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Abstract—For service robotics, localization is an essential
component required in many applications, e.g. indoor robot
navigation. Today, accurate localization relies mostly on high-end
devices, such as A.R.T. DTrack, VICON systems or laser scanners.
These systems are often expensive and, thus, require substantial
investments. In this paper, our focus is on the development of
a localization method using low-priced devices, such as cam-
eras, while being sufficiently accurate in tracking performance.
Vision data contains much information and potentially yields
high tracking accuracy. However, due to high computational
requirements vision-based localization can only be performed at
a low frequency. In order to speed up the visual localization and
increase accuracy, we combine vision information with robots
odometry using a Kalman-Filter. The resulting approach enables
sufficiently accurate tracking performance (errors in the range
of few cm) at a frequency of about 35Hz. To evaluate the
proposed method, we compare our tracking performance with the
high precision A.R.T. DTrack localization as ground truth. The
evaluations on real robot show that our low-priced localization
approach is competitive for indoor robot localization tasks.

I. INTRODUCTION

Localization is employed to estimate the position and orien-

tation of a mobile robot given a map of the surroundings. There

has been a lot of research activities in this field, as localization

is a crucial component for many robot applications, such as

navigation and autonomous driving [1], [2], [3]. Typically,

localization methods require accurate sensor information, for

example, from laser scanners for outdoor applications [3] or

using infrared-based systems such as DTrack and VICON

for indoor navigation [4]. Localization needs to be performed

accurately at a high frequency. DTrack, for example, is able

to track the mobile robot at a rate of 60Hz with an accuracy

of 1mm. However, the major drawback of such infrared-based

systems is the limited tracking area (e.g. 3×3m2 for DTrack)

and the high investment cost (e.g. several ten thousand e for

our improved DTrack system). In this paper, we investigate

possibilities for mobile robot localization using off-the-shelf

vision cameras instead of expensive high-end devices.
In recent years, vision cameras have become more important

in robot applications [5], as they provide rich information while

requiring little investments (starting from 100 USD). However,

a disadvantage of vision are high computational requirements

resulting in a low tracking frequency, e.g. 3 − 7Hz, which

is not sufficient for many robot applications, such as indoor

navigation. In this work, the key idea is to combine the vision

data with other robot’s sensor signals, e.g. odometry, in order

to obtain information which enables accurate localization at

higher tracking frequencies. Odometry is an natural choice as

it is available in most mobile robot systems, where sensors

are used for monitoring the rotation of the robot’s wheels.

Odometry can be employed for pose estimation at a high

frequency. However, in opposite to localization methods based

on vision or laser data, odometry allows only a relative

localization, i.e. it computes the movements relative to the

last pose. The consequence is that the estimation errors are

accumulated over time and, thus, the odometry localization

becomes inaccurate in the long run.

Our approach is to merge vision and odometry information

using a Kalman-Filter while combining the strengths of both

methods, i.e. the high tracking frequency of odometry and the

accuracy of vision. Intuitively, the vision information is used

to correct the odometry estimations making the resulting local-

ization more accurate and yet fast. To evaluate our approach,

we use a version of the Festo Robotino with a Guppy PRO F-

125 camera which is mounted on top of the robot (see Figure

1). We compare the localization results of our approach, the

Kalman-filtered Vision and Odometry localization (KVO), with

the highly accurate DTrack system as ground truth.

The remainder of this paper is organized as follows. Section

II gives an overview about localization with odometry and

vision, respectively. In Section III-B, we explain our KVO

localization method in details. We extensively evaluate KVO

on the robot platform Robotino in Section IV, followed by a

conclusion and an outlook in the last Section. V.

II. LOCALIZATION METHODS

In this section, we describe the vision and odometry lo-

calization methods for our mobile robotics platform Robotino.

The pose of the robot will be given as (x,y,θ), where x,y
describe the position and θ the orientation. The goal of

localization is to estimate this pose in a global coordinate

frame.

A. Odometry Localization

Odometry estimates the robot’s position and orientation by

monitoring the robot’s drive. For most drives, this information

comes out-of-the-box and is published at a high frequency.

Hence, odometry can be seen as a localization method that

comes for “free”. Odometry computes changes in pose, which
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Fig. 1. Service robot platform Robotino with omni-directional drive
used for evaluation. On top there are camera and markers required for
the reference positioning system Dtrack.
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Fig. 2. The figure shows a three wheeled omni-directional drive in a
world coordinate frame. The shaded rectangles symbolize the wheels,
the point R is the center of mass.

need to be integrated in order to obtain the robot’s pose estima-

tion. However, one disadvantage of such relative localization

methods is the increasing pose error over time.

The Robotino, as used in this work, has an omni-directional

drive consisting of three mecanum wheels. Figure 2 shows

the setup of the Robotino drive. The wheels are aligned

symmetrically with a displacement of 120◦, the engines allow

movement speed of about 2.8 m/s. Incremental encoders are

attached to each engine and measure the rotations of the

electric engine. We denote the rotation speeds of the three

wheels by q̇ = [q̇1, q̇2, q̇3]
T , Lw is the distance between each

wheel and the center of mass R. With the rotation speeds q̇,

the pose change
[
ẋ, ẏ, θ̇

]T
can be calculated as⎡

⎣ ẋ
ẏ
θ̇

⎤
⎦=

⎡
⎣ 2

3 · cos(θ +δ ) − 2
3 · cos(θ −δ ) 2

3 sinθ
2
3 · sin(θ +δ ) − 2

3 · sin(θ −δ ) − 2
3 cosθ

1
3Lw

1
3Lw

1
3Lw

⎤
⎦ · q̇,

(1)

see [6]. The parameter δ is the wheel orientation in the robot’s

coordinate system (30◦ in our case). To estimate a global pose,

all pose changes
[
ẋ, ẏ, θ̇

]T
need to be integrated from a given

starting point (x0,y0,θ0).

B. Visual Localization

There are many methods for visual localization [7], [8],

[9], [10]. Vision allows an accurate global localization with

low cost hardware. However, high computational efforts for

vision generally lead to a low tracking frequency. Another

drawback of vision is the time-delay problem, i.e. since it

takes time to compute a pose estimation from a camera picture,

the resulting estimation corresponds to a robot’s pose in the

past. In practice, the resulting time-delay can deteriorate the

localization performance. In this work, we employ a standard

off-the-shelf monovision camera. For visual localization, ar-

tificial black-and-white markers are placed on the ceiling to

achieve high robustness and tracking accuracy. The markers

are squares with 10cm edge length. The 10×10cm2 square is

divided into a 4×4 black-and-white pattern, resulting in 16456

possible markers. The positions and orientations of the markers

in the world-frame are measured beforehand. Subsequently,

transformations between robot’s pose relative to the markers

and pose in the global world-frame can be made.

We use the ARToolKit library [11] to track the visual

markers. Here, 30 markers are employed to cover an area

of about 15 m2. The tool searches for the black boarders of

markers in the camera picture. A detected marker is reduced

to a 16× 16 pixel image and can then be compared to the

set of known patterns. Since the marker dimensions are fixed,

the pose of the marker in the camera frame can be calculated.

For localization, we invert this transformation to get the pose

of the robot in the marker frame. This pose is subsequently

transformed to a global pose estimation of the robot in the

world-frame. Accordingly, every marker in the camera field of

view gives an estimation of the robot pose. We take the mean

of all these pose estimations to average out the noise.

III. KALMAN-FILTERED VISION AND ODOMETRY

In this section, we describe a method to fuse the information

of vision and odometry for localization using a Kalman-Filter.

The approach unifies the strengths of both methods, i.e. the

high tracking frequency of odometry and the accuracy of

vision.

A. Kalman-Filter

Kalman-Filters are a widely used method to estimate a state

st given noisy measurements from different sensors, for more
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details see [12]. Here, the belief state ŝt ∼ N (μt , Σt) at time

t is represented as a normal distribution. The system is given

by the equations

st+1 = At · st +Bt ·ut + εt

zt =Ctst + γt ,

where At ,Bt ,Ct describe the system dynamics, ut is the control

vector and zt a state observation. The noise is modelled as

εt ∼ N (0, Rt) and γt ∼ N (0, Qt), the matrices Rt and

Qt describe the noise property of the system and of state

observations, respectively. The setting of these uncertainties

strongly influences the behavior of the Kalman-Filter. The

Kalman-Filter has two operations, i.e. predict and update:

Predict:
μt+1 = At ·μt +Bt ·ut

Σt+1 = At ·Σt ·A′
t +Rt

(2)

Update:
μt+1 = μt +K · (zt −C ·μt)

Σt+1 = (I −K ·C) ·Σt
(3)

The matrix K = Σt ·C′ · (C ·Σt ·C′+Qt)
−1

is called Kalman
gain and I is the identity matrix. The prediction approximates

the next belief state ŝt+1 ∼ (μt+1,Σt+1) if an action ut is applied

in the belief state ŝt ∼N (μt , Σt). This operation increases the

uncertainty in the belief state. The update on the other hand

is a correction, which decreases the variance of the new belief

state. Here, the new belief state ŝt+1 is inferred with help of a

state observation zt and the old belief state ŝt .

B. KVO – Filtering Vision and Odometry

Kalman-filtering vision and odometry (KVO) is an approach

to combine the benefits of both sensors. Here, the vision

pose estimation can be seen as a correction for the odometry

estimation. On the other hand, the odometry information can

be employed to overcome time-delays appeared in vision, as

well as for regions where no visual markers are available.

Furthermore, faulty visual marker detection often leads to

corrupt pose estimations. In our KVO approach, the faulty

marker recognition can be identified using the uncertainties

returned by the Kalman-Filter.

For the KVO localization, the state st = (xt ,yt ,θt) is three

dimensional representing the robot position x,y and orientation

θ . The belief state ŝt ∼N (μt ,Σt) of the Kalman-Filter returns

the estimation of the robot’s pose with a mean μt and variance

Σt . Using the Kalman-Filter, the operations predict and update
need to be defined. Here, the matrices At ,Bt in equation (2) are

set to identity. With the odometry information, pose changes

(Δx,Δy,Δθ) can be calculated using the equation (1). This

pose change ut = (Δxt ,Δyt ,Δθt) – computed from odometry

information – is subsequently employed for the Kalman-Filter

prediction. For the update operation in equation (3) on the

other hand, the vision-based localization from Section II-B

gives global pose estimates zt , the matrix Ct is set to identity.

Using the KVO localization, the predict operation of the

Kalman-Filter is executed when a new odometry pose estima-

tion is available. Thus, the estimation of the robot’s state can

Algorithm 1 The KVO algorithm

μ , Σ � belief state mean and variance

R, Q � noise of odometry and vision

buffer � buffer of last predictions

function ON NEW LOCALIZATION INFO

if is odometry u then � predict

u = (Δx,Δy,Δθ)
μ ← μ +u
Σ ← Σ+R
PUT U IN BUFFER( )

else if is vision z then � update

ALIGN Z WITH BUFFER DATA( )

Compute σθ and σxy
if σθ or σxy is smaller than 2 then

K ← Σ+(Σ+Q)−1

μ ← μ +K · (z−μ)
Σ ← (I −K) ·Σ

end if
end if

end function

be performed at a high frequency, as the odometry estimation

is fast. The update step of the Kalman-Filter is executed when

a new pose estimation is obtained from the visual localization.

The update step is employed to correct the estimations done by

the odometry. As shown by the results in Section IV, the update

steps of KVO can be performed at much lower frequency than

the prediction steps.

However, visual localization is prone to outliers. In order

to detect these outliers, we define the following criteria

σθ =
|dθ |√

Σθ
and σxy =

√√√√( dx√
Σx

)2

+

(
dy√
Σy

)2

, (4)

where d = ŝ− z = (dx,dy,dθ )
T is the difference between the

estimations (ŝ is the belief state and z is the pose estimation

from the visual localization). The variance in the belief state is

denoted Σx and Σy for the position, and Σθ for the orientation.

This variance is naturally given by the Kalman uncertainty, i.e.

Σ= (Σx,Σy,Σθ )
T . The estimate z is considered to be an outlier,

if σθ or σxy is larger than 2. Intuitively, z is considered outlier,

if the estimation is outside the ellipsoid defined by the double

standard deviations Σx and Σy.

Time-delay of the visual localization is also an issue which

needs to be tackled. In our robot system, for example, the

vision time-delay is about 300ms which is measured before-

hand. In order to overcome this problem, the past odometry

information is saved in a buffer. When obtaining a vision

estimation, this information is aligned to the robot’s pose in

the past. Thus, the Kalman belief state now corresponds to

the (past) robot’s pose and the update can be performed. The

complete KVO algorithm is show in Algorithm 1.
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IV. EVALUATION

In this section, we evaluate the KVO localization approach

and compare it with the A.R.T DTrack system as ground truth.

For the evaluation, different movement patterns are performed

on the Robotino (see Figure 1) which is localized using

odometry, vision, KVO and DTrack.

For the vision localization, the markers are placed on a

grid with 70cm edge length and all markers have the same

orientation. This results in 2-3 markers in the camera frame

for most of the time. For the localization task, we have

hard environment conditions. The lamps on the ceiling are

turned on, which increases the difficulty of correct marker

detection. Our robot has been used for several years, hence

mechanical wear and tear becomes noticeable. The robot

also has a high, unsymmetrical setup which displaces the

center of mass unfavorably. This leads to inaccurate odometry

information. In some cases, vision pose estimates are faulty

because a marker has been confused with another marker, or a

structure on the ceiling has been interpreted as visual marker

by mistake. Such faulty vision pose estimation are detected

using the state uncertainty of the Kalman-Filter. If the position

or orientation of the vision estimation is outside of the 2σ
region, as described in Section III-B, the estimation is assumed

to be corrupted and ignored. For the Kalman-Filter, the noise

matrices Rt and Qt for pose estimation are set beforehand.

We assume x and y errors to be independent with standard

deviations of 10cm in each direction for vision estimation,

and a standard deviation of 5cm for odometry estimation. The

standard deviation of the angle is set to 1.5◦ for vision and

0.75◦ for odometry.

The first experiment is shown in Figure 3. The left figure

shows the resulting x,y-trajectory when the robot drives a

square with 150cm edge length, starting from the left bot-

tom corner. As seen from the figures, the actual trajectory

(black line, measured by DTrack) is not a perfect square

due to mechanical uncertainties described previously. These

uncertainties deteriorate the odometry localization resulting

in a suboptimal tracking performance (magenta dashed line).

While the odometry localization largely deviates from the

actual positions, visual (green crosses) and KVO (blue line)

localization can track the robot sufficiently well. However,

the tracking frequency of vision is much lower as given in

Table I. The right plot in Figure 3 shows the corresponding

robot’s orientation in degree over time. As shown by the

results, the KVO localization is close to the ground truth in

position, as well as in orientation. The KVO estimation returns

in some trajectory parts a “zig-zag” pattern. The reason for

this behaviour is the inaccurate odometry which is periodically

corrected by vision pose estimations.

The second experiment shown in Figure 4 is again a square

with 150cm edge length, where the robot additionally makes a

rotation of 90◦ in the corners. Starting point is again the bottom

left corner. The few green crosses aside the true trajectory

are faulty vision pose estimations. As KVO employs a 2σ
confidence range, these outliers can be detected and, thus, the

corresponding vision pose estimations are ignored.

Experiment 3 in Figure 5 shows a circle trajectory in

counterclockwise direction. This trajectory includes simulta-

neous translation and rotation of the robot. KVO position and

orientation (blue solid line) follow the real trajectory very

closely. Only at the coordinates (110,80) the position differs

significantly from ground truth due to some inaccurate vision

pose estimates. The few green crosses beside the trajectory in

the center of the circle are faulty vision pose estimates.

As final experiment, we used a complex trajectory shown

in Figure 6. Here, we also included an area without visual

markers. Hence, visual localization is not possible in this area

and KVO employs the odometry information. For this scenario,

odometry is unable to provide a reasonable position estimation

and over-estimates the rotation in a range of 10◦. The vision

localization returns accurate position and orientation with few

outliers. As expected, the accuracy of KVO decreases in the

area without visual markers (as it relies on the odometry only).

However, when the robot leaves the area without markers the

tracking accuracy of KVO quickly increases.

For further evaluations, we examine the Euclidean distance

of position estimations to the ground truth position. We also

consider the absolute value of the difference between the

angle estimation and the ground truth angle. The results of all

experiments are shown in Table I. Here, the mean values of

the errors represent the accuracy, while the 95% percentile and

the maximal error describe the robustness of the localization

methods. As expected, the vision pose error is in most cases

significantly smaller than the odometry estimations. On the

other hand, the vision maximal error can be extremely high

due to faulty vision pose estimations. In all experiments, the

KVO localization has not only a much higher localization

frequency than vision, it is also significantly more accurate and

robust (shown by the 95% percentile and the maximal errors).

Higher accuracy of KVO compared to vision localization can

be obtained due to the outlier detection and lack of time-delay,

as described in Section III-B.

V. CONCLUSION AND OUTLOOK

In this paper, we present a simple but effective method to

fuse vision and odometry for accurate robot indoor localization

using low-cost devices, e.g. using off-the-shelf cameras. For

fusing sensor’s information, a Kalman-Filter was employed.

The proposed method is able to combine the strengths of

both, vision and odometry localization, while being fast and

accurate.

The presented approach, the KVO localization, was evalu-

ated on different driving movements using the omni-directional

Robotino. At a tracking frequency of about 35Hz, the mean

euclidean distance error of KVO to the ground truth was about

3-4cm. The mean absolute angle error was in the range of

1-3 degree. Further possibilities to increase this accuracy is,

for example, the integration of gyroscope data with odometry.

In future work, we investigate possibilities to employ natural

landmarks instead of artificial markers for localization.
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Fig. 3. For experiment 1, the goal was to drive a square of 150cm edge length with translation only. The left plot shows the robots x,y position, the right
plot shows the angle θ over time. Due to mechanical uncertainties of the robot, the square (black solid line) is somewhat rotated. The KVO localization is
represented by the blue solid line, the green crosses show the vision pose estimates, odometry is the dashed (magenta) line.
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Fig. 4. For experiment 2, the goal was to follow a square-trajectory with 150cm edge length with additional rotation in the corners. The left plot shows the
ground truth position (black solid line), as well as the position estimates of the localization methods KVO, vision and odometry. The right plot displays the
angle over time.
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Fig. 5. Experiment 3 shows a circle trajectory with simultaneous translation and rotation. The left figure shows the robot position, while the right figure displays
the robot angle over time.
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Fig. 6. Experiment 4 is a complex trajectory with simultaneous translation and rotation. The position of the robot is shown on the left, the angle over time on
the right. In the left figure, the dotted square shows the area without visual markers. In this area, KVO localization relies on the odometry only.

TABLE I
THE TABLE SHOWS THE ERRORS OF ALL THREE LOCALIZATION METHODS

COMPARED TO THE GROUND TRUTH ON FOUR DIFFERENT EXPERIMENTS.
THE POSITION ERROR IS THE EUCLIDEAN DISTANCE TO THE TRUE

POSITION, WHILE THE ANGLE ERROR IS THE ABSOLUTE VALUE OF THE

DIFFERENCE BETWEEN THE ANGLE ESTIMATE AND THE TRUE ANGLE. IN

EXPERIMENT 4, KVO(*) SHOWS THE LOCALIZATION RESULTS FOR THE

AREAS WHEN VISUAL MARKERS ARE AVAILABLE.

position error in cm angle error in degree

mean 95% perc. max mean 95% perc. max

E
xp

.1 KVO [∼ 37Hz] 3.21 8.62 22.39 1.24 2.46 3.72

Vision [∼ 7Hz] 5.89 15.69 38.62 1.38 2.53 4.16

Odometry [∼ 30Hz] 14.01 24.74 29.38 4.05 8.48 8.65

E
xp

.2 KVO [∼ 37Hz] 2.63 6.26 14.40 1.99 5.02 22.63

Vision [∼ 7Hz] 4.33 12.90 25.55 4.87 16.96 178.48

Odometry [∼ 30Hz] 8.05 11.23 16.47 3.49 8.55 13.87

E
xp

.3 KVO [∼ 35Hz] 3.29 7.90 15.44 2.67 6.67 11.82

Vision [∼ 5Hz] 8.73 19.58 46.17 7.28 15.47 40.50

Odometry [∼ 30Hz] 19.01 39.21 42.77 12.11 24.45 24.64

E
xp

.4

KVO [∼ 35Hz] 4.11 12.02 22.28 3.36 10.32 18.01

KVO(*) [∼ 35Hz] 3.37 7.42 17.61 2.68 8.09 15.60

Vision [∼ 5Hz] 9.98 22.66 73.49 13.47 36.41 166.89

Odometry [∼ 30Hz] 35.68 71.08 74.67 6.48 16.43 19.91
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