Model Order Reduction of Linear Time-Varying

Systems: Some straightforward approaches

MOR 4 MEMS 2015

Karlsruhe, 18th November 2015

Maria Cruz Varona, Boris Lohmann
Chair of Automatic Control, Technische Universität München maria.cruz@tum.de

Motivation for Model Order Reduction

Linear time-invariant system in state-space representation

$$
\begin{aligned}
& \mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B} \mathbf{u}(t) \\
& \mathbf{y}(t)=\mathbf{C} \mathbf{x}(t)+\mathbf{D} \mathbf{u}(t) \\
& \mathbf{x}(t) \in \mathbb{R}^{n}, \mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n} \\
& \mathbf{u}(t) \in \mathbb{R}^{m}, \mathbf{y}(t) \in \mathbb{R}^{q} \\
& m, q \ll n \\
& \begin{aligned}
\mathbf{E} & \dot{\mathbf{x}}
\end{aligned}=\mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{u} \quad\left\{\mathbf{x}(t) \in \mathbb{R}^{n}\right.
\end{aligned}
$$

Model Order Reduction (MOR)

Linear time-invariant (LTI) system
$\mathbf{G}(s):\left\{\begin{aligned} \mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathbf{B u}(t) \\
\mathbf{y}(t)=\mathbf{C x}(t)\end{aligned}\right.$

$\mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n}$	n
\mathbf{E}, \mathbf{A}	
$\mathbf{B} \in \mathbb{R}^{n \times m}, \mathbf{C} \in \mathbb{R}^{q \times n}$	q
\mathbf{B}	

Reduced order model (ROM)

$\mathbf{G}_{r}(s):\left\{\begin{array}{ccc}\mathbf{E}_{r} \dot{\mathbf{x}}_{r}(t)=\mathbf{A}_{r} \mathbf{x}_{r}(t)+\mathbf{B}_{r} \mathbf{u}(t) & r & m \\ \mathbf{y}_{r}(t)=\mathbf{C}_{r} \mathbf{x}_{r}(t) & r & \mathbf{E}_{r}, \mathbf{A}_{r}\end{array}\right.$
$\begin{array}{ll}\mathbf{E}_{r}, \mathbf{A}_{r} \in \mathbb{R}_{r} \\ \mathbf{B}_{\mathbf{r}} \in \mathbb{R}^{r \times m} & \mathbf{C}_{r} \in \mathbb{R}^{q \times r}\end{array}$

Outline

1. Systems with Moving Loads

- Motivation \& Examples
- State-of-the-art: system representation and reduction

2. Linear Time-Varying Model Order Reduction (LTV-MOR)

- Projection-based tMOR
- Procedure

3. Straightforward approaches for LTV-MOR

- Special cases: Moving Loads, Moving Sensors, Moving Loads + Sensors
- Numerical example: Timoshenko beam with moving load / moving sensor

4. Summary and Outlook

- Discussion

Systems with Moving Loads

gearing wheels

bridge with moving vehicles

cable railways

circular milling machine

Systems with Moving Loads

- Applications: structural dynamics, multibody systems, turning/milling processes
- Position of the load varies over time
- Moving load causes time-varying dynamic behaviour

Moving Loads
$\mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t)$ $\mathbf{y}(t)=\mathbf{C x}(t)$ $\mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n}$ $\mathbf{B}(t) \in \mathbb{R}^{n \times m}, \mathbf{C} \in \mathbb{R}^{q \times n}$
Moving Sensors
$\mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t)$ $\mathbf{y}(t)=\mathbf{C}(t) \mathbf{x}(t)$ $\mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n}$ $\mathbf{B} \in \mathbb{R}^{n \times m}, \mathbf{C}(t) \in \mathbb{R}^{q \times n}$

Linear time-varying (LTV) system

$$
\begin{aligned}
& \mathbf{E}(t) \dot{\mathbf{x}}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) \\
& \mathbf{y}(t)=\mathbf{C}(t) \mathbf{x}(t) \\
& \mathbf{E}(t), \mathbf{A}(t) \in \mathbb{R}^{n \times n} \\
& \mathbf{B}(t) \in \mathbb{R}^{n \times m}, \mathbf{C}(t) \in \mathbb{R}^{q \times n}
\end{aligned}
$$

Reduction of Systems with Moving Loads

LTV System

$$
\begin{aligned}
\mathbf{E}(t) \dot{\mathbf{x}}(t) & =\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) \\
\mathbf{y}(t) & =\mathbf{C}(t) \mathbf{x}(t)
\end{aligned}
$$

Balanced Truncation

for LTV systems
[Shokoohi '83, Sandberg '04]

- Solution of two LyapunovDifferential Equations (LDE)
- high storage and computational effort

Two-step approach [Stykel/Vasilyev '15]
I) Low-rank approximation of the input matrix
II) Application of LTI-MOR (BT, Krylov)

Some straightforward

 approaches[Cruz/Lohmann]

Switched Linear System

$$
\begin{aligned}
\mathbf{E}_{\alpha} \dot{\mathbf{x}}(t) & =\mathbf{A}_{\alpha} \mathbf{x}(t)+\mathbf{B}_{\alpha} \mathbf{u}(t) \\
\mathbf{y}(t) & =\mathbf{C}_{\alpha} \mathbf{x}(t)
\end{aligned}
$$

Switched Linear System + BT
 [Lang et al. '14]

- Representation as switched linear system
- Application of BT for each subsystem

LPV System

$$
\begin{aligned}
\mathbf{E}(\mathbf{p}(t)) \dot{\mathbf{x}}(t) & =\mathbf{A}(\mathbf{p}(t)) \mathbf{x}(t)+\mathbf{B}(\mathbf{p}(t)) \mathbf{u}(t) \\
\mathbf{y}(t) & =\mathbf{C}(\mathbf{p}(t)) \mathbf{x}(t)
\end{aligned}
$$

Parametric LTI system + IRKA
 [Lang et al. '14]

- Time-independ. parameter
- Concatenation of the local bases calculated by IRKA

Parametric LTI system + MatrInt
[Fischer '14, Fischer et al. '15]

- Time-independ. parameter
- Application of pMOR by Matrix Interpolation

LPV System + MatrInt
[Cruz/Geuss/Lohmann '15]

- Time-dependent parameter
- Adapted MatrInt with additional time-derivatives

Linear Time-Varying Model Order Reduction: tMOR

Linear time-varying (LTV) system

$$
\begin{aligned}
\mathbf{E}(t) \dot{\mathbf{x}}(t) & =\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) \quad \mathbf{x}(t) \in \mathbb{R}^{n} \\
\mathbf{y}(t) & =\mathbf{C}(t) \mathbf{x}(t)
\end{aligned}
$$

$r \ll n$

Approximation of the full state vector:
$\mathbf{x}(t)=\mathbf{V}(t) \mathbf{x}_{r}(t)+\mathbf{e}(t)$,
$\dot{\mathbf{x}}(t)=\dot{\mathbf{V}}(t) \mathbf{x}_{r}(t)+\mathbf{V}(t) \dot{\mathbf{x}}_{r}(t)+\dot{\mathbf{e}}(t)$

Petrov-Galerkin condition: $\mathbf{W}(t) \perp \boldsymbol{\epsilon}(t)$

$$
\begin{aligned}
\mathbf{W}(t)^{T} \cdot \mid \mathbf{E}(t) \mathbf{V}(t) \dot{\mathbf{x}}_{r}(t) & =(\mathbf{A}(t) \mathbf{V}(t)-\mathbf{E}(t) \dot{\mathbf{V}}(t)) \mathbf{x}_{r}(t)+\mathbf{B}(t) \mathbf{u}(t)+\boldsymbol{\epsilon}(t) \\
\mathbf{y}_{r} & =\mathbf{C}(t) \mathbf{V}(t) \mathbf{x}_{r}(t)
\end{aligned}
$$

Linear Time-Varying Model Order Reduction: tMOR

Linear time-varying (LTV) system

$$
\begin{aligned}
\mathbf{E}(t) \dot{\mathbf{x}}(t) & =\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) \quad \mathbf{x}(t) \in \mathbb{R}^{n} \\
\mathbf{y}(t) & =\mathbf{C}(t) \mathbf{x}(t)
\end{aligned}
$$

Approximation of the full state vector:
$\mathbf{x}(t)=\mathbf{V}(t) \mathbf{x}_{r}(t)+\mathbf{e}(t)$,
$\dot{\mathbf{x}}(t)=\dot{\mathbf{V}}(t) \mathbf{x}_{r}(t)+\mathbf{V}(t) \dot{\mathbf{x}}_{r}(t)+\dot{\mathbf{e}}(t)$

Petrov-Galerkin condition: $\mathbf{W}(t) \perp \boldsymbol{\epsilon}(t)$

$$
\begin{aligned}
\overbrace{\mathbf{W}(t)^{T} \mathbf{E}(t) \mathbf{V}(t)}^{\mathbf{E}_{r}(t)} \dot{\mathbf{x}}_{r}(t) & =(\overbrace{\mathbf{W}(t)^{T} \mathbf{A}(t) \mathbf{V}(t)}^{\mathbf{A}_{r}(t)}-\mathbf{W}(t)^{T} \mathbf{E}(t) \dot{\mathbf{V}}(t)) \mathbf{x}_{r}(t)+\overbrace{\mathbf{W}(t)^{T} \mathbf{B}(t)}^{\mathbf{B}_{r}(t)} \mathbf{u}(t) \\
\mathbf{y}_{r}(t) & =\underbrace{\mathbf{C}(t) \mathbf{V}(t)}_{\mathbf{C}_{r}(t)} \mathbf{x}_{r}(t)
\end{aligned}
$$

Linear Time-Varying Model Order Reduction: tMOR

Linear time-varying (LTV) system

$$
\begin{aligned}
\mathbf{E}(t) \dot{\mathbf{x}}(t) & =\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) \quad \mathbf{x}(t) \in \mathbb{R}^{n} \\
\mathbf{y}(t) & =\mathbf{C}(t) \mathbf{x}(t)
\end{aligned}
$$

Approximation of the full state vector:
$\mathbf{x}(t)=\mathbf{V}(t) \mathbf{x}_{r}(t)+\mathbf{e}(t)$,
$\dot{\mathbf{x}}(t)=\dot{\mathbf{V}}(t) \mathbf{x}_{r}(t)+\mathbf{V}(t) \dot{\mathbf{x}}_{r}(t)+\dot{\mathbf{e}}(t)$

Petrov-Galerkin condition: $\mathbf{W}(t) \perp \boldsymbol{\epsilon}(t)$

Linear time-varying reduced order model

$$
\begin{aligned}
& \mathbf{E}_{r}(t) \dot{\mathbf{x}}_{r}(t)=\left(\mathbf{A}_{r}(t)-\mathbf{W}(t)^{T} \mathbf{E}(t) \dot{\mathbf{V}}(t)\right) \mathbf{x}_{r}(t)+\mathbf{B}_{r}(t) \mathbf{u}(t) \\
& \mathbf{y}_{r}(t)=\mathbf{C}_{r}(t) \mathbf{x}_{r}(t) \\
& \mathbf{E}_{r}(t)=\mathbf{W}(t)^{T} \mathbf{E}(t) \mathbf{V}(t), \quad \mathbf{A}_{r}(t)=\mathbf{W}(t)^{T} \mathbf{A}(t) \mathbf{V}(t) \\
& \mathbf{B}_{r}(t)=\mathbf{W}(t)^{T} \mathbf{B}(t), \\
& \mathbf{C}_{r}(t)=\mathbf{C}(t) \mathbf{V}(t)
\end{aligned}
$$

Linear Time-Varying Model Order Reduction: tMOR

Linear time-varying (LTV) system

$$
\begin{aligned}
\mathbf{E}(t) \dot{\mathbf{x}}(t) & =\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) \quad \mathbf{x}(t) \in \mathbb{R}^{n} \\
\mathbf{y}(t) & =\mathbf{C}(t) \mathbf{x}(t)
\end{aligned}
$$

Approximation of the full state vector:
$\mathbf{x}(t)=\mathbf{V}(t) \mathbf{x}_{r}(t)+\mathbf{e}(t)$,
$\dot{\mathbf{x}}(t)=\dot{\mathbf{V}}(t) \mathbf{x}_{r}(t)+\mathbf{V}(t) \dot{\mathbf{x}}_{r}(t)+\dot{\mathbf{e}}(t)$

Petrov-Galerkin condition: $\mathbf{W}(t) \perp \boldsymbol{\epsilon}(t)$

Linear time-varying reduced order model

$$
\begin{aligned}
\mathbf{E}_{r}(t) \dot{\mathbf{x}}_{r}(t) & =\left(\mathbf{A}_{r}(t)-\mathbf{W}(t)^{T} \mathbf{E}(t) \dot{\mathbf{V}}(t)\right) \mathbf{x}_{r}(t)+\mathbf{B}_{r}(t) \mathbf{u}(t) \\
\mathbf{y}_{r}(t) & =\mathbf{C}_{r}(t) \mathbf{x}_{r}(t)
\end{aligned}
$$

$$
\mathbf{E}_{r}(t)=\mathbf{W}(t)^{T} \mathbf{E}(t) \mathbf{V}(t), \quad \mathbf{A}_{r}(t)=\mathbf{W}(t)^{T} \mathbf{A}(t) \mathbf{V}(t)
$$

Problem: How to deal with the additional timederivative term?

$$
\mathbf{B}_{r}(t)=\mathbf{W}(t)^{T} \mathbf{B}(t)
$$

$$
\mathbf{C}_{r}(t)=\mathbf{C}(t) \mathbf{V}(t)
$$

Straightforward approaches for LTV-MOR: Moving Loads

Moving Loads

$\mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t)$
$\mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n}$
$\mathbf{x}(t) \in \mathbb{R}^{n}$
$\mathbf{y}(t)=\mathbf{C x}(t)$
$\mathbf{B}(t) \in \mathbb{R}^{n \times m}, \mathbf{C} \in \mathbb{R}^{q \times n}$
$\mathbf{u}(t) \in \mathbb{R}^{m}$

Approach 1: Similar to Two-step approach [Stykel/Vasilyev '15]

Main idea:

(1) Shift the time-variability of $\mathbf{B}(t)$ to the input variables: $\underset{(\mathrm{n}, \mathrm{m})}{\mathbf{B}(t)} \underset{(\mathrm{n}, \mathrm{N})(\mathrm{N}, \mathrm{m})}{\mathbf{B}} \underset{\sim}{\tilde{\mathbf{u}}}(t)$

$$
\begin{aligned}
\mathbf{E} \dot{\mathbf{x}}(t) & =\mathbf{A} \mathbf{x}(t)+\mathbf{B} \overbrace{\tilde{\mathbf{B}}(t) \mathbf{u}(t)}^{\tilde{\mathbf{u}}(t)} \quad N: \text { finite elements } \\
\mathbf{y}(t) & =\mathbf{C} \mathbf{x}(t)
\end{aligned}
$$

(2) Perform model order reduction with the resulting MIMO LTI-system ($\mathbf{E}, \mathbf{A}, \mathbf{B}, \mathbf{C}$) :
MIMO LTI-MOR

- BT
- MIMO RK
- MIMO IRKA

$$
\begin{aligned}
& \overbrace{\mathbf{W}^{T} \mathbf{E V}}^{\mathbf{E}_{r}}(t)=\overbrace{\mathbf{W}^{T} \mathbf{A V}}^{\mathbf{x}_{r}(t)} \\
& \mathbf{y}_{r}(t)=\overbrace{\underbrace{\mathbf{C V}}_{\mathbf{C}_{r}} \mathbf{x}_{r}(t)}^{\mathbf{A}_{r} \mathbf{B}} \overbrace{\tilde{\mathbf{B}}(t) \mathbf{u}(t)}^{\mathbf{B}_{r}} \\
& \tilde{\mathbf{u}}(t)
\end{aligned}
$$

Straightforward approaches for LTV-MOR: Moving Loads

Moving Loads

$\mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t)$
$\mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n}$
$\mathbf{x}(t) \in \mathbb{R}^{n}$
$\mathbf{y}(t)=\mathbf{C x}(t)$
$\mathbf{B}(t) \in \mathbb{R}^{n \times m}, \mathbf{C} \in \mathbb{R}^{q \times n}$
$\mathbf{u}(t) \in \mathbb{R}^{m}$

Approach 2: One-sided projection with output Krylov subspace [Cruz/Lohmann] Main idea:

Since an input Krylov subspace would yield a time-varying projection matrix

$$
\mathbf{V}(t):=\left[\begin{array}{llll}
\mathbf{A}_{s_{0}}^{-1} \mathrm{~B}(t) & \mathbf{A}_{s_{0}}^{-1} \mathbf{E} \mathbf{A}_{s_{0}}^{-1} \mathbf{B}(t) & \ldots & \left(\mathbf{A}_{s_{0}}^{-1} \mathbf{E}\right)^{r-1} \mathbf{A}_{s_{0}}^{-1} \mathrm{~B}(t)
\end{array}\right]
$$

perform a one-sided projection $\mathbf{V}=\mathbf{W}$ with an output Krylov subspace:

$$
\mathbf{W}:=\left[\begin{array}{llll}
\mathbf{A}_{s_{0}}^{-T} \mathbf{C}^{T} & \mathbf{A}_{s_{0}}^{-T} \mathbf{E}^{T} \mathbf{A}_{s_{0}}^{-T} \mathbf{C}^{T} & \ldots & \left(\mathbf{A}_{s_{0}}^{-T} \mathbf{E}^{T}\right)^{r-1} \mathbf{A}_{s_{0}}^{-T} \mathbf{C}^{T}
\end{array}\right]
$$

Reduced order model:

$$
\mathbf{A}_{s_{0}}=\mathbf{A}-s_{0} \mathbf{E}
$$

$$
\begin{aligned}
\overbrace{\mathbf{W}^{T} \mathbf{E W}}^{\mathbf{E}_{r}} \dot{\mathbf{x}}_{r}(t) & =\overbrace{\mathbf{W}^{T} \mathbf{A W}}^{\mathbf{A}_{r}} \mathbf{x}_{r}(t)+\overbrace{\mathbf{W}^{T} \mathbf{B}(t)}^{\mathbf{B}_{r}(t)} \mathbf{u}(t) \\
\mathbf{y}_{r}(t) & =\underbrace{\mathbf{C W}}_{\mathbf{C}_{r}} \mathbf{x}_{r}(t)
\end{aligned}
$$

Straightforward approaches for LTV-MOR: Moving Sensors

Moving Sensors

$\mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B} \mathbf{u}(t)$
$\mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n}$
$\mathbf{x}(t) \in \mathbb{R}^{n}$
$\mathbf{y}(t)=\mathbf{C}(t) \mathbf{x}(t)$
$\mathbf{B} \in \mathbb{R}^{n \times m}, \mathbf{C}(t) \in \mathbb{R}^{q \times n}$
$\mathbf{y}(t) \in \mathbb{R}^{q}$

Approach 1: Similar to Two-step approach [Stykel/Vasilyev '15]
Main idea:
(1) Shift the time-variability of $\mathbf{C}(t)$ to the output variables: $\underset{(\mathrm{q}, \mathrm{n})}{\mathbf{C}(t)} \underset{(\mathrm{q}, \mathrm{N})}{\tilde{\mathbf{C}}}(\mathrm{N}, \mathrm{n}, \underset{\mathrm{n}}{\mathbf{C}}$

$$
\mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B} \mathbf{u}(t)
$$

$$
\mathbf{y}(t)=\tilde{\mathbf{C}}(t) \mathbf{C} \mathbf{x}(t) \quad N: \text { finite elements }
$$

(2) Perform model order reduction with the resulting MIMO LTI-system $(\mathbf{E}, \mathbf{A}, \mathbf{B}, \mathbf{C})$:

MIMO LTI-MOR

- BT
- MIMO RK
- MIMO IRKA

$$
\overbrace{\mathbf{W}^{T} \mathbf{E V}}^{\mathbf{E}_{r}} \dot{\mathbf{x}}_{r}(t)=\overbrace{\mathbf{W}^{T} \mathbf{A V}}^{\mathbf{A}_{r}}(t)+\overbrace{\mathbf{W}^{T} \mathbf{B}}^{\mathbf{B}_{r}} \mathbf{u}(t)
$$

$$
\mathbf{y}_{r}(t)=\tilde{\mathbf{C}}(t) \underbrace{\underbrace{\mathbf{C V}}_{\mathbf{C}_{r}} \mathbf{x}_{r}(t)}_{\tilde{\mathbf{y}}_{r}(t)}
$$

Straightforward approaches for LTV-MOR: Moving Sensors

Moving Sensors

$\mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathrm{B} \mathbf{u}(t)$
$\mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n}$
$\mathbf{x}(t) \in \mathbb{R}^{n}$
$\mathbf{y}(t)=\mathbf{C}(t) \mathbf{x}(t)$
$\mathbf{B} \in \mathbb{R}^{n \times m}, \mathbf{C}(t) \in \mathbb{R}^{q \times n}$
$\mathbf{y}(t) \in \mathbb{R}^{q}$

Approach 2: One-sided projection with input Krylov subspace [Cruz/Lohmann] Main idea:

Since an output Krylov subspace would yield a time-varying projection matrix

$$
\mathbf{W}(t):=\left[\begin{array}{llll}
\mathbf{A}_{s_{0}}^{-T} \mathbf{C}(t)^{T} & \mathbf{A}_{s_{0}}^{-T} \mathbf{E}^{T} \mathbf{A}_{s_{0}}^{-T} \mathbf{C}(t)^{T} & \ldots & \left(\mathbf{A}_{s_{0}}^{-T} \mathbf{E}^{T}\right)^{r-1} \mathbf{A}_{s_{0}}^{-T} \mathbf{C}(t)^{T}
\end{array}\right],
$$

perform a one-sided projection $\mathbf{W}=\mathbf{V}$ with an input Krylov subspace:

$$
\mathbf{V}:=\left[\begin{array}{llll}
\mathbf{A}_{s_{0}}^{-1} \mathrm{~B} & \mathbf{A}_{s_{0}}^{-1} \mathbf{E} \mathbf{A}_{s_{0}}^{-1} \mathrm{~B} & \ldots & \left(\mathbf{A}_{s_{0}}^{-1} \mathbf{E}\right)^{r-1} \mathbf{A}_{s_{0}}^{-1} \mathrm{~B}
\end{array}\right] .
$$

Reduced order model:

$$
\mathbf{A}_{s_{0}}=\mathbf{A}-s_{0} \mathbf{E}
$$

$$
\begin{aligned}
\overbrace{\mathbf{V}^{T} \mathbf{E V}}^{\mathbf{E}_{r}} \dot{\mathbf{x}}_{r}(t) & =\overbrace{\mathbf{V}^{T} \mathbf{A V}}^{\mathbf{A}_{r}} \mathbf{x}_{r}(t)+\overbrace{\mathbf{V}^{T} \mathbf{B}}^{\mathbf{B}_{r}} \mathbf{u}(t) \\
\mathbf{y}_{r}(t) & =\underbrace{\mathbf{C}(t) \mathbf{V}}_{\mathbf{C}_{r}(t)} \mathbf{x}_{r}(t)
\end{aligned}
$$

Straightforward approaches for LTV-MOR: Combined case

Moving Loads + Sensors
$\mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t)$
$\mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n}$
$\mathbf{x}(t) \in \mathbb{R}^{n}$
$\mathbf{y}(t)=\mathbf{C}(t) \mathbf{x}(t)$
$\mathbf{B}(t) \in \mathbb{R}^{n \times m}, \mathbf{C}(t) \in \mathbb{R}^{q \times n}$
$\mathbf{u}(t) \in \mathbb{R}^{m}, \mathbf{y}(t) \in \mathbb{R}^{q}$

Approach 1: Two-step approach can be pursued without problems

Main idea:

(1) Shift time-variability of $\mathbf{B}(t)$ and $\mathbf{C}(t)$:

$$
\mathbf{E} \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B} \tilde{\mathbf{B}}(t) \mathbf{u}(t)
$$

$$
\begin{aligned}
& \underset{(\mathrm{n}, \mathrm{~m})}{\mathrm{B}}(t)=\underset{(\mathrm{n}, \mathrm{~N})}{\mathbf{B} \underset{(\mathrm{N}, \mathrm{~m})}{\tilde{\mathbf{B}}}(t)} \\
& \underset{(\mathrm{q}, \mathrm{n})}{\mathbf{C}(t)}=\underset{(\mathrm{q}, \mathrm{~N})}{\tilde{\mathbf{C}}(t)} \mathbf{(\mathrm { N } , \mathrm { n })}
\end{aligned}
$$

(2) Perform model order reduction with the resulting MIMO LTI-system ($\mathbf{E}, \mathbf{A}, \mathbf{B}, \mathbf{C}$):

MIMO LTI-MOR

- BT
- MIMO RK
- MIMO IRKA

$$
\mathbf{y}_{r}(t)=\tilde{\mathbf{C}}(t) \underbrace{\underbrace{\mathbf{C V}}_{\mathbf{C}_{r}} \mathbf{x}_{r}(t)}_{\tilde{\mathbf{y}}_{r}(t)}
$$

Straightforward approaches for LTV-MOR: Combined case

Moving Loads + Sensors

$$
\begin{array}{rlrl}
\mathbf{E} \dot{\mathbf{x}}(t) & =\mathbf{A} \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) & & \mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n} \\
\mathbf{y}(t) & =\mathbf{C}(t) \mathbf{x}(t) & & \mathbf{x}(t) \in \mathbb{R}^{n} \\
\mathbf{B}(t) \in \mathbb{R}^{n \times m}, \mathbf{C}(t) \in \mathbb{R}^{q \times n} & & \mathbf{u}(t) \in \mathbb{R}^{m}, \mathbf{y}(t) \in \mathbb{R}^{q}
\end{array}
$$

Approach 2: One-sided projection would yield time-varying projection matrices!
Main idea:
Input Krylov subspace would yield a time-varying projection matrix:

$$
\mathbf{V}(t):=\left[\begin{array}{llll}
\mathbf{A}_{s_{0}}^{-1} \mathrm{~B}(t) & \mathbf{A}_{s_{0}}^{-1} \mathbf{E} \mathbf{A}_{s_{0}}^{-1} \mathrm{~B}(t) & \ldots & \left(\mathbf{A}_{s_{0}}^{-1} \mathbf{E}\right)^{r-1} \mathbf{A}_{s_{0}}^{-1} \mathrm{~B}(t)
\end{array}\right]
$$

Output Krylov subspace would yield a time-varying projection matrix:

$$
\mathbf{W}(t):=\left[\begin{array}{llll}
\mathbf{A}_{s_{0}}^{-T} \mathbf{C}(t)^{T} & \mathbf{A}_{s_{0}}^{-T} \mathbf{E}^{T} \mathbf{A}_{s_{0}}^{-T} \mathbf{C}(t)^{T} & \ldots & \left(\mathbf{A}_{s_{0}}^{-T} \mathbf{E}^{T}\right)^{r-1} \mathbf{A}_{s_{0}}^{-T} \mathbf{C}(t)^{T}
\end{array}\right]
$$

4

Numerical example: Timoshenko beam with moving load

Parameters of the beam
Length: L
Height: h
Thickness: t
Density of material: ρ
Mass: m
Young's modulus: E
Poisson‘s ratio: ν
Shear modulus: G

- Moving load position causes time-varying behaviour
- Spatial discretization with finite element method (FEM)

N finite elements with length $l=\frac{L}{N}$

Numerical example: Timoshenko beam with moving load

[Panzer et al. '09]
N : finite elements
Interpolation of the input vector:

$$
\hat{\mathbf{b}}(t)=\sum_{i=1}^{N} \omega_{i}(t) \hat{\mathbf{b}}_{i}
$$

LTV first-order model:
 $y(t)=\underbrace{\left[\begin{array}{ll}\hat{\mathbf{c}}^{T} & \mathbf{0}^{T}\end{array}\right]}_{\mathbf{c}^{T}} \underbrace{\left[\begin{array}{l}\mathbf{z} \\ \mathbf{z}\end{array}\right]}_{\mathbf{x}}(t)$
with:
$\mathbf{M}, \mathbf{D}, \mathbf{K} \in \mathbb{R}^{6 N \times 6 N}, \hat{\mathbf{c}}^{T}=-\hat{\mathbf{b}}_{N}^{T} \in \mathbb{R}^{1 \times 6 N}$
$\mathbf{F}=\mathbf{I}$ chosen
$\mathbf{E}, \mathbf{A} \in \mathbb{R}^{2 \cdot 6 N \times 2 \cdot 6 N}, \mathbf{c}^{T} \in \mathbb{R}^{1 \times 2 \cdot 6 N}$
Original order: $2 \cdot 6 \mathrm{~N}$

Numerical example: Timoshenko beam with moving load

Timoshenko beam with moving load: Approach 1

Reduction using Balanced Truncation

Length of the beam	$\mathrm{L}=1 \mathrm{~m}$
Load amplitude	$\mathrm{F}(\mathrm{t})=20 \mathrm{~N}$
Velocity of the moving load	$\mathrm{v}=5 \mathrm{~m} / \mathrm{s}$
Number of finite elements	$\mathrm{N}=151$
Original order	$\mathrm{n}=1812$
Reduced order	$\mathrm{r}=10$
Simulation with "Isim"	$\mathrm{dt}=0.001 \mathrm{~s}$

- Reduced order model obtained with two-step approach and Balanced Truncation yields good results in this case.
- Truncation of B and subsequent MOR can still yield good results.

Error TBR: $\left\|y-y_{\text {TBR }}\right\|_{\mathcal{L}_{2}}^{2}=4.53 \cdot 10^{-5}$
Error Modal: $\left\|y-y_{\text {modal }}\right\| \|_{\mathcal{L}_{2}}^{2}=2.78 \cdot 10^{-4}$
Truncation of \mathbf{B} : $\mathbf{B}_{\text {trunc }} \in \mathbb{R}^{1812 \times 76}$
Error: $\left\|y-y_{\text {truncTBR }}\right\|_{\mathcal{L}_{2}}^{2}=1.86 \cdot 10^{-3}$

Timoshenko beam with moving load: Approach 2

Reduction with output Krylov subspace

$$
\begin{aligned}
\mathbf{W} & :=\left[\begin{array}{llll}
\mathbf{A}_{s_{0}}^{-T} \mathbf{c}^{T} & \mathbf{A}_{s_{0}}^{-T} \mathbf{E}^{T} \mathbf{A}_{s_{0}}^{-T} \mathbf{c}^{T} & \ldots & \left(\mathbf{A}_{s_{0}}^{-T} \mathbf{E}^{T}\right)^{r-1} \mathbf{A}_{s_{0}}^{-T} \mathbf{c}^{T}
\end{array}\right] \\
\mathbf{V} & =\mathbf{W} \Rightarrow \text { Time-independent projection matrices } \quad \Rightarrow \dot{\mathbf{V}}=\mathbf{0}
\end{aligned}
$$

Reduced order model obtained with output Krylov subspace (ROM W) yields good results for the case of moving loads

Timoshenko beam with moving load + sensor: Approach 1

Reduction using Balanced Truncation

Length of the beam	$\mathrm{L}=1 \mathrm{~m}$
Load amplitude	$\mathrm{F}(\mathrm{t})=20 \mathrm{~N}$
Velocity of moving load \& sensor	$\mathrm{v}=5 \mathrm{~m} / \mathrm{s}$
Number of finite elements	$\mathrm{N}=151$
Original order	$\mathrm{n}=1812$
Reduced order	$\mathrm{r}=10$
Simulation with "Isim"	$\mathrm{dt}=0.001 \mathrm{~s}$

- Reduced order model obtained with two-step approach and Balanced Truncation yields good results in this case.
- Truncation of B, C and subsequent MOR can still yield good results.

Error TBR: $\left\|y-y_{\mathrm{TBR}}\right\|_{\mathcal{L}_{2}}^{2}=4.63 \cdot 10^{-5}$
Error Modal: $\left\|y-y_{\text {modal }}\right\| \|_{\mathcal{L}_{2}}^{2}=2.34 \cdot 10^{-4}$
Truncation of \mathbf{B} and \mathbf{C} :
Error: $\left\|y-y_{\text {truncTBR }}\right\|_{\mathcal{L}_{2}}^{2}=4.63 \cdot 10^{-5}$

Summary and Outlook

Summary:

- Goal: Reduction of high dimensional LTV systems (e.g. systems with moving load)
- Projection-based tMOR for the reduction of LTV systems
- Some straightforward approaches for special cases
- Two-step approach
- Reduction with input/output Krylov subspace for moving sensor/moving load
- Application of straightforward approaches to Timoshenko beam with moving load and/or sensor

Outlook:

- Application of two-step approach with other MIMO LTI-MOR techniques (e.g. MIMO-RK, MIMO-IRKA)
- Further development of the matrix interpolation for the reduction of LPV systems and investigation of the influence of the additional time-derivative terms

References (I)

[Amsallem '08]	D. Amsallem and C. Farhat. An interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA Journal, 46(7):1803-1813, 2008.
[Amsallem '11]	D. Amsallem and C. Farhat. An online method for interpolating linear parametric reduced-order models. SIAM Journal on Scientific Computing, 33(5):2169-2198, 2011.
[Baur '09]	U. Baur and P. Benner. Model reduction for parametric systems using balanced truncation and interpolation. at-Automatisierungstechnik, 57(8):411-419, 2009.
[Baur et al. '11]	U. Baur, C. Beattie, P. Benner and S. Gugercin. Interpolatory projection methods for parameterized model reduction. SIAM Journal on Scientific Computing, 33(5):2489-2518, 2011.
[Benner et al. '13]	P. Benner, S. Gugercin and K. Willcox. A survey of model reduction methods for parametric systems. Preprint MPIMD/13-14, Max Planck Institute Magdeburg, 2013.
[Fruz/Geuss/Loh.'15] M. Cruz Varona, M. Geuss and B. Lohmann. Zeitvariante parametrische Modellordnungsreduktion am	
Beispiel von Systemen mit wandernder Last. In: G. Roppenecker / B. Lohmann (Hrsg.): Methoden und	
Anwendungen der Regelungstechnik. Shaker-Verlag, 2015.	

References (II)

$\left.\begin{array}{ll}\text { [Geuss et al. '15] } & \begin{array}{l}\text { M. Geuss, B. Lohmann, B. Peherstorfer and K. Willcox. A black-box method for parametric model order } \\ \text { reduction. In F. Breitenecker, A. Kugi and I. Troch (eds.), 8th MATHMOD, 127-128, 2015. }\end{array} \\ \text { [Lang et al. '14] } & \begin{array}{l}\text { N. Lang, J. Saak and P. Benner. Model order reduction for systems with moving loads. at-Automatisie- } \\ \text { rungstechnik, 62(7):512-522, 2014. }\end{array} \\ \text { [Lohmann/Eid '09] } & \begin{array}{l}\text { B. Lohmann and R. Eid. Efficient order reduction of parametric and nonlinear models by superposition of } \\ \text { locally reduced models. In Methoden und Anwendungen der Regelungstechnik - Erlangen-Münchener } \\ \text { Workshops 2007 und 2008, 2009. }\end{array} \\ \text { [Panzer et al. '09] } & \begin{array}{l}\text { H. Panzer, J. Hubele, R. Eid and B. Lohmann. Generating a parametric finite element model of a 3D } \\ \text { cantilever Timoshenko beam using MATLAB. Technical reports on automatic control (Vol. TRAC-4), } \\ \text { Lehrstuhl für Regelungstechnik, Technische Universität München, 2009. }\end{array} \\ \text { [Panzer et al. '10] } & \begin{array}{l}\text { H. Panzer, J. Mohring, R. Eid and B. Lohmann. Parametric model order reduction by matrix interpolation. } \\ \text { at-Automatisierungstechnik, 58(8):475-484, 2010. }\end{array} \\ \text { [Rewienski/White '03] M. Rewienski and J. White. A trajectory piecewise-linear approach to model order reduction and fast } \\ \text { simulation of nonlinear circuits and micromachined devices. IEEE Transactions on Computer-Aided }\end{array}\right\}$

Model Order Reduction of

Linear Time-Varying Systems:
Some straightforward approaches

MOR 4 MEMS 2015
Karlsruhe, 18th November 2015

Thank you for your attention

Maria Cruz Varona, Boris Lohmann
Chair of Automatic Control, Technische Universität München maria.cruz@tum.de

Backup

Part II

Parametric Model Order Reduction

pMOR by Matrix Interpolation

Properties:

- Local pMOR approach
- Analytical expression of the parameter-dependency in general not available
- Model only available at certain parameter sample points

Main idea:

(1) Individual reduction of each local model
(2) Transformation of the local reduced models
(3) Interpolation of the reduced matrices

Advantages

- No analytically expressed parameter-dependency required
- Any desired MOR technique applicable for the local reduction
- Offline/Online decomposition
- Reduced order independent of the number of local models

Drawbacks

- Choice of degrees of freedom
- Parameter sample points
- Interpolation method
- Stability preservation
- Error bounds

pMOR by Matrix Interpolation

Procedure

$$
\begin{aligned}
\mathbf{E}_{r, 1} \dot{\mathbf{x}}_{r, 1} & =\mathbf{A}_{r, 1} \mathbf{x}_{r, 1}+\mathbf{B}_{r, 1} \mathbf{u} \\
\mathbf{y}_{r, 1} & =\mathbf{C}_{r, 1} \mathbf{x}_{r, 1}
\end{aligned}
$$

p

$$
\begin{aligned}
\mathbf{E}_{r, 2} \dot{\mathbf{x}}_{r, 2} & =\mathbf{A}_{r, 2} \mathbf{x}_{r, 2}+\mathbf{B}_{r, 2} \mathbf{u} \\
\mathbf{y}_{r, 2} & =\mathbf{C}_{r, 2} \mathbf{x}_{r, 2}
\end{aligned}
$$

1.) Individual reduction

$$
\begin{array}{rlll}
\mathbf{E}_{r, i} \dot{\mathbf{x}}_{r, i}(t) & =\mathbf{A}_{r, i} \mathbf{x}_{r, i}(t)+\mathbf{B}_{r, i} \mathbf{u}(t) & \mathbf{E}_{r, i}=\mathbf{W}_{i}^{T} \mathbf{E}_{i} \mathbf{V}_{i}, & \mathbf{A}_{r, i}=\mathbf{W}_{i}^{T} \mathbf{A}_{i} \mathbf{V}_{i} \\
\mathbf{y}_{r, i}(t) & =\mathbf{C}_{r, i} \mathbf{x}_{r, i}(t) & \mathbf{B}_{r, i}=\mathbf{W}_{i}^{T} \mathbf{B}_{i}, & \mathbf{C}_{r, i}=\mathbf{C}_{i} \mathbf{V}_{i}
\end{array}
$$

2.) Transformation to generalized coordinates

$$
\begin{aligned}
\mathbf{E}_{r, i} \mathbf{T}_{i} \dot{\hat{\mathbf{x}}}_{r, i}(t) & =\mathbf{A}_{r, i} \mathbf{T}_{i} \hat{\mathbf{x}}_{r, i}(t)+\mathbf{B}_{r, i} \mathbf{u}(t) \\
\mathbf{y}_{r, i}(t) & =\mathbf{C}_{r, i} \mathbf{T}_{i} \hat{\mathbf{x}}_{r, i}(t)
\end{aligned}
$$

How do we choose \mathbf{T}_{i} ?
Goal: Adjustment of the local bases \mathbf{V}_{i} to $\hat{\mathbf{V}}_{i}=\mathbf{V}_{i} \mathbf{T}_{i}$, in order to make the gen. coordinates $\hat{\mathbf{x}}_{r, i}$ compatible w.r.t. a reference subspace \mathbf{R}_{V}.

$$
\mathbf{x}_{r, i}=\mathbf{T}_{i} \hat{\mathbf{x}}_{r, i}
$$

$$
\begin{aligned}
& \mathbf{V}_{\text {all }}=\left[\mathbf{V}_{1}, \ldots, \mathbf{V}_{k}\right] \\
& \mathbf{V}_{\text {all }} \stackrel{\mathrm{SVD}_{=}^{=} \mathbf{U S N}^{T}}{ } \\
& \mathbf{R}_{V}=\mathbf{U}(:, 1: r)
\end{aligned}
$$

High
correlation $\hat{\mathbf{V}}_{i} \leftrightarrow \mathbf{R}_{V}:$
$\mathbf{T}_{i}^{T} \mathbf{V}_{i}^{T} \mathbf{R}_{V} \stackrel{!}{=} \mathbf{I}$

pMOR by Matrix Interpolation

Procedure

$$
\begin{aligned}
\mathbf{E}_{r, 1} \dot{\mathbf{x}}_{r, 1} & =\mathbf{A}_{r, 1} \mathbf{x}_{r, 1}+\mathbf{B}_{r, 1} \mathbf{u} \\
\mathbf{y}_{r, 1} & =\mathbf{C}_{r, 1} \mathbf{x}_{r, 1}
\end{aligned}
$$

$\mathbf{E}_{r, 2} \dot{\mathbf{x}}_{r, 2}=\mathbf{A}_{r, 2} \mathbf{x}_{r, 2}+\mathbf{B}_{r, 2} \mathbf{u}$
$\mathbf{y}_{r, 2}=\mathbf{C}_{r, 2} \mathbf{x}_{r, 2}$
1.) Individual reduction

$$
\begin{array}{rlll}
\mathbf{E}_{r, i} \dot{\mathbf{x}}_{r, i}(t) & =\mathbf{A}_{r, i} \mathbf{x}_{r, i}(t)+\mathbf{B}_{r, i} \mathbf{u}(t) & \mathbf{E}_{r, i}=\mathbf{W}_{i}^{T} \mathbf{E}_{i} \mathbf{V}_{i}, & \mathbf{A}_{r, i}=\mathbf{W}_{i}^{T} \mathbf{A}_{i} \mathbf{V}_{i} \\
\mathbf{y}_{r, i}(t) & =\mathbf{C}_{r, i} \mathbf{x}_{r, i}(t) & \mathbf{B}_{r, i}=\mathbf{W}_{i}^{T} \mathbf{B}_{i}, & \mathbf{C}_{r, i}=\mathbf{C}_{i} \mathbf{V}_{i}
\end{array}
$$

$\mathbf{p}_{i}, \quad i=1, \ldots, k$
$\mathbf{V}_{i}:=\mathbf{V}\left(\mathbf{p}_{i}\right)$
$\mathbf{W}_{i}:=\mathbf{W}\left(\mathbf{p}_{i}\right)$
2.) Transformation to generalized coordinates
\mathbf{M}_{i}^{T}.

$$
\begin{array}{rlr}
\overbrace{\mathbf{M}_{i}^{T} \mathbf{E}_{r, i} \mathbf{T}_{i}}^{\dot{\mathbf{x}}_{r, i}}(t) & =\overbrace{\mathbf{M}_{i}^{T} \mathbf{A}_{r, i} \mathbf{T}_{i}}^{\hat{\mathbf{E}}_{r, i}(t)+\overbrace{\mathbf{M}_{i}^{T} \mathbf{B}_{r, i}}^{\mathbf{\mathbf { A }}_{r, i}} \mathbf{u}(t)} & \hat{\mathbf{B}}_{r, i} \\
\mathbf{y}_{r, i}(t) & =\underbrace{\mathbf{C}_{r, i} \mathbf{T}_{i} \hat{\mathbf{x}}_{r, i}(t)}_{\hat{\mathbf{C}}_{r, i}} & \mathbf{T}_{i}=\left(\mathbf{R}_{V}^{T} \mathbf{V}_{i}\right)^{-1} \\
\mathbf{M}_{i}=\left(\mathbf{R}_{W}^{T} \mathbf{W}_{i}\right)^{-1}
\end{array}
$$

$$
\mathbf{x}_{r, i}=\mathbf{T}_{i} \hat{\mathbf{x}}_{r, i}
$$

> Analogous
> to \mathbf{R}_{V} or
> $\mathbf{R}_{W}=\mathbf{R}_{V}:=\mathbf{R}$

How do we choose \mathbf{M}_{i} ?
Goal: Adjustment of the local bases \mathbf{W}_{i} to $\hat{\mathbf{W}}_{i}=\mathbf{W}_{i} \mathbf{M}_{i}$, in order to describe the local reduced models w.r.t. the

High correlation $\hat{\mathbf{W}}_{i} \leftrightarrow \mathbf{R}_{W}:$
$\mathbf{M}_{i}^{T} \mathbf{W}_{i}^{T} \mathbf{R}_{W} \stackrel{!}{=} \mathbf{I}$ same reference basis \mathbf{R}_{W}.

pMOR by Matrix Interpolation

1.) Individual reduction

$$
\begin{array}{rlll}
\mathbf{E}_{r, i} \dot{\mathbf{x}}_{r, i}(t) & =\mathbf{A}_{r, i} \mathbf{x}_{r, i}(t)+\mathbf{B}_{r, i} \mathbf{u}(t) & \mathbf{E}_{r, i}=\mathbf{W}_{i}^{T} \mathbf{E}_{i} \mathbf{V}_{i}, & \mathbf{A}_{r, i}=\mathbf{W}_{i}^{T} \mathbf{A}_{i} \mathbf{V}_{i} \\
\mathbf{y}_{r, i}(t) & =\mathbf{C}_{r, i} \mathbf{x}_{r, i}(t) & \mathbf{B}_{r, i}=\mathbf{W}_{i}^{T} \mathbf{B}_{i}, & \mathbf{C}_{r, i}=\mathbf{C}_{i} \mathbf{V}_{i}
\end{array}
$$

$$
\begin{aligned}
& \mathbf{p}_{i}, \quad i=1, \ldots, k \\
& \mathbf{V}_{i}:=\mathbf{V}\left(\mathbf{p}_{i}\right) \\
& \mathbf{W}_{i}:=\mathbf{W}\left(\mathbf{p}_{i}\right)
\end{aligned}
$$

2.) Transformation to generalized coordinates

$$
\mathbf{x}_{r, i}=\mathbf{T}_{i} \hat{\mathbf{x}}_{r, i}
$$

$$
\mathbf{M}_{i}^{T} \cdot
$$

$$
\begin{aligned}
& \begin{aligned}
\overbrace{\mathbf{M}_{i}^{T} \mathbf{E}_{r, i} \mathbf{T}_{i}}^{\hat{\mathbf{E}}_{r, i}} \dot{\mathbf{x}}_{r, i}(t) & =\overbrace{\mathbf{M}_{i}^{T} \mathbf{A}_{r, i} \mathbf{T}_{i}}^{\mathbf{x}_{r, i}} \\
\mathbf{y}_{r, i}(t) & =\underbrace{\mathbf{C}_{r, i} \mathbf{T}_{i} \hat{\mathbf{x}}_{r, i}(t)}_{\hat{\mathbf{C}}_{r, i}}
\end{aligned} \\
& \mathbf{T}_{i}=\left(\mathbf{R}_{V}^{T} \mathbf{V}_{i}\right)^{-1} \\
& \mathbf{M}_{i}=\left(\mathbf{R}_{W}^{T} \mathbf{W}_{i}\right)^{-1} \\
& \mathbf{R}_{W}=\mathbf{R}_{V}:=\mathbf{R}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{V}_{\text {all }}=\left[\mathbf{V}_{1}, \ldots, \mathbf{V}_{k}\right] \\
& \mathbf{V}_{\text {all }} \stackrel{\text { SVD }}{=} \mathbf{U S N}^{T} \\
& \mathbf{R}_{V}=\mathbf{U}(:, 1: r)
\end{aligned}
$$

3.) Interpolation

$$
\begin{array}{ll}
\hat{\mathbf{E}}_{r}(\mathbf{p})=\sum_{i=1}^{k} \omega_{i}(\mathbf{p}) \hat{\mathbf{E}}_{r, i}, & \hat{\mathbf{A}}_{r}(\mathbf{p})=\sum_{i=1}^{k} \omega_{i}(\mathbf{p}) \hat{\mathbf{A}}_{r, i} \\
\hat{\mathbf{B}}_{r}(\mathbf{p})=\sum_{i=1}^{k} \omega_{i}(\mathbf{p}) \hat{\mathbf{B}}_{r, i}, & \hat{\mathbf{C}}_{r}(\mathbf{p})=\sum_{i=1}^{k} \omega_{i}(\mathbf{p}) \hat{\mathbf{C}}_{r, i}^{k}
\end{array} \quad \omega_{i=1}^{k}(\mathbf{p})=1
$$

Part III

Time-varying Parametric Model Order Reduction

Reduction of Systems with Moving Loads

Balanced Truncation for LTV systems

Linear time-varying system:

$$
\begin{aligned}
\mathbf{E}(t) \dot{\mathbf{x}}(t) & =\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) \\
\mathbf{y}(t) & =\mathbf{C}(t) \mathbf{x}(t)
\end{aligned}
$$

Solution of two Lyapunov-DE (LDE):
$\mathbf{A}(t) \mathbf{P}(t) \mathbf{E}(t)^{T}+\mathbf{E}(t) \mathbf{P}(t) \mathbf{A}(t)^{T}+\mathbf{B}(t) \mathbf{B}(t)^{T}=\dot{\mathbf{P}}(t)$

$$
\mathbf{P}\left(t_{0}\right)=\mathbf{0}
$$

$\mathbf{A}(t)^{T} \mathbf{Q}(t) \mathbf{E}(t)+\mathbf{E}(t)^{T} \mathbf{Q}(t) \mathbf{A}(t)+\mathbf{C}(t)^{T} \mathbf{C}(t)=\dot{\mathbf{Q}}(t)$

$$
\mathbf{Q}\left(t_{e}\right)=\mathbf{0}
$$

Two-step approach

I) Low-rank approximation: $\mathbf{B}(t) \approx \hat{\mathbf{B}} \mathbf{\Psi}(t)$

II) LTI-MOR: Reduction of the resulting LTI system with Rational Krylov, IRKA, BT, ...

Switched Linear System + BT
Switched linear system:

$$
\begin{aligned}
\mathbf{E}_{\alpha} \dot{\mathbf{x}}(t) & =\mathbf{A}_{\alpha} \mathbf{x}(t)+\mathbf{B}_{\alpha} \mathbf{u}(t) \\
\mathbf{y}(t) & =\mathbf{C}_{\alpha} \mathbf{x}(t)
\end{aligned}
$$

BT for each subsystem:
$\mathbf{A}_{\alpha} \mathbf{P}_{\alpha} \mathbf{E}_{\alpha}^{T}+\mathbf{E}_{\alpha} \mathbf{P}_{\alpha} \mathbf{A}_{\alpha}^{T}+\mathbf{B}_{\alpha} \mathbf{B}_{\alpha}^{T}=\mathbf{0} \Rightarrow \mathbf{V}_{\alpha}, \mathbf{W}_{\alpha}$
$\mathbf{A}_{\alpha}^{T} \mathbf{Q}_{\alpha} \mathbf{E}_{\alpha}+\mathbf{E}_{\alpha}^{T} \mathbf{Q}_{\alpha} \mathbf{A}_{\alpha}+\mathbf{C}_{\alpha}^{T} \mathbf{C}_{\alpha}=\mathbf{0}$
Model reduction: $\mathbf{E}_{r, \alpha}, \mathbf{A}_{r, \alpha}, \mathbf{B}_{r, \alpha}, \mathbf{C}_{r, \alpha}$

Parametric LTI system + pMOR

Global IRKA: $\quad \mathbf{E}_{i}, \mathbf{A}_{i}, \mathbf{B}_{i}, \mathbf{C}_{i}$

$$
\begin{aligned}
& \mathbf{V}_{i}:=\mathbf{V}\left(\mathbf{p}_{i}\right), \mathbf{W}_{i}:=\mathbf{W}\left(\mathbf{p}_{i}\right) \quad \mathbf{p}_{i}, i=1, \ldots, k \\
& \mathbf{V}=\left[\mathbf{V}_{1}, \ldots, \mathbf{V}_{k}\right], \mathbf{W}=\left[\mathbf{W}_{1}, \ldots, \mathbf{W}_{k}\right]
\end{aligned}
$$

Matrix Interpolation:
$\mathbf{V}_{i}:=\mathbf{V}\left(\mathbf{p}_{i}\right), \mathbf{W}_{i}:=\mathbf{W}\left(\mathbf{p}_{i}\right)$
$\mathbf{T}_{i}, \mathbf{M}_{i}$
Interpolation of reduced system matrices

Reduction of Moving Loads by Matrix Interpolation

Systems with Moving Loads:

- Location of the load varies with time
- Moving load is considered as time-dependent parameter

thin-walled cylinder
thermo-elastic machine stand
Timoshenko beam Linear parameter-varying (LPV) system:

$$
\begin{aligned}
\mathbf{E}(\mathbf{p}(t)) \dot{\mathbf{x}}(t) & =\mathbf{A}(\mathbf{p}(t)) \mathbf{x}(t)+\mathbf{B}(\mathbf{p}(t)) \mathbf{u}(t) & & \mathbf{p}(t) \in \mathcal{D} \subset \mathbb{R}^{d} \\
\mathbf{y}(t) & =\mathbf{C}(\mathbf{p}(t)) \mathbf{x}(t) & & \mathbf{x}(t) \in \mathbb{R}^{n}
\end{aligned}
$$

- System matrices explicitly depend on time-varying parameters
- Special class of linear time-varying (LTV) or nonlinear systems

Goal: Reduction of high dimensional LPV systems by matrix interpolation

Time-Varying Parametric Model Order Reduction: p(t)MOR

Linear parameter-varying (LPV) system

$$
\begin{aligned}
\mathbf{E}(\mathbf{p}(t)) \dot{\mathbf{x}} & =\mathbf{A}(\mathbf{p}(t)) \mathbf{x}+\mathbf{B}(\mathbf{p}(t)) \mathbf{u} & & \mathbf{p}(t) \in \mathcal{D} \subset \mathbb{R}^{d} \\
\mathbf{y} & =\mathbf{C}(\mathbf{p}(t)) \mathbf{x} & & \mathbf{x} \in \mathbb{R}^{n}
\end{aligned}
$$

Approximation of the full state vector:
$\mathbf{x}=\mathbf{V}(\mathbf{p}(t)) \mathbf{x}_{r}+\mathbf{e}$,
$\dot{\mathbf{x}}=\dot{\mathbf{V}}(\mathbf{p}(t)) \mathbf{x}_{r}+\mathbf{V}(\mathbf{p}(t)) \dot{\mathbf{x}}_{r}+\dot{\mathbf{e}}$

Petrov-Galerkin condition: $\mathbf{W}(\mathbf{p}(t)) \perp \boldsymbol{\epsilon}$

$$
\begin{aligned}
\mathbf{W}(\mathbf{p}(t))^{T} \cdot \mid \quad \mathbf{E}(\mathbf{p}(t)) \mathbf{V}(\mathbf{p}(t)) \dot{\mathbf{x}}_{r} & =(\mathbf{A}(\mathbf{p}(t)) \mathbf{V}(\mathbf{p}(t))-\mathbf{E}(\mathbf{p}(t)) \dot{\mathbf{V}}(\mathbf{p}(t))) \mathbf{x}_{r}+\mathbf{B}(\mathbf{p}(t)) \mathbf{u}+\boldsymbol{\epsilon} \\
\mathbf{y}_{r} & =\mathbf{C}(\mathbf{p}(t)) \mathbf{V}(\mathbf{p}(t)) \mathbf{x}_{r}
\end{aligned}
$$

Time-Varying Parametric Model Order Reduction: p(t)MOR

Linear parameter-varying (LPV) system

$$
\begin{aligned}
\mathbf{E}(\mathbf{p}(t)) \dot{\mathbf{x}} & =\mathbf{A}(\mathbf{p}(t)) \mathbf{x}+\mathbf{B}(\mathbf{p}(t)) \mathbf{u} & & \mathbf{p}(t) \in \mathcal{D} \subset \mathbb{R}^{d} \\
\mathbf{y} & =\mathbf{C}(\mathbf{p}(t)) \mathbf{x} & & \mathbf{x} \in \mathbb{R}^{n}
\end{aligned}
$$

Approximation of the full state vector:
$\mathbf{x}=\mathbf{V}(\mathbf{p}(t)) \mathbf{x}_{r}+\mathbf{e}$,
$\dot{\mathbf{x}}=\dot{\mathbf{V}}(\mathbf{p}(t)) \mathbf{x}_{r}+\mathbf{V}(\mathbf{p}(t)) \dot{\mathbf{x}}_{r}+\dot{\mathbf{e}}$

Petrov-Galerkin condition: $\mathbf{W}(\mathbf{p}(t)) \perp \boldsymbol{\epsilon}$

$$
\begin{aligned}
& \overbrace{\mathbf{W}(\mathbf{p}(t))^{T} \mathbf{E}(\mathbf{p}(t)) \mathbf{V}(\mathbf{p}(t))}^{\mathbf{E}_{r}(\mathbf{p}(t))} \dot{\mathbf{x}}_{r}=(\overbrace{\mathbf{W}(\mathbf{p}(t))^{T} \mathbf{A}(\mathbf{p}(t)) \mathbf{V}(\mathbf{p}(t))} \\
& \mathbf{A}_{r}(\mathbf{p}(t)) \\
& \mathbf{y}_{r}=\underbrace{\mathbf{C}(\mathbf{p}(t)) \mathbf{V}(\mathbf{p}(t))}_{\mathbf{C}_{r}(\mathbf{p}(t))} \mathbf{x}_{r}
\end{aligned}
$$

Time-Varying Parametric Model Order Reduction: p(t)MOR

Linear parameter-varying (LPV) system

$$
\begin{aligned}
\mathbf{E}(\mathbf{p}(t)) \dot{\mathbf{x}} & =\mathbf{A}(\mathbf{p}(t)) \mathbf{x}+\mathbf{B}(\mathbf{p}(t)) \mathbf{u} & & \mathbf{p}(t) \in \mathcal{D} \subset \mathbb{R}^{d} \\
\mathbf{y} & =\mathbf{C}(\mathbf{p}(t)) \mathbf{x} & & \mathbf{x} \in \mathbb{R}^{n}
\end{aligned}
$$

Approximation of the full state vector:
$\mathbf{x}=\mathbf{V}(\mathbf{p}(t)) \mathbf{x}_{r}+\mathbf{e}$,
$\dot{\mathbf{x}}=\dot{\mathbf{V}}(\mathbf{p}(t)) \mathbf{x}_{r}+\mathbf{V}(\mathbf{p}(t)) \dot{\mathbf{x}}_{r}+\dot{\mathbf{e}}$

Petrov-Galerkin condition: $\mathbf{W}(\mathbf{p}(t)) \perp \boldsymbol{\epsilon}$

Parameter-varying reduced order model

$\mathbf{E}_{r}(\mathbf{p}(t)) \dot{\mathbf{x}}_{r}=\left(\mathbf{A}_{r}(\mathbf{p}(t))-\mathbf{W}(\mathbf{p}(t))^{T} \mathbf{E}(\mathbf{p}(t)) \dot{\mathbf{V}}(\mathbf{p}(t))\right) \mathbf{x}_{r}+\mathbf{B}_{r}(\mathbf{p}(t)) \mathbf{u}$

$$
\mathbf{y}_{r}=\mathbf{C}_{r}(\mathbf{p}(t)) \mathbf{x}_{r}
$$

$\mathbf{E}_{r}(\mathbf{p}(t))=\mathbf{W}(\mathbf{p}(t))^{T} \mathbf{E}(\mathbf{p}(t)) \mathbf{V}(\mathbf{p}(t)), \quad \mathbf{A}_{r}(\mathbf{p}(t))=\mathbf{W}(\mathbf{p}(t))^{T} \mathbf{A}(\mathbf{p}(t)) \mathbf{V}(\mathbf{p}(t))$
$\mathbf{B}_{r}(\mathbf{p}(t))=\mathbf{W}(\mathbf{p}(t))^{T} \mathbf{B}(\mathbf{p}(t)), \quad \mathbf{C}_{r}(\mathbf{p}(t))=\mathbf{C}(\mathbf{p}(t)) \mathbf{V}(\mathbf{p}(t))$

