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Abstract—The control of tendon-driven and, in particular,
of anthropomimetic robots using techniques from traditional
robotics remains a very challenging task [1, 2]. Hence, we
previously proposed to employ physics-based simulation engines
to simulate the complex dynamics of this emerging class of
robots [3] and to use the simulation model as an internal model
for robot control [4]. This approach, however, relies on an
accurate model to be successful.

In this paper, we present the automated, steady-state pose
calibration of a physics-based, anthropomimetic robot model
using a (µ, λ)-Evolution Strategy. For the acquisition of the poses
of the physical robot, a stereo-vision, infrared-marker based
motion capture system with real-time capabilities was developed.
The employed (µ, λ)-Evolution Strategy uses a Gaussian-based,
non-isotropic, self-adapting mutation operator to explore the
search space and reduce the simulation-reality gap. The obtained
results are impressive, resulting in a reduction of joint angle
errors in the range of one to two orders of magnitude and an
absolute joint angle error of 0.5◦–4.5◦ per pose evaluated.

I. INTRODUCTION

In robotics, computer simulations have become an impor-

tant tool that is mainly used offline for controller design

and optimization as a cheap and safe substitute of the real

hardware [5]. But online applications are also suggested,

such as an internal model for functional imagination [6].

These online applications, however, impose very specific re-

quirements on the simulation software such as a real-time

interface for updating and querying model parameters during

simulation and, most importantly, rely on an accurate model

of the simulated robot. For traditional robots, such a model

can be derived analytically using either the Newton-Euler or

Lagrangian formulation. For anthropomimetic [7] or muscu-

loskeletal robots, however, a similar approach is not feasible

due to the sheer complexity of the musculoskeletal structure

which typically features non-revolute joints, muscles with

pose-dependent lever arms, muscle vs. skeleton collisions and

even multi-articular muscles. Therefore, the precise control of

this emerging class of tendon-driven robots using techniques

from traditional robotics remains a very challenging task that

has been so far only successfully achieved for small-scale

setups comprising exclusively revolute joints and low muscle

redundancies [1, 2]. To tackle this problem we previously

proposed to use physics-based simulation engines to simulate

the complex dynamics of anthropomimetic robots and to
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Fig. 1. Eccerobot Design Study (EDS). The EDS is an anthropomimetic

robot [7] developed within the EU-funded project ECCEROBOT [8, 9]. The
skeleton is hand-crafted using polymorph—a caprolactone polymer—which
can easily be molded. The human muscles are imitated by elastic, tendon-
driven actuators.

employ the physics-based model as an internal model for

control [3].

We already presented the derivation and implementation of

the physics-based model of an anthropomimetic robot using

the simulation framework CALIPER [3, 10]. However, even

though the derived models of the individual sub-components

of the robot, such as motors or springs, were validated

against their real counterparts, preliminary simulations of the

complete robot exhibited a significant simulation-reality gap.

We hypothesize that this is not due to the physics-based

simulation approach per se, but rather due to: (i) the hand-

crafted nature of the robot which makes it difficult to derive an

accurate skeleton model and (ii) the modeling simplifications

that were necessary in [3] to simulate the complex dynamics

of the tendon-driven muscles. To evaluate this hypothesis, we

now propose to use Machine Learning techniques, namely

Evolution Strategies (ES), to calibrate the model and minimize

the simulation-reality gap.

The physics-based model of the anthropomimetic robot
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Fig. 2. Ecce-IB and Ecce-IB simulation model. a: The Ecce-IB comprises
a spherical shoulder and a revolute elbow joint as well as 11 tendon-driven
muscles. b: Physics-based simulation model of ECCE-IB [3] rendered by the
tendon-driven robot simulation framework CALIPER [10].

described in [3] consisted of ∼300 parameters which impedes

a simultaneous calibration. Hence, for the first experiments,

we decided to focus on a subset of ∼100 parameters by

limiting the calibration routine to steady-state poses and model

parameters that could not be identified accurately in [3]. Once

a satisfactory calibration of these steady-state parameters is

achieved, we will investigate the feasibility of extending the

ES approach to the calibration of the system dynamics. For the

calibration, we recorded synchronized sensor data of various

steady-state poses of the robot (gearbox shaft positions of

all muscles and corresponding joint angles) and evaluated

the individuals of the ES by setting the recorded gearbox

shaft positions as control reference and using the resulting

joint angle deviations as fitness measure. After calibration, we

validated the quality of the calibration by analyzing the joint

errors of the model for steady-state poses that were not part of

the previous calibration phase. If the ES approach proves to

be successful, the calibrated, physics-based model will serve

as: (i) a virtual test-bed for novel control strategies and (ii) as

an internal model of the robot to be used online for control.

The anthropomimetic robot platform and the implemented

Evolution Strategy are introduced in Section II and III, re-

spectively. Section IV describes the developed stereo-vision

motion capture system used to acquire the joint angles of

the steady-state robot poses whereas Section V presents the

obtained calibration and validation results. Finally, conclusions

and future work prospects are summarized in Section VI.

II. THE ANTHROPOMIMETIC ROBOT PLATFORM

There are many humanoid robotic projects being undertaken

around the world. However, most of them mainly focus on

adopting the morphological appearance of humans and employ

sophisticated actuation and control techniques which results in

an impressive performance for the tasks that they are designed

for [11, 12]. However, these robots are still far from capturing

the distinct dynamics and impressive adaptability to changing

environments that humans possess. Hence, the EU-funded

project ECCEROBOT takes a fundamentally different, namely

anthropomimetic [7], approach. Instead of only imitating the

morphological appearance, it tries to also mimic the internal

structures of humans: bones, joints, muscles and tendons.

Currently, four ECCEROBOTS exist (listed in chronological

order): (i) the ECCE-IA [8], (ii) the ECCE-IB (see Fig. 2a),

(iii) the Eccerobot Design Study (EDS) (see Fig. 1 and [8])

and (iv) the ECCE-II. The skeletons of all prototypes are hand-

crafted using polymorph—a caprolactone polymer—which can

easily be molded at a temperature of only 60◦C. As muscle

equivalents, compliant tendon-driven actuators are used that

consist of a DC motor and a gearbox in series with a kite

line and a shock cord that function as the muscle fibers and

tendon (see Fig. 2a and Fig. 2 in [3]). By coiling the kite line

around the gearbox shaft, the artificial muscle can either be

innervated or relaxed depending on the direction of rotation

of the shaft. To simplify the muscle apparatus, only the most

important of the ∼650 human muscles are replicated and the

attachment points are chosen accordingly to resemble human-

like movement dynamics.

The ECCE-IA, EDS and ECCE-II torsos each consist of

more than 40 powered degrees of freedom, which complicates

the analysis of the overall system dynamics. Hence, the

ECCE-IB, which was used for the results presented in this

work, has been manufactured by the ECCEROBOT consortium

to reduce the complexity of the first experiments. In contrast

to the full torsos, ECCE-IB features only one arm. However,

the key properties of the anthropomimetic approach are still

preserved. ECCE-IB contains a spherical shoulder and a revo-

lute elbow joint, as well as 11 powered degrees of freedom—

two for the elbow, eight for the shoulder and one bi-articular

muscle affecting both shoulder and elbow joint angles. For

proprioception—the sense of static positions and movements

of the limbs of the body [13]—each artificial ECCE-IB muscle

is equipped with: (i) a potentiometer to measure the position of

the gearbox shaft and (ii) a current sensor within the electronic

control units (ECUs) for DC motor control [14].

III. EVOLUTION STRATEGY

As ES, a comma selection variant of the form (µ, λ)
was chosen, where µ and λ are the population sizes of the

parent and offspring populations, respectively. In contrast to

plus selection (µ + λ), the comma selection uses only the

offspring population as selection pool and has been shown to

be preferred over the plus variant for unbounded, real-valued

search spaces [15]. The parent and offspring populations (Pp

and Po, respectively) consist of individuals I of the form:

Ik = (~yk, ~sk, F (~yk)) (1)

where ~yk are the model object parameters modified by the

mutation, ~sk are the evolving endogenous strategy parameters

defining the step-size of the mutation and F (~yk) is the

real-valued fitness of individual k. The used ES algorithm
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Algorithm 1 EVOLUTION STRATEGY ALGORITHM. First the generation
counter g, the offspring population Po and the ancestor IA as well as the
individual Ibest storing the best individual of all generations are initialized
(lines 1-5). The strategy as well as the object parameters of each individual
are then mutated (lines 9-10). These mutated individuals are then evaluated in
the simulator for all given steady-state poses and the fitness F is calculated
(line 11). Lines 12-14 ensure that the best individual of all generations can be
returned when the algorithm terminates. Finally, the new offspring generation
is created by selection & replication (line 16) and the generation counter is
incremented (line 17).

1: procedure EVO

2: g ← 0
3: Ibest, IA ← initialize

4: F (Ibest), F (IA)←∞
5: Po ← initialize(IA, λ)
6: while g < gmax and F (Ibest) > Ftarget do

7: for all k ∈ {1, . . . , λ} do

8: Fk ← 0
9: ~s g+1

k ← mutate(~s g
k )

10: ~y g+1

k ← mutate(~y g
k , ~s g+1

k )

11: Fk ← evaluate(~y g+1

k )
12: if Fk < F (Ibest) then

13: Ibest ← k
14: end if

15: end for

16: P g+1
o ← selectAndReplicate(P g

o , λ)
17: g ← g + 1
18: end while

19: return Ibest

20: end procedure

is summarized in Algorithm 1 and the employed mutation,

evaluation, and selection/replication operations as well as

the termination conditions are described in the following

subsections.

A. Mutation

For mutation, a Gaussian-based, non-isotropic mutation

operator with strategy parameter self-adaptation was used [16].

To ensure that the mutated object parameter values do not ex-

ceed a specified, reasonable value range (e.g. spring constants

have to be positive), positive and negative value range limits

can be defined for each object parameter. If the mutated object

parameter value exceeded either one of the limits, it was set

to the limiting value.

B. Evaluation

During evaluation, each individual k of the offspring pop-

ulation Po was evaluated using p steady-state poses ~S of the

form:

~S = [ ~GT ~q T ] (2)

where ~G are the gearbox shaft positions of the m robot

muscles and ~q are the angles of the n robot joints. The

evaluation of each steady-state pose ~S proceeded as follows:

First ~G was set as references for the gearbox shaft position

controllers of the simulated muscles (see [3]) and the simula-

tion was stepped for the pose-acquisition time ta. Following

each simulation step, the gearbox shaft position error vector

△ ~G was computed from the current and reference positions,

respectively. If ta was reached and max(△ ~G) was greater than

a user-defined △Gmax, the individual was marked as invalid

and the evaluation of this individual was aborted. Otherwise,

the simulation was stepped for an additional pose-settle time ts
and the joint angular velocities ~ω were computed after each

step. Only if max(~ω) was less than a user-defined ωmax for

the steady-state duration td the model was considered to be in

equilibrium. However, if this condition was not satisfied before

ts was reached, the individual was marked as invalid and

the evaluation of this individual was aborted. Otherwise, the

simulation model was reloaded to guarantee identical initial

conditions for the evaluation of all poses and the evaluation

proceeded with the next pose ~S. If the individual was not

marked as invalid after the evaluation of all p poses, the fitness

of the individual was computed as follows:

F (~yk) =

p
∑

i=1

n
∑

j=1

α2
i,j (3)

where αi,j is the joint angle error between the robot and

the simulation for joint j and steady-pose i, respectively. For

revolute joints, the joint angles q and q′ of the robot and

the simulation, respectively, are scalars and the error αi,j can

easily be computed. However, in the case of spherical joints,

the joint angles were expressed using the quaternions Q and Q′

and αi,j was computed using the quaternion distance defined

as:

αi,j = arccos (Qi,j ·Q
′

i,j) (4)

C. Selection & Replication

The best µ valid individuals of P g
o were selected and

replicated to form the offspring population of the next genera-

tion P g+1
o . If no single valid individual existed, the algorithm

terminated. As comma selection strategies use only the off-

spring population as selection pool, the best individual found

so far does not survive (in contrast to plus selections). Hence,

an additional individual Ibest was introduced that stores the

best individual of all generations and that was returned when

the algorithm terminated.

D. Termination

As termination condition the following resource and con-

vergence criteria were used:

g ≥ gmax (5)

F (Ibest) < Ftarget (6)

where g and gmax are the current and maximum number of

generations, respectively, and Ftarget is a user-defined target

fitness.
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Fig. 3. Motion Capture System. A stereo-vision motion capture system built
from commodity hardware was developed to provide the joint angles of the
steady-state poses that are required as input data for the ES algorithm. The
motion capture system uses infrared retro-reflective markers attached to the
limbs of the robot that are illuminated by infrared light sources.

IV. MOTION CAPTURE SYSTEM

In humans, mechanoreceptors in muscles and joints pro-

vide the data for the two submodalities of proprioception:

(i) limb positioning and (ii) limb movement [13]. For limb

positioning—the task we try to achieve in this paper—, the

joint capsule mechanoreceptors are particularly important as

they provide a feedback measure for the orientation of a

joint. However, developing and integrating similar joint angle

sensors for non-revolute or non-prismatic joints, such as the

spherical joints of the ECCEROBOTS is an inherently diffi-

cult task (see also [17]) and hence, the ECCEROBOTS are

not equipped with analogous intrinsic sensors. Thus, it was

necessary to employ an extrinsic sensing system to provide

the input data required by the ES.

For that purpose, we developed a dedicated, stereo-vision

motion capture system capable of providing joint angle data

in real-time based on [18]. The system uses PointGrey Flea-

2 cameras with Pentax 6mm optics equipped with infrared

pass filters (λthresh = 750 nm) and spherical, retro-reflective

markers attached to the robot limbs that are illuminated

by infrared LED clusters positioned next to the cameras

(λLED = 880 nm, see Figs. 2A and 3). The acquired stereo

images were processed by conventional image segmentation

and 3D triangulation methods in order to obtain the set of 3D

marker positions. Subsequently, the combined matching and

pose recovery problem of the rigid marker targets was solved

to estimate the marker frames Fo, Fh and Ff , respectively (see

Fig. 3). Here, a custom graph-based algorithm has been im-

plemented that exploited a-priori knowledge about the marker

targets to minimize the computational effort while, at the same

time, ensured a high fitting accuracy (a root mean square—

RMS—re-projection error of < 0.3mm was achieved). In the

final processing step, the joint orientations of the shoulder and

elbow joint (qs and qe, respectively) were computed from the

corresponding marker frame pairs ({Fo, Fh} and {Fh, Ff}) .

The motion capture system was implemented using a shared

memory based software pipeline toolkit (QPT [19]) to mini-

mize the pipeline latency and integrated into the ECCEROBOT

software framework to obtain joint angle data synchronized

with other sensor modalities.

V. OUR APPROACH & RESULTS

We hypothesize that the simulation-reality gap observed

during preliminary simulations of the complete ECCE-IB

model is mainly due to the three following muscle model

simplifications that were made in [3]: (i) the passive elements

of the simulated muscle (kite line and shock cord) are not

represented as a collision entity within the simulation and

hence, no collisions between the muscles and the skeleton

are simulated, (ii) the muscle attachment points were approx-

imated based on laser-scan data and (iii) the muscles were

simulated as direct connection between the two attachment

points ~A1 and ~A2 whereas the ECCE-IB muscles often wrap

around the skeleton. All three simplifications have a high

impact on the applied muscle forces and hence on the statics

and dynamics of the model. To corroborate this hypothesis,

we started with a minimal object parameter set for the ES

which comprised only muscle parameters. For each of the

11 robot muscles, we therefore selected the following object

parameters: (i) the muscle attachment points ~A1 and ~A2 (both

∈ R
3), (ii) the initial kite line length LK0

which is required for

the calibration of the potentiometer sensor model used for the

gearbox shaft controller (see [3]), (iii) the spring constant of

the muscle flexibility, and (iv) the gearbox shaft spindle radius

which is considered to be constant in the simulation but varies

stochastically in reality due to the coiled kite line. These 99

object parameters were initialized for the ancestor individual

IA based on laser scan data and manual measurements.

To test the ES calibration algorithm and to identify strategy

parameter step-sizes that provide a high convergence rate,

we first calibrated the model using three elbow and a fixed

shoulder pose (see Section V-A). Subsequently, we calibrated

the entire joint space of the robot arm using 15 calibration

poses (see Section V-B). In both cases, the best individual

obtained from the calibration was validated using a second,

disjunct set of steady-state poses. In addition to the fitness, we

introduced a mean joint error (MJE) to quantify the accuracy

of the calibration and validation results which was defined as:

MJEj =

(

p
∑

i=1

|αi,j |

)

/p, with j ∈ {e, s} (7)

A. Elbow Calibration & Validation

The elbow joint of the simulation model presented in [3]

was calibrated using three steady-state poses that covered a

wide range of elbow joint movements while the shoulder

joint angle was kept constant. As anthropomimetic robots

do not provide the repeatability of industrial manipulators,

each pose was acquired 5 times to compute the mean and

standard deviation of the joint angles that were subsequently

used as input data for the ES (q̄1 = 0◦, σ̄1 = 0.26◦;

q̄2 = 58◦, σ̄2 = 0.31◦; q̄3 = 110◦, σ̄3 = 0.91◦). The
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Fig. 4. Elbow Calibration & Validation Results. a: Convergence of mean joint error (MJE) and fitness for the calibration of the three elbow calibration poses
shown in (b). The poses covered an elbow movement range of 110◦ and a final MJE of 0.08◦ and 0.66◦ was achieved after 250 generations for the elbow
and shoulder joint, respectively. b: Calibration and validation pose errors of Ibest for the three calibration and 8 validation poses. For the validation, a MJEe

and MJEs of 1.1◦ and 1.0◦ was achieved.

parent Pp and offspring Po population sizes were set to

µ = 6 and λ = 36, respectively, to achieve a µ/λ-ratio of

1/6 which has been shown to provide a maximum rate of

convergence [20]. The maximum number of generations was

limited to 250 and the maximum joint velocity and gearbox

shaft position error were parametrized to be ωmax = 0.02 rad/s
and △Gmax = 5◦, respectively. A sequence of calibration runs

was performed to determine initial strategy parameter step-

sizes that provided a high convergence rate and the following

settings were eventually identified: 25Nm−1 for the spring

constants, 5·10−5 m for the spindle radii and 2·10−3 m for

both, the muscle attachment points and LK0
. Furthermore, a

value range of [1Nm−1 104 Nm−1] and [5·10−3 m 10−2 m]

was defined for the spring constants and spindle radii to ensure

reasonable values after mutation. tm and ts were set to 5 s,
whereas the steady-state duration td was configured to be 0.5 s.

The convergence of the elbow and shoulder mean joint error

(MJEe and MJEs, respectively) as well as of the fitness for

these settings is shown in Fig. 4a. At g = 0, MJEe was equal

to 26.6◦ and MJEs was approximately 44◦. However, the ES

converged rapidly and after 27 generations, the MJE of the

elbow was already reduced to the sub-degree domain. These

intermediate results were further improved and a final MJE

of 0.08◦ and 0.66◦ was reached after 250 generations for the

elbow and shoulder joint, respectively (see Fig. 4b).

The calibrated results were assessed using an additional,

disjunct set of 8 elbow poses (derived by linear interpolation

of the gearbox shaft reference positions for two neighboring

calibration poses). The results of this validation step are also

shown in Fig. 4b. Again, it can be seen that the average error

was successfully minimized, varying in the range of 0.4◦ to

2.5◦ dependent on the pose and joint, respectively.

B. Robot Calibration & Validation

We then calibrated the entire joint space of the robot using

15 calibration poses. The ES settings were identical to the

elbow calibration (see previous section) and the calibration

results were assessed using a second set of 15 validation poses.

The results of the calibration and validation are shown in

Fig. 5. At g = 0, the mean joint errors of the elbow and

shoulder joint are equal to MJEe = 32.9◦ and MJEs = 35.7◦,

respectively. But, similar to the previous calibration, the ES

converged quickly and an elbow and shoulder MJE of 3.2◦

and 4.8◦ was reached after 42 generations. However, these

intermediate results were further optimized and a final MJEe

and MJEs of 1.9◦ and 2.0◦ was eventually achieved after the

full run of 250 generations which took ∼45 h on an Intel i7

desktop computer.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We presented the steady-state pose calibration of a physics-

based model of an anthropomimetic robot using a (µ, λ)-

Evolution Strategy. To compensate for the lack of joint angle

sensors, a stereo-vision based motion capture system was

developed to obtain the input data required by the ES as

well as to quantify the simulation-reality gap. The calibration

procedure was performed in two steps. First, a sub-domain of

the joint space was calibrated to determine strategy parameter

settings that provided a high convergence rate. Subsequently,

the entire joint space of the robot was calibrated using a total

of 15 steady-state poses. All calibration results were assessed

using additional, disjunct sets of validation poses. Even though

a simplified muscle model was used to simulate the dynamics

of the musculoskeletal structure, the ES converged quickly

and a final average joint angle error of 1.9◦ and 2.0◦ was

achieved for the elbow and shoulder joint, respectively. This

demonstrates that the simplified muscle model, as presented

in [3], is sufficient to approximate the tendon-driven muscular

system of this anthropomimetic robot. However, whether the

ES approach is superior to other calibration techniques for

real-valued search-spaces can not be inferred from the results

and additional tests with alternative algorithms would be

required. But, our goal was to minimize the simulation-reality
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Fig. 5. Robot Calibration & Validation Results. a: Convergence of the mean joint error (MJE) and fitness for the calibration of the 15 calibration poses
shown in (b). At generation 0, the mean joint error of the elbow and shoulder joint were equal to 32.9◦ and 35.7◦, respectively. However, th ES converged
quickly, and a final MJEe and MJEs of 1.9◦ and 2.5◦ were reached for the best individual Ibest after 250 generations. b: Calibration and validation pose
errors of Ibest for the 15 calibration and validation poses. For the validation, a MJEe and MJEs of 1.9◦ and 2.0◦ was achieved.

gap in order to use the model for the software-in-the-loop

testing of controllers and as an internal model for control and

in that we succeeded.

B. Future Works

In the future we will investigate the possibility of extending

the ES approach to the calibration of the system dynamics. The

presented motion capture system has already been developed

with that in mind and is able to provide the required joint angle

data in real-time. Furthermore, we will test the ES approach

to calibrate a model of a full anthropomimetic torso. But this

should be possible as the task of calibrating the entire torso can

be decomposed into multiple sub-tasks of similar complexity

as the presented results (e.g. calibration of left arm, right

arm, etc.). The calibrated physics-based model will finally be

employed as a software-in-the-loop tool for the development

and testing of novel control strategies as well as an internal

model for robot control.
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