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Abstract

We discuss the origin of CP violation in settings with a discrete (flavor) symmetry G. We show that phys-
ical CP transformations always have to be class-inverting automorphisms of G. This allows us to categorize
finite groups into three types: (i) Groups that do not exhibit such an automorphism and, therefore, in generic
settings, explicitly violate CP. In settings based on such groups, CP violation can have pure group-theoretic
origin and can be related to the complexity of some Clebsch–Gordan coefficients. (ii) Groups for which one
can find a CP basis in which all the Clebsch–Gordan coefficients are real. For such groups, imposing CP
invariance restricts the phases of coupling coefficients. (iii) Groups that do not admit real Clebsch–Gordan
coefficients but possess a class-inverting automorphism that can be used to define a proper (generalized) CP
transformation. For such groups, imposing CP invariance can lead to an additional symmetry that forbids
certain couplings. We make use of the so-called twisted Frobenius–Schur indicator to distinguish between
the three types of discrete groups. With �(27), T′, and Σ(72) we present one explicit example for each
type of group, thereby illustrating the CP properties of models based on them. We also show that certain
operations that have been dubbed generalized CP transformations in the recent literature do not lead to
physical CP conservation.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
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1. Introduction and outline

It is well known that the simultaneous action of parity and charge conjugation (CP) is not a
symmetry of Nature. This fact has been established experimentally in oscillations and decays
of K , B , and D mesons. Furthermore, CP violation is a necessary condition to generate the
observed matter–antimatter asymmetry of the universe [1]. The origin of CP violation is, thus,
one of the most fundamental questions in particle physics. Currently, all direct evidence for CP
violation in Nature can be related to the flavor structure of the standard model (SM) of particle
physics [2].

Since it is conceivable that the flavor structure may be explained by an (explicitly or sponta-
neously broken) horizontal or flavor symmetry, it appears natural to seek a connection between
the fundamental origins of CP violation and flavor. In the past, it has been argued that the ap-
pearance of complex Clebsch–Gordan (CG) coefficients in some of these groups gives rise to
(explicit) CP violation [3], thus relating CP violation to some intrinsic properties of the flavor
symmetry.

There are many ways to check whether or not CP is (explicitly) violated in a given setting.
In the low-energy effective theory, an unambiguous check of the existence of CP violation is
the computation of so-called weak basis invariants, which, if vanishing, guarantee the absence
of (flavor related) CP violation [4–6]. However, in order to decide whether CP violation is ex-
plicit or spontaneous in the high energy theory, one has to identify the corresponding symmetry
transformation that, if unbroken, guarantees the absence of CP violation — which is typically
less straightforward. Especially in settings with a discrete (flavor) symmetry, the true physical
CP transformation may be obscured by the fact that, say, complex Clebsch–Gordan coefficients
are present.

To decide whether a particular transformation really conserves CP, one has to check if it can be
“undone” by a symmetry or basis transformation. If this is the case, CP is conserved, otherwise
CP is violated (cf. e.g. [7]). This then leads to the notion of a so-called generalized CP transfor-
mation [8–10], where one amends the canonical quantum field theory (QFT) transformation laws
by this operation.

The main purpose of this study is to explore the relation between discrete (flavor) sym-
metries G and physical CP invariance guaranteed by generalized CP transformations in more
detail.

The outline of this paper is as follows. In Section 2 we discuss the general properties
of generalized CP transformations. In particular, we will show that physical CP transfor-
mations are always connected to class-inverting automorphisms of G. We will classify dis-
crete groups G based on the existence and the specific properties of such transformations.
This will allow us to conclude that in theories based on a certain type of symmetry CP
is generically violated since one cannot define a proper CP transformation. Section 3 con-
tains three examples illustrating our results. In particular, we demonstrate that both explicit
CP violation and spontaneous CP violation with a phase predicted by group theory can arise
based on a decay example in an explicit toy model. As we shall see, some of the transfor-
mations that were dubbed “generalized CP transformations” in the recent literature do not
correspond to physical CP transformations. Finally, in Section 4 we summarize our results.
In various appendices we collect some of the more technical details relevant to our discus-
sion.
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2. Generalized CP transformations

2.1. The canonical CP transformation

We start out by reviewing the standard transformation laws of quantum field theory. By def-

inition, charge conjugation reverses the sign of conserved currents, jμ C�−→ −jμ. For a scalar
field operator

φ(x) =
∫

d3p
1

2E �p
[
a( �p)e−ip·x + b†( �p)eip·x], (2.1)

this implies that the creation and annihilation operators a and b for particles and anti-particles get
exchanged. Combining this with a spatial inversion, i.e. a parity transformation, the combined
transformation is given by (e.g. [11])

(CP)−1a( �p)CP = ηCPb(− �p), (CP)−1a†( �p)CP = η∗
CPb†(− �p), (2.2a)

(CP)−1b( �p)CP = η∗
CPa(− �p), (CP)−1b†( �p)CP = ηCPa†(− �p). (2.2b)

Here ηCP is a phase factor. As a consequence, scalar field operators transform as

(CP)−1φ(x)CP = ηCPφ†(Px) (2.3)

with Px = (t,−�x). At the level of the Lagrangean, this corresponds to a transformation

φ(x)
CP�−→ ηCPφ∗(Px) (2.4)

for the fields, and we see that ηCP represents the freedom of rephasing the fields. Analogous
considerations for Dirac spinor fields result in the transformation

Ψ (x)
CP�−→ ηCPCT Ψ ∗(Px), (2.5)

where C is the charge conjugation matrix.
A Lagrangean, which is invariant under CPT, is schematically given by

L = cO(x) + c∗O†(x), (2.6)

where c is a coupling constant and O is an operator. Under a physical CP transformation,

O(x)
CP�−→ ηCPO†(Px) and c

CP�−→ c. (2.7)

Demanding the Lagrangean to be invariant under the CP transformation then restricts the phase
of the coupling constant c. In this case the physical CP asymmetry of scattering amplitudes

εi→f := |Γ (i → f )|2 − |Γ (ı → f )|2
|Γ (i → f )|2 + |Γ (ı → f )|2 (2.8)

will vanish to all orders in perturbation theory. Here ı and f denote the CP conjugate states of
i and f , and are composed out of the corresponding anti-particles. As discussed above, anti-
particles are, per definition, related to the particles via (2.2).
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2.2. Generalizing CP transformations

If the setting enjoys a discrete symmetry G, such that φ furnishes a non-trivial representation
of G, the phase factor ηCP in (2.2) may (and, as we shall see shortly, in general has to) be
promoted to a unitary matrix UCP representing an automorphism transformation of G [12]

(CP)−1a( �p)CP = UCPb(− �p), (CP)−1a†( �p)CP = b†(− �p)U
†
CP, (2.9a)

(CP)−1b( �p)CP = a(− �p)U
†
CP, (CP)−1b†( �p)CP = UCPa†(− �p), (2.9b)

thus leading to a generalized CP transformation [8–10]

φ(x)
C̃P�−→ UCPφ∗(Px). (2.10)

Let us briefly explain, following Holthausen, Lindner and Schmidt (HLS) [12], why it is
necessary to generalize CP. Consider a model based on the symmetry group T′ with two triplets
x and y as well as a field φ transforming as non-trivial one-dimensional representation 12. Then
the coupling (see Appendix A.1.3 for our conventions for T′)

[
φ12 ⊗ (x3 ⊗ y3)11

]
10

= 1√
3

[
φ
(
x1y1 + ω2x2y2 + ωx3y3

)]
, (2.11)

is T′ invariant. A canonical CP transformation

x
CP�−→ x∗, y

CP�−→ y∗, and φ
CP�−→ φ∗, (2.12)

would map the 12 representation φ to a 11 such that the contraction (2.11) gets mapped to a term
which is not T′ invariant. This can be repaired by imposing a generalized CP transformation C̃P ,
which we discuss in more detail later in Section 3.2, and under which⎛⎝ x1

x2
x3

⎞⎠ C̃P�−→
⎛⎜⎝ x∗

1

x∗
3

x∗
2

⎞⎟⎠ ,

⎛⎝ y1
y2
y3

⎞⎠ C̃P�−→
⎛⎜⎝ y∗

1

y∗
3

y∗
2

⎞⎟⎠ , and φ
C̃P�−→ φ∗. (2.13)

Under this transformation, the contraction (2.11) gets mapped to its Hermitean conjugate. The
Lagrangean then respects the generalized CP symmetry if the coupling coefficient is real. The
crucial property of the transformation (2.13) is that it is not composed of a canonical CP and a
T′ symmetry transformation. Rather, it involves an outer automorphism of this group [12].

The heart of the above problem seems to be related to the complexity of the Clebsch–Gordan
(CG) coefficients appearing in equation (2.11). One may then speculate that one might have to
switch to a basis in which all CGs are real, and impose the canonical CP transformation there.
The purpose of our discussion is to show that the true picture is somewhat more subtle. First
of all, we will see that there are groups which do not admit real CGs but nevertheless allow for
a consistent CP transformation, which, if it is a symmetry of the Lagrangean, ensures physical
CP conservation. Second, we shall show that there are symmetry groups that do not allow for
a transformation which ensures physical CP conservation. The CGs in such groups are always
complex, and models based on such symmetries will, at least generically, violate CP. In other
words, for such groups CP violation originates from group theory [3], thus providing us with
very interesting explanation for why CP is violated in Nature relating CP violation to flavor.
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2.3. What are the proper constraints on generalized CP transformations?

Let us now discuss the general properties of generalized CP transformations. As discussed
in HLS [12] (see also [13]) and above, generalized CP transformations are given by automor-
phisms of the group G, since otherwise the transformation would map G-invariant terms in the
Lagrangean to non-invariant terms.

However, the only way to generalize CP in a model-independent way is to demand that the
operators a and b in (2.9) get interchanged. Imposing a “generalized CP transformation” that
does not have this property will, in general, not warrant physical CP conservation. This is because
it does not map field operators to their own Hermitean conjugates. In fact, as we shall discuss
in an explicit example (see Section 3.1.3), such a “generalized CP symmetry” does not lead to a
vanishing decay asymmetry. That is, in models with very specific field content one may re-define
CP such that it contains a non-trivial interchange of fields in representations which are not related
by complex conjugation. The violation of the thus “generalized CP” is then, however, no longer
a prerequisite for, say, baryogenesis. We therefore prefer to refer to such transformations as
“CP-like” transformations. As we are interested in the origin of physical CP violation, we will
from now on impose that the operators a and b in (2.9) get interchanged. This implies that a
true (generalized) CP transformation has to map all complex (irreducible) representations of G

to their conjugates.
Let us now discuss CP transformations that generalize the canonical CP transformation (2.4)

and act on scalar fields as

Φ(x)
C̃P�−→ UCPΦ∗(Px), (2.14)

where UCP is a unitary matrix and Φ contains, in principle, all fields of the model. Here and in
what follows, we will only discuss the transformation of scalar fields; the extension to higher–
spin fields is straightforward. HLS [12] showed that this generalized CP transformation is only
consistent with the flavor symmetry group G if UCP is non-trivially related to an automorphism
u :G → G. In fact, UCP has to be a solution to the consistency equation (cf. Eq. (2.8) in HLS [12]
and see also [13])

ρ
(
u(g)

) = UCPρ(g)∗U†
CP ∀g ∈ G, (2.15)

where ρ(g) is the (in general reducible) matrix representation in which Φ transforms under G.
However, if Eq. (2.14) is to be a physical CP transformation, u has to have, in generic settings,
some further properties:

u has to be class-inverting
As discussed above, we demand that u maps every irreducible representation r i to its own

conjugate. Therefore, the matrix realizations ρr i
fulfill

ρr i

(
u(g)

) = Ur i
ρr i

(g)∗U†
r i

∀g ∈ G and ∀i, (2.16)

with some unitary matrices Ur i
. This implies, of course, that (pseudo-)real representations get

mapped to themselves. The matrix UCP of Eq. (2.14) is given by the direct sum of the Ur i

corresponding to the particle content of the model at hand, or, more explicitly, UCP is composed
of blocks consisting of the Ur ,
i
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Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

↑
φr i1↓
↑

φr i2↓
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
C̃P�−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

↖ ↗
Ur i1↙ ↘

↖ ↗
Ur i2↙ ↘

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

↑
φ∗

r i1↓
↑

φ∗
r i2↓
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= UCPΦ∗, (2.17)

where φr ia
transforms in representation r ia . Clearly, the precise form of UCP depends on the

model, yet the Ur i
depend on the symmetry G only. This allows us to define a CP transformation

for a discrete symmetry G rather than for a given model with a particular representation content.
In this point, our discussion differs from the one in HLS [12], where UCP is allowed not to be
block-diagonal.

Further, taking the trace reveals that the group characters χr i
fulfill

χr i

(
u(g)

) = tr
[
ρr i

(
u(g)

)] = tr
[
Ur i

ρr i
(g)∗U†

r i

]
= tr

[
ρr i

(g)
]∗ = χr i

(g)∗ = χr i

(
g−1) ∀i, (2.18)

i.e. u is class-inverting.1

Comments on the order of u

Under the square of the generalized CP transformation, Φ transforms as

Φ
C̃P2

�−→ UCP
(
UCPΦ∗(P2x

))∗ = UCPU∗
CPΦ(x) =: V Φ(x) (2.19)

with some unitary matrix V which can be related to the automorphism v = u2. Since UCP is a
matrix direct sum, one can again discuss the different irreducible representations of G separately,

φr i

C̃P2

�−→ Ur i

(
Ur i

φ∗
r i

(
P2x

))∗ = Ur i
U∗

r i
φr i

(x) =: Vr i
φr i

(x) ∀i. (2.20)

Imposing the CP transformation of (2.14) as a symmetry immediately implies that Φ → V Φ

is also a symmetry transformation. Note that, as the square of a class-inverting automorphism,
v = u2 is class-preserving. One can distinguish now three cases:

(i) u is involutory, i.e. u2 = v = identity (id),
(ii) v = u2 is an inner automorphism, and

(iii) v = u2 is an outer automorphism2

which we will discuss in the following.
Let us start with case (i), where the order of the automorphism u is at most two. We will now

show that if and only if this is the case, the matrices Vr i
are ±1.

1 A class-inverting automorphism u sends each group element g to an element u(g) which lies in the same conjugacy

class as g−1, i.e. u(g) = hg−1h−1 for some h ∈ G.
2 Note that there are class-preserving automorphisms that are not inner automorphisms.
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First we start with the consistency condition equation (2.16) for a class-inverting u. By re-
placing g by u(g) (and u(g) by u2(g)) in Eq. (2.16) and bringing the Ur i

’s to the other side, we
obtain

ρr i

(
u(g)

) = UT
r i

ρr i

(
u2(g)

)∗
U∗

r i
= UT

r i
ρr i

(g)∗U∗
r i

∀g ∈ G and ∀i. (2.21)

This shows that with Ur i
also the transpose UT

r i
fulfills equation (2.16). Since ρr i

is an irreducible
representation, Schur’s Lemma implies that

UT
r i

= eiαUr i
∀i, (2.22)

which is only possible if each Ur i
is either symmetric or anti-symmetric, i.e. α is either 0 or π .

Thus, Vr i
= Ur i

U∗
r i

= ±1. Hence, V consists of blocks identical to ±1.
Now assume that all Vr i

are ±1. Then, by inserting Eq. (2.16) into itself,

ρr i

(
u2(g)

) = (
Ur i

U∗
r i

)
ρr i

(g)
(
Ur i

U∗
r i

)† = ρr i
(g) ∀g ∈ G and ∀i. (2.23)

Since this equation is true for all irreducible representations, it follows that u2(g) = g for all g

in G and the order of u is thus either one or two (i.e. u is involuntary). This completes the proof
that V is different from a diagonal matrix with only ±1 on the diagonal if and only if u is of
order n > 2.

We therefore conclude that, if an involutory u is imposed as a symmetry, G may be amended
by an additional Z2 symmetry. This is possible if and only if Vr i

�= +1 for some r i . We will
discuss this case in more detail in Section 2.7. In what follows, we refer to such an enlargement
as “trivial” extension of G to G × Z2. Note that the assignment of Z2 charges to the fields of
a model is not arbitrary but is given by the signs of the Vr i

for their respective representations
under G. We will also discuss this Z2 factor in an example in Section 3.3.

The second logical possibility, case (ii), is that v is an inner automorphism.3 In this case,
the order of u is larger than two but one can still show that the flavor group only gets enlarged
by some Abelian factor. However, CP transformations connected to automorphisms that square
to an inner automorphism do not seem to yield any CP transformations which are physically
different from those that are connected to involutory automorphisms. The reason is that if two
automorphisms u and u′ are related by an inner automorphism,

u(g) = bu′(g)b−1 ∀g ∈ G and some b ∈ G, (2.24)

the resulting CP transformations only differ by a transformation with the group element ρ(b).
Since the latter transformation certainly is a symmetry of the Lagrangean, the two CP transfor-
mations are indistinguishable. In fact, it turns out that we were not able to find an example where
there is a class-inverting automorphism of higher order that is not related to an involutory class-
inverting automorphism in the prescribed way. We were able to prove that such an automorphism
cannot exist for some cases, see Appendix C, and have explicitly checked this for all non-Abelian
groups of order less than 150 (with the exception of some groups of order 128) with the group
theory program GAP [15].

The last logical possibility, case (iii), is that u2 = v is an outer automorphism. Then the addi-
tional generator h with ρr i

(h) = Vr i
does not commute with all group elements of G, and, hence,

3 The property that u should square to the identity or an inner automorphism has also been stressed in [14]. However,
the discussion there misses the point that this does not imply Uri

U∗
ri

= ρri
(g) for some g in G but that the group still

might be extended by a Z2 factor.
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genuinely enlarges the original flavor symmetry group non-trivially to the larger semi-direct
product group H = G �v Zh, where Zh is the cyclic group generated by h. As a consequence,
terms which are allowed by G but prohibited by H are absent from a Lagrangean if CP conserva-
tion is imposed. The representation content, however, still coincides with the one of G. Although
the structure of the extended group H is more complicated than the direct product in case (i), the
physical implications are similar to the case of the trivial Z2 extension.

Even though we have no general argument for their absence, we were not able to find an
example in which case (iii) is realized. In more detail, a GAP scan for class-preserving outer
automorphisms that are the square of a class-inverting inner automorphism did not yield any
result for groups up to order 150 (some groups of order 128 were not checked). Case (iii), hence,
seems to be very rare.

In summary, we find that u should be a class-inverting automorphism of G in order for the re-
lated CP transformation to be physical. Moreover, for practical purposes, one can usually restrict
the discussion to involutory automorphisms.

2.4. The Bickerstaff–Damhus automorphism (BDA)

As shown by Bickerstaff and Damhus [16], the existence of a basis in which all CG coeffi-
cients are real can be related to the existence of an automorphism u which fulfills

ρr i

(
u(g)

) = Ur i
ρr i

(g)∗U†
r i

, Ur i
unitary and symmetric, ∀g ∈ G and ∀i (2.25)

for some Ur i
with the given properties. From our discussion in Section 2.3 we know that such a u

is involutory and class-inverting. In what follows, we will refer to an automorphism u which satis-
fies Eq. (2.25) as Bickerstaff–Damhus automorphism (BDA). In short, a BDA is a class-inverting
involutory automorphism that fulfills the consistency condition (2.16) with some symmetric uni-
tary matrices Ur i

.
The important property of the BDA is that its existence is equivalent to the existence of a basis

of G in which all CG’s are real,

∃ BDA u fulfilling (2.25) ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
existence of a
basis in which

all CG coefficients
are real

⎫⎪⎪⎬⎪⎪⎭ . (2.26)

The basis in which the CGs can be chosen real is exactly the basis for which all Ur i
in Eq. (2.25)

are unit matrices, i.e. for which

ρr i

(
u(g)

) = ρr i
(g)∗ ∀g ∈ G and ∀i. (2.27)

More precisely, this defines a whole set of bases which are related by real orthogonal basis
transformations.

An automorphism u that fulfills this equation in a certain basis is unique. However, there
can be several different BDAs which fulfill Eq. (2.27) for different bases. The different BDAs
also do not have to be related by inner automorphisms, see for example the group SG(32,43) of
the SmallGroups library which is part of GAP. Note that, as shown in Appendix C.2, odd order
non-Abelian groups do not admit a BDA and, hence, do not have a basis with completely real
Clebsch–Gordan coefficients.

How can one tell whether or not a given automorphism u is a BDA? In what follows, we will
discuss a tool which allows us to answer this question.
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Fig. 1. This flowchart displays a possible sequence of steps one could follow to determine whether a finite non-Abelian
group G admits a basis with real Clebsch–Gordan coefficients.

2.5. The twisted Frobenius–Schur indicator

The Frobenius–Schur indicator (see e.g. [17, p. 48]) is a well-known tool to distinguish real,
pseudo-real, and complex representations of a finite group. It is defined by

FS(r i ) := 1

|G|
∑
g∈G

χr i

(
g2) = 1

|G|
∑
g∈G

tr
[
ρr i

(g)2], (2.28)

with |G| being the order of the group G. The result is

FS(r i ) =
⎧⎨⎩ +1, if r i is a real representation,

0, if r i is a complex representation,

−1, if r i is a pseudo-real representation.

(2.29)

In complete analogy to the Frobenius–Schur indicator, one can define the twisted Frobenius–
Schur indicator (FSu) [16,18] that depends on an automorphism u and that determines whether
u is a Bickerstaff–Damhus automorphism. In fact, for an automorphism u we will show that

FSu(r i ) =
⎧⎨⎩ +1 ∀i, if u is a Bickerstaff–Damhus automorphism,

+1 or −1 ∀i, if u is class-inverting and involutory,

different from ±1, if u is not class-inverting and/or not involutory.

(2.30)

Our recipe for determining whether or not a finite non-Abelian group G admits a basis with real
Clebsch–Gordan coefficients, using the twisted Frobenius–Schur indicator, is outlined in Fig. 1.

The twisted Frobenius–Schur indicator for an irreducible representation r i and an automor-
phism u is defined as

FSu(r i ) := 1

|G|
∑
g∈G

χr i

(
gu(g)

) = 1

|G|
∑
g∈G

tr
[
ρr i

(g)ρr i

(
u(g)

)]
= 1

|G|
∑[

ρr i
(g)

]
αβ

[
ρr i

(
u(g)

)]
βα

, (2.31)

g∈G
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where we sum over the matrix indices α and β . From the definition it is immediately clear that
for u ≡ id one recovers the original Frobenius–Schur indicator.

The proof of the statements in Eq. (2.30) is based on the well-known Schur orthogonality
relation for the irreducible representations r i of the group G (see e.g. [17, p. 37]),

∑
g∈G

[
ρr i

(g)∗
]
αβ

[
ρrj

(g)
]
γ δ

= |G|
dim r i

δij δαγ δβδ. (2.32)

The irreducible representations realized by ρr i
(g) and [ρr i

(u(g))]∗ are equivalent for all i if
and only if u is class-inverting. Hence, if u is not class-inverting, according to Eq. (2.32), the
twisted Frobenius–Schur indicator vanishes for at least one irreducible representation.

Let now u be class-inverting. Then there is a unitary matrix Ur i
for each irreducible represen-

tation r i such that

ρr i

(
u(g)

) = Ur i
ρr i

(g)∗U†
r i

, ∀i. (2.33)

Inserting this into the twisted Frobenius–Schur indicator and simplifying the expression, one
arrives at

FSu(r i ) = 1

|G|
∑
g∈G

[
ρr i

(g)
]
αβ

[Ur i
]βγ

[
ρr i

(g)∗
]
γ δ

[
U†

r i

]
δα

(2.32)= 1

|G| [Ur i
]βγ

[
U†

r i

]
δα

|G|
dim r i

δαγ δβδ

= 1

dim r i

tr
(
Ur i

U∗
r i

) = 1

dim r i

tr (Vr i
). (2.34)

As shown in Section 2.3, Vr i
is ±1 if and only if u is an involution, where plus signals a symmet-

ric and minus an anti-symmetric matrix Ur i
. Hence, if and only if u is a class-inverting involution,

the twisted Frobenius–Schur indicator is ±1 for all irreps r i . Furthermore, u is a Bickerstaff–
Damhus automorphism if and only if Eq. (2.25) holds with symmetric matrices Ur i

. Thus, u is
a BDA if and only if the twisted Frobenius–Schur indicators of all irreducible representations of
G are +1. This completes the proof of Eq. (2.30).

It is important to note that the twisted Frobenius–Schur indicator can vanish for higher-order
automorphisms even though they are class-inverting. For such automorphisms, one can define
an extended version of the indicator, which again has the property to be ±1 for all irreps in the
class-inverting case and 0 for some irrep otherwise. Let n = ord (u)/2 for even-order and n =
ord (u) for odd-order automorphisms. Then the nth extended4 twisted Frobenius–Schur indicator

FS(n)
u (r i ) := (dim r i )

n−1

|G|n
∑

g1,...,gn∈G

χr i

(
g1u(g1) · · ·gnu(gn)

)
(2.35)

is ±1 for all irreducible representations if u is class-inverting and 0 for at least one irrep if not.
A proof of this statement is given in Appendix C.3.

4 The 1st extended twisted Frobenius–Schur indicator FS(1)
u is identical to the regular twisted FSu.
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Fig. 2. This flowchart displays how the regular and extended twisted Frobenius–Schur indicators FSu and FS(n)
u allow us

to distinguish between the three types of groups. The integer n is n = ord(u)/2 for even and n = ord(u) for odd ord(u).

2.6. Three types of groups

The twisted Frobenius–Schur indicator can be used to categorize finite groups into three
classes. In order to do so, one has to compute the indicator for all involutory automorphisms
uα of the specific finite group G.5 A code for the group theory software GAP [15] that performs
this task is shown in Appendix B. There are then three cases:

Case I: For all involutory automorphisms uα of G there exists at least one representation r i for
which FSuα (r i ) = 0. In this case, the discrete symmetry G does not allow us to define a
proper CP transformation in a generic setting.

Case II: For (at least) one involutory automorphism u of G, the FSu’s for all representations
are non-zero. Then there are two sub-cases:

Case II A: All FSu’s are +1 for one of those u’s. Then this u is a BDA and there exists
a basis with real Clebsch–Gordan coefficients. u can be used to define a proper
CP transformation in any basis.6

Case II B: Some of the FSu’s are −1 for all such u’s. Then there is no BDA, and,
hence, one cannot find a basis in which all CG’s are real. Yet any of these u’s
can be used to define a proper CP transformation.

Depending on which case applies to G, we will from now on refer to G as being of type I,
type II A and type II B, respectively (see Fig. 2).

5 More precisely, one would have to calculate the FS(n)
u ’s for all automorphisms. The difference, however, is only

relevant for the categorization if all class-inverting automorphisms of G square to a non-trivial outer automorphism.
Groups in which this is the case would be classified as type II B. However, an extensive scan (cf. Section 2.3) for such
groups did not yield any result. On the other hand, we were also not able to prove that such groups cannot exist.

6 Note that these groups can have additional class-inverting involutory automorphisms that are not BDAs.
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Table 2.1
Examples for the three types of groups: (a) I, (b) II A and (c) II B with their common
names and SmallGroups library ID of GAP [15].
(a) Examples for type I groups. Generally, all odd order non-Abelian groups are of this
type with the caveat of groups that have a class-inverting automorphism that squares to
a non-trivial outer one.

Group Z5 �Z4 T7 �(27) Z9 �Z3

SG (20,3) (21,1) (27,3) (27,4)

(b) Examples for type II A groups. The dihedral and all Abelian groups are also of this type.

Group S3 Q8 A4 Z3 �Z8 T′ S4 A5

SG (6,1) (8,4) (12,3) (24,1) (24,3) (24,12) (60,5)

(c) Examples for type II B groups.

Group Σ(72) ((Z3 ×Z3)�Z4)�Z4

SG (72,41) (144,120)

In Table 2.1, we list for each of the types several examples.
Let us also comment that, when building a concrete model, one may still be able to define a

proper CP transformation even in the type I case by not introducing any representation which
has a zero FSu. That is, groups of type I generically violate CP, but physical CP violation is not
guaranteed in non-generic models. We will explain this statement in more detail in Section 3.1.

2.7. Physical CP transformations for type II groups

Let us now discuss in more detail the proper physical CP transformations for type II groups
and explore under which conditions they can be imposed as a symmetry. Since, as discussed in
Section 2.3, we have not found any higher-order class-inverting automorphism without a corre-
sponding involutory automorphism that has the same physical implications, we specialize to the
case of involutory automorphisms to simplify the discussion.

2.7.1. Existence of CP transformations
It has been shown in [20] that matrices Ur i

which solve (2.16) and hence allow for generalized
CP transformations

r i
C̃P�−→ Ur i

r∗
i , (2.36)

exist for all irreducible representations r i if and only if the group exhibits a class-inverting auto-
morphism. To simplify the discussion, one can work in special bases that are particularly conve-
nient for the analysis of CP properties.7 The general situation for class-inverting automorphisms
is discussed in [21]; however, since we are dealing with class-inverting and involutory automor-
phisms, we know that the matrices Ur i

are either symmetric or anti-symmetric, UT
r i

= ±Ur i
[20],

cf. the discussion around Eq. (2.22). This leads to even simpler standard forms than in the general
case. In fact, any unitary (anti-)symmetric matrix U can be written as

U = WΣWT , (2.37)

7 These bases can have other deficiencies, see Section 3.2.
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with unitary W and

Σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Σ+ = 1, if U is symmetric,

Σ− =

⎛⎜⎜⎜⎜⎜⎝
1

−1
. . .

1
−1

⎞⎟⎟⎟⎟⎟⎠ , if U is anti-symmetric.
(2.38)

Note that, since representation matrices always have full rank, the anti-symmetric case does not
arise for odd-dimensional irreps [20], i.e. Σ always has full rank. We can, hence, perform the
unitary basis change

r i → W †
r i

r i , ρr i
(g) → W †

r i
ρr i

(g)Wr i
∀g ∈ G, (2.39)

such that in the new basis the matrices Ur i
take the simple form

Ur i
→ W †

r i
Ur i

W ∗
r i

= Σr i
. (2.40)

For type II A groups, all the Σr i
’s equal the identity matrix and the new basis is a CP basis. In

this basis all Clebsch–Gordan coefficients are real [16].
Let us now investigate under which conditions CP can be imposed as a symmetry. In the most

general case, we can write the contraction of two multiplets x and y transforming in irreducible
representations r(x) = rx and r(y) = ry to a representation r(z) = rz as[

(x ⊗ y)rz

]
μ

= Cμ,αβxαyβ = xT Cμy, (2.41)

where α and β denote the vector indices of x and y, and Cμ,αβ are the Clebsch–Gordan coef-
ficients for the μth component of the resulting representation vector. In the last step we have
switched to matrix notation, i.e. Cμ is a matrix, and x and y are vectors. We will also need the
complex conjugate of the contraction, which reads[

(x ⊗ y)∗rz

]
μ

= C∗
μ,αβx∗

αy∗
β = x†C∗

μy∗. (2.42)

In what follows, we will refer to (x ⊗ y)rz as a “meson” and to x and y as its “constituents”.
The generalized CP transformation acts on x and y as specified in Eq. (2.36) with the matrices

(Urx )αβ and (Ury )αβ , respectively. From this, we can derive the CP transformation of the meson
(x ⊗ y)rz ,[

(x ⊗ y)rz

]
μ

= xT Cμy
C̃P�−→

(2.36)
x†UT

rx
CμUry y

∗. (2.43)

In general, also a multiplet z in the representation rz will transform under the generalized CP
transformation with some matrix Urz , such that one might demand that[

(x ⊗ y)rz

]
μ

C̃P�−→ (Urz )μν

[
(x ⊗ y)∗rz

]
ν

(2.42)= (Urz )μν

[
x†Cν

∗y∗]. (2.44)

Comparing (2.44) with (2.43), we obtain the condition

UT
rx

CμUry

!= (Urz )μνCν
∗, (2.45)

for the consistency of meson and constituent transformations. Recall that the matrices Urx ,
Ury , and Urz are representations of a class-inverting automorphism and hence are given by the
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solutions of (2.16). However, the fact that the matrices fulfill (2.16) does not imply that they also
solve (2.45). In other words Urx , Ury , and Urz , in general, do not satisfy (2.45). The existence
of an automorphism for which the matrices which solve (2.16) also satisfy (2.45) is a non-trivial
property of a group.8

At this point, let us note that we are free to re-define phases in the definition of

• The Clebsch–Gordan coefficients Cμ,αβ , i.e. one global phase for each rz appearing in the
contraction of rx and ry ;

• The CP transformations Urx , Ury and Urz .

This freedom of global phase choices can obscure possible solutions to (2.45) (cf. the discussion
around (3.16)).

Whether or not one can solve (2.45) is most conveniently analyzed in the basis (2.39), in
which (2.45) reads

ΣT
rx

C′
μΣry

!= (Σrz )μν

(
C′

ν

)∗
. (2.46)

Here we have introduced the basis-transformed Clebsch–Gordan coefficients

C′
μ := WT

rx
CμWry . (2.47)

Whether or not (2.45) (or equivalently (2.46)) can be solved depends on the specific automor-
phism we use to define CP and, hence, on whether the group is type II A or type II B. In the
case of type II A groups, the underlying automorphism of the CP transformation is a BDA and,
hence, all Σr i

’s equal the identity (because all matrices Ur i
are unitary and symmetric). There-

fore, all the Clebsch–Gordan coefficients are real [16] such that Eq. (2.46) is trivially fulfilled.
This statement is trivial in the CP basis but, of course, holds for all other bases as well. Hence
the Ur i

indeed provide us with a solution to Eq. (2.45). In other words, for type II A groups
one can always find matrices Ur i

such that the transformation of a meson under C̃P follows
from the (generalized) CP transformation properties of its constituents. We remark that, as we
shall demonstrate in an example in Section 3.2, the CP basis often turns out not to be the most
convenient choice for analyzing a model.

If instead the class-inverting and involutory automorphism used to define CP is not a BDA, as
is always the case for type II B groups, some of the Ur i

’s are anti-symmetric and the existence
of a solution to (2.46) is not guaranteed. One can, however, use the symmetry properties of Σrx ,
Σry and Σrz to check whether a solution is possible. If both Σrx and Σry are either symmetric or
anti-symmetric, Σrz has to be symmetric, while in the mixed case Σrz has to be anti-symmetric.
In all other cases, (2.46) has no solution. In order to see this, consider, for example, the case
of two representations rx and ry transforming with two symmetric matrices Σrx and Σry , and
contracting to a representation rz transforming with an anti-symmetric Σrz . Then we see that
(2.46) implies that

C′
1 = (

C′
2

)∗ and C′
2 = −(

C′
1

)∗
, (2.48)

such that Clebsch–Gordan coefficients C′
μ have to vanish, which is obviously a contradiction.

This means that a solution to (2.46) is not possible. Hence, if a group allows for such mixed

8 The Clebsch–Gordan coefficients determine a group up to isomorphism [22].
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contractions then it is not possible to make all mesons transform in consistency with their con-
stituents. This has striking consequences for the CP properties of a model because, as we will also
show in an explicit example in Section 3.3, physical CP conservation then implies the absence of
the problematic terms from the Lagrangean.

2.7.2. CP transformations and constraints on couplings
Let us now discuss how the CP transformation (2.36) constrains the physical coupling coef-

ficients of a model. Consider a model with some fields furnishing the representations rx and ry .
The presence of a contraction (2.41) (with coupling coefficient c) in the Lagrangean implies also
the presence of the conjugate contraction (2.42) (with the complex conjugate coupling) in order
to guarantee the reality of the Lagrangean. The couplings are, up to the global factor c, given
by the Clebsch–Gordan coefficients Cμ. If a theory is invariant under the symmetry, all contrac-
tions have to be trivial singlets and therefore the only relevant case is when (Urz )μν is trivial and
μ only takes on the value 1. The condition for the term cxT Cμy to conserve CP then is given
by

cUT
rx

Cμ=1Ury

!= c∗C∗
μ=1, (2.49)

which is a simplified version of the consistency condition (2.45). If the corresponding conditions
are fulfilled for all contractions present in the Lagrangean, CP is conserved. Note that adding
a phase to the generalized CP transformations Urx or Ury is nothing but a simple rephasing of
fields.

We conclude that, for type II A groups, CP is automatically conserved if there is enough
rephasing freedom of fields to render all couplings real, i.e. the corresponding phases unphysical,
simply because Eqs. (2.49) are already fulfilled from the group structure. A sufficient number of
field redefinitions, however, may not be possible in generic models (see e.g. [23] for criteria),
in which case CP can be explicitly violated by the physical phases of couplings. Turning this
around, we see that imposing the generalized CP transformation as a symmetry for type II A
groups forces all couplings to be real (up to the above-mentioned freedom coming from field
redefinitions). The situation for type II A groups, therefore, is somewhat similar to the familiar
case where only continuous symmetries such as SU(N) are present.

On the other hand, in the case of type II B groups, some representations may contract in such a
way as to make it impossible to solve the appropriate analogue of (2.49). Thus, the corresponding
terms cannot be part of the Lagrangean if CP is to be conserved. It is clear from the discussion
in Section 2.3 that imposing CP in this case implies the presence of an additional Z2 symmetry
related to V . It is this Z2 which prohibits exactly the problematic contractions. That is, type II B
groups can have the unusual property that CP invariance forbids certain couplings rather than
just restricting the phases of the coefficients.

Let us remark that, in principle, it is conceivable that the structure of a type II B group is such
that it does not allow for CP violating contractions. This is the case if and only if the Z2 symme-
try related to the element represented by V is already part of the group. For all examples we have
found and given in Table 2.1(c) this is not the case, and the groups have to be extended (trivially)
by the Z2 in order to warrant CP conservation. Although we cannot make a general statement on
when a group is extended, we can prove it for the special case of ambivalent type II B groups
and inner automorphisms.9 Consider first the identity automorphism u(g) = g. For this automor-

9 A group is called ambivalent if it possesses only real and pseudo-real irreducible representations. For such groups,
inner automorphisms are class-inverting.
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phism, the twisted Frobenius–Schur indicator coincides with the original, untwisted indicator,
i.e. FSu=id(r i ) = ±1 for real and pseudo-real irreps r i , respectively. Hence, Vr i

= 1 for real and
Vr i

= −1 for pseudo-real representations. However, it has been shown in [20] that an ambivalent
group with an element whose representation matrices are given by these particular Vr i

has a ba-
sis with real CG coefficients. Thus, G would be of type II A, which contradicts the assumption
that the group is type II B. Hence, there can be no such group element. The argument can be
extended to all inner automorphisms noting that the Vr i

belonging to these automorphisms are
connected to the Vr i

of the identity by multiplication with a group element (cf. Appendix C.1
and footnote 18). In summary, imposing a CP transformation which is defined via in inner auto-
morphism of an ambivalent type II B group always extends the finite symmetry (trivially) by a
Z2 factor.

We conclude that for groups of type II it is always possible to define a physical CP transfor-
mation in a model–independent way. Whether or not it is broken then depends on the details of
the model. Below, in Sections 3.2 and 3.3 we will present examples illustrating the CP properties
of such groups.

3. Examples

3.1. Example for a type I group: �(27)

In what follows, we substantiate the statement that type I groups generically violate CP, fo-
cusing on a toy model based on the group �(27).

3.1.1. Decay amplitudes in a toy example based on �(27)

Let us consider a toy model based on the symmetry group �(27). The necessary details on
the group are summarized in Appendix A.2. We introduce three complex scalars S, X and Y

transforming as 10, 11 and 13 as well as two sets of fermions Ψ and Σ , transforming as 3 each.
Furthermore, we assume that there is a U(1) symmetry under which Y is neutral, Ψ has charge
qΨ , Σ has charge qΣ , and S and X both have charge qX = qΨ −qΣ �= 0. Then the renormalizable
interaction Lagrangean reads10

Ltoy = f
[
S10 ⊗ (Ψ ⊗ Σ)10

]
10

+ g
[
X11 ⊗ (Ψ ⊗ Σ)12

]
10

+ hΨ

[
Y13 ⊗ (Ψ ⊗ Ψ )16

]
10

+ hΣ

[
Y13 ⊗ (Σ ⊗ Σ)16

]
10

+ h.c.

= F ijSΨ iΣj + GijXΨ iΣj + H
ij
Ψ YΨ iΨj + H

ij
Σ YΣiΣj + h.c. (3.1)

The “Yukawa” matrices are given by

F = f 13, G = g

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠ and HΨ/Σ = hΨ/Σ

⎛⎝ 1 0 0
0 ω2 0
0 0 ω

⎞⎠ , (3.2)

where f , g, hΨ , and hΣ are complex couplings and we define ω := e2π i/3.
Let us now study the decay Y → Ψ Ψ . Interference between tree-level and one-loop diagrams

(Figs. 3(a)–3(c)) leads to a CP asymmetry εY→Ψ Ψ , which is proportional to

10 There might also a cubic Y coupling, which is, however, irrelevant for our discussion.
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Fig. 3. Diagrams relevant for CP violation in Y → ΨΨ at tree level and 1-loop.

εY→Ψ Ψ ∝ Im[IS] Im
[
tr
(
F †HΨ FH

†
Σ

)] + Im[IX] Im
[
tr
(
G†HΨ GH

†
Σ

)]
= |f |2 Im[IS] Im

[
hΨ h∗

Σ

] + |g|2 Im[IX] Im
[
ωhΨ h∗

Σ

]
. (3.3)

Here IS = I (MS,MY ) and IX = I (MX,MY ) denote appropriate phase space factors and the loop
integral, which are non-trivial functions of the masses of S and Y , and X and Y , respectively.
Note that εY→Ψ Ψ is

(i) invariant under rephasing of the fields,
(ii) independent of the phases of f and g, and

(iii) independent of the chosen basis as it is proportional to the trace of coupling matrices.

Notice, however, that the asymmetry can vanish if there is a cancellation between the two terms,
which would require a delicate adjustment of the relative phase ϕ := arg(hΨ h∗

Σ) of hΨ and hΣ .
In what follows, we will argue that if such a cancellation occurs, this is either (i) a consequence
of a larger discrete symmetry than �(27) being present or (ii) it is not immune to quantum
corrections.

In the first case, a new symmetry has to be present which relates S and X in such a way as
to guarantee MS = MX and |g| = |f |, as well as hΨ and hΣ to warrant ϕ = −2π/6. Clearly,
this cannot be due to an outer automorphism and, hence, no CP transformation of a �(27) setup
since such transformations never relate the trivial singlet 10 to other representations. If such a
symmetry exists, it has to enhance the original flavor symmetry of the setup, and it is, therefore,
no longer appropriate to speak of a �(27) model.

In the second case, given that Im[IS] �= Im[IX] for MS �= MX , an adjustment which cancels
the asymmetry will require arg(hΨ h∗ ) to be different from −2π/6 in general. Note that the
Σ
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diagrams of Figs. 3(b) and 3(c) also yield vertex corrections which are relevant for the renormal-
ization group equations (RGEs) for hΨ and hΣ . These equations are given by11

16π2 dhΨ

dt
= hΨ

(
a|hΨ |2 + b|hΣ |2 + · · ·) + chΣ

[|f |2 + ω2|g|2], (3.4a)

16π2 dhΣ

dt
= hΣ

(
a|hΣ |2 + b|hΨ |2 + · · ·) + chΨ

[|f |2 + ω|g|2], (3.4b)

where t = ln(μ/μ0) is the logarithm of the renormalization scale, a, b and c are real coefficients,
and the omission represents terms like the square of the gauge coupling. This leads to an RGE
for hΨ h∗

Σ with the structure

16π2 d

dt

(
hΨ h∗

Σ

) = hΨ h∗
Σ × real + c

(|hΨ |2 + |hΣ |2)[|f |2 + ω2|g|2]. (3.5)

The only value of the relative phase ϕ that is stable under the RGE is, thus, given by ϕ = ϕ∗ =
arg(|f |2 + ω2|g|2). Therefore, we see that, if one imposes that (3.3) vanishes at one renormal-
ization scale, this relation will be violated at other scales provided that Im[IS] �= Im[IX]. Hence,
even if one adjusts the phases of hΨ and hΣ by hand, this relation will be destroyed by quantum
corrections. We note that such considerations can always be used in order to see if a particular
relation is a consequence of a symmetry, in which case it has to respect quantum corrections, or
not.

Altogether, we conclude that this simple setting based on �(27) generically violates CP. The
reason behind this is that any conceivable generalized CP transformation is inconsistent with
�(27) — simply due to the fact that the group (with the field content chosen) does not allow for
a class-inverting automorphism. Hence any transformation which relates each field to its com-
plex conjugate, if simply imposed on the theory, would map �(27)-invariants to non-invariants,
similarly to what happened around Eq. (2.12), but without the possibility of “repairing” the trans-
formation.

Let us point out that due to the peculiarities of the example model, there is neither a U(1)

charge asymmetry nor a left–right asymmetry produced by the CP violating decay. In general,
however, there seems to be no obstacle in constructing such models. Note also that it is, in
principle, possible to distinguish Y from Y ∗ by measuring the relative branching fraction of the
decays to Ψ Ψ and ΣΣ , where a pure sample of, say, Y particles could be generated if we couple
it to a pair of chiral fermions.

3.1.2. Spontaneous CP violation with calculable CP phases
Let us next discuss how one could possibly restore CP invariance by enlarging the symmetry

group, and how this can lead to the possibility of breaking CP spontaneously with calculable
CP phases. Imposing a symmetry that ensures the vanishing of the decay asymmetries is pos-
sible if the field content of a theory allows us to combine fields which transform as irreducible
representations of �(27) to multiplets of a larger group, which then itself has an appropriate
class-inverting involutory automorphism, i.e. a proper CP transformation. In order to see how
this could work, let us replace S by a field Z, transforming in the non-trivial one-dimensional
representation 18 and still carrying the same U(1) charge as X. This will lead to an allowed
coupling

L Z
toy = g′[Z18 ⊗ (Ψ ⊗ Σ)14

]
10

+ h.c. = (
G′)ij

ZΨ iΣj + h.c. (3.6)

11 Note that GHΨ/ΣG† = ω2HΨ/Σ .
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with the “Yukawa” matrix

G′ = g′
⎛⎝ 0 0 ω2

1 0 0
0 ω 0

⎞⎠ . (3.7)

Instead of the process shown in Fig. 3(b), one now has to take into account the one-loop diagram
for the Y decay displayed in Fig. 3(d), which contributes to the decay asymmetry as

εZ

Y→Ψ Ψ
∝ ∣∣g′∣∣2 Im[IZ] Im

[
ω2hΨ h∗

Σ

]
. (3.8)

The statement that CP is generically violated still holds. However, the total CP asymmetry of the
Y decay vanishes if (i) MZ = MX , (ii) |g| = |g′|, and (iii) ϕ = 0. It is possible to understand this
CP conserving spot in parameter space from the fact that one can enhance the flavor symmetry
beyond �(27). Here this can happen via the (outer) automorphism u3 of �(27) (details are given
in Appendix A.2) which transforms

X
u3←→ Z, Y

u3−→ Y, Ψ
u3−→ Uu3Σ

C and Σ
u3−→ Uu3Ψ

C, (3.9)

with Uu3 given in Eq. (A.16). This symmetry is consistent with the U(1) symmetry (for the choice
qΣ = −qΨ ) and naturally ensures relations (i)–(iii), thereby granting the absence of CP viola-
tion. Let us stress that this is not a CP symmetry of the �(27) model, but instead enhances the
flavor symmetry of the setup from �(27) to SG(54,5) — and this bigger group itself then has an
appropriate class-inverting involutory automorphism which ensures CP conservation. The bigger
symmetry can be constructed as the semi-direct product of �(27) and the symmetry u3 [12,13].
Under this bigger symmetry, the previously distinct fields X and Z get combined to a doublet,
Ψ and ΣC get combined to a hexaplet and Y stays in a non-trivial one-dimensional represen-
tation. Then, since we have enough fields at hand to render all coupling phases unphysical, the
class-inverting involutory automorphism of SG(54,5), which is a physical CP transformation, is
an accidental symmetry of the setting.

Note that if the relations (i)–(iii) are fulfilled, the quantum corrections to the relative phases
of hΨ and hΣ vanish. This substantiates the statement that one can use the behavior under the
renormalization group to check whether or not certain relations are caused by a symmetry.

Interestingly, it is possible to spontaneously break the larger group SG(54,5) down to �(27)

by the VEV of a (U(1) neutral) field φ in the real non-trivial one-dimensional representation of
SG(54,5). The field φ couples to the scalars, thus giving rise to a mass splitting,

L
φ

toy ⊃ M2(|X|2 + |Z|2) +
[

μ√
2
〈φ〉(|X|2 − |Z|2) + h.c.

]
, (3.10)

with μ denoting a mass parameter. However, φ does not couple to, i.e. alter, the Yukawa cou-
plings of X, Y , and Z at the renormalizable level. Note that, given an appropriate coupling, the φ

VEV will also split the masses of the fermions, thus making them distinguishable.
Therefore, after the breaking, relations (ii) and (iii), i.e. the equalities |g| = |g′| and hΨ = hΣ ,

still hold, while due to the mass splitting the relation (i) gets destroyed, i.e. MX �= MZ . As a
consequence, CP is violated spontaneously and all the phases which appear in the CP asymmetry

εY→Ψ Ψ ∝ |g|2|hΨ |2 Im[ω](Im[IX] − Im[IZ]), (3.11)

are independent of the couplings, i.e. calculable.
We have, hence, obtained a simple recipe for constructing models of spontaneous CP break-

ing. One starts with a type II group GII which contains (and can be spontaneously broken
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down to) a type I group GI. At the level of GII, one imposes the generalized CP transformation,
such that at this level CP is conserved. After the spontaneous breaking GII → GI CP will, at
least generically, be broken. In the example discussed above, the CP phases are even calculable.
A more detailed discussion of these issues will be presented in a subsequent publication.

3.1.3. CP-like symmetries
Let us also emphasize that not every outer automorphism which is imposed as a symmetry

does lead to physical CP conservation. Consider for example the outer automorphism u5 given
in (A.15e), which is the same as u in [12].12 The only way in which u5 can act consistently with
all symmetries (again for the choice qΣ = −qΨ ) is to exchange the fermions,

X
u5−→ X∗, Z

u5−→ Z∗, Y
u5−→ Y ∗,

Ψ
u5−→ Uu5Σ, and Σ

u5−→ Uu5Ψ. (3.12)

Clearly, this transformation maps fields with opposite U(1) charges onto each other, i.e. acts like
a charge conjugation on the U(1). Hence this is not an enhancement of the flavor symmetry. It is,
however, not a physical CP symmetry either since not all representations of �(27) are mapped to
their complex conjugate representations, in particular 3 → 3. That is, if one were to entertain the
possibility that, in a more sophisticated model, the 3-plet describes some fields that are connected
to the standard model, this transformation would not entail a physical CP transformation (see also
our earlier discussion in Section 2.3). Note that imposing (3.12) will enforce equality between the
decay amplitudes of Y → Ψ Ψ and Y ∗ → ΣΣ but none of the relations (i)–(iii) is fulfilled and
thus the physical CP asymmetry of the Y decay, εY→Ψ Ψ , is still non-vanishing, i.e. physical CP
is still violated. For these reasons we prefer to call such a symmetry a “CP-like symmetry” (see
Section 2.3). In particular, we disagree with the statement made by HLS [12] that an arbitrary
outer automorphism can serve as a physical CP transformation.

To conclude the discussion of the example, we emphasize that the CP violation in �(27)

exists solely due to the properties of the symmetry group and is independent of any arguments
based on spontaneously breaking this or other symmetries. Yet, as we have seen, it is possible
to have settings in which a bigger, CP conserving type II symmetry gets spontaneously broken
down to �(27). In this case, we have found that the physical CP violating phases are predicted
by group theory.

3.1.4. CP conservation in models based on �(27)

The alert reader may now wonder how it is possible that CP gets broken spontaneously in
�(27)-based models [24], i.e. how can it be that there is CP conservation to start with. This is
because in the model discussed in [24] only triplet representations are introduced, and there exist
involutory automorphisms of �(27) for which the FSu’s for the triplets equal 1 (see Table A.3 in
Appendix A.2, and [14] for examples). This allows one to impose a consistent CP transformation
for this non-generic setting. However, once one amends the setting by more than two non-trivial
one-dimensional representations, this will no longer be possible.

In summary, we see that models based on �(27) generically violate CP. This can be avoided
by

12 In HLS [12] the automorphism is defined as u : (A,B) → (AB2AB,AB2A2) while in (A.15e) u5 : (A,B) →
(BA2B2,AB2A2). However, as AB2A = BA2B , these operations coincide.



M.-C. Chen et al. / Nuclear Physics B 883 (2014) 267–305 287
Table 3.1
Twisted Frobenius–Schur indicators for the automorphism (3.13) of T′.
R 10 11 12 20 21 22 3

FSu(R) 1 1 1 1 1 1 1

1. Increasing the (flavor) symmetry beyond �(27);
2. Considering settings in which only a special subset of representations is introduced.

3.1.5. Comments on the possible origin of a �(27) symmetry
It may also be interesting to see how CP violation by discrete flavor symmetries originates

from some “microscopic” theory. In [25] it was studied how SU(3) can be broken to �(27), yet
the discussion is based on certain invariants and it is not clear if or how one can achieve this
breaking by generating the required VEVs dynamically through a potential (cf. the discussion
in [26]). However, given that �(27) does not allow for a proper CP transformation while SU(3)

does, it is tempting to speculate that such a breaking, if possible, will also break CP sponta-
neously.

In [27] it was shown how non-Abelian discrete flavor symmetries arise in certain orbifold
compactifications but no type I groups were found. A �(27) symmetry can arise from space–
group rules in non-Abelian heterotic orbifolds [28,29]13 but it is not yet clear what the (massless)
matter content of such settings is, i.e. if there are representations with vanishing FSu for all in-
volutory automorphisms. Similar comments apply to [30], where, in a local construction, also a
�(27) symmetry was found.

3.2. Example for a type II A group: T′

The group T′, which is the double covering group of A4, is an example for a group that admits
a basis with real Clebsch–Gordan coefficients. Information on the group structure of T′ and the
tensor product contractions in different bases can be found in Appendix A.1.

T′ has a unique outer automorphism, which swaps each representation with its complex con-
jugate representation, i.e. which is class-inverting. One particular, involutory representative14 of
this outer automorphism is given by

u : (S,T ) → (
S3, T 2)

� 1i → U1i
1∗
i , 2i → U2i

2∗
i , 3 → U33∗. (3.13)

One can confirm that this automorphism is indeed a Bickerstaff–Damhus automorphism from the
twisted Frobenius–Schur indicators in Table 3.1.

As in our �(27) example, one could also construct an explicit example model based on this
group and calculate CP asymmetries. However, as has been pointed out in Section 2.7 already,
there will be no CP violation originating from the intrinsic properties of T′, i.e. from the Clebsch–
Gordan coefficients. That is, unlike in the �(27) case, there is the C̃P transformation (3.13)
available that ensures physical CP conservation. Of course, CP could be violated explicitly if
there were not enough field rephasing degrees of freedom to absorb all complex coupling pa-
rameter phases. This is, however, not related to the group structure of the model and, thus, is not

13 We thank P. Vaudrevange for pointing this out.
14 By definition, all other possible choices of automorphisms representing the unique outer automorphism of T′ are
connected to our choice by inner automorphisms.



288 M.-C. Chen et al. / Nuclear Physics B 883 (2014) 267–305
discussed here. Instead, let us use T′ as an example to discuss realizations of the CP transforma-
tion (3.13) in different bases and comment on complications which may arise in some of these
bases.

For the matrices Ur i
, with which one has to multiply the representation vectors in addition to

the conjugation, HLS [12] obtain15

1i
C̃P�−→
HLS

ωi1∗
i (0 � i � 2), (3.14a)

2i
C̃P�−→
HLS

diag
(
ψ−5,ψ5)2∗

i (0 � i � 2), (3.14b)

3
C̃P�−→
HLS

diag
(
1,ω,ω2)3∗ (3.14c)

with ω = e2π i/3, as before, and ψ = e2π i/24. This CP transformation is only unique up to multi-
plication with T′ elements and can still be amended by phase factors ηCP as in Eq. (2.4) for each
field. However, this only corresponds to the freedom of rephasing fields, and, therefore, one can
choose a common phase for all fields in the same T′ representation without loss of generality.
Yet, the specific choice made by HLS [12] in combination with the Clebsch–Gordan coefficients
of [31, Appendix A] appears inconvenient to us for the following reason.

Consider the contraction of ψ in the representation 20 with χ in the 21 to the non-trivial
singlet 11,

(ψ ⊗ χ)11 = −1√
2
(ψ1χ2 − ψ2χ1). (3.15)

It is obvious that this contraction does not acquire a phase under the CP transformation (3.14b)
because

ψ1χ2 − ψ2χ1
(3.14b)−−−−→ ψ∗

1 χ∗
2 − ψ∗

2 χ∗
1 . (3.16)

However, according to (3.14a), the non-trivial singlet 11 should acquire a phase factor ω. Hence,
a composite state in the T′ representation 11 transforms differently under CP from an elementary
11 which, although not inconsistent, is certainly inconvenient. Moreover, this complication is
unnecessary as we have shown in Section 2.7 because for type II A groups it is always possible
to fix the CP transformation phases and the phases of the Clebsch–Gordan coefficients in such
a way that the CP transformation behavior of fields, composite and elementary alike, directly
follows from their transformation behavior under the discrete flavor group.

In the basis of Feruglio et al. with the Clebsch–Gordan phases chosen as shown in Ap-
pendix A.1 this more convenient CP transformation takes the form

1i
C̃P�−→ 1∗

i , (3.17a)

2i
C̃P�−→ diag

(
1, e5π i/6)2∗

i , (3.17b)

3
C̃P�−→ diag

(
1,ω,ω2)3∗. (3.17c)

Furthermore, it turns out that the chosen basis itself has a certain deficit. The 3 of T′ is a
real representation. However, the corresponding representation matrices in the Feruglio et al.

15 Note that HLS [12] use the T′ basis of Feruglio et al. [31, Appendix A] (see also Appendix A.1.4).
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basis are complex matrices which means that one cannot consistently describe a field φ in the
three-dimensional representation by a triplet of manifestly real scalar fields. One may “rectify”
this by imposing a Majorana-like condition which constrains the complex entries of the field to
the correct number of degrees of freedom, i.e.

φ∗ = Uφ =
(1 0 0

0 0 1
0 1 0

)
φ. (3.18)

This is also reflected by the kinetic term, which is given by

1

2

(
∂μφ ⊗ ∂μφ

)
10

= 1

2
∂μφT UT ∂μφ (3.19)

and is non-positive definite for real field values. If one instead imposes the Majorana-like condi-
tion on the kinetic term,

1

2
∂μφT UT ∂μφ

(3.18)= 1

2
∂μφ†∂μφ, (3.20)

one can see that for the now complex field values the kinetic term is indeed positive definite.
Nonetheless, treating φ as a complex field and enforcing a condition like Eq. (3.18) complicates
perturbative computations, and, for performing those, it appears more convenient to avoid such
a situation altogether by going to a basis where the triplet representation matrices are all real.16

Such a basis is the “Ma–Rajasekaran basis” [32] (see also Appendix A.1.3). In this basis, the CP
transformation is given by

1i
C̃P�−→ 1∗

i , (3.21a)

2i
C̃P�−→ 2∗

i , (3.21b)

3
C̃P�−→

(1 0 0
0 0 1
0 1 0

)
3∗. (3.21c)

Since T′ is of type II A, the group also admits a basis with completely real Clebsch–Gordan
coefficients, which is given by the one of Ishimori et al. [33] (see also Appendix A.1.4) for
the choice p = i and p1 = p2 = 1. In this basis, the generalized CP transformation is identical
to conjugation since the matrices Ur i

are all unit matrices. However, the Ishimori basis again
suffers from the issues with real triplet fields. Whether one choice of basis or the other is more
convenient depends on the specific model at hand.

3.3. Example for a type II B group: Σ(72)

The non-Abelian group Σ(72) is an example for groups of type II B. Information on the gen-
erators, characters and tensor product contractions of this group can be found in Appendix A.3.

As one can check explicitly with the twisted Frobenius–Schur indicator, Σ(72) has no
Bickerstaff–Damhus automorphism, and, therefore, there is no basis of the group in which all
Clebsch–Gordan coefficients are real. However, the group is ambivalent, i.e. each conjugacy
class contains with an element g also its inverse element g−1, which makes any class-preserving

16 If only complex fields are present in a model, like in supersymmetric models, this issue does not arise.
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Table 3.2
Twisted Frobenius–Schur indicators for the identity automorphisms of Σ(72).

R 10 11 12 13 2 8

FSid(R) 1 1 1 1 −1 1

automorphism at the same time class-inverting. Thus, the identity map, which is trivially an
involution, can be used to define a consistent and model-independent CP transformation. The
corresponding twisted Frobenius–Schur indicators are shown in Table 3.2, where the −1 for
the two-dimensional representation signals that this representation transforms with an anti-
symmetric matrix under the automorphism, which implies that the transformation is not a BDA.
In the basis specified in Appendix A.3, the corresponding CP transformation takes a very simple
form. In fact, the identity automorphism leads to a CP transformation that acts as

(M,N,P )
id�−→ (M,N,P ) � 1i

C̃P�−→ 1∗
i , 2

C̃P�−→ U22∗, 8
C̃P�−→ 8∗ (3.22)

on the irreducible representations, where one should bear in mind that all representations of
ambivalent groups are (pseudo-)real. Hence, the CP transformation acts as conjugation on all
representations except the 2, which has to be conjugated and multiplied with the anti-symmetric
matrix

U2 =
(

0 1
−1 0

)
. (3.23)

Therefore, as described in Sections 2.3 and 2.7, imposing this CP transformation as a symmetry
enlarges the flavor group by an additional Z2 factor to Σ(72)×Z2. The additional symmetry gen-
erator acts trivially on all representations except for the 2, on which it acts as V2 = U2U

∗
2 = −1.

Hence, this additional Z2 forbids all terms which contain an odd number of fields in the two-
dimensional representation 2. These are terms like

L ⊃ c
(
2 ⊗ (8 ⊗ 8)2

)
10

(3.24)

which are exactly the ones that cannot be made CP invariant by any choice of coupling c or by
the addition of any other term. On the other hand, if all terms which are prohibited by the Z2 are
absent, the discussion of CP violation works in complete analogy to type II A groups.

4. Conclusions

In this study, we have discussed CP transformations in settings with a discrete (flavor) sym-
metry G. We have shown that physical CP transformations are given by the class-inverting
automorphisms of G, which implies that canonical CP transformations necessarily have to be
generalized due to the nature of discrete groups. This can only be avoided for certain groups
(type II A) in very specific bases, or in models with a non-generic field content.

One of the central results of our discussion is that there are discrete groups that automati-
cally violate CP in the sense that they do not allow us to impose a consistent (generalized) CP
transformation for a generic field content.

More specifically, we have shown that there are three types of discrete groups:

Type I: Groups that, in general, violate CP. Such groups do not possess a class-inverting au-
tomorphism which would be necessary in order to define a (generalized) CP transfor-
mation that can warrant physical CP conservation. In generic settings based on such
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groups CP is violated explicitly. This statement does not apply to non-generic models.
For instance, if a model contains only a subset of irreducible representations for which
an automorphism u exists that exchanges each of these representations by its conjugate,
one can impose the generalized CP transformation corresponding to u to be a symmetry,
and thus guarantee CP conservation.

Type II A: Groups that do admit real Clebsch–Gordan coefficients. For such groups one can
always define a physical CP transformation and find a CP basis.17 Whether or not CP
is violated in settings with type II A symmetries depends on the number of complex
couplings versus the number of free field redefinition phases, and, hence, the situation
is very similar to that of continuous symmetry groups such as SU(N).

Type II B: Groups that do not admit real Clebsch–Gordan coefficients but possess a class-
inverting automorphism that can be used to define a generalized CP transformation.
Apart from the obvious possibility that, like in the case of a type II A symmetry group,
CP can be violated explicitly (or spontaneously), here CP violation can arise from the
presence of operators which are prohibited by an additional symmetry, which might be
introduced when imposing CP invariance. That is, these groups have the unusual prop-
erty that CP invariance requires certain couplings to vanish rather than just restricting
the phases of the coupling coefficients. However, unlike in the type I case, CP can be
imposed regardless of the matter content of a model based on a type II B group.

We have discussed how one can use the (extended) twisted Frobenius–Schur indicator as a
tool to categorize the automorphisms and, henceforth, the discrete groups.

As we have seen in an explicit example, spontaneous breaking of CP with calculable phases
can be achieved in settings in which a type II group gets broken spontaneously to a type I group.
CP violation can then be attributed to some complex Clebsch–Gordan coefficients. That is, the
CP phases are predicted by group theory.

Another central outcome of our analysis is that some of the transformations that have been
coined “generalized CP transformations” in the recent literature are just outer automorphisms,
which have, a priori, nothing to do with CP. As we have demonstrated, imposing such a “general-
ized CP transformation” does not lead to physical CP conservation, but in many cases it enlarges
the original (flavor) symmetry G to a larger group such that the setting can no longer be called
a, say, �(27) model. That is, although proper generalized CP transformations are outer automor-
phisms of G, in general, outer automorphisms as such have nothing to do with CP invariance.
For instance, �(27) has several outer automorphisms but does not allow for a consistent CP
transformation in a generic setting. As we have discussed in detail, this is because none of the
automorphisms is class-inverting.
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Table A.1
Representations of the T′ generators.

10 11 12 20 21 22 3

S 1 1 1 S20 S21 S22 S3
T 1 ω ω2 T20 T21 T22 T3
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Appendix A. Group theory

In this appendix we collect information on the groups used in the main text: T′, �(27) and
Σ(72). Some of the details were obtained with the help of GAP [15] and the MATHEMAT-
ICA-package DISCRETE [34].

A.1. Group theory of T′

We start by discussing some basic facts on T′ and compare different conventions used in the
literature.

A.1.1. T′ generators
T′ is generated by the operations S and T where

S4 = T 3 = (ST )3 = e. (A.1)

There are seven irreducible representations, 1i , 2i and 3, where 0 � i � 2 and the representations
11 and 21 are conjugate to 12 and 22, respectively (see Table A.1).

A.1.2. T′ tensor products
The T′ tensor product rules are

2i ⊗ 2j = 3 ⊕ 1i+j mod 3, (A.2a)

2i ⊗ 3 = 20 ⊕ 21 ⊕ 22, (A.2b)

3 ⊗ 3 = 3s ⊕ 3a ⊕ 10 ⊕ 11 ⊕ 12. (A.2c)

A.1.3. Ma–Rajasekaran basis for T′
A basis in which the representation matrices for the real triplet representation are manifestly

real has been given by Ma and Rajasekaran [32] in the case of A4. For T′ it is given by
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SM
2i

= − 1√
3

(
i

√
2i√

2i −i

)
(i = 0,1,2), (A.3a)

T M
20

=
(

ω2 0
0 ω

)
, T M

21
=

(
1 0
0 ω2

)
, T M

22
=

(
ω 0
0 1

)
, (A.3b)

SM
3 =

(1 0 0
0 −1 0
0 0 −1

)
, T M

3 =
(0 1 0

0 0 1
1 0 0

)
. (A.3c)

The tensor products with the correct phases and correct normalization read

(x3 ⊗ y3)10 = x1y1 + x2y2 + x3y3√
3

, (A.4a)

(x3 ⊗ y3)11 = x1y1 + ω2x2y2 + ωx3y3√
3

, (A.4b)

(x3 ⊗ y3)12 = x1y1 + ωx2y2 + ω2x3y3√
3

, (A.4c)

(x3 ⊗ y3)3s = 1√
2

(
x2y3 + x3y2
x1y3 + x3y1
x1y2 + x2y1

)
, (A.4d)

(x3 ⊗ y3)3a = i√
2

(
x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1

)
, (A.4e)

(ψ2i
⊗ χ2j

)1i+j
= −1√

2
(ψ1χ2 − ψ2χ1), (A.4f)

(ψ2i
⊗ χ23−i

)3 = 1√
3

⎛⎜⎜⎝
−ψ1χ1 + 1√

2
(ψ1χ2 + ψ2χ1) + ψ2χ2

−ωψ1χ1 + 1√
2
(ψ1χ2 + ψ2χ1) + ω2ψ2χ2

−ω2ψ1χ1 + 1√
2
(ψ1χ2 + ψ2χ1) + ωψ2χ2

⎞⎟⎟⎠ , (A.4g)

(ψ2i
⊗ χ22−i

)3 = 1√
3

⎛⎜⎜⎝
−ψ1χ1 + 1√

2
(ψ1χ2 + ψ2χ1) + ψ2χ2

−ψ1χ1 + ω2 1√
2
(ψ1χ2 + ψ2χ1) + ωψ2χ2

−ψ1χ1 + ω 1√
2
(ψ1χ2 + ψ2χ1) + ω2ψ2χ2

⎞⎟⎟⎠ , (A.4h)

(ψ2i
⊗ χ21−i

)3 = 1√
3

⎛⎜⎜⎝
−ψ1χ1 + 1√

2
(ψ1χ2 + ψ2χ1) + ψ2χ2

−ω2ψ1χ1 + ω 1√
2
(ψ1χ2 + ψ2χ1) + ψ2χ2

−ωψ1χ1 + ω2 1√
2
(ψ1χ2 + ψ2χ1) + ψ2χ2

⎞⎟⎟⎠ , (A.4i)

(ψ2i
⊗ x3)2i

= 1

3

(
ψ1(x1 + x2 + x3) + √

2ψ2(x1 + ω2x2 + ωx3)√
2ψ1(x1 + ωx2 + ω2x3) − ψ2(x1 + x2 + x3)

)
, (A.4j)

(ψ2i
⊗ x3)2i+1 = 1

3

(
ψ1(x1 + ω2x2 + ωx3) + √

2ψ2(x1 + ωx2 + ω2x3)√
2ψ1(x1 + x2 + x3) − ψ2(x1 + ω2x2 + ωx3)

)
, (A.4k)

(ψ2i
⊗ x3)2i+2 = 1

3

(
ψ1(x1 + ωx2 + ω2x3) + √

2ψ2(x1 + x2 + x3)√
2ψ1(x1 + ω2x2 + ωx3) − ψ2(x1 + ωx2 + ω2x3)

)
. (A.4l)
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A.1.4. Ishimori et al. basis
Another basis for the triplet representation has been discussed in [33], where one uses

SI
2i

= − 1√
3

(
i

√
2p

−√
2p∗ −i

)
(i = 0,1,2), (A.5a)

T I
20

=
(

ω2 0
0 ω

)
, T I

21
=

(
1 0
0 ω2

)
, T I

22
=

(
ω 0
0 1

)
, (A.5b)

SI
3 =

⎛⎝ −1 2p1 2p1p2

2p∗
1 −1 2p2

2p∗
1p∗

2 2p∗
2 −1

⎞⎠ , (A.5c)

T I
3 =

(1 0 0
0 ω 0
0 0 ω2

)
(A.5d)

as generators with p = eiϕ , p1 = eiϕ1 , and p2 = eiϕ2 , where ϕ, ϕ1, and ϕ2 are arbitrary real
phases. The free phases of the triplet representation can be removed by a transformation S̃I

3 =
PSI

3P
† with

P =
⎛⎝ 1 0 0

0 eiϕ1 0
0 0 ei(ϕ1+ϕ2)

⎞⎠ . (A.6)

The transformation which connects the bases (A.3) and (A.5) for the triplet representations is
given by

SM
3 = (ŨP )SI

3(ŨP )† and T M
3 = (ŨP )T I

3 (ŨP )†, (A.7)

with

Ũ = 1√
3

⎛⎝ 1 1 1
1 ω ω2

1 ω2 ω

⎞⎠ . (A.8)

Note that for the particular choice of p = i and p1 = p2 = 1, the representation matrices of
basis (A.5) fulfill the Bickerstaff–Damhus equation (2.27) for the outer automorphism (S,T ) →
(S3, T 2). Hence, in this particular basis, all Clebsch–Gordan coefficients are real. This has also
been found in an explicit computation [33].

Another basis commonly used in the literature is the one of Feruglio et al. [31, Appendix A],
which can be obtained from (A.5) by setting p1 = p2 = e2π i/3 and p = e2π i/24. We adjust the
global phases of the tensor product contractions in this basis such that for the CP transformation
(3.17) compound states transform like elementary states and obtain

(x3 ⊗ y3)10 = x1y1 + x2y3 + x3y2√
3

, (A.9a)

(x3 ⊗ y3)11 = ω(x1y2 + x2y1 + x3y3)√
3

, (A.9b)

(x3 ⊗ y3)12 = ω2(x1y3 + x2y2 + x3y1)√ , (A.9c)

3
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(x3 ⊗ y3)3s = 1√
6

( 2x1y1 − x3y2 − x2y3
−x2y1 − x1y2 + 2x3y3
−x3y1 + 2x2y2 − x1y3

)
, (A.9d)

(x3 ⊗ y3)3a = 1√
2

(
x2y3 − x3y2
x1y2 − x2y1
x3y1 − x1y3

)
, (A.9e)

(ψ2i
⊗ χ2j

)1i+j
= e7iπ/12

√
2

(ψ1χ2 − ψ2χ1), (A.9f)

(ψ2i
⊗ χ23−i

)3 = iω2

( 1−i
2 (ψ1χ2 + ψ2χ1)

iψ1χ1
ψ2χ2

)
, (A.9g)

(ψ2i
⊗ χ22−i

)3 = i

( iψ1χ1
ψ2χ2

1−i
2 (ψ1χ2 + ψ2χ1)

)
, (A.9h)

(ψ2i
⊗ χ21−i

)3 = iω

(
ψ2χ2

1−i
2 (ψ1χ2 + ψ2χ1)

iψ1χ1

)
, (A.9i)

(ψ2i
⊗ x3)2i

= 1√
3

(
ψ1χ1 + (1 + i)ψ2χ2
(1 − i)ψ1χ3 − ψ2χ1

)
, (A.9j)

(ψ2i
⊗ x3)2i+1 = ω√

3

(
(ψ1χ2 + (1 + i)ψ2χ3)

(1 − i)ψ1χ1 − ψ2χ2

)
, (A.9k)

(ψ2i
⊗ x3)2i+2 = ω2

√
3

(
ψ1χ3 + (1 + i)ψ2χ1
(1 − i)ψ1χ2 − ψ2χ3

)
. (A.9l)

A.2. Group theory of �(27)

�(27) is generated by the operations A and B , where

A3 = B3 = (AB)3 = e. (A.10)

The conjugacy classes are given as

C1a : {e},
C3a :

{
A,BAB2,B2AB

}
, C3b:

{
A2,BA2B2,B2A2B

}
,

C3c:
{
B,ABA2,A2BA

}
, C3d : {

B2,AB2A2,A2B2A
}
,

C3e:
{
ABA,A2B,BA2

}
, C3f : {

BAB,B2A,AB2
}
,

C3g:
{
AB,BA,A2BA2

}
, C3h:

{
AB2A,A2B2,B2A2

}
,

C3i :
{
AB2ABA

}
, C3j :

{
BA2BAB

}
. (A.11)

There are eleven inequivalent irreducible representations 1i , 3, and 3, where 0 � i � 8. The
character table is given in A.2.

We adopt the labeling of [12] with the difference that in our notation 1i = 1(HLS)
i−1 and use

the contractions of [35] translated to our conventions. There appears to be a typographical error
in the character table of [35] in which the characters of the two conjugacy classes C10 and C11
should be interchanged. The representations (11,12), (13,16), (14,18), and (15,17) as well as
the triplets are the complex conjugate of each other. For the triplet 3 we use the representation
matrices
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Table A.2
Character table of �(27). We define ω := e2π i/3. The conjugacy classes (c.c.) are labeled by the order of their elements
and a letter. The second line gives the cardinality of the corresponding c.c. and the third line gives a representative of the
c.c. in the presentation specified in the text.

�(27) C1a C3a C3b C3c C3d C3e C3f C3g C3h C3i C3j

1 3 3 3 3 3 3 3 3 1 1
e A A2 B B2 ABA BAB AB A2B2 AB2ABA BA2BAB

10 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 ω2 ω ω2 ω ω2 ω 1 1
12 1 1 1 ω ω2 ω ω2 ω ω2 1 1
13 1 ω2 ω 1 1 ω ω2 ω2 ω 1 1
14 1 ω2 ω ω2 ω 1 1 ω ω2 1 1
15 1 ω2 ω ω ω2 ω2 ω 1 1 1 1
16 1 ω ω2 1 1 ω2 ω ω ω2 1 1
17 1 ω ω2 ω2 ω ω ω2 1 1 1 1
18 1 ω ω2 ω ω2 1 1 ω2 ω 1 1
3 3 0 0 0 0 0 0 0 0 3ω2 3ω

3 3 0 0 0 0 0 0 0 0 3ω 3ω2

A =
(0 1 0

0 0 1
1 0 0

)
, B =

(1 0 0
0 ω 0
0 0 ω2

)
(A.12)

and for 3 the respective complex conjugate matrices. This results in the multiplication rule

x3 ⊗ y3 =
9∑

i=1

1i , (A.13)

where

10 = (x1y1 + x2y2 + x3y3)√
3

, (A.14a)

11 = (x1y2 + x2y3 + x3y1)√
3

, 12 = (x2y1 + x3y2 + x1y3)√
3

, (A.14b)

13 = (x1y1 + ωx2y2 + ω2x3y3)√
3

, 16 = (x1y1 + ω2x2y2 + ωx3y3)√
3

, (A.14c)

14 = (x1y2 + ωx2y3 + ω2x3y1)√
3

, 18 = (x2y1 + ω2x3y2 + ωx1y3)√
3

, (A.14d)

15 = (x2y1 + ωx3y2 + ω2x1y3)√
3

, 17 = (x1y2 + ω2x2y3 + ωx3y1)√
3

. (A.14e)

From the discussion in Appendix C it is clear that �(27) as a non-Abelian group of odd order
does not allow for any class-inverting involutory automorphism. Therefore, there is no possi-
bility of having a physical CP symmetry in a generic setup. There are, however, several outer
automorphisms which exchange a subset of representations with their complex conjugates. If
one is to construct a model with one of those subsets there is the possibility of imposing physical
CP conservation. Altogether there are 46 involutory automorphisms. Some examples are given
by
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Table A.3
Twisted Frobenius–Schur indicators for some outer automorphisms of �(27).

R 10 11 12 13 14 15 16 17 18 3 3

FSu1 (R) 1 1 1 0 0 0 0 0 0 1 1
FSu2 (R) 1 0 0 1 0 0 1 0 0 1 1
FSu3 (R) 1 0 0 0 0 1 0 1 0 1 1
FSu4 (R) 1 0 0 1 0 0 1 0 0 1 1
FSu5 (R) 1 1 1 1 1 1 1 1 1 0 0

u1 : (A,B) → (
A,B2)

� 11 ↔ 12, 14 ↔ 15, 17 ↔ 18, 3 → Uu13∗,
(A.15a)

u2 : (A,B) → (ABA,B) � 11 ↔ 14, 12 ↔ 18, 13 ↔ 16, 3 → Uu23∗,
(A.15b)

u3 : (A,B) → (
BAB,B2)

� 11 ↔ 18, 12 ↔ 14, 15 ↔ 17, 3 → Uu33∗,
(A.15c)

u4 : (A,B) → (
AB2A,B

)
� 11 ↔ 17, 12 ↔ 15, 13 ↔ 16, 3 → Uu43∗,

(A.15d)

u5 : (A,B) → (
BA2B2,AB2A2)

� 1i ↔ 1∗
i , 3 → Uu53.

(A.15e)

All other representations stay inert under the transformation, and by 3 → Uui
3∗ we mean that

fields in the triplet representation have to be multiplied by the corresponding matrix in addition
to a possible conjugation. In our basis, these matrices are given by

Uu1 = 1, Uu2 =
(

ω 0 0
0 0 1
0 1 0

)
, Uu3 =

(1 0 0
0 ω2 0
0 0 ω2

)
,

Uu4 =
(1 0 0

0 0 ω

0 ω 0

)
, Uu5 =

( 0 0 ω2

0 1 0
ω 0 0

)
. (A.16)

The corresponding twisted Frobenius–Schur indicators for all representations are given in
Table A.3. One can convince oneself by computing all FSu’s that for models with fields in more
than two non-trivial one-dimensional representations and a triplet it is impossible to find an au-
tomorphism that leads to a consistent CP transformation. This is a highly interesting feature of
this group.

A.3. Group theory of Σ(72)

The non-Abelian group Σ(72) is isomorphic to the semi-direct product group (Z3 ×Z3)�Q8,
where Q8 is the quaternion group, and is generated by three generators M , N and P , which fulfill
the relations

M4 = N4 = P 3 = (
M2P −1)2 = e, M2 = N2, M−1N = NM,

PMPN−1MP −1N = e, NPM−1P = MPN. (A.17)



298 M.-C. Chen et al. / Nuclear Physics B 883 (2014) 267–305
Table A.4
Character table of Σ(72). The conjugacy classes (c.c.) are labeled by the order of their elements and a letter. The second
line gives the cardinality of the corresponding c.c. and the third line gives a representative of the c.c. in the presentation
specified in the text.

Σ(72) C1a C3a C2a C4a C4b C4c

1 8 9 18 18 18
e P M2 MN N M

10 1 1 1 1 1 1
11 1 1 1 1 −1 −1
12 1 1 1 −1 1 −1
13 1 1 1 −1 −1 1
2 2 2 −2 0 0 0
8 8 −1 0 0 0 0

Σ(72) has 6 inequivalent irreducible representations: four one-dimensional (10−3), one two-
dimensional (2), and one eight-dimensional (8). The characters of Σ(72) are shown in Table A.4.
From the character table one can also read off the matrix realizations of the generators for the one-
dimensional representations. The generators for the two-dimensional representation are given by

M2 =
(

0 1
−1 0

)
, N2 =

(−i 0
0 i

)
, P2 =

(
1 0
0 1

)
,

and the three matrices

M8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

N8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

P8 = 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
√

3 0 0 0 0 0 0
−√

3 −1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 −1 −√

3 0 0
0 0 0 0

√
3 −1 0 0

0 0 0 0 0 0 −1 −√
3

0 0 0 0 0 0
√

3 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

generate the eight-dimensional representation.
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The (non-trivial) tensor product contractions of Σ(72) are the following:

(x10 ⊗ y2)2 = 1√
2

(
x1y1
x1y2

)
, (x11 ⊗ y2)2 = i√

2

(
x1y2
x1y1

)
,

(x12 ⊗ y2)2 = i√
2

(
x1y1

−x1y2

)
, (x13 ⊗ y2)2 = 1√

2

(
x1y2

−x1y1

)
,

(x2 ⊗ y2)10 = 1√
2
(x1y2 − x2y1), (x2 ⊗ y2)11 = i√

2
(x1y1 − x2y2),

(x2 ⊗ y2)12 = i√
2
(x1y2 + x2y1), (x2 ⊗ y2)13 = 1√

2
(x1y1 + x2y2),

(x10 ⊗ y8)8 = (x1y1, x1y2, x1y3, x1y4, x1y5, x1y6, x1y7, x1y8)
T ,

(x11 ⊗ y8)8 = (x1y1, x1y2,−x1y3,−x1y4,−x1y5,−x1y6, x1y7, x1y8)
T ,

(x12 ⊗ y8)8 = (x1y1, x1y2,−x1y3,−x1y4, x1y5, x1y6,−x1y7,−x1y8)
T ,

(x13 ⊗ y8)8 = (x1y1, x1y2, x1y3, x1y4,−x1y5,−x1y6,−x1y7,−x1y8)
T ,

(x2 ⊗ y8)81 = (ix1y2,−ix1y1, ix2y4,−ix2y3, x1y6,−x1y5, x2y8,−x2y7)
T ,

(x2 ⊗ y8)82 = (ix2y2,−ix2y1,−ix1y4, ix1y3,−x2y6, x2y5, x1y8,−x1y7)
T ,

(x8 ⊗ y8)10 = 1

2
√

2
(x1y1 + x2y2 + x3y3 + x4y4 + x5y5 + x6y6 + x7y7 + x8y8),

(x8 ⊗ y8)11 = 1

2
√

2
(x1y1 + x2y2 − x3y3 − x4y4 − x5y5 − x6y6 + x7y7 + x8y8),

(x8 ⊗ y8)12 = 1

2
√

2
(x1y1 + x2y2 − x3y3 − x4y4 + x5y5 + x6y6 − x7y7 − x8y8),

(x8 ⊗ y8)13 = 1

2
√

2
(x1y1 + x2y2 + x3y3 + x4y4 − x5y5 − x6y6 − x7y7 − x8y8),

(x8 ⊗ y8)21 = 1

2

(
ix2y1 − ix1y2 − x6y5 + x5y6
ix4y3 − ix3y4 − x8y7 + x7y8

)
,

(x8 ⊗ y8)22 = 1

2

(
ix4y3 − ix3y4 + x8y7 − x7y8

−ix2y1 + ix1y2 − x6y5 + x5y6

)
,

(x8 ⊗ y8)81 = 1√
2
(x1y1 − x2y2,−x2y1 − x1y2, x3y3 − x4y4,−x4y3 − x3y4,

x5y5 − x6y6,−x6y5 − x5y6, x7y7 − x8y8,−x8y7 − x7y8)
T ,

(x8 ⊗ y8)82 = 1√
2
(x3y5 + x4y6, x4y5 − x3y6, x1y7 − x2y8,−x2y7 − x1y8,

x7y1 + x8y2,−x8y1 + x7y2, x5y3 − x6y4, x6y3 + x5y4)
T ,

(x8 ⊗ y8)83 = 1√
2
(x3y7 − x4y8,−x4y7 − x3y8, x1y5 − x2y6, x2y5 + x1y6,

x7y3 + x8y4, x8y3 − x7y4, x5y1 + x6y2,−x6y1 + x5y2)
T ,

(x8 ⊗ y8)84 = 1√
2
(x5y7 − x6y8, x6y7 + x5y8, x7y5 + x8y6, x8y5 − x7y6,

x1y3 + x2y4,−x2y3 + x1y4, x3y1 − x4y2,−x4y1 − x3y2)
T ,
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(x8 ⊗ y8)85 = 1√
2
(x5y3 + x6y4,−x6y3 + x5y4, x7y1 − x8y2,−x8y1 − x7y2,

x1y7 + x2y8, x2y7 − x1y8, x3y5 − x4y6, x4y5 + x3y6)
T ,

(x8 ⊗ y8)86 = 1√
2
(x7y5 − x8y6, x8y5 + x7y6, x5y7 + x6y8,−x6y7 + x5y8,

x3y1 + x4y2, x4y1 − x3y2, x1y3 − x2y4,−x2y3 − x1y4)
T ,

(x8 ⊗ y8)87 = 1√
2
(x7y3 − x8y4,−x8y3 − x7y4, x5y1 − x6y2, x6y1 + x5y2,

x3y7 + x4y8,−x4y7 + x3y8, x1y5 + x2y6, x2y5 − x1y6)
T .

Appendix B. A GAP code to compute the twisted Frobenius–Schur indicator

The following code for GAP computes the twisted Frobenius–Schur indicators for all irre-
ducible representations of a finite group G and a given automorphism aut of this group.

twistedFS:=function(G,aut)
local elG,tbl,irr,fsList;
elG:=Elements(G);
tbl:=CharacterTable(G);
irr:=Irr(tbl);
fsList:=List(elG,x->x*x^aut);
return List(irr,y->Sum(fsList,x->x^y))/Size(G);

end;

This code can easily be augmented to compute the nth extended twisted Frobenius–Schur indica-
tor (see Appendix C.3). However, due to the large number of group operations, the computation
can be very time-consuming. In practice, it might, therefore, be advisable to check directly
whether a given high-order automorphisms is class-inverting instead of using the FS(n)

u .
As an example, one can print out the twisted Frobenius–Schur indicators of a certain group for

all its involutory automorphisms. In the example below, the group SG(24,3), i.e. T′, is chosen.

G:=SmallGroup(24,3);;
autG:=AutomorphismGroup(G);;
elAutG:=Elements(autG);;
ordTwoAut:=Filtered(elAutG,x->Order(x)<=2);;
for i in ordTwoAut do Print(twistedFS(G,i)); od;

Appendix C. Class-inverting automorphisms

An automorphism u is class-inverting if and only if it sends each group element to the conju-
gacy class of its inverse, i.e.

∀g ∈ G : ∃h ∈ G: u(g) = hg−1h−1. (C.1)

Class-inverting automorphisms have always even order except in ambivalent groups, where the
notions of class-inverting and class-preserving coincide and where also odd-order automor-
phisms can be class-inverting.
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In this appendix, we state some of the proofs omitted in the main text. The discussion is in
parts similar to [14], where, however, the assumptions were slightly different.

C.1. Higher-order class-inverting automorphisms

As stated in the main text, higher-order class-inverting automorphisms, where higher-order
means greater than two, do not seem to play any role as CP transformations. Indeed, for all
groups of order less than 150, with the exception of order 128, we have checked that all such
automorphisms are related to order-two class-inverting automorphisms via inner automorphisms.
That is, let u be a class-inverting automorphism which is of order greater than two, i.e. which is
not involutory. Moreover, assume that it squares to an inner automorphism,

∃a ∈ G: u2(g) = aga−1 ∀g ∈ G, (C.2)

for the reasons given in Section 2.3. Then, in all the checked examples, there is a second auto-
morphism u′ such that

u′(g) = bu(g)b−1 with b ∈ G and ∀g ∈ G, (C.3a)

u′ 2(g) = g ∀g ∈ G. (C.3b)

Automorphisms u and u′ which are related in this way lead to physically equivalent CP transfor-
mations because

U ′
r i

= ρr i
(b)Ur i

(C.4)

for all irreducible representations r i , where Ur i
solves Eq. (2.16) for u and U ′

r i
for u′, respec-

tively.18 The condition that u′ is involutory,

u′ 2(g) = bu
(
u′(g)

)
b−1 = bu

(
bu(g)b−1)b−1

= bu(b)aga−1u(b)−1b−1 != g ∀g ∈ G, (C.5)

is fulfilled if and only if

bu(b)a ∈ Z(G), (C.6)

where Z(G) is the center of G. We will prove that, for certain classes of automorphisms and
groups, one can always find a group element b such that (C.6) is fulfilled, i.e. that these automor-
phisms are physically equivalent to involutory automorphisms.

As a first step, we show using representation theory that u(a) = ca with an appropriate c ∈
Z(G), where Z(G) is the center of G. To see this, equate the action of u2 on the matrix realization
of an irreducible representation r i according to Eq. (2.16) with Eq. (C.2),

ρr i

(
u2(g)

) = ρr i
(a)ρr i

(g)ρr i
(a)† != Ur i

U∗
r i

ρr i
(g)UT

r i
U†

r i
= Vr i

ρr i
(g)V †

r i
, (C.7)

where

Vr i
= Ur i

U∗
r i

. (C.8)

18 This implies that V ′
r = ρr (bu(b))Vr .

i i i
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By Schur’s lemma,

ρr i
(a) = e−iαi Vr i

(C.9)

with some real phase αi . Consider now

ρr i

(
u(a)

) = Ur i

(
e−iαi Ur i

U∗
r i

)∗
U†

r i
= eiαi Ur i

U∗
r i

= e2iαi ρr i
(a). (C.10)

Since u is an automorphism, u(a) and, hence, also e2iαi 1 are group elements, i.e.

∃c ∈ G: ρr i
(c) = e2iαi 1. (C.11)

Furthermore, it is evident that c is in the center of G. This shows that a is a fixed point of u up
to multiplication by an element c of the center,

u(a) = ca with c ∈ Z(G). (C.12)

Furthermore, one can show that if the order of u is even, ordu = 2n, c′ = an is in Z(G). This
can be discerned by repeatedly applying Eq. (C.2),

u2n(g) = anga−n != g ∀g ∈ G. (C.13)

Using the results obtained so far, one can show that for the two cases of odd n and of odd-order
groups all higher-order class-inverting automorphisms that square to an inner automorphism are
related to an involutory automorphism in the way specified in Eq. (C.3a).

Let n = 2m + 1, i.e. ordu = 4m + 2. Since a is a fixed point of u up to an element c of the
center of G, i.e. u(a) = ca, b = am is a solution to Eq. (C.6),

bu(b)a = am(ac)ma = a2m+1cm = c′cm ∈ Z(G). (C.14)

The same argument can be used for odd-order groups independently of the order of the auto-
morphism because in this case the order of a is odd, a2m+1 = e for some natural number m.

Another special case are ambivalent groups because they can also have odd-order class-
inverting automorphisms. Hence, let ordu = 2n + 1. Using Eq. (C.2) one can show that

u2n+1(g) = g = u(a)nu(g)u(a)−n = ancnu(g)a−nc−n

= anu(g)a−n ∀g ∈ G, (C.15)

i.e. u(g) = a−ngan and u is an inner automorphism. Thus, u is connected to the identity auto-
morphism by conjugation with b = an, and, for ambivalent groups, the identity automorphism is
class-inverting and involutory.

In conclusion, we have shown that class-inverting automorphisms of higher order than two
that square to inner automorphisms can always be related to physically equivalent involutory
automorphisms if the order of the original automorphism is odd, or 4m + 2, or if the order
of the group is odd. Using the latter result, we will show in the next section that there are no
automorphisms which can be used as CP transformations for non-Abelian groups of odd order.

C.2. No class-inverting automorphism for non-Abelian groups of odd order

Let us now show, using the results obtained above, that non-Abelian groups of odd order do
not admit any class-inverting automorphisms that square to inner automorphisms.19 A remark-

19 We cannot exclude the possibility that there are class-inverting automorphisms that square to an outer automorphism.
However, we have not found an example.
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able implication of this is that non-Abelian groups of odd order do not admit bases with real
Clebsch–Gordan coefficients. The proof follows the lines of [19].

One can show [22] that any class-inverting automorphism of an odd order non-Abelian group
is fixed-point free. This is because the only conjugacy class of such groups which contains g and
g−1 at the same time is the identity class. Thus, any involutory class-inverting automorphism
would be order two and fixed-point free. However, the existence of such an automorphism con-
tradicts the assumption that the group is non-Abelian. This can be seen as follows. Consider a
group G and let u be an order-two, fixed point free automorphism. Then the map

g �−→ g−1u(g) (C.16)

is injective because

g−1u(g) = h−1u(h) ⇐⇒ hg−1 = u
(
hg−1), (C.17)

which is impossible as u is fixed point free. An injective map on a finite set is automatically
bijective, and, hence, one can write every element g ∈ G as h−1u(h) for some h ∈ G. This
implies that the automorphism u acts on group elements as inversion,

u(g) = u
(
h−1u(h)

) = u(h)−1h = g−1. (C.18)

However, a group for which inversion is an automorphism can be shown to be Abelian,

gh = (
h−1g−1)−1 = u

(
h−1g−1) = u

(
h−1)u(

g−1) = hg ∀g,h ∈ G, (C.19)

which contradicts the assumption that the group is non-Abelian.
Hence, there can be no involutory class-inverting automorphism for non-Abelian groups of

odd order. This immediately implies that there is no basis with real Clebsch–Gordan coefficients
for such groups.

This result can be extended in the following way. Let u be a class-inverting automorphism of
order greater than two that squares to an inner automorphism,

∃a ∈ G: u2(g) = aga−1 ∀g ∈ G. (C.20)

Since the order of G is odd, there is a natural number m such that a2m+1 = e. Then, as shown in
the preceding section, the automorphism

u′(g) = amu(g)a−m ∀g ∈ G (C.21)

is class-inverting and involutory. However, this leads to a contradiction because a non-Abelian
group of odd order does not possess such an automorphism. Therefore, no higher-order class-
inverting automorphism with the property (C.20) exists.

In summary, odd-order non-Abelian groups do not have a basis with real Clebsch–Gordan
coefficients and do not allow for consistent CP transformations in generic settings with the pos-
sible caveat of automorphisms that square to outer automorphisms, for which we have found no
example, though.

C.3. The extended twisted Frobenius–Schur indicator

Here, we state the proof that the extended twisted Frobenius–Schur indicator (2.35) can
be used to check whether an automorphism u of arbitrary order is class-inverting or not.
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Let n = ord (u)/2 for even-order and n = ord (u) for odd-order automorphisms. Then one can
rewrite the nth extended twisted Frobenius–Schur indicator in component form,

FS(n)
u (r i ) = (dim r i )

n−1

|G|n
∑

g1,...,gn∈G

χr i

(
g1u(g1) · · ·gnu(gn)

)
= (dim r i )

n−1

|G|n
∑

g1,...,gn∈G

tr
[
ρr i

(g1)ρr i

(
u(g1)

) · · ·ρr i
(gn)ρr i

(
u(gn)

)]
= (dim r i )

n−1

|G|n
∑

g1,...,gn∈G

[
ρr i

(g1)
]
α1β1

[
ρr i

(
u(g1)

)]
β1γ1

δγ1α2

· · · [ρr i
(gn)

]
αnβn

[
ρr i

(
u(gn)

)]
βnγn

δγnα1 . (C.22)

By the Schur orthogonality relation (2.32), this expression is 0 if ρr i
(g) and [ρr i

(u(g))]∗ are not
in equivalent representations, which is the case for at least one r i if u is not class-inverting.

Assume now that u is class-inverting such that there is a unitary matrix Ur i
for each irreducible

representation r i with

ρr i

(
u(g)

) = Ur i
ρr i

(g)∗U†
r i

, ∀i. (C.23)

This can be used together with the Schur orthogonality relation (2.32) to simplify each of the
factors of the product in Eq. (C.22),∑

g∈G

[
ρr i

(g)
]
αβ

[
ρr i

(
u(g)

)]
βγ

= |G|
dim r i

[
U∗

r i

]
γβ

[Ur i
]βα. (C.24)

Hence, the extended twisted Frobenius–Schur indicator yields

FS(n)
u (r i ) = 1

dim r i

δγnα1

[
U∗

r i

]
γnβn

[Ur i
]βnαn · · · δγ1α2

[
U∗

r i

]
γ1β1

[Ur i
]β1α1

= 1

dim r i

tr
[(

U∗
r i

Ur i

)n] = 1

dim r i

tr
[
(Vr i

)n
]
. (C.25)

Due to the cyclicity of the trace it is clear that tr [(U∗
r i

Ur i
)n] = tr [(Vr i

)n] is real. Moreover,
inserting equation (C.23) 2n times into itself,

ρr i

(
u2n(g)

) = V n
r i

ρr i
(g)

(
V n

r i

)† = ρr i
(g), ∀i, (C.26)

where in the last step u2n = id has been used, one can see that Schur’s lemma implies V n
r i

∝ 1.
In fact, since the trace of V n

r i
is real, the proportionality factor can only be ±1. Plugging this back

into Eq. (C.25) completes the proof that the nth extended twisted Frobenius–Schur indicator is
±1 for all irreducible representations of G if u is class-inverting and 0 for at least one irrep if not.
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