than chance. The Shadow Hand obtained an average
recognition rate of 87% at ¢t = 10 while only 10 data samples
were used to train the algorithm. In this experiment, using
PA method together with our proposed feature descriptors
which provide the information-rich tactile feature, enabled
the Shadow Hand to achieve high recognition rates in all
scenarios. The obtained results are comparable with the ones
that the Shadow Hand achieved with SVM. However, the
Shadow Hand paid less computational cost while using the
online learning algorithm.

On-line Classification
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Fig. 7. On-line Classification Results For Identical-Shap Objects, Complex-
Shape Object, and Multiple Shape Objects (Identical + Complex)-Shape
Pbjects usin PA online classifier

C. Object Categorization Using EM

In this experiment, the robotic hand employed the EM
algorithm as an unsupervised learning approach to categorize
objects through their texture properties. In this respect, the
EM was trained with the entire unsupervised data set. A
class to clustering approach was used to evaluate how well
the Shadow Hand can recognize the correct category of
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a novel test data. In this approach, classes were assigned
to the categories, based on the majority value of the class
attribute within each categories. Later on, these assignments
were used to compute the classification performance. Fig. 8
shows the results of this experiment for the identical shape
objects, complex shape objects, and multiple shape objects
individually. From Fig. 8, it is clear that the Shadow Hand
successfully categorized identical shape objects via surface
texture with the accuracy of 82.23%. Using the EM and
similar learning procedure as above the Shadow Hand also
clustered the complex shape objects and multiple shape ob-
jects with the accuracy of 83.5%, and 80.58%, respectively.
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Fig. 8. Categorization Results Of The Identical Shape Objects, Complex
Shape Objects, and Multiple Shape Objects.

VI. CONCLUSION

This study contributes three key improvements on ex-
isting systems; in-hand object exploration, invariance to
the specific finger used for data collection, and ability to
classify regardless of object shape. A range of simplistic
learning techniques were applied, and consistently very high
classification accuracy were observed for all objects across
all learning methods. This result is a reflection of the high-
information content of the proposed feature descriptors. As
a future work it is interesting to evaluate the efficiency and
robustness of our proposed technique with the other existing
robotic hands specially when the robotic hands generate
random exploratory movements.
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