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Abstract

Fueled by the continuous, rapid progress within micro-
electronics, ever more intelligent and intricate func-
tions are realized in mechatronic systems. To control
the complexity associated with such designs, model-
based control design methods are increasingly adapted
in industry. Despite Modelica’s obvious suitability to
efficiently create appropriate high fidelity system mod-
els, the utilization of Modelica for developing discrete
control functions is not yet wide spread. Adoption of
Modelica for this task offers the potential for a seam-
less development methodology from the logical virtual
model down to the technical system architecture, with
corresponding traceability and maintainability bene-
fits.

This contribution will specifically address this po-
tential and propose a Modelica sub- and superset ade-
quate for use within the development of safety-relevant
control applications.

Keywords: embedded systems; functional safety;
simulation; code generation; compiler; formal meth-
ods; validation; verification

1 Introduction

Model-based design has emerged as a standard devel-
opment approach for the design of embedded systems.
Its original promise to provide a more rapid and eco-
nomic development process is confirmed in industrial
practice [5].

More and more embedded software components
are specified in models representing the so-called
high-level application that is then automatically trans-
formed (usually via embedded C-code) into binary
code that is executable on the embedded target: Fig-

ure 1 shows a typical model-based development en-
vironment where the specification model is first de-
signed using a next generation high-level, domain-
oriented modeling tool. These specification models
are typically enriched with implementation details and
converted to so-called code generation models. A code
generator converts the code generation model into C-
code that a cross compiler translates to object code.
The different object codes, including legacy and ba-
sic software code are then finally linked to a binary to
be executed by an embedded target. This approach re-
duces the implementation effort and time, especially in
iterative development workflows. Model-based devel-
opment methods have a significant impact on the de-
velopment process and the development environment
with its tools.

With the increase of applications, and along with
that of software size and complexity, model-based ap-
proaches have found their way into safety-relevant ap-
plications, especially in the aerospace and automotive
domains. This evolution has thrust the safety impact
of model-based development, especially with regard
to high-level modeling and code generators, into the
spotlight.

As described above, for practical purposes the pro-
cess of the generation of the executable program from
the model is mainly based on two development tools:
the code generator and the cross compiler (including
the cross linker). From an abstract point of view, this
concatenation of these two compilers is again a (sys-
tem) compiler, and can be treated by the same theory
as a compiler that would translate directly from the
code generation model to the executable code, see Fig-
ure 2. In the following all such translation tools will
be denoted abstractly as development tools.

The generated C-code can be seen as intermediate
representation of the model, because it is both output
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Figure 1: The generic build process for a model-based
development toolchain with an automatic code gener-
ator (from [14]). The shaded parts indicate the tools
and artifacts affected by what is later referred to as the
development tool (code generator and cross compiler).

of the code generator as well as input to the cross com-
piler for the target. This perspective of the develop-
ment tool is of central significance, because there is
no need to perform any qualification activities on such
internal representations as long as the C-code is only
used as input to the cross compiler and is not further
manipulated or used in any other activities that need
to rely on the readability of the C-code. As a conse-
quence no C-code reviews are needed in this case. This
approach opens up the possibility to perform reviews
on the model level. A main topic of this contribution
is addressing the conditions that need to be established
to allow such model level reviews.

Development tools may inject systematic faults into
the executable program. Increasing the functional
safety in this context means to minimize erroneous

Code Generation Model 
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Figure 2: The concatenation of a code generator and
a (cross) compiler can be treated as a (system) com-
piler that directly transforms from the code genera-
tion model to the executable (target) code. The Fig-
ure indicates that the system compiler is based on the
proposed Modelica sub- and superset. Note that this
system compilation process may be realized signif-
icantly different than a compilation process used in
order to create simulation executables of models (see
Section 4.2.5).

outputs of the development tools due to malfunctions
and/or reliably detecting those erroneous outputs when
they occur.

One method to gain confidence in a software devel-
opment tool, is the validation of the software tool by a
validation suite, which comprises a test suite specif-
ically designed to exercise the development tool in
ways that would provoke any systematic malfunctions.

In order to design a suitable modeling language,
powerful development tools as well as an efficient and
effective validation suite, it is important to understand
precisely the role of translators and what the valida-
tion suite is intended to demonstrate. We therefore in-
troduce some definitions in the context of a validation
suite in Section 5, together with a discussion of the
role of language structure and complexity.

For both the validation of the input language and
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the transformation process, we have to cope with the
curse of complexity. It is therefore of crucial impor-
tance to keep the language of the code generator mod-
els as simple and well-defined as possible, especially
with regards to the number and complexity of basic
constructs in the language, while also minimizing the
number and complexity of performed transformation
rules in the code generation process. This is especially
true of transformation rules stemming from optimiza-
tion rules. On the other hand the language so defined
still has to be suitable for human consumption, so that
the complexities of the code generation process are not
just offloaded to the programmer.

Up to now the use of Modelica in embedded sys-
tems development is usually restricted as a modeling
language for the physical plant dynamics. This can be
attributed to:

1. A somewhat too limited expressiveness in mod-
eling discrete controller functions.

2. The lack of a flexible, seamless development ap-
proach from the controller model comprising the
logical functions to the technical system architec-
ture (i.e., code running on the target platform).

3. And last but not least because safety-relevant
software functions need means to achieve a high
assurance level, which is not supported with cur-
rent Modelica.

When discussing the use of Modelica in the con-
text of control application, often advanced control con-
cepts based on inverted plant dynamics are described
[18], [19], [3]. Some Modelica tools are capable of au-
tomatically synthesising such controllers and generate
code for them. This usually requires fairly sophisti-
cated symbolic manipulation capabilities by the tool.
For example, it may require to differentiate a subset of
the equations, select appropriate states and solve the
resulting system of differential and algebraic equations
numerically.

However, the intrinsic complexity in the resulting
control algorithms imposes an additional burden if the
topmost design goal is in providing high assurance
control systems. For the following discussion it is
therefore assumed that the design trade-off is biased to
prefer high assurance control over high performance
control systems.

The aim of the paper is to study impacts of a safety-
relevant development process (relying on validated
tools) to high-level, domain-oriented modeling lan-
guages. In particular it proposes a sub- and superset

of the modeling language Modelica suitable for such
safety-relevant software development activities. To il-
lustrate the development using the proposed language
elements a showcase library (referred to as SAFEDIS-
CRETECONTROL library) is presented and applied at
an exemplary use case.

2 Development Roles

Model-based development is an established method in
the development of safety-relevant products. As seen
above, especially the two transformations code gener-
ation and cross compilation play an important role. To
ensure that the benefits of this approach have full ef-
fect the working mode of the development tools needs
to be well understood.

The intended software development process, and
hence the development environment, has to provide a
balance between controlled process steps and flexibil-
ity of user access: On the one hand, the user may not
be restricted too much and must still have principal
control over all development activities – too many re-
strictions reduce the acceptance and thus also the pro-
ductivity and quality of the work. On the other hand,
too few restrictions lead to error-prone development
practices, and ultimately to preventable faults in the
software.

Various stake-holders participate in the develop-
ment in different roles with different requirements and
expectations. A suitable Modelica sub- and superset
will have to support at least the following roles in the
development process:

Role 1 - Developer of the Embedded Control Sys-
tem. This role requires a sufficiently expressive mod-
eling language with sound language elements with
clear semantics to design and test the intended func-
tionality.

Role 2 - Tool Developer. This role requires the pre-
cise definition of the input modeling language: There
should be no unclear corner cases in the semantics.
The language should be efficiently compilable to tar-
get code.

Role 3 - Reviewer for Functional Safety. This role
requires a clear and unambiguous description of the
functionality, including all semantically relevant mod-
eling details in compact form for efficient reviews. It
should be possible to determine coverage at the model
level, and allow for tracing of requirements to the rel-
evant model parts.

Role 4 - Tool Qualifier. This role requires a suffi-
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ciently small number of modeling elements with clear
semantics as well as clear, ideally highly localized
composition rules, in order to establish a validation
suite for the development tool. The boundaries of
the development tools, i.e., input and output nota-
tions, have to be clearly defined. Automated pro-
cesses should ideally be separately testable, to mini-
mize complexity. For more details again see Section 5.

These different roles have partly coincident — se-
mantic aspects — and partly contradictory — expres-
siveness of the language — requirements to the devel-
opment process and with that to the development tools
and their modeling languages.

3 Requirements for a Safety Ori-
ented Modelica Sub- and Superset

In this section we study the requirements of the above
introduced roles to modeling language, to the develop-
ment enviroment and their tools, and a validation suite
for safety-relevant developments.

We will see later in this contribution that these re-
quirements can be met only by specific restrictions and
extensions of the modeling domain language. This fi-
nally leads us to the introduction of a sub- and superset
of Modelica based on these requirements, that is sim-
ple in order to facilitate high assurance designs, yet
expressive enough to allow modeling of many control
strategies of practical relevance.

The textual representation of the Modelica language
defines the full semantics of a given model, therefore
we will begin with the requirements to the textual rep-
resentation.

3.1 Requirements to the Textual Representa-
tion

At a first glance, we argue that functional reviews
should be done at the textual Modelica language level,
since the language semantics are specified at the tex-
tual level and graphical representation may hide im-
portant details. However, of course the graphical level
provides an abstraction that eases comprehension of
the intended model semantics and is hence an ex-
tremely valuable supplementary to the textual review.
We therefore describe in the following section addi-
tional requirements to the graphical representation de-
signed to avoid any hidden important details in the
graphical representation. It is then left to the reviewer
and his preferences either to perform a textual or a
graphical review.

We start with a coincident requirement for the roles:

Requirement 1 - Formally Sound Language Set.
The language sub- and superset must be formally
sound, so that validation and verification methods
e.g. formal methods can be supported. Required by
Roles 1, 2, 3, and 4

Requirement 2 - Minimum Expressiveness of the
Language Set. The language sub- and superset must
have enough expressiveness to allow the clear and con-
cise specification of discrete open- and closed-loop
control algorithms and their related support logic. Re-
quired by Roles 1 and 2.

Requirement 3 - Target Data Types and Opera-
tions. The language should provide a mechanism that
allows to extend its data types and operations to sup-
port fundamental data types and operations available
on the embedded target platform. Required by Roles 1
and 2.

Requirement 4 - Target Code Generation. The lan-
guage should permit automatic generation of target
platform C-code1 that is: a) efficient, b) avoids un-
safe constructs2, c) is traceable3, and d) integrates
smoothly into embedded systems software architec-
tures. Required by Roles 1, 2, and 1.

Requirement 5 - No Continuous-Time Dependen-
cies. The language must not have dependencies to
continuous-time system solver functionalities running
in the background. Required mainly by Roles 1 and 2.

Requirement 6 - Compile Time Analysis. The lan-
guage should allow compile time analysis of important
properties in order to reject dubious programs (missing
initial values, type checking, clock analysis, detection
of cyclic definition that result in algebraic loops, etc.).
Required mainly by Roles 1 and 3.

Requirement 7 - Modular Code Generation. The
language must support modular code generation, i.e.,
within a model composed by connecting several
blocks it must be possible to generate a transition func-
tion for each block definition and by composing them
together produce the overall transition function. Re-
quired mainly by Roles 1 and 3.

1Automatic C-code generation is stipulated, since C-code is the
most popular language for targeting embedded systems and (cer-
tifiable) compilers are available. However direct-to-binary code
generators are not precluded by this, and similar though not iden-
tical concerns arise for those cases.

2For example by conforming to coding standards like
MISRA AC AGC [17].

3Given a fragment of the automatically generated C-code it
must be possible to trace it back to the model elements that caused
its generation.
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Requirement 8 - Modular Initialization. As a con-
sequence of Requirement 7 also initialization of (state)
variables must be supported in a modular manner, i.e.,
initial values of (state) variables in modular blocks de-
duced during compile time analysis must not depend
on the environment enclosing the block. Furthermore,
if initial values can not be uniquely determined from
the given constraints and set start values code gen-
eration shall abort with an error message. Required
mainly by Roles 1, 3 and 4.

Requirement 9 - Tangible Fixation of Automati-
cally Deduced Properties. In order to ensure repro-
ducibility of code generation and reviewability4, it
must be possible to fixate all properties of a model
that influence code generation in a tangible, review-
able form. In particular it must be possible to fix-
ate initial values that are automatically deduced by a
tool, so that code generation will always use the fix-
ated values instead of recalculating those values on the
fly at the time of code generation. Required mainly by
Role 3 and 4.

Requirement 10 - Manual Block Scheduling. Man-
ual scheduling of block execution (as opposed to
scheduling based on automatic causality analysis)
must be possible on an optional basis. Required
mainly by Role 1.

The following requirement is mainly motivated by
the role of a tool qualifier and typically holds the most
potential for discussion with the other roles, especially
with the role developer:

Requirement 11 - Restricted Language Scope. To
ease tool validation the language should be as sim-
ple and clear as possible. This shall be achieved by
restricting the scope of the Modelica language to a
(preferably small) sub- and superset relevant for the
addressed problem domain, i.e, suitable for the imple-
mentation of the blocks in the SAFEDISCRETECON-
TROL library. Particularly, simplicity and clarity of the
language sub- and superset is to be preferred over fea-
ture richness. Required mainly by Role 4.

As already mentioned above, in the following sec-
tion we describe additional requirements to an optional
graphical representation in order to perform a fully
equivalent review on the graphical representation.

4Note that this requirement also enables separate validation of
code generator and property-deduction code, since the fully fix-
ated model provides the checkable interface between both pro-
cesses.

3.2 Additional Requirements to the Graphi-
cal Representation

In computer science, semantics of a textual or graph-
ical language refers to the meaning of programs writ-
ten in it. Although the semantics of Modelica are de-
scribed on a textual language level, Modelica provides
standardized annotations for the graphical representa-
tion of models [10].

The main idea is that a library developer uses the
textual Modelica language to code basic functionali-
ties in components that are annotated with a graphical
illustration, while an application/model developer (li-
brary user) works on a graphical level by just dragging,
dropping and connecting the library components in or-
der to compose the intended functionality.

How can we now avoid that not obvious or even hid-
den details in the graphical representation prevent the
reviewers from performing an efficient and effective
graphical review? In this section we therefore formu-
late additional requirements to the graphical represen-
tation that enable both developers (Role 1) and review-
ers (Role 3) to entirely work at a graphical level.

Within Section 4.4 a conceptual library design (de-
noted SAFEDISCRETECONTROL library) is briefly
presented that complies to the requirements stated in
this section. In combination with adherence to the
rules formulated in Section 4.3.2 the usage of such a
library could then enable both, developers and review-
ers, to entirely work at a graphical level.

We start with the graphical pendant to the textual
requirement 1:

Requirement 12 - Intuitive Block Semantics.
Blocks from SAFEDISCRETECONTROL and their
compositions should not exhibit any behaviour which
would be deemed surprising or non-obvious by a do-
main expert. Required by Roles 1, 2, 3, and 4.

The restriction on blocks reflects the textual require-
ment 11:

Requirement 13 - Restricted Set of Allowed Blocks.
A high-level application model is only allowed to be
composed from a set of thoroughly tested and val-
idated basic blocks defined in the SAFEDISCRETE-
CONTROL library. Required mainly by Roles 3 and
4.

Requirement 14 - Data Flow Semantic. Block dia-
grams with data flow semantic are used at the graphical
level. Required by Roles 1, 2, 3, and 4.

Requirement 15 - Graphical Level Code Reviews.
Code reviews of models should be feasible as far as
possible at the graphical level. Consequently, any se-
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mantics associated with the blocks from SAFEDIS-
CRETECONTROL and their compositions should be
completely evident by inspecting the graphical dia-
gram layer, i.e., apart from clearly marked exceptional
cases there should be no cases where the semantics
of a model is not entirely and uniquely understand-
able from inspection of the block diagram. Required
mainly by Role 3.

Requirement 16 - Block Testability. Any block
within SAFEDISCRETECONTROL must be designed,
so that extensive testing of the block is easily possi-
ble, i.e., simple, lean designs are preferred over so-
phisticated, complex designs. Note that this also im-
plies that when balancing modeling comfort of blocks
against simplicity, the bias is towards simplicity. Re-
quired mainly by Roles 3 and 4.

Requirement 17 - Composition Testability. Com-
positions of blocks from SAFEDISCRETECONTROL

must again result in a block that is suitable for exten-
sive testing, e.g., by restricting the number of inputs
and outputs that are allowed for a block. Required
mainly by Role 3 and 4.

Requirement 18 - Traceability. Compositions of
blocks from SAFEDISCRETECONTROL must result in
generated code that can be traced back to the blocks
in the model, in order to easily perform, e.g., code
coverage analysis on the target level but mirror back
the results onto the model level. Required mainly by
Role 3.

4 Proposal for a Safety Oriented
Modelica Sub- and Superset

The aim of this section is to introduce a sub- and su-
perset of Modelica that is simple in order to facilitate
high assurance designs, yet expressive enough to al-
low modeling of many control strategies of practical
relevance.

4.1 Terminology

The following list defines some key terms used subse-
quently.

Basic Blocks Blocks that have no inner instance of
other blocks are subsequently referred to as basic
blocks. These blocks may only contain parame-
ters, connectors and (textual) equations.

Composite Blocks Blocks that are (graphically) com-
posed from other blocks are subsequently re-

ferred to as composite blocks. These blocks may
only be composed from other blocks connected
by connect(..,..) equations. Therefore they
do not contain any other textual equations.

Clocks Clocks provide an activation signal or clock
signal used for synchronous scheduling of a set
of equations activated by that clock signal. They
recently entered the Modelica language standard.

Clock Blocks Special basic blocks containing clocks
that provide a clock signal are subsequently re-
ferred to as clock blocks.

Atomic Blocks Blocks which are executed as a single
unit (akin to a function call with input and output
arguments) are referred to as atomic blocks.

4.2 Superset: Language Extension Proposal

To meet the requirements defined in Section 3 it is not
sufficient to solely restrict the language elements to a
subset of the current Modelica 3.3 standard specifica-
tion. In addition it is necessary to extend the language
elements, effectively forming a superset of the current
language.

This section proposes several language extensions
by

1. Explaining the perceived limitation of Modelica
3.3 that needs to be addressed.

2. Proposing a language extension that overcomes
the limitation.

4.2.1 Data Types Extension

Modelica 3.3 [10, Section 12.9] specifies the following
data type mapping to C:

Modelica data type Default mapping to C

Real double
Integer int
Boolean int
String const char*
Enumeration int

Embedded processors often need finer control about
the used data type5. Again it is necessary to make a
trade-off between feature completeness and validation
costs. Validation effort will raise for every supported

5E.g., for increased memory efficiency or because the embed-
ded system simply doesn’t provide efficient support for that data
type, e.g., an embedded system with a FPU (Floating Point Unit)
that supports only single precision floating point arithmetic.
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data type. In effect it needs to be checked whether
the savings gained by supporting a particular data type
(e.g., because a cheaper electronic control unit (ECU)
can be used) outweighs the additional costs in (tool)
validation.

The following section will propose a rather general
mechanism to extend the standard Modelica data types
with more low-level hardware encoding information.
Note that although the SAFEDISCRETECONTROL li-
brary presented in Section 4.4 only supports a subset
of the listed data types, the extension to additional data
types is straight forward. However, the associated ad-
ditional validation effort for any additional supported
data type is considerable.

4.2.2 Proposal for Data Type Extension

The relevant part of the Modelica specification defin-
ing the basic data types is [10, Section 4.8]. The nota-
tion in the specification is adapted to extend the defini-
tion of the Real, Integer and Boolean data types6.
The following predefined enumeration types are used
for the definition.

type PlatformType = enumeration(
UInt8 "8-bit unsigned integer",
SInt8 "8-bit signed integer",
UInt16 "16-bit unsigned integer",
SInt16 "16-bit signed integer",
UInt32 "32-bit unsigned integer",
SInt32 "32-bit signed integer"
);

type PlatformRealType = enumeration(
Float "IEEE 754 single precision

floating type",
Double "IEEE 754 double precision

floating type",
);

Using the definitions above the predefined types of
Modelica are extended with the additional attribute
platformType. The rationale for not supporting an
attribute is given in the corresponding footnote. Note
that the types are defined with Modelica syntax al-
though they are predefined, fundamental data types in
Modelica.

type Real
RealType value; /* Accessed

6In this work the dedicated support of fixed-point arithmetic is
not (yet) considered. Note that if fixed-point arithmetic is required
it is possible (though not convenient) to use the proposed Model-
ica language extensions to implement and validate custom basic
blocks that provide the required functionality.

without dot-notation */
parameter StringType quantity;6

parameter StringType unit;
parameter StringType displayUnit;6

parameter RealType min=-Inf, max=+Inf;
parameter RealType start = NaN;7

parameter BooleanType fixed;8

parameter RealType nominal;9

parameter StateSelect stateSelect;10

parameter PlatformRealType platformType
= PlatformRealType.Double;

end Real;

type Integer
IntegerType value; /* Accessed
without dot-notation */

parameter StringType quantity;6

parameter IntegerType min=-Inf, max=+Inf;
parameter IntegerType start = +Inf;7

parameter BooleanType fixed;8

parameter PlatformType platformType
= PlatformType.Sint32;

end Integer;

type Boolean
BooleanType value; /* Accessed
without dot-notation */

parameter StringType quantity;6

parameter BooleanType start = false;7

parameter BooleanType fixed;8

parameter PlatformType platformType
= PlatformType.Sint32;

end Boolean;

Note that the values of the variables may not be di-
rectly manipulated in memory and consequently there
are no access routines.

4.2.3 Activation of Discrete-time Equations in
Modelica

Before the recently released Modelica 3.3 language
standard the activation of discrete-time equations was
either due to time events or state events.

6Omitted for the sake of language simplification
(Requirement 11).

7If no start value is given, the start value is deduced (in com-
pliance with Requirement 8) during compile time analysis.

8The Attribute "fixed" cannot be applied on clocked discrete-
time variables. It is true for variables to which the previous()
operator is applied, otherwise false [10, Section 16.9].

9Nominal values are only useful in the context of numerical
solvers. They have no relevance in our targeted discrete applica-
tions.

10Only useful for solving (continuous) differential equation sys-
tems.
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Time events are scheduled by the solver along a
global simulation time line. Time is a (physical)
real number (as opposed to the principle of multi-
form time12 adapted by synchronous languages) that
steadily increases during execution (simulation) of a
Modelica model. The global simulation time can be
accessed anywhere in a Modelica model by the built-
in variable time13.

State events are detected by the solver if a variable
(controlled by the solver) experiences a zero-crossing.

The event handling approach of Modelica works
well for simulating a plethora of hybrid system mod-
els, but it has shortcomings if embedded systems code
shall be generated from a Modelica model. The pre-
requisite that an “omniscient” solver “running in the
background” detects and schedules events in order
to activate the evaluation of a set of equations im-
pedes straightforward integration into external envi-
ronments.

In order to allow smooth integration of code gener-
ated from Modelica into embedded systems software
projects, Modelica needs to allow external code to
simply cause the evaluation of a set of (discrete-time)
Modelica equations (without the internal participation
of a hybrid systems solver that tries to detect whether
the equations shall be evaluated or not). Nikoukhah
and Furic [11] provide a notable discussion about the
missing feature of external activation in context of us-
ing Modelica models within the Scicos14 modeling en-
vironment which similarly applies to using Modelica
models in embedded systems software projects.

To allow external activation of Modelica models
Nikoukhah and Furic propose in [11] to add an Event
type to the Modelica language and discuss the ele-
ments and semantics needed to integrate that new type
in a general and backwards compatible way15.

The latest Modelica 3.3 language standard added
synchronous language elements particularly targeted
at the implementation of control systems [10, Chapter
16, Synchronous Language Elements]. They add clock
activation as a third way of activating discrete-time

12The multi-form time principle states that any sequence of
events can be considered as a time scale for the reactive system
that perceives these events.

13Note that at the beginning of Section 4.2 it is stated that the
built-in variable time is not supported for the SAFEDISCRETE-
CONTROL library.

14Scicos is a graphical dynamical system modeler and sim-
ulator with support for continuous and discrete time models
(http://www.scicos.org/).

15An early draft version of this document actually proposed an
activation mechanism inspired by the proposal of Nikoukhah and
Furic.

equations that largely solves the hitherto criticised de-
ficiencies.

Another notable advantage of clock activation in
comparison to activation through the traditional state
and time events mechanism is the support of clock in-
ference. It is no longer necessary to explicitly prop-
agate an event to all (block) instances that contain
equations that should be activated by that event. The
property of a variable that is explicitly associated with
a clock is propagated to other variables that are related
with that variable through equation relations. The us-
age of variables associated with different clocks within
the same expression requires special clock conversion
operators, otherwise it is a model error. This increases
the modeling comfort and protects against modeling
errors related to unconscious combination of signals
sampled at different points in time.

The following section will use a subset of the
synchronous language elements as a base to realize
a mechanism that, sloppily speaking, allows to call
blocks as functions. On the one hand the proposal
will restrict the allowed set of synchronous language
elements to a subset (for language simplification rea-
sons), on the other hand it will introduce a slight ex-
tension in order to satisfy two use cases:

1. Allow smooth integration of generated code into
external environments, e.g., AUTOSAR author-
ing environments.

2. Allow manual scheduling of block execution as
depicted in Figure 3.

The requirement to allow manual scheduling of
block activation might appear strange, since a program
can figure out the “correct” activation sequence easily
from the data flow. However interaction with external
software components, as well as execution time and
real-time requirements, can place additional restric-
tions on the activation sequence that can not be deter-
mined by data flow only. Therefore, manual schedul-
ing can be necessary. Additionally, if discussing a
safety-relevant design with authorities it can often be
beneficial to document that a human being has thought
of the correct activation sequence rather than a ma-
chine.

4.2.4 Proposal for Atomic and Priority Based Ac-
tivation

Conceptually, the atomic block definition in Sec-
tion 4.1 yields the semantic depicted in Figure 4.
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Figure 3: Manual scheduling of blocks.

Since an atomic block is executed as single unit it is
required that all equations within the block must be ac-
tivated from the same clock signal. However, it is pos-
sible that a block internally subsamples a clock signal
and provides it as an output. Note that due to clock in-
ference it is not necessary to provide an explicit clock
input to every atomic block within a diagram as long
as a unique clock can be inferred for it.

Atomic Blocks Currently there is no language sup-
port for treating a block as atomic according to our def-
inition. To mitigate that deficiency the prefix atomic
is proposed. The atomicity of a block is defined at the
instance declaration.

atomic BlockModule a;

Akin to the execution of algorithms in Modelica
models, an atomic block can be conceptually viewed
as an atomic vector-equation (potentially with internal
state) that maps its inputs to outputs, e.g.,

(out1,out2,...) = BlockModule(in1,in2,...);

Figure 5 further illustrates the difference between
conventional and atomic block semantics.

Clock Priorities To allow manual scheduling of
blocks it is proposed to extend the subSample(u,
factor) operator with an (optional) additional inte-
ger argument denoting the priority of a clock:

subSample(u, factor, priority)

BlockModuleInputs Outputs

Clock
Input

Clock
Outputs

Figure 4: Conceptual atomic MIMO-block with data
inputs and outputs, as well as one clock signal input
(for activating the block) and (potential) several sub-
sampled clock signal outputs.

u2

u1 y1

y2Feedthrough

y1=u1

y2=u2

Figure 5: Trivial feedthrough block. If declared
atomic, it is required that input signals u1 and u2 are
active at the same clock ticks allowing to conceptually
transform the block to a (periodically called) function
(y1,y2) = Feedthrough(u1,u2) (the block hier-
archy is maintained at execution level). If not declared
atomic, u1=y1 and u2=y2 are allowed to be active at
completely unrelated points in time (the block hierar-
chy is flattened, see Section 4.2.5)!

Values assigned to priority must be positive (in-
cluding zero), lower values indicate a higher priority.
If omitted, the argument defaults to "priority = 0".
The priorities are always relative to the source clock
signal.

An example implementation for the scheduler block
in Figure 3 is given below.

block Scheduler
input Clock clk;
output Clock clk1;
output Clock clk2;
output Clock clk3;
equation

clk1 = subSample(clk,1,1);
clk2 = subSample(clk,1,2);
clk3 = subSample(clk,1,3);

end Scheduler;

The semantics is that the equations activated by a
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higher priority clock must be executed first16. Note
that due to the relative nature of clock priorities stated
above, it is not possible that a clock has a higher ab-
solute priority than the input clock. Furthermore, in
order to uniquely associate every variable with one
clock a subSample(u)17 operator needs to be present
between the block connection shown in Figure 3.
That has not been depicted to keep the diagram well-
arranged.

Direct Block Activation The following language
extension proposal is not essential to meet the re-
quirements, however it supports more clearly arranged
models.

The current language standard does not allow to di-
rectly assign a clock to a block with the semantics that
all equations and variables in the scope of that block
are marked to be part of the same base-clock parti-
tion. Therefore, the designated way to execute clocked
equations within a controller block is by providing the
clocking information at the inputs of that block and
rely on clock inference. If the block needs several in-
puts that may result in a diagram like depicted in Fig-
ure 6.

Figure 6: The designated way to execute clocked equa-
tions within a controller block using Modelica 3.3 is by
providing the clocking information at the inputs of that
block (by using the sample(u, c) operator and pass-
ing in the clock by the second argument) and rely on
clock inference to forward the clocking information.

A tentative more explicit mechanism would be to in-
troduce a built-in attribute “clock” for block classes
that allows to assign a clock to a block. The semantics
would be, that any variable and equation enclosed by

16The execution order of equations which are activated by
clocks with equal priority is determined by the (standard) causality
analysis algorithms of the Modelica tool.

17If the arguments "factor" and "priority" are not provided
or zero, they are inferred.

the block would be associated with the assigned clock,
e.g.,
block Controller
input Real u;
output Real y;

equation
u = y;

end Controller;

model Environment
Clock clk = Clock(0.5);
Real s = sin(time);
// associate c.u and c.y with clk
Controller c(clock=clk);

equation
c.u = sample(s);

end Environment;

However, in order to keep extensions to the official
Modelica standard at a minimum this extension is not
part of the proposed Modelica superset.

Clock Blocks and Interaction with the Physical
Environment Clock blocks provide clock signals.
They are source blocks, since they need no input
to provide a clock signal as output. In order to
convert between continuous-time (physical environ-
ment) and clocked discrete-time signals the operators
sample(u) (continuous-time variable u converted to
discrete-time) and hold(u) (zero-order hold conver-
sion of discrete-time variable u to continuous-time) are
needed.

Note that according to Section 4.3, Rule 9 clock
blocks as well as the conversion operators may not
be part of the high-level application intended for code
generation. They are elements needed to simulate
the execution of the high-level applications within the
simulation tool (depicted in Figure 7). Or formulated
differently, they are idealized models of the environ-
ment that will execute the high-level application run-
ning on the ECU, e.g., a periodic scheduler of an op-
erating system that activates the high-level application
task.

Since clock blocks, sample(u) and hold(u) reside
outside the high-level application they are not part of
the Modelica sub- and superset proposed for code gen-
eration!

The Modelica Specification [10, Section 16.3] de-
fines several overloaded Clock(..) constructors. A
simple clock source block is modeled below.
block PeriodicClock
parameter Real sampleRate = 0.1;
output Clock y = Clock(sampleRate);
end PeriodicClock;

A Modelica Sub- and Superset for Safety-Relevant Control Applications 

 

464 Proceedings of the 9th International Modelica Conference  DOI 
 September 3-5, 2012, Munich Germany 10.3384/ecp12076455 



Control 
Algorithm

Clock 
Source

Reference

Plant

Environment 
Model

High-Level 
Application 

Model

sample(..) hold(..)

Figure 7: Simulation of a high-level application model
using a clock block to model the execution of the ap-
plication by its environment, e.g., by an operating sys-
tem scheduler.

Calling a Block as a Function Combining the pro-
posed priority based clock activation with modular
code generation (Section 4.2.6) fulfils the requirement
to “call blocks as functions” (stated in Section 4.2.3).

To exemplify, assume B1, B2 and B3 from Fig-
ure 3 have the annotation Inline=false and the man-
ual scheduler is modeled by assigning appropriate pri-
orities to the clock signals. A tool could generate fol-
lowing (conceptual) C-code.

double EnclosingBlock_B2_y = 0;

void EnclosingBlock(double u,
double* y1, double* y2) {

double B1_y1, B1_y2;
double B2_y, B3_y;
B3(EnclosingBlock_B2_y , &B3_y);
B1(u, &B1_y1, &B1_y2);
B2(B1_y1, B3_y1,

&EnclosingBlock_B2_y);
*y1 = EnclosingBlock_B2_y;
*y2 = B1_y2;

}

4.2.5 Typical Modelica Code Generation

The typical Modelica code generation process differs
significantly from the automatic target code generation

intended for safety related applications. This section
will give a short overview over the typical code gen-
eration process in order to better appreciate and un-
derstand the proposal for simplified and modular code
generation presented in Section 4.2.6.

Compiling Modelica code usually involves substan-
tial code transformation. Figure 8 gives an overview
of the compilation and simulation process as described
by Broman [4, p. 29].

Modelica 
Model

AST

Lexical Analysis 
and Parsing

Hybrid DAE

Elaboration

Executable

Simulation 
Result

Equation 
Transformation & 
Code generation

Simulation

Compile 
Time

Run time

Compiler 
front-end

Compiler 
back-end

Figure 8: Outline of a typical compilation and simula-
tion process for a Modelica language tool [4, p. 29].

The different phases are:

Lexical Analysis and Parsing This is standard com-
piler technology.

Elaboration Involves type checking, collapsing the
instance hierarchy and generation of connection
equations from connect-equations. The result is a
hybrid DAE (consisting of variable declarations,
equations from equations sections, algorithm sec-
tions, and when-clauses for triggering discrete-
time behaviour).

Equation Transformation This step encompasses
transforming and manipulating the equation sys-
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tem into a representation that can be efficiently
solved by a numerical solver. Depending on the
intended solver the DAE is typically reduced to
an index one problem (in case of a DAE solver)
or to an ODE form (in case of numerical integra-
tion methods like Euler or Runge-Kutta).

Code generation For efficiency reasons tools typi-
cally allow (or require) translation of the residual
function (for an DAE) or the right-hand side of
an equation system (for an ODE) to C-code that
is compiled and linked together with a numerical
solver into an executable file.

Simulation Execution of the (compiled) model.
While execution the simulation results are typi-
cally written into a file for later analysis.

In the context of code generation for safety relevant
systems the typical processing of Modelica models has
two problems:

1. In the Elaboration phase the instance hierar-
chy of the hierarchically composed model is col-
lapsed and flattened into one (large) system of
equations , which is subsequently translated into
one (large) chunk of C-code inhibiting modular-
isation and traceability at the C-code level. That
conflicts with Requirements 7, 8 and 18.

2. In the Equation Transformation phase the
equations are extensively manipulated, optimized
and transformed on the global model level. The
algorithms used in this step are the core elements
that differentiate the tools (quality of implemen-
tation). Although the basic algorithms are docu-
mented in the literature, the optimized algorithms
and heuristics used in commercial implementa-
tions are a vendor secret. The lack of trans-
parency and simplicity exacerbates tool qualifi-
cation efforts.

Therefore, the compilation process for simulation
may be significant different to the target code compi-
lation process depicted in Figure 2. Not only because
different compilers are used, but also because the tar-
get code generator may (need to) be an entirely dis-
tinct piece of software that may share only minimal to
no amounts of code with the simulation code genera-
tor. In particular the target code generator depicted in
Figure 2 is only required to understand the sub- and
superset of the Modelica language intended for (dis-
crete) software application models.

4.2.6 Proposal for Simplified and Modular Code
Generation

In the context of safety related function development
it is proposed to

1. Use simplified and transparent equation transfor-
mation algorithms for block diagrams.

2. Support modular code generation for blocks.

Simplified Transformation Algorithms The com-
plexity in the compilation process of Modelica models
is mainly due to acausal18, physical modeling. Trans-
forming typical physical models in a form that can be
efficiently solved by a numerical solver requires ad-
vanced symbolic manipulation techniques.

However, the proposed Modelica subset allows for a
hugely simplified compilation. Recall, that compared
to full Modelica, the following restrictions apply to the
block diagram subset of Modelica proposed in this pa-
per:

• Modelica block diagrams allow only causal con-
nections between blocks.

• Only difference equations are permitted by the
proposed language subset (the der(..) operator
is not available in the proposed language subset).

Transforming these equations to (causal) serial code
is completely feasible by resorting to well known, pub-
lished algorithms19 without needing additional expert
knowledge to perform challenging tasks like index re-
duction (which is needed for almost all physical Mod-
elica models of practical relevancy). Therefore, to in-
crease the transparency of the transformation process
it is proposed to use plain and open transformation al-
gorithms suitable for the targeted Modelica subset.

Modular Code Generation Modular, or separate,
code generation for blocks improves traceability
within a code generation process, a key requirement
when developing safety related functions [2, 1, p. 75].

The aim of modular code generation is to produce a
transition function for each block definition and com-
pose them together to produce the main transition
function. However, flattening each block and manipu-
lating the corresponding equation system on the global

18The term acausal in Modelica is somehow similar to what is
referred in computer science as descriptive.

19For example by employing basic “Modelica” algorithms for
causalization of an equation system into a block lower triangular
form [12, 15, 6].
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level usually allows to generate a better optimized,
more efficient code. Consequently, a trade-off between
efficiency and traceability is required [1, p. 75].

Instead of collapsing the instance hierarchy, as typ-
ically done within the Elaboration phase, it is pro-
posed to provide an option that preserves the modular-
ity of an instantiated block.

The Modelica specification already knows of anno-
tations that can influence code generation [10, Section
18.3]:

code_annotation:
annotation"(" codeGenerationFlag "="
{ false | true } ")"

codeGenerationFlag:
"Evaluate" | "HideResult" | "Inline" |
"LateInline" | "GenerateEvents"

Within the specification the effect of the flag
"Inline" is limited to function declarations. We pro-
pose to extend that scope in order to use the flag to
annotate block instances and block declarations that
have been declared “atomic”. An annotation at the
block instance takes precedence over an annotation at
the block declaration. If the flag is not explicitly set it
defaults to Inline=false.

Therefore, for the example from Figure 9 the decla-
ration to enforce separate code generation for the block
instance writes:

atomic BlockModule blockModule
annotation(Inline=false);

BlockModule

u y

A B

Figure 9: For every block it must be possible to option-
ally state whether the modularity of the block instance
used in a composition is to be preserved at source code
level.

For the BlockModule example from Figure 9 a C-
function with suitable input and output data structures
could be generated in way similar to

void BlockModule(inBlockModule_u *u,
outBlockModule_y *y);

The internal state variables of the block (if any) could
be either part of the output data structure, or alterna-
tively could be provided as a third argument to the
function.

A common alternative approach is to use global
variables with a suitable naming scheme to avoid

variable clashes for input, output, and state variables
which results in functions with a void signature, e.g.,

void BlockModule(void);

If a suitable communication mechanism exists the
code may also instead of directly accessing the vari-
ables use the communication interfaces provided by
the run-time environment, e.g.,

void BlockModule(void) {
inBlockModule_u u =

get_inBlockModule_u();
outBlockModule_y y;
/* .. */
set_outBlockModule_y(y);

}

Clarity may improve if for initialization or reset of
state variables an additional, dedicated function is gen-
erated.

Additional Remarks on Code Generation A de-
tailed discussion about automatic target code gener-
ation by Modelica tools is out of scope of this arti-
cle. With no doubt the user needs to have more influ-
ence on the code generation than the options given by
the proposal above. Customized control over some as-
pects of the code generation might be provided within
the model in form of Modelica annotations (standard-
ized or tool specific) or also at completely different
locations and in different forms.

4.3 Subset: Reducing Language Complexity

The practice of defining modeling or coding stan-
dards for safety-relevant software projects is well es-
tablished20. This section proposes several rules for the
development of safety-relevant control applications,
akin to a modeling standard, in order to reduce the
complexity of the language.

The rules restrict the allowed language elements,
and hence define a language subset.

4.3.1 Textual Language Rules

To meet the requirements defined in Section 3 it is not
sufficient to solely restrict the language elements to a
subset of the current Modelica 3.3 standard specifica-
tion. In addition it is necessary to extend the language

20An example is the functional safety standard IEC 61508-3,
in which the use of coding standards is highly recommended for
SIL 3 and above [9]. Several coding/modeling guides published
by The Motor Industry Software Reliability Association (MISRA)
provide standards specifically targeted (but not limited) at the au-
tomotive industry, the most famous one being MISRA C [16].
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elements, effectively forming a superset of the current
language.

A language extension capable of meeting the re-
quirements is proposed in Section 4.2. The following
rule definitions require that this extension is available.

Rule 1 - Clocked Variables Exclusivity. Occurring
variables and equations must be part of (discrete-time)
clocked partitions. Note that this restriction implies
that all allowed high-level applications have a purely
time-discrete nature.
Rationale: Clocked variables and equations were in-
troduced in Modelica 3.3 to provide improved support
for implementation of (discrete-time) control systems.
Trace: Requirement 4, 5.

Rule 2 - Reduced Set of Keywords. Table 1 repro-
duces the keywords from the Modelica specification
[10, Section 2.3.3]. Keywords that are not allowed
in the proposed Modelica subset are stroked through.
The semantics of the remaining elements are main-
tained appropriately21.
Rationale: Language simplification.
Trace: Requirement 11.

Rule 3 - Reduced and Restricted Set of Operators.
The available Modelica operators are slightly reduced
(no .* ./ .+ .-) and the arithmetic operators
are restricted to scalar types (see Table 2).
Rationale: Language simplification.
Trace: Requirement 11.

Rule 4 - Reduced Set of Built-in Functions and Op-
erators with Function Syntax. Table 3 specifies the
subset of supported built-in functions and operators
with function syntax defined in [10, Section 3.7 and
Chapter 10, 16 and 17].
Rationale: Language simplification.
Trace: Requirement 11.

Rule 5 - Supported Data Types. The scalar data
types Boolean, Real and Integer are fully sup-
ported and extended to support more fine grain con-
trol about the underlying hardware encoding in Sec-
tion 4.2.1. Enumeration is not supported, the sup-
port of String is limited to parameter values and con-
stants. Array support is limited. Most (overloaded)
operators and built-in functions related to arrays are
not supported (see Table 2 and 3).
Rationale: Language simplification, as well as in-
crease of language expressiveness to satisfy common

21Note that the reason for excluding a keyword is not because it
would be unsafe to allow it. The reasons for excluding keywords
is to reduce the complexity of the language as much as possible
down to a set of (indispensable) core elements.

data type requirements from the embedded systems
domain. Functionality provided by the array opera-
tors and built-in functions, e.g., scalar product, can be
programmed by using the scalar operators and loops.
Trace: Requirement 4, 11.

Rule 6 - No Support of Built-in Variable time. The
built-in variable time (see [10, Section 3.6.7]) is not
supported.
Rationale: Physical time is a quantity of continuous
system simulation and therefore not supported in the
time-discrete language subset. If an absolute wall-
clock time is needed in the application logic, it has to
be passed in from the external environment as a (Real)
input signal.
Trace: Requirement 5.

Table 1: Reduced set of allowed Modelica keywords.
algorithm discrete false loop record
and each final model pure
annotation else flow not redeclare
assert elseif for operator replaceable
block elsewhen function or return
break encapsulated if outer stream
class end import output then
connect enumeration impure package true
connector equation in parameter type
constant expandable initial partial when
constrainedby extends inner protected while
der external input public within

Table 2: Reduced set of allowed operators
Operator Group Operator Syntax

postfix array index opera-
tor:

[]

postfix access operator: .
postfix function call: funcName(..)
exponentiation: ˆ
multiplicativea: * / .* ./
additivea: + - +expr -expr .+ .-
relational: < <= > >= == <>
unary negation: not expr
logical and: and
logical or: or
array range: expr : expr

expr : expr : expr
conditional: if expr then expr else expr
named argument: ident = expr

a Note that contrary to [10, Section 3.4] the arithmetic
operators ˆ * / + - are limited to operate on
scalar types only and the elementwise operators .* ./
.+ .- are not available.

4.3.2 Additional Graphical Representation Rules

The following rules establish a modeling standard for
the graphical representation of Modelica models, tar-
geting the requirements formulated in Section 3.2, to
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Table 3: Reduced set of built-in functions and built-in
operators with function syntax

Numeric Functions
and Conversion
Functions

abs(v) sign(v)
sqrt(v) Integer(e)
String(..)

Event Triggering
Mathematical
Functionsa

div(x,y) mod(x,y)
rem(x,y) ceil(x)
floor(x) integer(x)

Built-in Mathematical
Functions and
External Built-in
Functions

sin(x) cos(x)
tan(x) asin(x)
acos(x) atan(x)
atan2(x,y) sinh(x)
cosh(x) tanh(x)
exp(x) log(x)
log10(x)

Derivative and
Special Purpose
Operators with
Function Syntax

der(expr) delay(..)
cardinality(c) homotopy(..)
semiLinear(..) inStream(v)
actualStream(v) spatialDistribution(..)
getInstanceName()

Event-Related
Operators with
Function Syntax

initial() terminal()
noEvent(expr) smooth(p, expr)
sample(s,i) pre(y)
edge(b) change(v)
reinit(x, expr)

Synchronous
Language Elements

Clock() Clock(..)b

previous(u) sample(u, c)b

hold(u)b subSample(..)
superSample(..) shiftSample(..)
backSample(..) noClock(u)
interval(u)

State Machinesc
transition(..) initialState(state)
activeState(state) ticksInState()
timeInState()

Array Dimension and
Size Functions

ndims(A) size(A,i)
size(A)

Dimensionality
Conversion Functions

scalar(A) vector(A)
matrix(A)

Specialized Array
Constructor
Functions

identity(n) diagonal(v)
zeros(..) ones(..)
fill(..) linspace(x1,x2,n)

Reduction Functions
and Operators

min(..) max(..)
sum(..) product(..)

Matrix and Vector
Algebra Functions

transpose(A) outerProduct(v1,v2)
symmetric(A) cross(x,y)
skew(x)

Array Constructor
and Concatination

array(..) cat(..)

a No events are triggered from these functions for the
proposed language subset (see [10, Section 16.8.1]).

b Only the “Inferred Clock” operator variant Clock() is
supported. The other Clock(..) constructors as well as the
sample(u,c) and hold(u) operators are not part of the
language subset proposed for embedded target code
generation (see Section 4.2.4 “Clock Blocks and Interaction
with the Physical Environment”).

c Present proposal excludes state machines (see Rule 7).

enable development and reviews to be conducted en-
tirely on the graphical level.

Rule 7 - Block Diagrams Only. The present proposal
focuses on the support of block diagrams and excludes
state diagrams.
Rationale: This is to limit the required effort and asso-
ciated complexity. Introduction of expressive state dia-
grams that integrate naturally with block diagrams and
allow generation of efficient and safe code is a huge ef-
fort in its own.
Trace: Requirement 14.

Rule 8 - Causal Connectors Exclusivity. Only
causal Connectors are allowed.
Rationale: Corollary to Rule 7

Rule 9 - Atomic Blocks for High-level Application.
The use of atomic blocks is suggested for the top-
level hierarchies of a model that shall be automatically
translated into embedded C-code.
Rationale: Enables a clean and clear execution model,
as well as an obvious translation of a block to a func-
tion call (see Section 4.2.6).
Trace: Requirements 4, 7, 8, 12, 15, 16, 17, 18.

Rule 10 - Basic/Composite Block Exclusivity.
Blocks need to be either basic blocks or composite
blocks. Mixing of textual equations with (graphical)
block instances is not allowed.
Rationale: Mixing textual equations with graphical
block instances in one block can be very confusing
since a modeler may expect that the semantics of a
composite block can be entirely deduced from the
graphical level.
Trace: Requirement 15.

Rule 11 - Semantical Unambiguousness at Graphi-
cal Layer. The semantics of a composite block must
be completely understandable at the graphical layer.
Rationale: This is required since otherwise code re-
views can not be done at the graphical level.
Trace: Requirement 12, 15.

Rule 12 - Scalar Signal Extraction via “(De)mux”
Only. Direct scalar signal connections from and to
array connectors are not allowed. Intermediate
“(De)mux” blocks must be used when scalar signals
shall be connected with array connectors.
Rationale: Improves clarity and understandability of
models.
Trace: Requirement 12, 15.
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4.4 The SAFEDISCRETECONTROL Library

The conceptual SAFEDISCRETECONTROL library
provides a restricted set of modeling blocks compliant
with the requirements formulated in Section 3. Fig-
ure 10 gives an overview about the structure of the li-
brary.

Figure 10: Structure of the SAFEDISCRETECONTROL

library. Note that the Environment package contains
blocks for modeling the environment in which the
modeled high-level application is executed. However,
these blocks may not be part of a high-level applica-
tion (software) model.

As may be expected, the library has to duplicate
many blocks found in the Modelica.Blocks stan-
dard library. However, it also needs to provide a user
friendly access to the elements from the language su-
perset, e.g., extended data types. Figure 11 shows a
block for adding two integer signals that includes a
choices menu to further specify the integer platform
type to be used.

Figure 12 shows a traffic light controller modeled
with the SafeDiscreteControl library. The con-
troller is motivated by the example described in [13].

Figure 11: Integer addition block with extended data
type support.

The controller’s output are the interval lengths of the
green phases, respectively for the north-south and the
east-west direction. Note that an atom icon in the up-
per right corner provides the visual information that
the block has been declared atomic.

The inside of the controller composite block is de-
picted in Figure 13. Semantically relevant information
like data types or vector valued signals (e.g., between
the multiplex and summation blocks) are clearly visi-
ble.

Adherence to the modeling rules described in Sec-
tion 4.3.2 in combination with an adequate library al-
lows to comply with the graphical level requirements
formulated in Section 3.2. As a consequence, high-
level application development (Role 1), as well as the
model reviewing (Role 3), could be done entirely at
the graphical level for the presented example.

Please note the presented SAFEDIS-
CRETELIBRARY is a conceptual library that was
created to check whether it is feasible to model typical
discrete control algorithms and their related support
logic solely with the use of the proposed sub- and
superset of the Modelica language. It is therefore not
a library that is available or usable for production
purposes!

5 Validation Suites

In order to more clearly understand the role of vali-
dation suites in the qualification of development tools,
the following section will provide formal definitions
of relevant terms and a formalized description of the
interplay between development tools and validation
suites. Additionally this theoretical framework allows
us to specify the relationship between specification
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Figure 12: Model of a dynamic traffic light controller
including the physical plant model of an intersection of
two roads. The controller adjusts its timing and phas-
ing to meet changing traffic conditions. Atomicity of
the controller composite block is denoted by the atom
symbol in the upper right corner. Data types are visible
at the input and output connectors.

models in Modelica and code generation models in the
proposed sub- and superset of Modelica.

5.1 Definitions

We define

• M as the set of all valid input models of the in-
tended development tool chain suitable for code
generation, i.e. in our case the set of models valid
in the proposed Modelica sub- and superset.

• M̃ ⊂ M as the set of models given by a defined
language subset for which the tool chain is to be
validated22,

• M̂ ⊂ M̃ as the set of all test models of a validation
suite,

• Sm as the set of all valid stimuli for a given model
m ∈M, and

• Ŝm ⊂ Sm the set of all test stimuli of a validation
suite for a given model m ∈ M̂,

22Trivially M̃ can be M, though in practice the language is usu-
ally further subset to work around known defects in the code gen-
erator, elide unused language constructs or avoid language con-
structs not suitable for the intended application domain.

Figure 13: Inside the traffic light controller composite
block. All semantically relevant information is visible
at the graphical level.

and further the evaluation function

evalmil : M×Sm→ Rm

of a model by a theoretical simulator (Model-in-the-
Loop), where Rm is the set of possible results of a given
model m ∈M.

We are interested in the proper functioning of a de-
velopment toolchain (DT) consisting of an automatic
code generator (ACG), compiler (C), assembler (A)
and linker (L) for a target (t), so that

DTt : M→ Bt = Lt ◦At ◦Ct ◦ACGt

is the translation function of a model m ∈ M into a
binary Bt executable on target t.

Due to possible differences in the representations
of stimuli and results between host and simulation
(Sm,Rm) vs. target and executable (S′m,R

′
m) we also

define mappings

g : Sm→ S′m

h : R′m→ Rm

converting between the different representations. Ide-
ally S′m = Sm and R′m = Rm and thus g = idSm and
h = idRm .23

Finally
evalbilt : Bt ×S′m→ R′m

is the evaluation function of the binaries b ∈ Bt on the
target t by the processor (Binary-in-the-Loop).

23The mappings g and h are typically defined as component-
wise mappings on the underlying algebraic data types.
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5.2 The Task of a Validation Suite

We require from a correct development toolchain that

∀m ∈ M̃ : ∀sm ∈ Sm :

d(evalmil(m,sm),h(evalbilt (DTt(m),g(sm)))) = 0

for a given metric d : Rm×Rm→ R.
Excluding the impact of d it is to be shown that the

diagram in Figure 14 commutes.

Sm
evalmil(m) //

g

��

Rm

S′m
evalbilt (bt) // R′m

h

OO

DTt

��

Figure 14: The diagrams shows the interaction of the
defined sets and mappings.

Since it is generally not feasible to demonstrate this,
the task of the validation suite is to gain confidence
in the validity of this assertion by demonstrating the
validitiy of the assertion only for the set of test models
and test stimuli, i.e.

∀m ∈ M̂ : ∀sm ∈ Ŝm :

d(evalmil(m,sm),h(evalbilt (DTt(m),g(sm)))) = 0

and ensuring through a suitable selection of the subsets
M̂ ⊂ M̃ and Ŝm ⊂ Sm, and additional measures of qual-
ity assurance, like e.g. fault-injection, that the gener-
alisation to m ∈ M̃ and sm ∈ Sm is defensible.

5.3 Structure of the Sets M and Bt

The preceding analysis makes no reference to the
structure of the sets of valid models M and the set of
executable binaries Bt . We will analyse these sets in
the following through the lens of the theory of alge-
braic specifications ([7, 8]).

In this context these sets are the sets of all terms with
variables corresponding to their underlying signatures
ΣM or ΣBt . The sets of stimuli Sm or S′m are then the sets
of all possible values of the variables for given terms
in M and Bt .

The evaluation functions evalmil or evalbilt are corre-
spondingly extended evaluation functions for a given
ΣM- or ΣBt -algebra, realized by the simulator or the
target processor t.

The function DTt is thus a transformation of terms
from M = TΣM into terms of Bt = TΣBt

. A closer exam-
ination of the resulting properties of the functions DTt ,
g, h, evalmil and evalbilt , especially with the means of
category theory of the categories defined by ΣM and
ΣBt and their corresponding algebras can be helpful:
The structure of the sets M = TΣM and Bt = TΣBt

has
particular influence on the selection of the test sets M̂
and Ŝm, since the structure of these sets also affects the
internal structure of the definition of the function DTt

to be tested.
In the test strategy of a validation suite, as described

in [14], this observation among other considerations
motivates the introduction of specific test areas dealing
with the structure of the programming language, e.g.
test areas 1 basic constructs of language, 2 combined
constructs of language, and 4 inner equivalence, as
well as the structure of the transformation process, e.g.
6 internal structure of the code generator.

Obviously the complexity of the structure, espe-
cially the number and kind of different language con-
structs as well as the number of different ways of com-
bining them and any non-local effects, will determine
to a large degree the size of the required test sets. Im-
portantly this relationship due to combinatorial size
explosion is at minimum quadratic or cubic, and pos-
sibly exponential in complexity. Therefore all effort
should be expended to keep the language subset and
the complexity of the language semantics as small and
simple as possible.

5.4 The Relation between Specification Mod-
els and Code Generation Models

We assume in the following that the specification
model of Figure 1 is a program in the language Mod-
elica and the code generation model is a program of
a possible subset of the proposed sub- and superset of
the language Modelica for safety-relevant control ap-
plications. Then if we define

• M as the set of all valid Modelica models

there exists a mapping r : M→M for every model m∈
M to a corresponding Modelica model m ∈M. Thus

M̃ = r(M̃)

is the subset of valid specification models correspond-
ing to the set of code generation models expressible in
the validated language subset.

Conversely, the left-unique, left- and right-total re-
lation

p⊆ M̃× M̃ = {(m,m) ∈ M̃× M̃ : r(m) = m}
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represents the mapping between specification and
code generation models.

The reason for p not being right-unique or func-
tional is indicative of the freedom of choice of the
developer in their implementation, for example in the
choice of implementation data types, which are usu-
ally left open in the specification model.

If we restrict this freedom of choice by e.g. us-
ing a strict mapping of the data types24 and provid-
ing other default implementation choices, we obtain a
right-unique relation and with that a bijective mapping
function

p′ : M̃→ M̃

with

∀m∈ M̃ :∃m∈ M̃ : (m,m)∈ p∧ p′(m)=m∧m= r(p′(m)).

With corresponding definitions for the functions g :
Sm → Sm and h : Rm → Rm we expand the diagram
from Figure 14 for the evaluation function evalspec :
M×Sm→ Rm, see Figure 15.

Sm
evalspec(m) //

g

��

Rm

Sm
evalmil(m) //

g

��

Rm

h

OO

S′m
evalbilt (bt) // R′m

h

OO

p′

��

DTt

��

Figure 15: The diagram extends the diagram of Fig-
ure 14 with the interaction of the level of the specifi-
cation model.

This diagram should commute, too, if needed taking
into account a suitable (pseudo-)metric d : Rm×Rm→
R. For other models m′ ∈ M with (m,m′) ∈ p and
m′ 6= m the diagram in Figure 15 may commute with
suitable mappings g, h and a (pseudo-)metric for suit-
able stimuli.

Taken together these characteristics make it possi-
ble to produce a set of validated tools for both the code
generation from code generation models and the trans-
formation from specification to code generation mod-
els, so that the probability of fault injection along those
two (independent) transformations can be minimized.

24We map e.g. all double in the specification models to double
in the code generation model, etc.

6 Conclusion

The article presented a general set of requirements that
need to be imposed on a high-level, domain-oriented
modeling language and its development tools in order
to use it for the development of safety-relevant appli-
cations. Based on these requirements the suitability
of using Modelica within a safety related development
process was further analyzed and a sub- and superset
of the Modelica language was proposed that seems ca-
pable of satisfying the formulated requirements.

As a preferred method of choice to gain confidence
in software development tools the use of a validation
suite was proposed and a formal description of the role
of a validation suite within a tool qualification effort
was given. The precise understanding of the task and
effort needed to qualify a tool (based an the valida-
tion suite method) is necessary to appreciate the im-
portance of minimizing number and complexity of the
allowed language elements.

A prototypical development of a block diagram li-
brary (denoted SAFEDISCRETECONTROL) based on
established data flow semantics was started in order to
test the suitability of the proposed language set to sat-
isfactorily model typical control applications. The first
analysis is very encouraging. Currently, there are ap-
proximately 60 candidates of blocks and their param-
eters for the intended SAFEDISCRETECONTROL li-
brary. This is comparable to the number of blocks and
parameters of already successful validation projects
for comparable modeling languages and their develop-
ment tools, so that the implementation of a validation
suite for this language set seems eminently possible.

The next task will be to demonstrate the practical
suitability of the proposed sub- and superset (which
comprises less than half of the language elements
of the Modelica Standard 3.3) for real applications.
While it will likely become necessary to enhance or
modify the language set based on the practical lessons
learned, it will remain of crucial importance, to limit
the number of the blocks in the SAFEDISCRETECON-
TROL library as much as possible:

Experience with validation suites for other model-
ing languages has shown, that for a language with
around 90 basic building blocks, the test sets of the
test areas dealing mainly with language structure (i.e.
test areas 1 basic constructs of language, 2 combined
constructs of language, and 4 inner equivalence, see
again [14]) already comprise around 223 000 test out-
puts. Asuming only quadratic or cubic growth, an in-
crease of a mere 10 % in blocks and parameters will
result in an increase of approximately 20–30 % in val-
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idation effort. A strong release management process
on the SAFEDISCRETECONTROL library with an ideal
limit of about 50 basic building blocks therefore seems
advisable.

It should be noted that tool qualification is most ef-
fective when performed in an early phase of the de-
velopment process: Errors in development tools are
usually hard to detect and analyse in normal develop-
ment, and the effects of work-arounds and tool limita-
tions can have a huge impact on the efficiency of the
development process when introduced at a late stage
of development. Tool qualification should therefore be
concluded prior to the start of the development project.
Ideally, tool qualification efforts start even before the
language definition is finalized: When language con-
structs and definitions are viewed through the lens of
tool qualification, error-prone or hard to test constructs
and corner cases are highlighted, and improvements
can still be adopted. By the concurrent creation of a
test suite, interpretation of the language definition can
be clarified and harmonized between possible imple-
mentations. For this reason we would welcome further
work in this area even at this early stage of language
set definition.

The authors hope that, on the one hand this contri-
bution sheds some light on the requirements and in-
tricacies that need to be faced when considering the
usage of Modelica for safety related applications, and
on the other hand hope to stimulate further discussion
on the rationale and possible approaches to employing
Modelica in this field.
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