
A Library for Synchronous Control Systems in Modelica

Martin Otter1, Berhard Thiele1, Hilding Elmqvist2
1DLR Institute of System Dynamics and Control, D-82234 Wessling, Germany

2Dassault Systèmes AB, Ideon Science Park, SE-223 70 Lund, Sweden
Martin.Otter@dlr.de, Bernhard.Thiele@dlr.de, Hilding.Elmqvist@3ds.com

Abstract
Based on the synchronous language elements intro-
duced in Modelica 3.3, a library is described to uti-
lize the new features in a convenient way for graph-
ical model definition of sampled data systems. The
library has elements to define periodic clocks and
event clocks that trigger elements to sample, sub-
sample or super-sample partitions synchronously.
Optionally, quantization effects, computational delay
or noise can be simulated. Continuous-time equa-
tions can be automatically discretized and utilized in
a sampled data system. This is demonstrated by us-
ing the inverse of a nonlinear plant model in the feed
forward path of a discrete controller of a mixing unit.

Keywords: Synchronous models, sampled data sys-
tems, periodic systems, clock, inverse systems

1 Introduction
In the Modelica language version 3.3 (Modelica As-
sociation 2012) synchronous language features have
been introduced to precisely define and synchronize
sampled data systems with different sampling rates.
This paper is a companion paper to (Elmqvist et.al.
2012) which should be first inspected to understand
why new language elements have been introduced,
as well as the syntax and semantics of them.

The new language elements follow the synchro-
nous approach (Benveniste et. al. 2002). They are
based on the clock calculus and inference system
proposed by (Colaco and Pouzet 2003) and imple-
mented in Lucid Synchrone version 2 and 3 (Pouzet
2006). However, the Modelica approach also uses
multi-rate periodic clocks based on rational arithme-
tic introduced by (Forget et. al. 2008), as an exten-
sion of the Lucid Synchrone semantics. Additionally,
the built-in operators of Modelica 3.3 also support
non-periodic and event based clocks1.

In order to utilize these elements in an actual
model in a convenient way, a free library “Modeli-
ca_Synchronous” has been developed using a proto-
type of Dymola (Dassault Systèmes 2012) for the

1 A non-periodic clock is defined by a varying interval and
an event clock by a Boolean condition.

new language elements. This library is in a prototype
status. After an evaluation period it is planned to in-
clude this library into the Modelica Standard Library.
Note, all Modelica libraries designed so far for sam-
pled systems, such as Modelica.Blocks.Discrete,
Modelica_LinearSystems2.Controller (Baur et. al.
2009) and Modelica_EmbeddedSystems (Elmqvist
et.al. 2009) are becoming obsolete and should be
replaced by this new library.

In the figure to the right a
screenshot of the library is
shown with the first sub li-
brary level. The most im-
portant sub libraries are:

 Clocks:
Library of blocks that
generate clocks.

 SamplerAndHolds:
Library of blocks that
sample, sub-sample, su-
per-sample and hold signals.

 NonPeriodic:
Library of blocks that operate on periodically
and non-periodically clocked signals (the blocks
depend explicitly on the actual sample interval).

 Periodic:
Library of blocks that are designed to operate
only on periodically clocked signals, mainly de-
scribed by z transforms (the blocks do not ex-
plicitly depend on the sample period, but implic-
itely, since the block parameters need to be de-
signed for one specific sample period).

In the following subsections, the most important
blocks are discussed and their usage demonstrated in
examples.

2 Clocks
A “Clock” is a new base data type introduced in
Modelica 3.3 (additionally to Real, Integer, Boolean,
String) that defines when a particular partition of
equations of a model is active. Every variable and
every equation is either continuous-time or is associ-

DOI Proceedings of the 9th International Modelica Conference 27
10.3384/ecp1207627 September 3-5, 2012, Munich, Germany

ated exactly to one clock (Elmqvist et.al. 2012). This
feature is visualized in the figure below where c(ti) is
a clock that is active at particular time instants and
r(ti) is a variable that is associated to this clock. A
clocked variable has only a value when the corre-
sponding clock is active:

Similarly to RealInput, RealOutput etc., clock input
and output connectors are defined in sub library “In-
terfaces” in order to propagate clocks via connec-
tions:

Icon Modelica Definition

 connector ClockInput = input Clock;

connector ClockOutput = output Clock;

Sub library “Clocks”, see
screenshot to the right, de-
fines the following compo-
nents that generate clocks,
and provide the respective
clock via its ClockOutput
connector to other components:

 PeriodicRealClock defines a periodic clock
where the period is defined with a Real number
(e.g. “period = 0.1” for 0.1 s). If clocks are relat-
ed relatively to each other (see section 4), then
only one of them can be a PeriodicRealClock.

 PeriodicExactClock defines a periodic clock
with a resolution defined by enumeration
“Types.Resolution” (with values “y, d, h, min, s,
ms, us, ns”) and an integer multiple “factor” of
this resolution. For example “factor = 3” and
“resolution = Types.Resolution.ms” defines a pe-
riodic clock with sample period 3 ms.

 EventClock defines a clock that is active when
the Boolean input to this component changes
from false to true.

The implementation of these clocks is a direct map-
ping to the new clock generators. Example:

block PeriodicRealClock
 parameter Modelica.SIunits.Time period;
 extends Modelica_Synchronous.Interfaces.PartialClock;

equation
 y = Clock(period);
end PeriodicRealClock;

partial block PartialClock
 parameter Boolean useSolver = true
 annotation(Dialog(tab="Advanced"));
 parameter Modelica_Synchronous.Types.SolverMethod
 solverMethod="External"
 annotation(Dialog(tab="Advanced",enable=useSolver));
 Modelica_Synchronous.Interfaces.ClockOutput y;
end PartialClock;

All these clocks have an “Advanced” menu in which
an optional integration method (such as “explicit Eu-
ler method”) can be associated to the clock, see next
figure. The effect of such a definition will be ex-
plained below.

3 Sample and Hold

Within the sub library
“SamplerAndHolds”
various blocks are de-
fined to sample, sub-
sample, super-sample
and hold signals. Since
Modelica does not have
generic types, for every
base type a separate
sub-library is present,
such as Sam-
plerAndHolds.RealSig
nals, see screenshot to
the right. All these
components define
boundaries between
different partitions,
especially:

 Sample requires that the input signal is continu-
ous-time. The block samples the input and pro-
vides it as clocked output signal. The equations
that have a dependency to that output, are col-
lected/grouped into the same clocked partition.

 Hold requires that the input signal is clocked and
provides it as continuous-time signal to the out-
put with a zero order hold. Before the first tick of
the clock that is associated to the input, the out-
put is set to parameter y_start (this value is al-
so displayed in the icon, see Figure 1).

time t
t0 t1 t3

r(ti)

t2

c(ti)

A Library for Synchronous Control Systems in Modelica

28 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207627

 SampleWithADeffects, HoldWithDAeffects
are similar to Sample and Hold, but provide ad-
ditionally the options to simulate particular ef-
fects, such as noise, signal limitations and quan-
tization effects, as well as computational delays.

The Sample and Hold blocks have again a direct
mapping to the corresponding new language ele-
ments. For example, the RealSignals.Sample block is
implemented as:

block Sample
 parameter Boolean useClock=false;
 Modelica.Blocks.Interfaces.RealInput u;
 Modelica.Blocks.Interfaces.RealOutput y;
 Modelica_Synchronous.Interfaces.ClockInput
 clock if useClock;
protected
 Modelica_Synchronous.Interfaces.ClockInput c_internal;
equation
 connect(clock, c_internal);
 if useClock then
 y = sample(u,c_internal);
 else
 y = sample(u);
 end if;
end Sample;

With the default option useClock=false, just the
input u is sampled, y = sample(u), and the clock
of the output y is deduced by clock inference due to
the clock definition somewhere else (Elmqvist et.al.
2012).

If useClock=true, the input clock connector
clock is enabled and the clock propagated to this con-
nector is used as clock for the output:
y=sample(u,clock), see block sample2 in Fig-
ure 1.

Figure 1 demonstrates all blocks that have been
discussed so far within an illustrative example mod-
el. This model consists of a load inertia that is driven
by a torque. The goal is to control the speed of the

inertia. For this, a feedback controller is provided in
form of a periodic sampled data system described
with clocked equations. The reference part is again a
continuous-time model and provides the desired
speed of the inertia.

The boundaries of the feedback controller are de-
fined with components sample1, sample2 and
hold1 that are instances of blocks Sample and
Hold respectively. All equations inside this partition
(“feedback controller”) need to be associated to a
clock. For this, the Sample block has an optional
ClockInput connector that can be enabled. In the
figure, a periodic clock with period 0.1 s is connect-
ed to sample2 and therefore the “feedback control-
ler” partition is active every 0.1 s. Note, it would
also be fine to connect the clock additionally to sam-
ple1, since associating the same clock definition
several times to a partition is allowed.

The PI component is a clocked block from Mod-
elica_Synchronous.NonPeriodic. It is implemented
as (note, previous(x) defines that x is clocked and
that the value from the previous clock tick is used;
interval(u) is the time duration from the previous
to the actual clock tick as Real number):

block PI "From Modelica_Synchronous.NonPeriodic"
 extends Modelica_Synchronous.Interfaces.PartialClockedSISO;
 parameter Real k "Gain of continuous PI controller";
 parameter Real T "Time constant of continuous PI controller";
 output Real x(start=0) "Discrete PI state";
protected
 Real Ts = interval(u) "Sample period";
equation
 x = previous(x) + u*Ts/T;
 y = k*(x + u);
end PI;

This PI controller is parameterized with the coeffi-
cients of a continuous-time PI controller and with the
actual sample period the coefficients of the discre-
tized (clocked) PI controller are computed. Changing

Figure 1: Simple drive train with clocked PI controller, samplers, hold and periodic clock.

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 29
10.3384/ecp1207627 September 3-5, 2012, Munich, Germany

the sample period will therefore result in a similar
controller behavior.

It would also be possible to utilize the PI control-
ler from the Modelica_Synchronous.Periodic sub-
library. In this sub-library it is assumed that the
blocks are utilized only with periodic clocks and the
block parameters have been designed for a particular
sample period. The corresponding PI controller is
implemented as:

block PI "From Modelica_Synchronous.Periodic"
 extends Modelica_Synchronous.Interfaces.
 PartialPeriodicallyClockedSISO;
 parameter Real kd "Gain of discrete PI controller";
 parameter Real Td "Time constant of discrete PI controller";
 output Real x(start=0) "Discrete PI state";
equation
 x = previous(x) + u/Td;
 y = kd*(x + u);
end PI;

The PI coefficients kd and Td are designed for a par-
ticular sample period. Changing this sample period,
without changing kd and Td, will significantly
change the controller behavior.

It would also be possible to use a continuous-time
block, in particular the continuous-time PI controller
from Modelica.Blocks.Continuous.PI that is basical-
ly implemented as:

block PI "From Modelica.Blocks.Continuous "
 parameter Real k=1 "Gain";
 parameter Modelica.SIunits.Time T "Time Constant";
 extends Modelica.Blocks.Interfaces.SISO;
 output Real x "State of block";
equation
 der(x) = u/T;
 y = k*(x + u);
end PI;

In this case the PI controller is described by a differ-
ential equation. Since the input signal to this block is
a clocked signal when present in the block diagram
of Figure 1, the differential equation is automatically
discretized by integrating from the previous to the
actual clock tick with the integration method defined
in component “periodicClock”. In Figure 1, solver
“External” is defined (see icon of the clock). This
means that the solver defined in the simulation envi-
ronment is used to integrate the continuous-time
block: This might be a variable step-solver with error
control where the step size is selected such that it hits
the clock tick always exactly.

On the other hand, if solverMethod = ”Implic-
itEuler” is selected, then the differential equation of
the PI component will be discretized with a fixed
step implicit Euler method. This approach is also
called “inline integration”. For details, see (Elmqvist
et.al. 1995). In this case exactly the same result will
be obtained as with the previous two PI components.

This approach is very powerful, since every linear or
non-linear continuous-time block can be utilized in
the clocked partition. It is therefore in many cases is
is no longer necessary to derive discretized blocks
manually as, e.g., done in the Modelica_Linear-
Systems2.Controller library (Baur et.al. 2009).

Typical simulation results are shown in the next
figure. Note, here it is clearly visualized by Dymola,
that the input to hold1 (= hold1.u) is a clocked
signal.

4 SubSample and SuperSample
With blocks “SubSample” and “SuperSample” it can
be defined that a partition is sub- or super-sampled
with respect to another clocked partition:

At every “factor” ticks of the
input (here: factor = 2), the
output ticks and is set to the
input.
At every “factor” ticks of the
output (here: factor = 3), the
input ticks. The output is set to
the last available value of the
input.

The factor of a sub- or super-sampled partition can
either be explicitly defined with the block, or it can
be inferred, since either the factor is defined at an-
other element or exact periods are associated with
the partitions (see below). In the next figure an ex-
ample is shown, where the signal sample.y is sub-
sampled by a factor of 3 (= subSample.y) and su-
per-sampled by a factor of 2 (= superSample.y).

A Library for Synchronous Control Systems in Modelica

30 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207627

There are now many possible ways to define the
clocks of time-synchronized partitions. In Figures 2-
Figure 4 on the next page some useful variants are
demonstrated at hand of a cascade control system for
a very simple drive system. The goal is that the load
inertia travels according to the desired reference an-
gle. This angle is defined with block KinematicPTP2
from the Modelica Standard Library (the reference
signal is constructed so that it moves from a start to
an end angle as fast as possible for given maximal
speed and maximum acceleration). The “slow” con-
troller part is a simple P-controller to control the po-
sition, whereas the “fast” controller part is a PI con-
troller to control the speed.

In Figure 2 one real periodic clock with a sample
period of 0.02 s is defined. This clock is then sub-
sampled with a factor of 5 which defines a second
clock with a sample period of 0.1 s. The “slow” and
the “fast” controller partitions are separated by the
super1 block (an instance of SuperSample) and
therefore it is defined that the output of super1 is
faster than the input of super1 (the input clock is an
integer multiple of the output clock). The two de-
fined clocks are associated with sample3 and su-
per1 and therefore the clocks are associated with the
partitions ”slow controller” and “fast controller”.
Note, the factor at super1 is inferred to be 5.

In Figure 3 only one real clock with a sample pe-
riod of 0.02 s is defined. This clock is associated to
the “fast controller” partition via component su-
per1. Now, in component super1 a factor of “5” is
defined. This means that the fast partition is 5-times
faster as the slow partition, and therefore the clock of
the “slow controller” partition is implicitly defined.

In Figure 4 two “exact” clocks are defined: One
clock with a period of 20 ms and one clock with a
period of 100 ms. These “absolute” clocks are asso-
ciated with the “slow” and “fast” partition respec-
tively. Since component super1 defines that the
“fast” partition must be an integer factor faster as the
“slow” partition, an implicit constraint is present,
that the clocks of the two partitions must have peri-
ods that are an integer multiple of each other. There-
fore, defining 20 ms and 100 ms is fine. However,

defining periods of 30 ms and 100 ms would result in
an error, since this constraint is violated.

The preferred modeling style is a matter of taste.
Note, the relative definitions of Figure 2 and Figure
3 have the advantage that parameter factor can still
be changed after the model is translated (provided a
tool supports this feature). Instead, in the definition
of Figure 4 it would be typically no longer possible
to change the (absolute) periods after translation,
since there is a constraint between the two defini-
tions (one period must be an integer multiple of the
other period).

5 Nonlinear Inverse Models
Since a long time, Modelica is used to model ad-
vanced nonlinear control systems. Especially, Mod-
elica allows a semi-automatic treatment of inverse
nonlinear plant models. In the fundamental article
(Looye et.al. 2005) this approach is described and
several controller structures are presented to utilize
an inverse plant model in the controller. This ap-
proach is attractive because it results in a systematic
procedure to design a controller for the whole operat-
ing range of a plant. This is in contrast to standard
controller design techniques that usually design a
linear controller for a plant model that is linearized at
a specific operating point. Therefore the operating
range of such controllers is inherently limited. Up to
Modelica 3.2, controllers with inverse plant models
can only be defined as continuous-time systems. Via
the export mechanism of Dymola they could be ex-
ported with solvers embedded in the code and then
used as sampled data system in other environments.
However, it is not possible to re-import the sampled
data system to Modelica.

The synchronous features of Modelica 3.3 togeth-
er with the Modelica_Synchronous library offer now
completely new possibilities, so that the inverse
model can be designed and evaluated as sampled
data system within Modelica and a Modelica simula-
tion environment such as Dymola. The approach is
sketched at hand of a simple nonlinear plant model
of a mixing unit (Föllinger 1998, page 279) and the
design of a nonlinear feed-forward controller accord-
ing to (Looye et.al. 2005):

A substance A is flowing continuously into a
mixing reactor. Due to a catalyst, the substance re-
acts and splits into several base substances that are
continuously removed. The reaction generates ener-
gy and therefore the reactor is cooled with a cooling
medium. The cooling temperature Tc(t) in [K] is the
primary actuation signal. Substance A is described
by its concentration c(t) in [mol/l] and its tempera-
ture T(t) in [K] according to the following

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 31
10.3384/ecp1207627 September 3-5, 2012, Munich, Germany

Simple Drive with cascade controller for position and speed control

Figure 2: Two clocks are defined with sub-sampling and partitions with super-sampling.

Figure 3: One clock is defined and the second clock is inferred by the factor of the super-sample block.

Figure 4: Partitions are defined with exact (integer) clocks that need to be compatible to each other.

A Library for Synchronous Control Systems in Modelica

32 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207627

nonlinear differential algebraic equation system:

/
0

11 12 13

21 22 23

T

c

c k e

c a c a a

T a T a a b T

 (1)

with
14

0 11 21

12 22

13 23

1.24 10 0.00446 0.0303

10578 0.0141 2.41

0.0258 0.00378 1.37

k a a

a a

b a a

For the given input Tc(t) these are 1 algebraic equa-
tion for the reaction speed (t) and two differential
equations for c(t) and T(t). The concentration c(t) is
the signal to be primarily controlled and the temper-
ature T(t) is the signal that is measured. These equa-
tions are collected together in an input/output block:

The design of the control system proceeds now in the
following steps:

5.1 Design of Pre-Filter

Inverting a model usually means that equations need
to be symbolically differentiated and that higher de-
rivatives of the inputs are needed (that are usually
not available). One approach is to filter the inputs, so
that a Modelica tool can determine the derivatives of
the filtered input from the filter states. The minimum
needed filter order is determined by first inverting
the continuous-time plant model from the variable to
be primarily controlled (here: “c”) to the actuator
input (here: “Tc”). This is performed with the help of
block “Modelica.Blocks.Math.InverseBlockCons-

traints” that allows connecting an external input
(c_ref below) to an output (c below):

Translating this model will generate the continuous-
time inverse plant model. However, Dymola gives
(correctly) an error message:

This message states, that Dymola has to differentiate
the model, but this requires the second derivative of
the external input c_ref and this derivative is not
available. The conclusion is that a low pass filter of
at least second order has to be connected between
c_ref and c, for example Modelica.Blocks.-
Continuous. Filter. Only filter types should be used
that do not have “vibrations” in the time domain for
a step input. Therefore, parameter analogFilter
of the component should be selected as “Critical-
Damping” (= only real poles), or “Bessel” (= nearly
no vibrations, but steeper frequency response as
“CriticalDamping”). The cut-off frequency f_cut is
manually selected by simulations of the closed loop
system. In the example, we use a CriticalDamping
filter of third order (the third order is selected to get
smoother signals) and a cut-off frequency of 1/300
Hz.

Figure 5: Sampled data controller for mixing unit including the inverse plant model.

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 33
10.3384/ecp1207627 September 3-5, 2012, Munich, Germany

5.2 Design of Controller

The controller for the mixing unit is shown in Figure
5. It consists of the filter discussed in the previous
section. The input to the filter is the reference con-
centration which is filtered by the low pass filter.
The output of the filter is used as input to the con-
centration c in the inverse plant model. This model
computes the desired cooling temperature T_c
(which is used as desired cooling temperature at the
output of the controller) and the desired temperature
T (which is used as desired value for the feedback
controller). This part of the control system is the
“feed forward” part that computes the desired actua-
tor signal. As feedback controller a simple P-
Controller with one gain is used.

This controller could be defined as continuous-
time system in previous Modelica versions. Howev-
er, with Modelica 3.3 it is now also possible to de-
fine the controller as sampled data system. For this,
the two inputs are sampled (sample1 and sample2)
and the actuator output is hold (hold1).

The controller partition is then associated with a
periodic clock (via sample2) that has a sample peri-
od of 1 s and a solverMethod = “ExplicitEuler”.
Since the controller partition is a continuous-time
system, it is discretized and solved with an explicit
Euler method at every clock tick (by integrating from
the previous to the actual time instant of the clock).

The controller works perfectly if the same param-
eters for the plant and the inverse plant model are
used (follows perfectly the filtered reference concen-
tration). Changing all parameters of the inverse plant
model by 50 % (with exception of ε since the plant is
very sensitive to it) still results in a reasonable con-
trol behavior as shown by the following simulation
results (the desired concentration jumps from 0.492
to 0.237):

The piecewise constant (blue) curve in the upper
window is the output of the filter (that is, it is the
desired concentration). The red curve in the upper
window is the concentration of model mixingUnit,
which is the concentration in the plant. Obviously,
the concentration follows reasonably well the desired
one. By using a more involved feedback controller,
the control error could be substantially reduced.

6 Event Clocks –Engine Control
All previous sections concentrated on periodic
clocks. However, also non-periodic synchronous
sampled data systems can be defined with Modelica
3.3. This is demonstrated at hand of a closed-loop
throttle control synchronized to the crankshaft angle
of an internal combustion engine. This system has
the following properties:
 Engine speed is regulated with a throttle actuator.
 Controller execution is synchronized with the

engine crankshaft angle.
 The influence of disturbances, such as a change in

load torque, is reduced.
The complete system is shown in Figure 6. Block

Figure 6: Sampled data engine controller that is synchronized with the crankshaft angle.

A Library for Synchronous Control Systems in Modelica

34 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207627

speedControl is the discrete control system. The
boundaries of this controller are defined by sample1
and hold1. A special element triggeredSpeed
has the crankshaft angle as input and provides the
sampled crankshaft speed as output. Additionally,
the clock associated with the output (and therefore
also to component speedControl) ticks, at every
180 degree rotation of the crankshaft angle. This
special application is implemented in the text layer
of component triggeredSpeed as:

 N = der(angle);
 when Clock(angle >= hold(offset)+Modelica.Constants.pi) then
 offset = sample(angle);
 N_clocked = sample(N);
 end when;

Here, N is the derivative of the crankshaft angle.
Whenever this angle becomes larger as 180 degree
an event clock is activated due to Clock(..). In
such a case the when-clause becomes active, and the
speed N is sampled, and the new offset for the next
event is computed.

7 Interfaces to External Devices
Bellmann presented in (Bellmann 2009) a Modelica
library with capabilities for creating interactive simu-
lation models with advanced (3D-) visualization2. It
included support for standard input devices such as
keyboard and joysticks, as well as communication
mechanisms like UDP or shared memory. These de-
vice interfaces have been adapted to work with the
Modelica synchronous extensions, and have been
extended to also support the Linux OS. Furthermore
additional functionality such as support for Softing
CAN interface cards3 and the (Linux specific)
Comedi4 control and measurement device interface
have been added. In the next figure some of the
blocks are shown that are currently available in the
external devices library.

8 Cyber-Physical Models
Modelica is designed for modeling of systems con-
taining both physical parts and control systems. It is
possible to hierarchically assemble a system out of
smart subsystems, i.e. which includes their local con-
trol systems.

In (Elmqvist et.al. 2009) it is described how parts
of the model which is used for evaluating the system

2 Today the visualization part of that library has evolved
into the commercially available product “Visualization
Library”, which is distributed by BAUSCH-GALL
GmbH, http://www.bausch-gall.de/.
3 Softing AG (2012), http://www.softing.com.
4 The Comedi project (2012), http://www.comedi.org/.

architecture and performance can be used for differ-
ent studies and for generation of embedded code.
The solution in the Modelica_EmbeddedSystems
library is to introduce generic “communication
blocks” between the partitions. Such communication
blocks can then be configured in different ways, for
example to just contain an ideal Sample block or a
block with A/D effects. It can also contain a device
driver for a A/D converter for the input to the dis-
crete-time partition. It is then possible to use the
code of this partition for embedding to control hard-
ware.

If instead, the communication block contains a
D/A converter, for the output of the continuous-time
partition, the code for the continuous-time partition
can be used for hardware-in-the-loop simulation.

The point is that this configuration can be done
without changing the original model. It is done by
using redeclarations of the content of the communi-
cation blocks by using a hierarchical modifier in a
model extending the original model. This approach is
beneficial with regards of maintaining the original
model since only one version is needed.

It is planned that this technique, already evaluated
in the Modelica_EmbeddedSystems library, is in-
cluded in the Modelica_Synchronous library.

9 Summary
A new, free Modelica library is presented that pro-
vides a convenient graphical user interface for the
synchronous language elements introduced in Mod-
elica 3.3. This library is planned to replace all previ-
ous Modelica libraries designed for sampled data
systems, since

 the clocking for a partition needs to be defined
only at one block (and not at every block of a
controller),

Session 1A: Hybrid Modeling

DOI Proceedings of the 9th International Modelica Conference 35
10.3384/ecp1207627 September 3-5, 2012, Munich, Germany

 every continuous-time block (including inverse
models) can be directly utilized in the clocked
partition, thereby making it unnecessary in most
cases to provide a manually implemented dis-
crete-time version,

 errors to define the sample periods can be de-
tected by the translator (because all variables and
equations of a clocked partition must be associ-
ated exactly to one clock),

 more efficient simulation of an overall model
consisting of plant (= continuous-time) and con-
troller (= clocked partitions),

 providing the possibility to easily identifying the
controller part that shall be downloaded to actual
hardware (because all equations and variables of
a clocked partition are associated exactly to one
clock).

10 Acknowledgement
Sven Erik Mattsson developed the Dymola prototype
supporting the synchronous features of Modelica 3.3.
Without this prototype, it would not have been pos-
sible to develop the Modelica_Synchronous library.

References
Baur M., Otter M., and Thiele B. (2009): Modelica Li-

braries for Linear Control Systems. Proceedings
of 7th International Modelica Conference, Como,
Italy, September 20-22.
www.ep.liu.se/ecp/043/068/ecp09430068.pdf

Benveniste A., Caspi P., Edwards S.A., Halbwachs N., Le
Guernic P., and Simone R. (2003): The Synchro-
nous Languages Twelve Years Later. Proc. of the
IEEE, Vol., 91, No. 1. www.irisa.fr/distribcom/-
benveniste/pub/synch_ProcIEEE_2002.pdf

Bellmann T. (2009): Interactive Simulations and
advanced Visualization with Modelica.
Proceedings of 7th International Modelica
Conference, Como, Italy, September 20-22.
www.ep.liu.se/ecp/043/062/ecp09430056.pdf

Colaco J.-L., and Pouzet M. (2003): Clocks as First Class
Abstract Types. In Third International Conference
on Embedded Software (EMSOFT'03),
Philadelphia, Pennsylvania, USA, October 2003.
http://www.di.ens.fr/~pouzet/lucid-
synchrone/papers/emsoft03.ps.gz

Dassault Systèmes (2012): Dymola.
http://www.Dymola.com

Elmqvist H., Otter M. and Cellier F.E. (1995): Inline
Integration: A New Mixed Symbolic/Numeric
Approach for Solving Differential-Algebraic
Equation Systems. Keynote Address, Proceedings
ESM'95, European Simulation Multiconference,

Prague, Czech Republic, June 5-8, pp. xxiii-xxxiv.
http://citeseerx.ist.psu.edu/viewdoc/download;jsessi
onid=6E666F4221CFED902DCA7BDF8DC51AB6
?doi=10.1.1.127.3787&rep=rep1&type=pdf

Elmqvist H., Otter M., Henriksson D., Thiele B., Mattsson
S.E. (2009): Modelica for Embedded Systems,
Proceedings 7th Modelica Conference, Como, Italy,
Sep. 20-22.
http://www.ep.liu.se/ecp/043/040/ecp09430096.pdf

Elmqvist H., Otter M., and Mattsson S.E. (2012):
Fundamentals of Synchronous Control in
Modelica. Proceedings of 9th International
Modelica Conference, Munich, Germany, Sep. 3-5.

Föllinger O. (1998): Nichtlineare Regelungen I,
Oldenbourg Verlag, 8. Auflage.

Forget J., F. Boniol, D. Lesens, C. Pagetti (2008): A Mul-
ti-Periodic Synchronous Data-Flow Language. In
11th IEEE High Assurance Systems Engineering
Symposium (HASE'08), Dec. 3-5 2008, Nanjing,
China, pp. 251-260.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reoa
d=true&arnumber=4708883&contentType=Confere
nce+Publications

Looye G., Thümmel M., Kurze M., Otter M., and Bals J.
(2005): Nonlinear Inverse Models for Control.
Proceedings of 4th International Modelica
Conference, ed. G. Schmitz, Hamburg, March 7-8.
https://www.modelica.org/events/Conference2005/o
nline_proceedings/Session3/Session3c3.pdf

Modelica Association (2012): Modelica Language
Specification Version 3.3.
https://www.modelica.org/documents/ModelicaSpec
33.pdf.

Pouzet M. (2006): Lucid Synchrone, Version 3.0, Tuto-
rial and Reference Manual.
http://www.di.ens.fr/~pouzet/lucid-synchrone/

A Library for Synchronous Control Systems in Modelica

36 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp1207627

