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I. INTRODUCTION

With the fast urbanization of our modern society, trans-
portation systems in cities are facing increasing problems
such as congestion, collisions, and high levels of emissions.
Researchers have been searching for solutions by investigating
better urban planning and transportation policies, introducing
new technologies such as Intelligent Transportation System
(ITS), or introducing more environmentally friendly vehicles
such as electric vehicles (EVs). Traffic modeling and simula-
tion is one tool adopted by researchers for more than half a
century [1] to help authorities assess new infrastructure design,
and new policies without impacting real traffic.

Traffic simulation is typically classified according to the
level of detail at which they represent traffic flow. These
are macroscopic [2], mesoscopic [3], and microscopic [4]. In
macroscopic simulation, traffic flow is modeled using fluid dy-
namics [5], [6] which analyzes the aggregate properties: speed,
density, and flow, with respect to time and space. It is typically
used for short-term traffic prediction and traffic control policy
evaluation. Mesoscopic simulation considers a more detailed
level of abstraction than macroscopic simulation. It models a
combination of flow dynamics and simplified movement of
vehicles [7]. Speed-density relationship and queuing theory
are commonly used [3]. Mesoscopic simulation is often used
for dynamic traffic demand modeling and real-time route
planning. At the microscopic level, the detailed movement of
each individual driver-vehicle-unit (DVU) in the street is mod-
eled, characterized by car-following, lane-changing, and gap-
acceptance behaviors [7]. Traffic flow patterns such as shock
waves [6] are emergent phenomena from the microscopic
behavioral descriptions. However, detailed microscopic models
require large amount of calibration data and vast computational
resources, which makes large-scale microscopic traffic simula-
tion challenging [8]. Therefore, microscopic traffic simulation
is suitable for offline evaluation of systems which impact
individuals, such as ITS, for example. Cellular automata [9] is
one type of microscopic model that describes the movement of
DVUs in a discrete, cellular space, with basic localized rules
instead of complicated mathematical equations. While being
microscopic, the simplicity of the rules and assumptions about
the space make this approach less computationally intensive.

Besides the aforementioned three approaches, researchers
have recently extended traffic modeling and simulation into,
what is termed, the nanoscopic level [10]. Instead of express-
ing the driver and the vehicle as a compound DVU, as in
microscopic simulation, nanoscopic traffic models explicitly
define the driver and the vehicle as unique entities. By mod-
eling the traffic at this level of detail, questions regarding the
effect of low-level components or behaviors on the overall
traffic can be analyzed, such as the influence of risky driving,
or EVs with different battery capacities, for instance.

Developing a simulation engine which attempts to capture
this level of dynamics inevitably incurs high computational
cost. If not done carefully, increasing the level of detail
through nanoscopic modeling will only exacerbate this prob-
lem. In order to solve the performance issue of large-scale
microscopic traffic simulation, work has been done from two
main approaches: model construction and implementation. In
terms of model construction, researchers built multi-model or
hybrid traffic simulation aimed at capturing necessary details
while omitting unnecessary details in traffic flow models [11].
Regarding implementation, work has generally focused on the
use of parallel or distributed traffic simulation as a means of
utilizing more computational power. One of the early works
in this area is the parallel microscopic simulator PARAMICS
[12]. Later, microscopic traffic simulator AIMSUN [13] and
TRANSIMS [14] were also parallelized to increase the simula-
tion speed. Discrete-event simulation has also been identified
as an alternative to the traditional time-stepped method [4].
The simulation Dynameq is one excellent example of this [15].

The integration of electric vehicles into the traditional
transportation landscape requires a great deal of effort and
investment, whether it is to understand particular car design
requirements or analyze the necessary infrastructure to support
large numbers of electric vehicles. TUM CREATE Center for
ElectroMobility Singapore1 is a research program aimed at
future transportation solutions for e-mobility in Singapore. At
present, simulation is the only way for helping policy makers
and car designers to make these very expensive decisions.
In this paper we introduce the design of SEMSim (Scalable
Electromobility Simulation), a nanoscopic traffic simulator

1http://www.tum-create.com.sg



designed for scalability and rapid part evaluation. We plan
to utilize this simulation framework for helping understand
the impact of various car and infrastructure design questions,
and importantly the interaction between these two areas. For
example, understanding how battery capacity, charging station
placement and charging behavior impact the overall stability
of the transportation system. To address issues regarding
the performance of large-scale nanoscopic traffic simulation,
SEMSim is designed to be a parallel discrete-event simulation
capable of multi-resolution traffic simulation. In the remainder
of this paper we outline the design of the simulation engine,
in particular the discrete-event architecture, and also discuss
issues regarding parallelization.

II. DISCRETE-EVENT ARCHITECTURE

The main entity in nanoscopic traffic simulation is the nano-
agent, which consists of a driver and a vehicle. The driver
is realized by various model components that characterize
the driver behavior. For example, behavioral components may
include models for car-following and lane-changing. Similarly,
the vehicle is realized by model components that characterize
various vehicle parts. For example, in the context of elec-
tromobility, it is crucial to simulate the battery and major
energy consuming parts, such as the air conditioning unit.
In our model, a vehicle would thus be an orchestration of
vehicle model components and, likewise, a driver would be
an orchestration of driver behavior model components.

Microscopic and nanoscopic traffic simulation is typically
realized in a time-stepped fashion. However, this has the
disadvantage of deciding on a suitable time resolution. This
is particularly difficult when considering nanoscopic models
like those considered here. The various behavior and vehicle
model components may necessitate arbitrary time scales. For
this reason we consider a discrete-event approach. In general,
each of the various model components are event generators
and a nano-agent is thus a composition of event generators.
A logical process (LP) may be responsible for executing and
arbitrary number of agents. Events generated within an LP are
organized in a single event queue. We distinguish different
types of state variables, depending on the scope of visibility:

• Agent-based state variables: these variables represent
states that are associated with an agent rather than a
specific model component.

• Component-based state variables: these variables repre-
sent states that are specific to a particular model compo-
nent. For example, a battery component will have a state
of charge variable which indicates the amount of energy
left.

Depending on the model components’ functionality, they
may need to be notified whenever a particular state variable
is changing. For example, a routing behavior component may
decide to re-calculate the route in case the battery charge drops
below a certain threshold. For this purpose, it is necessary
that the routing behavior component gets notified whenever
the charging state of the battery component is changing. We

Fig. 1. SEMSim LP Architecture: an LP may contain an arbitrary number
of agents. An agent is realized by an orchestration of model components
for driver behaviors and vehicle components. Any model component can
subscribe to change notifications published by state variables. In addition,
every model component is an event generator. Each LP has its own event
queue.

realize this notification functionality by using a publisher-
subscriber pattern: state variables are state change publishers
and model components can subscribe to state change noti-
fications. It is important that an agent has access to some
of the state variables of other agents. For example, in order
to determine the preferred speed, a corresponding driving
behavior component needs to be able to access the positions
of other agents in its proximity.

Figure 1 illustrates the architecture of an LP in SEMSim.

III. PARALLEL AND DISTRIBUTED SIMULATION

Simulating a city-scale scenario with a realistic number of
agents is computationally intensive. For example, in order
to simulate the entire Singapore traffic network, it is nec-
essary to consider many tens of thousands of vehicles and
their drivers. Each of the DVUs comprises of a number of
model components (or sub-models). Without parallelization
and/or distribution of the simulation it would take too long to
execute simulation scenarios in a reasonable period of time.
An important issue for parallelization and distribution of our
discrete-event simulation engine is the partitioning of agents
into agent clusters and the mapping of agent clusters to LPs.

Inter-dependencies between agents and their components
can cause a significant synchronization overhead. These de-
pendencies are a result of two levels of causality in SEMSim:
firstly, the state change subscriptions concerning the position
of agents, and secondly, the causality between various events
generated by each model component. Dependencies between
agents can be assumed to be more prevalent if they are within
each other’s proximity. This is due to the fact that agents
that are close to each other, within the traffic network, need
to consider each other’s location and velocity in order to
determine their driving (e.g., preferred speed) strategy. The
hierarchical structure of the road network can be assumed



Fig. 2. Agent clusters and dependencies. A cluster may contain an arbitrary
number of agents. Dependencies arise from state notification subscriptions
between agents from different clusters.

to have significant impact on the inter-agent dependencies.
For example, highways are usually connected to minor roads
via ramps. Therefore, in order to determine the proximity of
agents, it is necessary to take structural properties of the road
network into consideration. As a result, agents which are close-
by may not be within each other’s proximity and thus not
inter-dependent. Clustering of agents is illustrated in Figure 2.

In order to perform a parallel simulation efficiently, it
is necessary to minimize the dependencies between various
LPs. This can be achieved by optimal allocation of agents to
clusters. We consider the cluster allocation vector a:

a = [a1, a2, a3, . . . , aM ] (1)

where M the total number of agents, N is the total number
of clusters, and 1 ≤ ai ≤ N indicates that the i-th agent
is allocated to cluster ai. The optimization problem can be
described as a combinatorial problem that aims to determine
the optimal a for which the total degree of dependencies D
is minimized:

D =

N∑
i=1

N∑
j=i+1

D(i, j) (2)

where D(i, j) is the number of dependencies between clusters
i and j. The number of dependencies between two clusters
can be determined by counting the number of state change
subscriptions between the agents of cluster i and the agents of
cluster j. However, minimizing dependencies is not sufficient.
Load balancing is another issue that needs to be considered.
Each LP should have approximately the same amount of work
load. This can be done by considering another objective which
aims to minimize the inequality L in load allocation:

L =

N∑
i=1

|Si − S| (3)

where Si is the size of cluster i (in terms of number of agents)
and S is the average size of all clusters.

This multi-objective optimization problem is generally hard
to solve for the large amount of agents which we will have to
consider for a city-scale simulation. However, what makes this
problem even more difficult is the dynamic nature of traffic
simulation. The positions of the agents are constantly changing
and thus requiring dynamic re-calculation of the allocation
of agents. Apart from determining the optimal allocation of
agents, another issue is thus the frequency of performing a
re-calculation.

IV. SUMMARY AND FUTURE WORK

City-scale nanoscopic traffic simulation is a challenging
problem that requires parallelization and distribution. In this
paper, we have given an overview of the architecture for our
nanoscopic traffic simulator SEMSim. For efficient parallel
simulation, reducing the dependencies between the various
LPs is crucial. We have specified a multi-objective opti-
mization problem concerned with the allocation of agents to
clusters. In our future work, we will implement a nanoscopic
traffic simulation and devise methods to solve this problem
dynamically. Given the difficulty of the problem, these meth-
ods will have to make use of domain-specific knowledge, such
as information about the topology of the road network.
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[13] J. Barceló, J. L. Ferrer, and D. Garcia, “Microscopic traffic simulation
for ATT systems analysis. a parallel computing version,” 25th Aniversary
of CRT, pp. 1–16, 1998.

[14] K. Nagel and M. Rickert, “Parallel implementation of the TRANSIMS,”
Parallel Computing, vol. 27, pp. 1611–1639, 2001.

[15] M. Mahut and M. Florian, “Traffic simulation with dynameq,” in Fun-
damentals of Traffic Simulation, ser. International Series in Operations
Research & Management Science, J. Barceló, Ed. Springer New York,
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