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Andre Gaschler, Sören Jentzsch, Manuel Giuliani, Kerstin Huth, Jan de Ruiter and Alois Knoll

Abstract— Robots that interact with humans in everyday
situations, need to be able to interpret the nonverbal social cues
of their human interaction partners. We show that humans use
body posture and head pose as social signals to initiate and
terminate interaction when ordering drinks at a bar. For that,
we record and analyze 108 interactions of humans interacting
with a human bartender. Based on these findings, we train a
Hidden Markov Model (HMM) using automatic body posture
and head pose estimation. With this model, the bartender robot
of the project JAMES can recognize typical social behaviors
of human customers. Evaluation shows a recognition rate of
82.9 % for all implemented social behaviors and in particular
a recognition rate of 91.2 % for bartender attention requests,
which will allow the robot to interact with multiple humans in
a robust and socially appropriate way.

I. INTRODUCTION AND RELATED WORK

The European project JAMES1 develops a robot, which is
shown in Figure 1, that works as a bartender in a scenario
in which it takes drink orders from human customers and
hands out beverages. We believe that the interaction between
humans and a robot in this everyday interaction scenario—
in contrast to for instance industrial contexts—needs to be
social to ensure that the robot successfully completes its task.
Thus, the robot needs to be able to correctly interpret the
intentions of its human interaction partners.

In everyday situations, such as the JAMES bar scenario,
humans often express their intentions nonverbally. In this
publication, we show that humans predominently use body
posture and head pose to initiate various steps of an in-
teraction to order drinks in bars. These findings are based
on the analysis of empirical data: actual human-human
interactions that were recorded in several bars. Analogous to
these results, we train a Hidden Markov Model (HMM) with
data from automatic body posture and head pose estimation.
This model is an effective classification system that allows
the robot to robustly recognize social behaviors of human
customers, for example whether they want to order a drink
or are just staying at the bar to chat with friends.

In recent years, a few projects presented robot baristas, for
example FusionBot [1] or Care-O-Bot [2]. The focus of these
projects was research on robot motions and object manipula-
tion capabilities, unlike in the JAMES project that researches
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Fig. 1. The JAMES robot is able to recognize the intentions of humans in
a multi-party bar scenario. It uses a camera and a depth sensor to analyze
body posture and head pose of its human customers to infer their intentions.

socially appropriate robotics in everyday situations. Thus, the
work of other groups, which focused on recognition of social
signals in similar interactions as in JAMES, is better compa-
rable to our work: Scheutz et al. [3] presented a framework
for a robot that recognizes and generates affective behavior
and evaluated parts of it on a mobile robot receptionist and
waiter. Castellano et al. [4] described a system to recognize
affective states and attentiveness. They found that sensing
the intention and affective state of the human participants is
crucial for HRI.

The application of HMMs to model and recognize human
actions from image sequences dates back to the work of
Yamato, Ohya and Ishii in 1992 [5]. Considering human mo-
tion, Yang et al. [6] presented a full body gesture recognition
system for HRI. They trained a Hidden Markov Model with
data from visual human pose reconstruction to implement
an automatic human gait recognition approach. With this
recognition method, they were able to robustly detect human
motions, including walking, running, jumping, and sitting.
Lenz et al. [7] trained an HMM with data from a hand
tracking device to automatically recognize the states of an
interaction in an industrial human-robot interaction scenario.
Finally, Vinciarelli et al. [8] give a general overview on
the field of social signal recognition. They introduced a
taxonomy of social signals in which body posture is listed as
a social signal that is used to express emotion, personality,
status, dominance, persuasion, regulation, and rapport.

II. APPROACH

Humans use social cues to communicate their intentions,
for example in order to request the attention of a bartender, or
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to end the interaction when an ordering procedure is finished.
The usage of these cues underlies certain regularities, thus,
we collected a data corpus of over one hundred interactions
in bars, in which human customers ordered drinks from
a human bartender, and analyzed these data to find how
humans use body posture and head pose as social signals
(as described in Section II-A). Based on these data, we use
body posture and head pose recognition (as described in
Section II-B) to model and train an HMM with which we
can recognize the most important social behaviors in a bar
scenario. We have already applied head pose estimation for
attention recognition in a work-in-progress paper [9], which
we briefly summarize in Section II-C; in this work, emphasis
is placed on the additional visual features, body posture and
spatial group arrangements. Finally, we present the results of
an evaluation of the trained HMM in Section II-D.

A. Body Posture and Head Pose in Everyday Human-Human
Interaction

In everyday interaction between two or more humans mu-
tual attention is a crucial feature for a successful interaction,
which is established by the interactants without conscious
effort. Many authors have pointed out that mutual attention
and mutual gaze cannot be established without a foregoing
body posture by interlocutors to each other ([10], [11],
[12]). Therefore, body posture is the initial starting point for
gaining mutual attention in an interaction. In addition, Clark
[13] mentioned placement of persons as crucial for initiating
an interaction in a study involving interactions at counters,
which further motivated our analysis.

Ciolek and Kendon [14] researched how humans po-
sition themselves when they are interacting with each
other. During conversation, humans build small spatial-
orientational arrangements by facing each other around a
smaller space. These arrangements are perfectly aligned
to exchange speech, gazes, and gestures for an effective
communication. Ciolek and Kendon formalized these com-
munication arrangements and showed that their shape is
influenced by internal factors (relationship between inter-
actants, attitudes towards each other) as well as external
factors (physical space can be crowded, noisy, or physically
constrained). Kendon introduced the term f-formations for
these spatial arrangements, which are also known as facing
formations in literature. F-formations are typically built by
humans during interactions in everyday situations to engage
in joint action or in a conversation. Ciolek categorized six
different f-formations that are used by two conversation part-
ners, from which we only consider the four arrangements that
we found in our recordings of human-human interactions: H-
formation, conversation partners directly face each other and
have their body panes in parallel; N-formation, conversation
partners face each other and have their body planes in
parallel while they are staying slightly displaced from each
other; V-formation, the conversation partners’ body planes
are not parallel but form an angle of approximately 45◦;
L-formation, conversation partners stand at a right angle to
each other.

To empirically research the frequency and importance of
body posture and f-formations in everyday interactions, we
recorded 108 interactions between bartenders and customers
at bars in several German clubs. The recordings were made
with two HD video cameras, whose viewing angles were
roughly pointed in 45◦ horizontally at bartender and cus-
tomer respectively, to ensure that the whole interaction can
be seen. Following the recordings, we annotated the videos
with ELAN [15]2 in order to count the usage of body posture
to form f-formations between bartender and customer.

Our findings confirm that body posture is a crucial signal
to initiate an interaction. Out of 108 interactions only two
customers were hindered from reaching the bar and stood
more than one meter away from the bar while ordering
a drink. The other customers placed themselves physically
directly in front of the bar to indicate their intention for an
ordering interaction. 99 customers stood nearly parallel to the
bar worktop and faced the bartender with their body, their
head or both (94 customers directed their body in the direc-
tion of the bartender independent of the bartender’s position).
94 customers initiated an H-, N- or V-shaped f-formation
for interacting with the bartender. In 40 interactions it was
due to the bartender’s body movements, that the f-formation
became an open L-shape or turned from an intended N-shape
to a V-shape. After the interaction was finished, 26 persons
remained at the bar. Out of these, 25 had their drink visibly
in front of them. Furthermore, 15 persons turned their body
away so it neither faced the bartender nor the front of the
worktop. In groups, 18 cases out of 26, at least one group
member turned to the other members and therefore away
from the bartender. If the customers did not turn away, they
wanted to continue talking to the bartender. Furthermore,
we observe that head pose serves to emphasize body posture
and helps to infer if a customer is in company. Thus, 94 of
106 attention requesting customers used their head posture
as well to indicate that they requested the attention of the
bartender.

In analogy, head pose serves as an indicator for the
beginning of the end of an interaction as well. Due to
functional reasons the head posture can precede the body
posture. Thus if customers turn their head away from the
bartender, for example downwards or sidewards, it can be
inferred that they are about to end the interaction and might
leave the bar area. In our analysis, we observed 88 customers
who turned their head away while initiating the ending of the
interaction. Out of the remaining 19 persons, 14 wanted to
continue talking to the bartender after ordering a drink or
asked questions related to the ordering interaction. 5 persons
did not look at the bartender while finishing their interaction
but looked up to the bartender as they left the bar3. Only
one person did not use head or body posture to signal an
attention request; this single customer was a member of a

2ELAN is an annotation program by the Max Planck Institute for
Psycholinguistics, Nijmegen, The Netherlands. It can be downloaded at
http://www.lat-mpi.eu/tools/elan/.

3One person was not visible at the end of their interaction. Thus, this
recording was excluded from the head pose analysis.
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group and chatting with a friend, who had his body directed
to the bartender.

In a nutshell, body orientation, body posture, head pose
and, to a lesser extent, spatial arrangement in a group are rel-
evant social signals in this kind of interaction. Most notably,
interactions are almost always initiated and ended using these
signals. It is therefore our belief that for social human-robot
interaction, the robot needs to be able to recognize these sig-
nals in order to perform a socially appropriate interaction. In
contrast to this work on human-robot interaction, our findings
of our human-human interaction study are elaborated in [16].

B. Body Posture and Head Pose in Human-Robot Interaction

The understanding of the relevant communication cues
among humans is necessary to model the analogous domain
for HRI. In our scenario, which is shown in Fig. 1, the robot
takes the role of a bartender. Multiple human customers may
approach the bar area, order drinks, ask for the menu or a
specific drink, chat with each other or simply spend time at
the bar. We chose this setting as it focuses on short-horizon,
multi-party social interaction.

For the robot to behave in a socially appropriate way,
it needs to recognize a customer’s request for attention
when initiating and ending interaction with the bartender.
This knowledge allows the robot to recognize and serve
customers, respect ongoing conversations, and even glance to
newly arrived customers while still proceeding with an on-
going interaction. Corresponding to the results of the human-
human study, we designed the JAMES robot to recognize and
process three types of features, as shown in Fig. 2: first, we
recognize faces and estimate gaze by a head pose estimation
routine. Second, we capture human motion from a depth
camera (Microsoft Kinect), which reconstructs human joints
and motion data from infra-red structured light illuminated
images in real-time. These human motion data corresponds to
body posture, as referred to in the human-human interaction
study. Third, we include spatial arrangement among the
group of human participants. This feature is computed from
the set of recognized participants and their body orientations
by applying two fuzzy-valued functions for each person.

C. Image Recognition Process

Fig. 2 shows an overview of the image processing steps
that are necessary to obtain the three social signals head pose,
body posture, and spatial group arrangement in order to infer
the social behavior. This section explains these steps in more
detail.

1) Head Pose Estimation: The head pose estimation com-
ponent was implemented in the course of our earlier work
in [9], where it is also explained and evaluated in detail.
Following the algorithm described by Vatahska, Bennewitz,
and Behnke [17], the head pose estimator is divided into a
face and facial feature detection step and a neural network-
based head pose estimation. First, faces are detected based
on the well-known Haar-feature classifier by Viola and Jones
[18]. Following that, we are using facial feature detection
to estimate the location of eyes, nose, and mouth of the
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Fig. 2. Overview of image processing steps to obtain body posture, head
pose, and group arrangement.

recognized person. Second, all visually detected feature
positions and their mutual distances are processed by a 3-
layer artifical neural network (ANN), depending on which
set of features is detected. Finally, the head pose estimation
component outputs the set of visually detected face positions
and their respective pitch, yaw, and roll angles in space.
As evaluated in [9], this head pose estimation technique
allows us to recognize head pose angles at an accuracy of
approximately 15◦, which is sufficient enough to meet the
requirements of the JAMES bar scenario.

2) Body Posture Reconstruction: The advent of afford-
able, infra-red-based depth cameras, originally designed for
console games, has made it easy and straightforward to
capture human motion without using intrusive sensors or
markers. The scene is illuminated by static, structured infra-
red light, captured by a monochrome camera, and processed
on-board to generate real-time depth images. In a second
step, human skeletons are fitted and tracked by the Prime-
Sense NITE software [19]. Both accuracy and robustness of
the resulting joint positions are sufficient for our scenario.
The skeleton reconstruction step is followed by a coordinate
transformation step to output joint positions with respect to
the coordinate frame formed by the position and orientation
of the respective person. This transformation serves two
purposes: first, the relation between gestures and body pos-
ture vectors becomes simpler, as body posture is formulated
independent from absolute position and orientation. Second,
feature space can be reduced more easily by simply omitting
less relevant coordinates, which allows us to simplify the
design of our HMM.

3) Spatial Group Arrangement: As we showed in Sec-
tion II-B, not only personal body posture and head pose are
informative social cues, but also the spatial arrangement in
a group is relevant to express engagement in an interaction.
Following the observations of Ciolek and Kendon [14], we
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Fig. 3. Fuzzy features used to detect spatial group arrangements (f-
formations) between two interacting humans.

apply two fuzzy functions to map the spatial arrangement of
a person in a group to a simple 2-dimensional feature vector,
describing the group arrangement, i.e. the f-formation, with
respect to that person. These two very simple functions,
which we show in Fig. 3, are dependent on the positions
of other humans; the left function (Ciolek’s H-, N-, and V-
formations) responds to other humans being in front of a
person, the right function (L-formations) to other humans
standing beside a person. We found this 2-valued feature
vector to be sufficient to automatically recognize engagement
and disengagement of interactions between participants.

D. Social Behavior Recognition with Hidden Markov Models

Having outlined the image processing steps to obtain a
feature vector from body posture, head pose, and spatial
group arrangement, in this section we explain our social
behavior recognition approach that is based on these features.
For modeling the temporal sequence of behavioral states, we
make use of HMMs [20]. HMMs are a powerful approach to
model sequential and statistical processes that allow indirect
observation. In our scenario, it is obvious to model the
sequence of social behaviors as the hidden states of a Markov
process. Accordingly, measured body posture and head poses
correspond to the observable emissions of the hidden states
of that model.

As defined by Rabiner [20], a hidden Markov model λ
consists of a set of n hidden states X, a set of m observation
variables Z, an n × n transition matrix A, an n × m
emission matrix B and an initial state probability vector π.
The state transition matrix A contains the probability for a
transition from one hidden state to another within a time step
and therefore models the stationary stochastic process. The
emission matrix B maps the hidden states to the probability
of observed variables.

Following this notation, the joint distribution of a specific
sequence with hidden states X1, X2, . . . , XT and observable
variables Z1, Z2, . . . , ZT over T time steps is then

p(X,Z|λ) = p(X1|π)

[
T∏

t=2

p(Xt|Xt−1,A)

]
︸ ︷︷ ︸

transition

T∏
t=1

p(Zt|Xt,B)︸ ︷︷ ︸
emission

(1)
Eq. 1 completely governs the model, as all further proba-
blities of observation sequences and hidden state sequences

can be deduced from it. The above defined set of model
parameters λ = {π,A,B} is therefore sufficient to de-
scribe a hidden Markov model. In order to reflect our real-
valued and multi-dimensional observations—body posture
and head pose—the emission matrix B is augmented to a
d-dimensional emission distribution bj(Zt), and the obser-
vation Zt to a d-dimensional vector, for each hidden state
j:

bj(Zt) =

K∑
k=1

cjk · N (Zt|µjk,Σjk) (2)

The emission distribution is parameterized by k Gaussian
distributions with d-dimensional mean vectors µjk and d×d
covariance matrices Σjk, which are then weighted by the
mixing coefficients cjk. All in all, the set of parameters
λ = {π,A, c,µ,Σ} completely governs our Continuous
Multidimensional HMM.

The two fundamental problems for HMM-based recogni-
tion components are model training and state decoding. The
model training step is used to find the parameter set that
generates a given training set of observations with maximum
likelihood. This procedure may be performed offline and
serves the trained social behavior recognition model as an
output. Mathematically, the objective of the training is to
maximize the likelihood of the given observation sequences
Z finding the optimal model λ maximizing p(Z|λ).

Even though this problem cannot be directly maximized,
typical practical instances can be solved by expectation
maximization (EM), which yields an iterative local max-
imization of the likelihood function [20]. However, this
local solution only allows optimization of our continuous
learning parameters λ, assuming we define a reasonable π in
advance. The free model parameters—the number of hidden
states per action and the number of Gaussian mixtures—can
only be found through grid search, performing the actual
EM learning procedure for all reasonable discrete model
parameter settings.

E. Social Behavior Model Definition

In this section, we describe the design of our HMM and
its parameterization. Fig. 4 shows the states and transitions
of our model for social behavior recognition in the JAMES
scenario. Each human participant is modeled by a separate
state model. Through experimental observation, we chose
a model with eight states, which sufficiently describes the
behavior of the human customers and allows the robot to
perform a socially appropriate interaction: the state idle
is the default state of a person located at the bar; state
attention to object is used to model humans, who look at a
menu located behind the bar; state cheers gesture describes
the action of two persons clinking glasses; state bartender
interaction describes humans, who order drinks from the
robot; state drinking action describes a human, who drinks
from an already received beverage; the states enter and leave
describe the humans entering or leaving the bar, respectively.
The shades of the arrows in Figure 4 reflect the observed
frequency of the transitions in the training data set.
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F. Model Training and Parameterization

In order to train the HMM, we used the robot’s camera and
depth sensor to collect recordings of more than 200 scenes
in which up to three humans showed typical behavior at a
bar. All data were labeled and verified by hand, resulting
in a total of 1720 states. The scenarios were divided into a
training set of 1010 states, a cross-validation set for model
parameterization of 319 states and a testing set of 391 states.
From the labeled training data set, the transition frequencies
were counted and further used as additive transition proba-
bilities. We also pruned all transitions with a frequency less
than 5%, allowing a reasonably simplified model and slightly
improved performance.

First, we evaluated several feature vector definitions and
found that different collections of body posture data do have
a notable effect on the recognition performance. Through
manual systematic evaluation we observed that the best set
of features contains torso and hand positions (excluding the
arms), body alignment, head pose (given both as a normal
vector and as pitch and yaw angles), as well as the two spatial
group arrangement features. Thus, our chosen feature vector
contains 19 normalized, real-valued components.

Second, we evaluated different hyperparameters on the
cross-validation data set. We observed a slight advantage
of full covariance matrices as emission models compared to
diagonal variance matrices. This advantage could possibly
be explained by the geometric nature of the feature vector
components and their inherent cross-correlation. Ultimately,
an HMM with just one inner state and an emission mixture
of three Gaussians with full covariance matrices for each
social behavior showed best performance.

Third, we optimized the state change penalty parameter.
This parameter is necessary to define a compromise between
false deletions (D) and false insertions (I), as shown in
Table I. False insertions are substantially reduced when
applying a state change penalty, resulting in a slight decrease
of correctly recognized states (H) by increasing the number

TABLE I
STATE CHANGE PENALTY ON CROSS-VALIDATION DATA SET.

Transition
Penalty

%Corr %Acc H D S I

0% 95.92 3.45 306 5 8 295
10% 90.91 45.14 290 16 13 146
20% 86.21 61.76 275 27 17 78
25% 84.33 65.20 269 32 18 61
30% 83.07 67.08 265 38 16 51
35% 82.13 68.03 262 40 17 45
40% 79.31 67.08 253 50 16 39
50% 78.37 67.71 250 61 8 34

of deletions (D); substitutions (S) are hardly affected. In our
scenario, false deletions—ignoring a customer’s request or
interrupting a conversation—are less acceptable than false
insertions—asking an idle participant to order. Therefore, we
chose a moderate state change penalty of 30%, slightly below
that of the optimal accuracy.

III. EVALUATION

The results of our social behavior recognition model are
shown in Table II. The confusion matrix summarizes sub-
stitutions of recognized states compared to manually labeled
states, false insertions and deletions, and the percentage of
correctly recognized states. All in all, 82.9% of the states
were recognized correctly with an accuracy value of 66.2%.
More specifically, the crucial social behaviors ”bartender in-
teraction” and ”interaction with other guests” are recognized
with a correctness value of 91.2% and 94.7% with only few
false insertions. With these recognized behaviors, the robot
is able to initiate, perform and close interactions in a socially
appropriate way.

TABLE II
CONFUSION MATRIX AND RESULTS ON THE TEST DATA SET

Recognized Labeled states
states b o g c d e i l D %Corr.

bartender 52 1 0 1 1 2 0 0 6 91.2
object 0 24 0 0 0 0 1 0 2 96.0
guest 0 0 36 0 0 0 1 1 7 94.7
cheers 2 0 0 12 1 1 1 1 6 66.7
drink 0 0 1 0 35 1 1 0 6 92.1
enter 0 0 0 0 0 30 0 0 1 100.0
idle 0 1 1 1 0 1 105 0 17 96.3
leave 0 0 0 0 0 0 0 30 1 100.0

I 8 10 5 7 4 5 18 8

Correctness 82.9% H/N
Accuracy 66.2% (H–I)/N

Correctly recognized states 324 H
Deletions 46 D
Substitutions 21 S
Insertions 65 I

Number of states 391 N

It should be noted that there are a number of factors
limiting the accuracy of the HMM: input data of body
posture and head pose may be inaccurate or even wrong,



such as in the case of occlusions. Also, the states are
sometimes ambiguous and do not allow exact and precise
labeling. These factors are inherent and cannot be overcome
by collecting more training data or changing properties of
the model.

0 50 100 150 200 250 300

Labelled Recognized

Time/s

cheers

drink

enter

idle

bartender

object

guest

leave

0 100 200 300 400 500 600 700

Labelled Recognized

Time [s]

cheers

drink

enter

idle

bartender

object

guest

leave

Fig. 5. Sample social behavior recognition results compared to labeled
states over time. Upper view shows a participant within a group, lower
view shows a single participant.

Besides the results of the confusion matrix, we also
reviewed the accuracy of the social behavior recognition over
time. Fig. 5 shows two scenes with labeled and recognized
states in comparison; one of a participant in a group, one of
a single participant interacting with the robot. The important
observation from this diagram is that there is no visible
systematic delay between labeled and recognized social
behaviors.

IV. CONCLUSION

The contribution of this work is twofold: first, we em-
pirically researched the frequency and importance of body
posture and f-formation in an everyday situation, namely the
interaction with a bartender. Quantitative analysis showed
that three signals are crucial to non-verbally initiate, answer
and end such kind of interaction: body posture, f-formation,
and head pose. Second, we applied these findings to a
human-robot interaction scenario and implemented image
processing components to recognize the social behaviors.
Finally, we trained a hidden Markov model with recorded
human-robot interactions. Evaluation showed a correct social
behavior recognition in 82.9% of all test cases. Most notably,
we recognized the vital behavior ”bartender interaction” at
a correctness rate of 91.2%, which will enable the robot to
interact with humans in a socially appropriate way.
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