
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Informationstechnische Regelung

Control of interconnected systems with
distributed model knowledge

Frederik Deroo

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Dr. rer. nat. Holger Boche

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Sandra Hirche (schriftliche Beurteilung)
Prof. Dr.-Ing./Univ. Tokio Martin Buss (mündliche Prüfung)

2. Prof. Dr. Michael Ulbrich

Die Dissertation wurde am 11.01.2016 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 22.08.2016
angenommen.

Abstract

The development of new and advanced communication technologies has sparked an exten-
sive renewed interest in distributed control of large-scale interconnected systems. The overall
system typically consists of a number of possibly heterogeneous subsystems that are phys-
ically connected, that influence each others’ behavior and that need to achieve a common
goal. While numerous methods to design distributed control laws already exist, these ap-
proaches are commonly based on a complete system model and a centralized design. For
several reasons, such as for computational restrictions and privacy concerns, it is desirable
that the control design of the distributed control law is itself performed in a distributed fash-
ion where the model knowledge is distributed among the subsystems and no central entity
is required. Similarly, state of the art stability analysis methods do not allow to make a deci-
sion on stability of the overall system without relying on the complete system model. Despite
the fact that the distributed design and analysis have transparent benefits in terms of privacy
preservation and required computational capabilities, there is only a limited number of theo-
retical results available. Therefore, there is an urgent need for the development of innovative
and novel methods to address these problems from a completely distributed perspective.

The present thesis investigates three relevant open problems in relation to the analysis and
control of interconnected systems: First, distributed stability analysis of interconnected lin-
ear time-invariant systems with local model information and without a centralized decision-
maker. Second, distributed optimal control design for a sparse control law optimizing the
linear quadratic regulator problem using only local model information. Third, the analysis
of signal decay in interconnected dynamical systems along paths of the graph describing the
interconnection topology.

The main contributions of this thesis address the three issues stated above in the follow-
ing way. For the stability analysis, we introduce two novel distributed stability tests. The
first one is based on vector Lyapunov functions, the second one on the Lyapunov inequality
subject to structural constraints. The main idea behind our approach consists of formulating
optimization problems that contain the respective stability condition as a constraint and then
applying advanced and modern distributed optimization techniques to solve the problems.
This allows the subsystems to make a decision on the stability of the overall system using only
local model information. To address the optimal control design, we introduce a new approach
based on simulated trajectories of the states and adjoint states to compute a gradient descent
direction. The presented gradient method is analyzed thoroughly and distributed step size
selection methods as well as distributed convergence guarantees are shown. Furthermore,
we present an approach to guarantee stability of the closed loop. All mentioned aspects can
be implemented without a centralized entity and using only local model information. Last,
we consider signal decay in interconnected systems. In our analysis, we approximate each
subsystem by a scalar representation to evaluate how the subsystems interact. We consider
two forms of disturbances and analyze their propagation in the steady state behavior of the
interconnected system. All results are illustrated and validated using numerical demonstra-
tions and examples.

iii

Zusammenfassung

Die Entwicklung von neuen und fortschrittlichen Kommunikationstechnologien hat ein ex-
tensives erneutes Interesse an verteilter Regelung von großen verbundenen Systemen ent-
facht. Das Gesamtsystem besteht typischerweise aus einer Zahl von möglicherweise hete-
rogenen Subsystemen, die physikalisch verbunden sind, die sich gegenseitig im Verhalten
beeinflussen und die ein gemeinsames Ziel erreichen müssen. Obwohl es bereits eine Viel-
zahl an Methoden zum Entwurf verteilter Regelungsgesetze gibt, basieren diese Ansätze üb-
licherweise auf einem vollständigen Systemmodell und einem zentralisierten Entwurf. Aus
mehreren Gründen, wie Begrenzungen von Rechenleistung und Privatsphärebedenken, ist es
erwünscht, dass der Reglerentwurf des verteilten Regelgesetzes selbst verteilt durchgeführt
wird, wobei das Modellwissen auf die Subsysteme verteilt und keine zentrale Einheit not-
wendig ist. Genauso wenig erlauben Methoden auf dem Stand der Technik im Bereich der
Stabilitätsanalyse, eine Entscheidung über die Stabilität des Gesamtsystems ohne das voll-
ständige Systemmodell zu treffen. Obwohl der verteilte Entwurf und die verteilte Analyse
erkennbare Vorteile bezüglich Erhaltung von Privatsphäre und notwendigen Rechnerkapazi-
täten haben, gibt es bisher nur eine begrenzte Zahl an theoretischen Ergebnissen. Deshalb
gibt es einen dringenden Bedarf an innovativen und neuen Methoden, um diese Probleme
aus einer vollständig verteilten Perspektive zu behandeln.

Die vorliegende Arbeit untersucht drei relevante offene Probleme in Bezug auf Analyse
und Regelung von verbundenen Systemen: Der erste Punkt ist verteilte Stabilitätsanalyse
von verbundenen linearen zeitinvarianten Systemen mit lokaler Modellinformation und ohne
zentralen Entscheidungsträger. Zweitens behandelt sie den verteilten optimalen Reglerent-
wurf für dünnbesetzte Regelgesetze mit lokalem Modellwissen, die ein linear-quadratisches
Regelungsproblem optimieren. Der dritte Aspekt ist die Analyse von Signalabklingen in ver-
bundenen Systemen entlang des Graphen, der die Verbindungstopologie beschreibt.

Die Hauptbeiträge dieser Arbeit behandeln die drei oben genannten Probleme auf folgende
Art und Weise. Für die Stabilitätsanalyse führen wir zwei neue verteilte Stabilitätstests ein.
Der Erste basiert auf Vektor Lyapunov Funktionen, der Zweite auf der Lyapunov Ungleichung,
die strukturellen Beschränkungen unterliegt. Die Hauptidee ist, dass wir Optimierungspro-
bleme formulieren, die die jeweilige Stabilitätsbedingung als Beschränkung beinhalten, und
dann fortschrittliche und moderne Techniken der verteilten Optimierung anwenden, um die
Probleme zu lösen. Dies erlaubt den Subsystemen, nur mit lokalen Modellinformationen eine
Entscheidung über die Stabilität des Gesamtsystems zu fällen. Zur Behandlung des optima-
len Reglerentwurfs führen wir einen neuen Ansatz ein, der auf simulierten Trajektorien des
Zustandes und des adjungierten Zustandes basiert, um eine Gradientenabstiegsrichtung zu
berechnen. Das vorgestellte Gradientenverfahren wird tief gehend untersucht und wir stel-
len verteilte Verfahren zur Schrittweitenauswahl und Sicherstellung der Konvergenz vor. Des
Weiteren präsentieren wir einen Ansatz, um Stabilität des geschlossenen Kreises zu garantie-
ren. Alle erwähnten Aspekte können ohne zentrale Einheit und nur mit lokaler Modellinfor-
mation implementiert werden. Als Letztes betrachten wir Signalabklingen in verbundenen
Systemen. In unserer Analyse approximieren wir jedes Subsystem durch eine skalare Dar-
stellung, um zu bewerten, wie die Subsysteme interagieren. Wir behandeln zwei Formen
von Störungen und analysieren ihre Ausbreitung im eingeschwungenen Zustand des verbun-
denen Systems. Alle Ergebnisse sind durch numerische Beispiele illustriert und validiert.

v

Contents

1 Introduction 1
1.1 A brief introduction to feedback control . 1
1.2 Interconnected dynamical systems . 2
1.3 Analysis and control of interconnected dynamical systems 4
1.4 Motivation . 6

1.4.1 Distributed stability analysis . 7
1.4.2 Distributed control design . 7
1.4.3 Decay analysis in interconnected systems 8

1.5 Outline and contribution . 8

2 Background and related work 11
2.1 Stability analysis of interconnected systems . 11
2.2 Optimal control design . 13

2.2.1 Background . 13
2.2.2 Relevant work on distributed optimal control 15

2.3 Privacy notions in control . 16
2.4 System description . 17

2.4.1 Differential equation model . 17
2.4.2 Structural description using graphs . 18

2.5 Distributed constrained Nesterov algorithm . 20

3 Distributed stability analysis with local model information 23
3.1 Problem formulation . 24
3.2 Related work . 25
3.3 Sufficient stability conditions with a sparsity structure 26

3.3.1 Vector Lyapunov function . 26
3.3.2 α-block diagonal Lyapunov stability . 28
3.3.3 Summary . 30

3.4 Distributed optimization for stability analysis with local model information . . 30
3.4.1 Vector Lyapunov function . 30
3.4.2 α-block diagonal Lyapunov inequality . 35
3.4.3 Summary . 41

3.5 Numerical illustration and validation of stability tests 41
3.5.1 Systems satisfying the vector Lyapunov condition 42
3.5.2 Systems violating the vector Lyapunov condition 43
3.5.3 Application to 30 bus power system . 45

vii

Contents

3.5.4 Summary . 46
3.6 Analysis of the conservativeness of the stability conditions 46

3.6.1 Comparison of the two conditions . 47
3.6.2 Necessary condition for α-block diagonal Lyapunov stability 48
3.6.3 Numerical analysis of Theorem 3.7 . 50
3.6.4 Further comments on α-block diagonal Lyapunov stability 52
3.6.5 Summary . 53

3.7 Distributed model reduction using balanced truncation 53
3.7.1 Introduction to model reduction using generalized gramians 53
3.7.2 Distributed optimization techniques for model reduction 54
3.7.3 Numerical examples . 56
3.7.4 Summary . 60

3.8 Chapter summary . 61

4 Stabilizing distributed optimal control design with local model information 63
4.1 Problem formulation . 64
4.2 Related work . 65
4.3 Distributed linear quadratic optimal control design with guaranteed stability . 66

4.3.1 Distributed control design using gradient descent 67
4.3.2 Averaging approach to eliminate dependence on initial condition 70
4.3.3 Distributed computation of stability guaranteeing terminal cost term . . 72
4.3.4 Numerical results . 79
4.3.5 Summary . 83

4.4 Distributed step size selection . 84
4.4.1 Overview . 84
4.4.2 Distributed computation of Barzilai-Borwein step size 85
4.4.3 Convergence guarantees . 86
4.4.4 Distributed computation of conjugate gradient search direction 87
4.4.5 Numerical comparison of step sizes and conjugate gradient method . . 87
4.4.6 Summary . 90

4.5 Event-based trajectory simulation . 90
4.5.1 Theoretical results . 90
4.5.2 Numerical evaluation of communication effort in Algorithm 8 93
4.5.3 Summary . 93

4.6 Optimal distributed control of singular systems . 94
4.6.1 Problem formulation . 94
4.6.2 Control synthesis . 97
4.6.3 Numerical results . 100
4.6.4 Summary . 103

4.7 Application of distributed control in optimal formation control 104
4.7.1 Problem formulation . 104
4.7.2 Iterative optimal control design for relaxed rigidity formation control . 111
4.7.3 Numerical results . 114
4.7.4 Summary . 117

4.8 Generalization of distributed control design approach 117

viii

Contents

4.8.1 Time-varying control law . 118
4.8.2 Nonlinear system dynamics and control law 119
4.8.3 Numerical evaluation . 120
4.8.4 Summary . 121

4.9 Chapter summary . 121

5 Decay analysis in interconnected systems 123
5.1 Problem formulation . 124
5.2 Related work . 124
5.3 Preliminaries and assumptions . 125
5.4 Decay analysis . 129

5.4.1 Steady state decay with constant input . 129
5.4.2 Steady state magnitude decay with sinusoidal input 133

5.5 Numerical example . 135
5.6 Chapter summary . 136

6 Conclusions and outlook 139
6.1 Outlook . 142

A Appendix 145
A.1 Descent methods for minimization . 145

A.1.1 Step length . 146
A.1.2 Search direction . 147

A.2 Basics of graph theory . 148
A.3 Model reduction using balanced truncation . 150

ix

Notations

Abbreviations

LTI Linear time-invariant
ODE Ordinary differential equation
DAE Differential-algebraic equation
LQ Linear quadratic
LQR Linear quadratic regulator
LMI Linear matrix inequality
DCNA Distributed constrained Nesterov algorithm
MPC Model predictive control
BB Barzilai-Borwein
CG Conjugate gradient
FR Fletcher-Reeves
PW Powell-Wolfe
SE Standard Euler method
EBE Event-based Euler method

Symbols

Main variables

u(t) system input
y(t) system output
x(t) system state
t time
A state matrix
Aii local state matrix of subsystem i
Ai j coupling state matrix from subsystem j to subsystem i
B input matrix
Bi input matrix of subsystem i

x

Notations

C output matrix
Ci output matrix of subsystem i
s Laplace operator
N number of subsystems
n number of overall system states
ni number of states of subsystem i
m number of overall system inputs
mi number of inputs of subsystem i
Gs = (Vs,Es) directed system graph
Gs,u = (Vs,Es,u) undirected system graph
Gcomp = (Vcomp,Ecomp) computation graph
Gcontrol = (Vcontrol,Econtrol) control graph
GLMI = (VLMI,ELMI) LMI graph
Σi subsystem i
L Lipschitz constant

Spaces

Rn n-dimensional Euclidian space
Rn
+ space of n-dimensional vectors with non-negative entries
Rn
++ space of n-dimensional vectors with positive entries
Rn×m space of n×m-dimensional matrices
Sn space of symmetric n× n matrices
Sn
+ space of symmetric, positive semidefinite n× n matrices
Sn
++ space of symmetric, positive definite n× n matrices

Operators

AT transpose of matrix A
A−1 inverse of square matrix A
tr(A) trace of matrix A
In identity matrix in Rn×n

0n×m matrix in Rn×m with all entries 0
1n vector in Rn with all entries 1
diag(A1, A2) (block)diagonal matrix with matrices A1, A2 on diagonal
blockdiag(A) (block)diagonal portion of matrix A with off-diagonal blocks set to zero
el lth unit base vector, with 0 everywhere except the lth entry which is 1
vec(A) vectorization of matrix A∈ Rn×m into vector in Rnm by stacking columns
mat(A) reforming of a vector A∈ Rnm into a matrix in Rn×m

Re(x) real part of complex number x
[Ai j] matrix A consisting of blocks Ai j

λ(A) set of eigenvalues of matrix A
λm(A) minimum eigenvalue of matrix A
λM(A) maximum eigenvalue of matrix A
σM(A) largest singular value of matrix A

xi

Notations

x > 0 equivalent to x ∈ Rn
++.

X � 0 equivalent to X ∈ Sn
++

X � 0 equivalent to X ∈ Sn
+

X ≺ 0 equivalent to −X ∈ Sn
++

X � 0 equivalent to −X ∈ Sn
+

xii

List of Figures

1.1 Basic control loop. 2
1.2 Interconnected system. Interconnections represented by dashed lines. 3
1.3 Traditional control and analysis approach for interconnected systems. Black

(solid) lines indicate physical couplings, blue (dashed) lines indicate informa-
tion flows, e.g. model data. 4

1.4 Decentralized and distributed control. Black (solid) arrows indicate physical
couplings and green (dashed) arrows denote control communication. 5

1.5 Proposed control and analysis approach for interconnected systems. Black
(solid) lines indicate physical couplings, blue (dashed) lines indicate informa-
tion flows, e.g. model data. 5

2.1 Different graphs: System graph Gs in black, control graph Gcontrol in green,
computation graph Gcomp in red. 20

3.1 Structure of small-scale example system. 25
3.2 Algorithm behavior for different values of ε. Final optimal value is -0.4466 in

black (dashed). 44
3.3 Topology of 30 bus power system, in red/dashed the additional edges of its

chordal extension. 46
3.4 Communication topology for the two stability tests. M-Matrix test (red, solid),

additional links for Lyapunov test (blue, dashed) because of chordal extension. 47
3.5 Comparison of step responses of system with N = 4 agents. Full model (blue,

solid) n= 16, reduced model (red, dashed) n= 12. Balanced truncation with
Algorithm 6. 58

3.6 Comparison of transfer functions of system with N = 4 agents. Full model
(blue, solid) n = 16, reduced model (red, dashed) n = 12. Balanced trunca-
tion with Algorithm 6. 58

3.7 Comparison of step responses of system with N = 4 agents. Full model (blue,
solid) n= 16, reduced model (red, dashed) n= 12. Balanced truncation with
Lyapunov inequalities (3.20) with block diagonal restriction. 59

3.8 Comparison of step responses of system with N = 4 agents. Full model (blue,
solid) n= 16, reduced model (red, dashed) n= 12. Balanced truncation with
Lyapunov inequalities (3.20) with full gramian matrices. 59

3.9 Comparison of step responses of 30 bus power system system for inputs/outputs
1-4. Full model (blue, solid) n = 60, reduced model (red, dashed) n = 45.
Balanced truncation with Algorithm 6. 60

xiii

Notations

3.10 Comparison of transfer functions of 30 bus power system system for inputs/outputs
1-4. Full model (blue, solid) n = 60, reduced model (red, dashed) n = 45.
Balanced truncation with Algorithm 6. 61

4.1 Illustration of the distributed control design approach. 70
4.2 Illustration of behaviors of Algorithms 8 and 9. 81
4.3 Modified IEEE 39 bus test system with 16 generators (6 additional ones). Gen-

erator nodes in red, load nodes in black. 83
4.4 Reduced topology of modified IEEE 39 bus test system with 16 generators (6

additional ones). 84
4.5 Frequency behavior after disturbance. 84
4.6 State trajectory x(t) (blue) and quantized state trajectory q(t) (red) for system

ẋ(t) = −x(t) and ∆Q = 0.1,∆t = 10−3. 91
4.7 Graph for the example system. Physical coupling in black (solid), control com-

munication in red (dashed). 100
4.8 Cost evolution over the iterations of the algorithm. 100
4.9 8 bus power system with 5 generators and 3 load nodes. 102
4.10 Evolution of the phase angles δi of the 5 generators. 104
4.11 Illustration of the coordinate frames for robots, object, and world [25]. 105
4.12 Schematic overview of the cooperative mobile manipulation control architec-

ture [25]. 108
4.13 Three mobile robots drive from four different initial configurations (red dashed,

olive dashed dotted, green solid, blue dashed) to a common goal while trying
to maintain the formation. Bold colored triangles illustrate the initial robot
configuration, the bold black triangle is the final configuration. The blue tri-
angle clearly loses formation because the shape of the triangle stretches during
the movement, while the other three triangles maintain their shape. 115

4.14 Initial condition (blue, solid) and end formation (red, dashed) for comparison
between Algorithm 13 and the open loop trajectory. 117

5.1 Example graph. The number denotes the nodes, the subscripted index denotes
the distance to the source node. Note that the input is not an edge of the graph
and does not follow the edge direction convention of the rest of the graph used
throughout this chapter. 125

5.2 Subsystem states x i are aggregated into scalar superstates wi which corre-
spond to a comparison system. 126

5.3 Vector Lyapunov function serves as a superstate to a multidimensional system. 128
5.4 Illustration of steady state conic combination (SSCC): w̄i ∈ C(w̄ j1 , . . . , w̄ jl) can

be larger than some w̄ j but is bounded by at least one w̄ j with j ∈ { j1, . . . , jl}. . 130
5.5 Line graph topology. 132
5.6 Illustration of decay in line graph for γ= 0.1. 133
5.7 Response to u(t) = 1 for line-graph. 136
5.8 Steady state values showing spatial decay for line graph. 137
5.9 Actual gain between hops with upper bound (1− γ) = 0.8979. 137
5.10 Response to u(t) = sin(t) for line-graph. 138

xiv

List of Tables

3.1 Difference in objective function value between Yalmip (f ∗Yalmip) and Algorithm 3
(f ∗
ε

) for different values of accuracy parameter ε for Section 3.5.1. 42
3.2 Difference in objective function value between Yalmip (f ∗Yalmip) and Algorithm 5

(f ∗
ε

) for different values of accuracy parameter ε for Section 3.5.1. 43
3.3 Difference in objective function value between Yalmip (f ∗Yalmip) and Algorithm 5

(f ∗
ε

) for different values of accuracy parameter ε for Section 3.5.2. 45
3.4 Comparison between the vector Lyapunov test and the α-block diagonal Lya-

punov test. The α-block diagonal Lyapunov test is clearly less conservative at
a larger computational effort. 45

3.5 Analysis of α-block diagonal Lyapunov stability for all possible graphs with 6
vertices (112 graphs, each with 100 different A-matrices) with different diag-
onal entries. Cases 1-3: all subsystems have dimension 2, the diagonal entries
are offset by the factors 0.5, 0.2 and 1, respectively. Case 4: subsystems have
dimension 2 or 3, diagonal entries are offset by the factor 1. 51

4.1 Number of stabilized systems out of 100 for the six scenarios: (1): tf = 1, S =
SY from (4.14) with Yalmip; (2): tf = 1, S = Sdist from (4.14) with Algorithm 9;
(3) tf = 1, S = 0n; (4) tf = 2, S = 0n; (5) tf = 5, S = 0n; (6) tf = 10, S = 0n. . 82

4.2 Performance comparison for tf = 1 and stable systens: (1) BB, (2) γ = 0.01,
(3) γ= 1,(4) γ= 10, (5) CG. 89

4.3 Performance comparison for tf = 10 and stable systens: (1) BB, (2) γ= 0.01,
(3) γ= 1,(4) γ= 10, (5) CG. 89

4.4 Performance comparison for tf = 1 and unstable systems: (1) BB, (2) γ =
0.01, (3) γ= 1,(4) γ= 10, (5) CG. 89

4.5 Comparison of communication effort for standard Euler and event-based Euler
discretization in Algorithm 8. 93

4.6 Starting and end points for visualizing example. 116
4.7 Comparison between Algorithms 12 and 13. 116
4.8 Performance comparison of time-invariant (TI) and time-varying (TV) control

law based on relative cost difference JTI−JTV
JTV

for stable test systems. 120
4.9 Performance comparison of time-invariant (TI) and time-varying (TV) control

law based on relative cost difference JTI−JTV
JTV

for unstable test systems. 121

xv

1

Introduction

The purpose of this chapter is multifold. First, a short introduction to feedback control is
provided. Then, we explain our definition of interconnected dynamical systems and of dis-
tributed approaches with regards to control design and stability analysis. Subsequently, the
motivation for the three pillars of this thesis is given, namely distributed stability analysis,
distributed control design, and signal decay analysis in interconnected systems. Finally, we
provide an outline of this thesis and state its major contributions.

1.1 A brief introduction to feedback control

Feedback control theory is a field that combines engineering and mathematics with the goal
of influencing the behavior of a dynamical system. Everyday examples for feedback control
engineering are thermostats or air conditioning used to control the temperature in a room,
cruise control in cars, and the float regulator in a toilet. The main concept of feedback
control is measuring the output of a system and then comparing it to a desired reference via
feedback. Then, the task of the controller is to steer the output towards the desired value. A
schematic of a typical control loop is shown in Figure 1.1. The measured output y , possibly
corrupted by a measurement noise n, is compared to the reference r. The purpose of the
controller K is to alter the behavior of the system G, sometimes referred to as the plant, such
that y attains the desired value in spite of a possible disturbance d. Applied to the example
of air conditioning, the disturbance d could be an open window or an unusually high number
of people, and the task of the air conditioning system (K) is to keep the temperature (y) of
the room (G) at a desired value r.

The centrifugal governor used in steam engines is one of the earliest examples of a control
mechanism that has been thoroughly analyzed. Its purpose is to regulate the speed of the

1

1 Introduction

r K G

d

y

n

+ u
+
+

+
+

−

Figure 1.1: Basic control loop.

engine by influencing the throughput of a valve. This is achieved by coupling the rotation of
the steam engine to a pair of rotating masses. With increasing speed, the two masses move
outwards and act on a lever which reduces the opening of the valve. On the other hand,
when the rotation slows down, the masses move inwards and open the valve further. The
purpose of the governor as a part of the steam engine is, therefore, to be self-limiting, which
is a result of the negative feedback.

The field of control theory is mainly concerned with two aspects: (1) The design of the
feedback control law K to achieve the desired behavior. (2) Analysis of the system behav-
ior, for example in terms of stability or performance. Control theory and automatic control,
meaning control without requiring human intervention, have seen significant progress lead-
ing to a vast array of control design methods, system analysis approaches and many other
related aspects. It is not only a discipline that improves the behavior of systems, but in many
cases automatic control enables behaviors that are not possible with human control alone,
for example with regards to precision or reaction speeds.

1.2 Interconnected dynamical systems

The tasks of control theory, e.g. control design and system analysis, become increasingly diffi-
cult when multiple systems or control loops are interconnected, as depicted in Figure 1.2. The
interconnections between the systems, depicted by dashed lines, can represent two different
characteristics. They can be either physical, meaning there is a direct influence between
the system behaviors, or they can be purely through communication, e.g. when a common
control law is used. When we discuss interconnected systems in this thesis, we consider the
cases in which either one or both of these aspects are in place. Thus, the overall unifying
property is that a number of subsystems in an overall system influence each other’s state in
some form. The number of subsystems also varies depending on the application, but it is
very large in some fields.

Interconnected dynamical systems represent a class of systems that govern many aspects of
our everyday lives. Numerous types of systems with practical relevance and with remarkably
different properties belong to it. Examples from technical disciplines include infrastructure
systems such as distribution systems for electrical power [1] and water [2], transportation
infrastructure [3], building automation [4], mechatronic systems such as large-scale tele-
scopes [5] and adaptive mechanical structures [6], the internet [7], and multi-robot sys-
tems [8]. Furthermore, interconnected systems can also represent biological [9], economi-
cal [10], or social networks [11], but these are not the focus of this thesis.

2

1.2 Interconnected dynamical systems

K G

K G

K G

K G

Figure 1.2: Interconnected system. Interconnections represented by dashed lines.

In order to explain interconnected systems in more detail, we provide two more concrete
examples in the following.

Example 1.1. Electrical power system. Among the most important and complex inter-
connected dynamical systems is the electrical power system. The subsystems are comprised
of numerous different components with highly differing behaviors, for example generators,
loads, and transformers. These components are connected by transmission lines. There is a
number of control goals that need to be met for a satisfactory overall behavior of the power
system. Among others, these include stability of the frequency, stability of the voltage level,
and control of active and reactive power. These goals need to be satisfied under uncertain
conditions caused by faults, unpredictable consumer behavior, or variable production of re-
newable energy. For an in-depth treatment of the control of power systems, we refer to [12].

Example 1.2. Formation control. A second problem class related to interconnected dynam-
ical systems is formation control. This problem can, for example, pertain vehicle platoons
on a road, or unmanned aerial vehicles (UAVs). In the case of vehicle platoons, formation
control is used to regulate and maintain the distance between vehicles at a desired value.
The systems may be interacting physically, e.g. through wind drag, or their interconnection
can be purely communicative. For UAVs, the latter is typically the case. That means that the
interconnection stems from a control law used to achieve the common goal. In the case of
UAVs, formation control is beneficial for localization, surveillance or exploration tasks. For
more details, we refer to [13, 14].

In numerous cases of the aforementioned application areas, the considered systems are
very large, with many of them still growing, and the complexity of the system dynamics
increases with size. Therefore, the goal of many research efforts is to develop distributed
methods for both control design and system analysis. Eventually, we aspire to individual
components which are able to self-organize to achieve a common goal without or with very
limited centralized intervention. Recalling the early purposes of control, we, as part of the
control community, try to take a step from self-limiting behavior towards self-organizing be-
havior.

3

1 Introduction

1.3 Analysis and control of interconnected dynamical
systems

Traditionally, the control design and the analysis of the system class of interconnected systems
are achieved from a centralized perspective. By centralized, we mean that full information
about the dynamical model of the whole system is available to a single central entity, and the
information can be used to analyze or control the overall system, as depicted in Figure 1.3.

Nevertheless, for many decades already, it has been the goal of research on interconnected
systems to decompose the system into its components and to exploit the inherent structure
in one form or another. Considering the structure of the control law, the control of intercon-
nected systems is traditionally accomplished in a decentralized fashion [15]. In other words,
every subsystem uses only local measurement signals to compute the control signal, and
there is no measurement information exchange between the individual subsystems, see Fig-
ure 1.4a. This strategy is used, for example, in the primary control of electrical power grids,
that is the lowest hierarchy in power system control [16], as well as in the package con-
trol of the internet [17]. Given the resource constraints, remarkable performance has been
achieved with this approach. However, inherent problems of decentralized control are a lack
of robustness, stability, and degraded performance in comparison to classical centralized full-
information control. With the introduction of reliable, widespread, and fast communication
networks came the advent of the research into distributed control. Distributed control is
a compromise between centralized and decentralized control. Namely, the subsystems are
able to exchange measurement information with some – but not all – other subsystems in the
network, see Figure 1.4b. While a considerable effort has been invested into the research on
designing distributed control laws, the design process itself is usually still performed from
the original centralized perspective, as illustrated in Figure 1.3.

However, there is ongoing research, including this thesis, which investigates approaches
that go one step further in terms of distribution. Instead of using the information exchange
capabilities between the subsystems only for the online implementation of the control law,
we also make use of the communication technology during the design of the control law
itself, in order to eliminate the central designer. Thus, instead of taking the centralized
point of view from Figure 1.3, we propose the scenario in Figure 1.5, where subsystems

Central entity

Interconnected dynamical system

Figure 1.3: Traditional control and analysis approach for interconnected systems. Black
(solid) lines indicate physical couplings, blue (dashed) lines indicate informa-
tion flows, e.g. model data.

4

1.3 Analysis and control of interconnected dynamical systems

Σ3Σ4

Σ2Σ1

(a) Decentralized control.

Σ3Σ4

Σ2Σ1

(b) Distributed control.

Figure 1.4: Decentralized and distributed control. Black (solid) arrows indicate physical cou-
plings and green (dashed) arrows denote control communication.

Central entity

Interconnected dynamical system

Figure 1.5: Proposed control and analysis approach for interconnected systems. Black (solid)
lines indicate physical couplings, blue (dashed) lines indicate information flows,
e.g. model data.

exchange information such as model data to design their control laws without a central entity.
Furthermore, we adopt the distributed point of view from the control design problem to the
system analysis problem, which is a frontier research direction with very limited results so
far.

In summary, the main challenge addressed in this thesis is one of distributed decision-
making. The subsystems have to make a judgment on a system property such as stability, or
they need to decide how to set their control law to obtain a performance that is in accordance
with a shared goal. This distributed perspective opens up a plethora of new and exciting
research questions and we list a few in the following. With regards to the analysis of certain
system properties and of the system behavior, the following questions are current and very
relevant:

1. Is it possible to make a decision on whether a given system is stable using only local
model information exchange? How general can the system dynamics be in order to
allow a distributed stability analysis?

2. Is a distributed decision on stability necessarily conservative, and if so, how conserva-
tive is it?

3. Are there other system properties that can be evaluated distributedly?

5

1 Introduction

4. How strong is the interaction between subsystems that are not directly connected?
How does a disturbance propagate through a dynamical system?

In terms of optimal control design using local model information, the problems listed
below are very timely and important:

5. Can we design optimal control laws in a distributed fashion with only local model
information exchange?

6. Can closed-loop stability be guaranteed without central model information?

7. How good is the performance of these control laws in comparison to centralized control
laws and distributed control laws that are designed with full model information?

8. Are there nodes that are more important than others with regards to performance, i.e.
nodes that serve as hubs?

9. How can control laws be distributedly adapted to system dynamics that change over
time or instantly? For example, what can be done when a subsystem leaves the overall
system or a new one joins?

10. What is the optimal connection structure of the distributed control law? Should it be
identical to the subsystem interconnection structure or should it be different?

As one important point of motivation for the use of only local model information is privacy
of the subsystems, a question relevant for both system analysis and control design is the
following:

11. What are meaningful notions of privacy? As agents need to interact with each other,
subsystems may trust some of the other subsystems, but not all of them. How can
one find a compromise with regards to privacy of signals and model information while
using them for control purposes?

We do not claim to address all questions stated above. The purpose of the list of questions
is to emphasize the wide variety of open problems in this field. Some of the questions are
addressed in the literature, and more importantly in this thesis. After stating our main mo-
tivations in the next section, we provide a detailed explanation of the contributions of this
thesis and how they relate to the problems stated above.

1.4 Motivation

The three pillars of this thesis are: (1) Distributed system analysis, (2) distributed optimal
control design, and (3) decay analysis in interconnected systems. In this section, we mo-
tivate the research for the three parts individually. At a first glance, these three different
aspects could in principle be regarded as being completely independent from one another.
However, we will see throughout the thesis that there are close connections between them.
For example, using some of the results from the first part leads to a significant enhancement

6

1.4 Motivation

of the control design in terms of guaranteeing stability. Furthermore, the goal of the decay
analysis is to give insight into the behavior of interconnected systems. This is also helpful for
the first two aspects and it makes use of a stability notion used in the first part as well. At
the same time, even though the interconnections are helpful and enrich our understanding
of the respective topics, it needs to be emphasized that each of the three groups of results
can stand on its own. We, therefore, present them individually such that the readers can pick
the aspects relevant to their interests more easily.

1.4.1 Distributed stability analysis

There are several different well-known conditions available to check stability of a dynami-
cal system, which can be found in various textbooks, e.g. [18, Chapter 4], [19, Chapter 3].
However, these conditions always assume that the whole model of the system dynamics is
available for the analysis. This requirement, however, is undesired for large-scale intercon-
nected systems. Testing stability distributedly and with local model information where there
is no central model of the system and the subsystems only share their model data with a rela-
tively small part of the overall system is important for several reasons. Our main motivation
is model data privacy of the subsystems. This concern is relevant, for example, in a scenario
where competitors need to form an interconnected dynamical system, as it is the case in an
electrical power grid, but are hesitant to share their exact model data with a central entity
or all other participants. The same concerns apply when more and more private participants
take part in the overall system, as is also the case in the power grid. Another argument
for the distribution of the analysis is that the computation effort for the system analysis can
be distributed among the subsystems. Additionally, these distributed methods are generally
more flexible when a system changes because only parts of the system need to adapt. Last,
a distributed approach promises better scalability.

1.4.2 Distributed control design

New and distributed control design methods for interconnected systems are required because
of the following three problems: (1) Due to the size of some of these systems, classical
centralized control approaches with their inherent communication complexity are no longer
suitable. On the other hand, as previously stated, decentralized approaches have several
disadvantages, e.g. with regards to robustness and performance. Distributed control aims at
a compromise between these two. (2) Not only the online control law implementations but
also the centralized design methods themselves generally do not scale well and thus lack the
flexibility that is required for large-scale systems. (3) As is the case for the system analysis,
a key problem in the control design is that most of the known design approaches require a
complete system model, which does not take into account the fact that subsystems might be
unwilling to share their model data globally or centrally. To ensure the model data privacy,
the design of the control law should be distributed. Control design where the model data
is distributed among agents is still an open and challenging problem because model data is
typically required for the design of optimal control laws and also to evaluate and guarantee
stability.

7

1 Introduction

1.4.3 Decay analysis in interconnected systems

One important question of interest for interconnected systems is under which conditions a
disturbance at one node will have little impact on another node that is far away in terms of the
number of hops between the nodes. The investigation of this problem is relevant for multiple
reasons. First, it will help in understanding how disturbances, or changes in system dynamics
at one subsystem, affect the behavior at distant nodes. In other words, it is of interest how the
performance of a distant node is affected by local disturbances. This will lead to an intuition
concerning how networks should be designed, e.g. with regards to disturbance attenuation,
since it will clearly be preferred in most applications that local changes in dynamics do not
have a large effect over large distances. Second, a property of this type would allow the
agents more freedom even though they are connected. In addition, as privacy is an important
issue, subsystems may not want all other participants in an interconnected system to be able
to sense their state. Finally, it helps in the development or modification of a local control
design method at one agent with local model information, as considered in the second part
of the thesis, and it may enable local control law adaptations without significantly sacrificing
overall system performance.

1.5 Outline and contribution

The goal of this thesis is to develop novel and innovative distributed methods that allow
stability analysis and control design using only local model information without any central-
ized knowledge. The key foundation to these methods is the usage of modern distributed
optimization techniques.

Chapter 2 consists of background information. In addition, the overall system class is
introduced to illustrate and emphasize the common problem properties. The chapter also
introduces the definition of local model information. The distributed stability analysis is in-
vestigated in Chapter 3. Chapter 4 addresses distributed control design. Afterwards, Chap-
ter 5 presents results on signal decay in interconnected systems. Chapter 6 provides a brief
summary, a concluding discussion, and presents open questions not addressed in this thesis.
In the remainder of this section, the major contributions of each chapter are outlined in more
detail.

Chapter 3: Distributed stability analysis with local model information

In this chapter, two different distributed tests for the stability analysis of interconnected lin-
ear time-invariant (LTI) systems are developed. The conditions are based on two well-known
classical stability conditions: Vector Lyapunov functions and the Lyapunov inequality. The
novelty of the developed approaches is that the inherent structure of the vector Lyapunov
function and a prescribed structure in the Lyapunov inequality are explicitly exploited to
achieve distributed tests requiring only local model information. In the first step, the origi-
nal conditions are reformulated in the form of optimization problems. Subsequently, using
the distributed constrained Nesterov algorithm, the optimization problems are solved in a
distributed fashion, making use of the problem structure and thereby limiting the required

8

1.5 Outline and contribution

model knowledge to local model information. As the two developed tests are only sufficient,
they are compared in terms of conservativeness, and the extent of their conservativeness is
investigated using numerical experiments. In addition, we derive an analytical necessary
condition for the second stability notion, the so-called α-block diagonal Lyapunov stability.
Last, we show that it is possible to apply the same distributed optimization algorithm used in
the stability analysis to perform distributed model reduction based on balanced truncation.

The content of this chapter addresses questions 1, 2, and 3 from Section 1.3. The results
in this chapter have been partially published in [20].

Chapter 4: Stabilizing distributed optimal control design with local
model information

This chapter presents a distributed optimal control design method for interconnected LTI sys-
tems that relies only on local model information. The design goal of the control design is the
minimization of a linear quadratic cost functional with a specific control law structure. The
approach is based on iterative distributed optimization using a gradient descent method. Us-
ing simulated trajectories of the state and the adjoint state, the gradient can be distributedly
computed. Furthermore, the step size and the stopping criterion can also be evaluated by
the agents in a distributed setting without a centralized decision-maker. Using results from
Chapter 3, a terminal cost term that is determined in a distributed fashion is used to guar-
antee closed-loop stability of the approach. As the computation of the trajectories leads to a
large communication effort, an event-based adaptation of the Euler discretization method is
employed to reduce it. It is shown that the error of the method is on the same order as the
standard Euler method while heavily reducing the communication effort. An extension of the
control design method to singular systems is also presented. Then, the design approach is
adapted to bi-quadratic terms in the cost functional and is applied to the problem of optimal
formation control of a multi-robot system. Last, we generalize the method to time-varying
control laws and nonlinear system dynamics. All results are validated and illustrated with
numerical examples. The content of this chapter addresses questions 5, 6, and 7 from Sec-
tion 1.3. The results in this chapter have been partly published in [21, 22, 23, 24, 25] and
some results will be published in [26].

Chapter 5: Decay analysis in interconnected systems

The main contribution of this chapter is an analytical investigation of the decay between sub-
systems in response to a steady state disturbance. We consider the case of a constant input
at a single node, and then look at the generalization to a sinusoidal input. It is shown that
the value of the steady state response at a node can be bounded by a linear combination with
positive weights of steady state values at nodes closer to the source node, and that the coef-
ficients in that combination sum to less than one. The results are illustrated using numerical
simulations. The content of this chapter mainly addresses question 4 from Section 1.3. The
results of this chapter have been partly published in [27].

9

2

Background and related work

In this chapter, we provide necessary background information for this thesis. Especially for
the first two topics addressed in this thesis, namely stability analysis and optimal control
design, we summarize classical and well-established results and give an overview on rele-
vant work related to the respective topic. In addition, we give an introduction to different
privacy notions that are presented in the literature in relation to optimization and control,
and contrast them to the model data privacy restrictions considered in this thesis. Then, we
introduce the considered system dynamics, the graphical description to capture the system
structure, and introduce the term local model information that is the central theme of this
thesis. Last, we explain a distributed optimization algorithm that is used in several places in
this thesis; the distributed constrained Nesterov algorithm.

2.1 Stability analysis of interconnected systems

In this section, we give some introductory background on stability analysis in general, and
more specifically stability analysis for interconnected systems.

Stability analysis of dynamical systems is a problem that has been studied thoroughly
and represents one of the central questions in the field of control. There is a large number
of different stability conditions, appropriate for varying stability notions, system dynamics,
or problem settings. For more details, we refer the reader to textbooks, such as [18, 28].
Probably the most seminal result, and the basis for the majority of modern stability analysis,
especially in the nonlinear case, is Lyapunov stability [29]. Lyapunov stability states the
following [30]: Consider the dynamical system

ẋ = f (x), (2.1)

11

2 Background and related work

where f : D → Rn is a locally Lipschitz map from a domain D ⊆ Rn into Rn and which has
an equilibrium point x = 0, i.e. f (0) = 0. Then, if there is a function V : D→ R such that

V (0) = 0 and V (x)> 0 in D \ {0},
V̇ (x)< 0 in D \ {0},

we have that x = 0 is asymptotically stable.
Throughout this thesis, instead of the nonlinear dynamics (2.1), we consider the special

case of linear time-invariant (LTI) systems, generally written as

ẋ(t) = Ax(t), (2.2)

where x ∈ Rn is the state and A ∈ Rn×n is the state matrix. One way of showing Lyapunov
stability of system (2.2) is to assume a Lyapunov function of the form V (x) = xTP x and to
find the positive definite matrix P ∈ Sn

++ such that the matrix ATP + PA is negative definite.
In this linear case, Lyapunov stability is necessary and sufficient, and completely equivalent
to the condition that requires negative real parts of all eigenvalues of the matrix A. There
is a special case of Lyapunov stability of LTI systems that is relevant to this thesis, namely
diagonal Lyapunov stability [31]. This notion simply states that the system (2.2) is diagonally
Lyapunov stable if there is a diagonal matrix P ∈ Sn

++ such that ATP+ PA is negative definite.
In general, diagonal Lyapunov stability is clearly only a sufficient stability condition, because
the solution space is a subspace of the original, complete solution space Sn

++.
System analysis based on the complete overall system model (2.2), be it based on Lya-

punov stability, eigenvalue analysis, or a different approach, works well for small and rea-
sonably sized systems. However, for large-scale systems consisting of many individual sub-
systems, different and dedicated methods are required, as is explained in Section 1.4.1. Tra-
ditionally, large-scale dynamical systems are analyzed from a centralized point of view, as-
suming that there is a central entity with access to the whole system model or at least to the
whole interconnection structure. A well-known result from the 1970s involves vector Lya-
punov functions and M-matrices. Due to its relevance to this thesis, we shortly recapitulate
the foundations of this concept [15].

While the overall interconnected system is described by (2.2), it is convenient to split
up the model at the subsystem level. The division into subsystems is highly dependent on
the application and the desired level of abstraction. It could result from spatial distance of
components, from different functions of the components, or from different owners of the
components, to name just a few reasons. Each subsystem has the dynamics

ẋ i(t) = Aii x i(t) +
N
∑

j=1
j 6=i

Ai j x j(t), i = 1, ..., N , (2.3)

where x i ∈ Rni and Ai j ∈ Rni×n j . Vector Lyapunov functions allow the analysis of the inter-
connected system to see if it is connectively stable which is defined as follows.

Definition 2.1. [15] System (2.2),(2.3) is connectively stable if it is stable in the sense of
Lyapunov for all interconnection terms αAi j with α ∈ [0, 1] and Ai j defined in (2.3).

12

2.2 Optimal control design

Connective stability, therefore, implies that the system remains asymptotically stable even
if interconnection strengths are changed to smaller values. The idea of vector Lyapunov func-
tions is to construct a Lyapunov function for the overall interconnected system as a weighted
sum of individual Lyapunov functions of the isolated subsystems ẋ i,iso = Aii x i,iso. The main
tool to determine whether a vector Lyapunov function exists are M-matrices.

Lemma 2.1. [15] A matrix W ∈ RN×N with nonpositive off-diagonal elements is an M-matrix
if there exists a vector d ∈ RN with strictly positive entries such that W d > 0.

The following assumption is made in the literature in the context of vector Lyapunov
functions [15].

Assumption 2.1. The decoupled individual subsystems are asymptotically stable,
i.e. Re(λ(Aii))< 0, and all eigenvalues of Aii are distinct for all i ∈ {1, . . . , N}.

The regular transformation matrices Ti ∈ Rni×ni are defined which transform the isolated
system i described by ẋ i,iso = Aii x i,iso into ˙̃x i,iso = Ãii x̃ i,iso. Given the second part of Assump-
tion 2.1, there is a Ti such that Ãii = T−1

i Aii Ti has a real Jordan form and the transformation
mapping is x i,iso = Ti x̃ i,iso. This transformation is used because it reduces conservativeness
of the stability condition [15]. With that, the following matrix W = [wi j] is constructed as

wi j =

−max(Re(λ(Ãii))), if i = j,

−
q

λM(ÃT
i jÃi j), if j ∈ Nin,i,

0, else,

(2.4)

where Ãi j = T−1
i Ai j T j. Based on that, the following theorem is formulated.

Theorem 2.1. [15] Given Assumption 2.1, the system (2.2),(2.3) is connectively stable if there
is a vector d > 0 such that W d > 0 with W defined in (2.4).

Theorem 2.1 essentially formulates a sufficient stability condition which relates the ratio
of stability of the local dynamics of each subsystem with the effect of the incoming inter-
connections expressed in the required M-matrix property. Testing a matrix to see if it is an
M-matrix can be accomplished, for example, using linear programming which is, however, a
global problem.

2.2 Optimal control design

We start this section with some necessary background information on optimal control de-
sign and introduce a general form of the considered problem. We then present an in-depth
literature overview of work on distributed control.

2.2.1 Background

It can be argued that the ultimate understanding we can have of a system is when we are
able to control it [32]. As explained in Section 1.1, achieving a desired behavior requires the

13

2 Background and related work

design of a feedback law, often denoted by K . There are numerous methods with various
control goals available in the literature and we refer to textbooks such as [18, 28] for an
overview on basic control design methods. An idea to avoid trial-and-error during the control
design is to determine the feedback law in an optimal way where optimality is defined by a
cost functional. Optimal control is quite an old topic of research, with first results stemming
from more than 300 years ago [33]. There are various types of cost functionals such as H2

or H∞ optimality and there are closed-form or at least efficient solutions for many of them.
We refer to the textbook [19] for details. These methods are thoroughly understood and
work well at least for small-scale systems.

In this thesis, we restrict our attention to LTI systems, where the overall system dynamics
are described by

ẋ(t) = Ax(t) + Bu(t),

and the goal of optimal feedback control design is to find a feedback law u(t) = −K x(t)
that minimizes a given cost functional. One very common cost functional, especially for
linear systems, and the cost functional considered throughout most of this thesis, is the linear
quadratic (LQ) cost, typically written as

J(x , u) = xT(tf)Sx(tf) +

∫ tf

0

xT(t)Qx(t) + uT(t)Ru(t)dt, (2.5)

where Q ∈ Sn
+, S ∈ Sn

+, R ∈ Sn
++ and tf is the optimization horizon. The matrices S, Q and R

are weighting matrices which are used to describe the desired behavior. In this finite horizon
form, the terminal cost term involving S penalizes the state at the end of the horizon, while Q
and R respectively penalize the state and input over the whole period tf. The infinite horizon
form is obtained for the case that tf→∞ and is given by

J(x , u) =

∫ ∞

0

xT(t)Qx(t) + uT(t)Ru(t)dt. (2.6)

Solutions for both (2.5) and (2.6) are readily available with several extensions, see e.g. [34,
35]. For instance, the solution for the cost functional (2.6) can be computed as

K = R−1BTP,

where P ∈ Sn
++ is the solution to the Riccati equation

ATP + PA− PBR−1BTP +Q = 0. (2.7)

For the finite horizon case (2.5), the optimal feedback is time-varying with K(t) = R−1BTP(t)
and we need to solve the Riccati differential equation

ATP(t) + P(t)A− P(t)BR−1BTP(t) +Q = −Ṗ(t),

where we have the boundary condition P(tf) = S. For other optimization goals such as H2

and H∞ similar solutions are available.

14

2.2 Optimal control design

2.2.2 Relevant work on distributed optimal control

All the methods mentioned so far assume small-scale systems and take a completely central-
ized point of view. In these cases, the feedback law has no structure and full information is
available at every component of the system. For large-scale interconnected systems, this is
undesirable because of the lack of technological feasibility in terms of communication and
computation effort, and because of the lack of scalability, among other things. The current
main approach in the research community to deal with these problems is distributed control.
Therefore, results on distributed control of interconnected systems are reviewed in the fol-
lowing. As mentioned in the previous section, distributed control is a compromise between
decentralized and centralized control. For an overview on decentralized control, we refer to
textbooks, e.g. [15], or the survey article [36].

Early work on distributed control in the 1960s [37] already illustrates the inherent diffi-
culty of the problem by showing that even in a seemingly simple case of two linear agents, the
optimal control law can be nonlinear when a certain information structure is imposed. Later,
it was shown that for a partially nested structure, a property which describes that there are
no cycles in the directed system interconnection graph, the optimal control law is linear [38],
but a general result is still open. Therefore, research has concentrated on solutions to special
cases of the overall problem of finding an optimal control law.

Quadratic invariance. One typical approach to find optimal control laws is to parameterize
all possible controllers using so-called Youla-parameters [19]. For distributed control laws,
it is necessary to impose sparsity constraints on these Youla parameters [39, 40, 41, 42,
43]. In [39], a sufficient condition called “Quadratic invariance” is derived under which
the constraint on the parameters is convex, such that it is in principle possible to formulate
the control design as a convex optimization problem. It is shown in [40] that, given the
Youla parameterization approach, this condition of quadratic invariance is also necessary for
a convex problem. For a special case of two subsystems, the explicit state space solution
for the H2 case is presented in [41]. These last results are generalized to systems that have
a partial order, which corresponds to a special case of quadratic invariance, and explicit
solutions as well as the optimal controller architecture to the H2 design problem are stated
in [42, 43].

Structured linear matrix inequalities. Other approaches use linear matrix inequalities
(LMIs) with constraints on the solution variables to achieve the desired structure in the con-
trol laws [44, 45, 46, 47]. The approach in [44] states an LMI that results in a control law
with H∞ optimality that has the same structure as the original physical subsystem intercon-
nection. For H2 optimal controllers, LMIs are stated in [45] that give sparse control laws.
For identical interconnected subsystems and a control law structure that coincides with the
system structure, [46] gives LMI conditions that can be decomposed to allow a more efficient
solution. Similarly, for identical decoupled systems with a coupling in the cost term, a small
dimensional solution is given in [47].

Dual decomposition. Yet another approach is to use dual decomposition in the design of
control laws, e.g. [48, 49]. In [48], the optimal control of vehicle systems is solved using dual

15

2 Background and related work

decomposition. The interconnection structure in this system class is quite simple in the sense
that the subsystems are arranged on a line graph. For more general topologies [49] presents
an optimal control design method that relies on the alternating direction method of multi-
pliers (ADMM). In the latter, the optimization problem not only considers the performance
of the control law but also attempts to optimize the sparsity. The use of dual decomposi-
tion, however, is mainly to improve the computational performance and it does not lead to
a complete distribution.

Distributed adaptive control. A promising research direction related to distributed con-
trol that should be mentioned is distributed adaptive control. Most results so far concen-
trate on synchronization problems [50, 51]. The authors present adaptive control protocols
to guarantee synchronization of systems whose dynamics are unknown. However, there is
no attention to optimality and the design of the protocol is performed from a centralized
perspective. Nevertheless, the results show that adaptive approaches are applicable to in-
terconnected systems and give promising insights. A different approach, and more closely
related to the work in this thesis is reinforcement learning [52] where adaptive control is
used to improve a control law based on past online system behavior. However, no results for
distributed control are available.

Topology design. The work in this overview so far assumes a fixed control law topology
which in general is identical to the physical system topology. But there are also approaches
that design the control law topology, e.g. [53, 54]. In [53], the control design is performed
in two steps. First, a stabilizing decentralized control law is designed. In a second step, a
limited number of edges is added. The edges are chosen to be optimal with respect to a cost
functional which in this case is the maximum eigenvalue of the closed-loop system. How-
ever, this is computationally expensive because it is a mixed-integer problem. In [54], an
approach is presented that minimizes the number of connections given an allowed perfor-
mance deterioration in comparison to a full control law. A convex relaxation is used to make
the approach more appealing in terms of the computational effort.

2.3 Privacy notions in control

The literature addresses several different notions of privacy, mainly to achieve privacy of the
measured behavior of the subsystems, e.g. electrical power consumption of a consumer over
time. The first main concept is differential privacy [55, 56, 57, 58]. Differential privacy is
a statistical approach which generally assumes that a central entity aggregates the available
data, e.g. signals or trajectories, and produces some form of output. A mechanism is differ-
entially private when the addition, change or removal of a single piece of data does not lead
to a large deviation in the output distribution. For more details on differential privacy and
an overview of several results, see [55]. In [56], the authors apply the concept to a convex
optimization problem and to them privacy preservation means that the agents do not give up
their complete private cost function. Methods to design filters that preserve differential pri-
vacy are presented in [57]. The authors of [58] consider a control scenario of linear systems

16

2.4 System description

with a quadratic cost functional where the individual agents are influenced by a common ag-
gregate state. To them, privacy means that the state preference of the agents cannot be easily
deduced. The common approach to achieve differential privacy is to add a noise signal to the
sensitive data. A different concept of privacy uses observability arguments, e.g. [59]. Their
approach uses graph theoretical ideas and topology design to ensure that as many nodes as
possible are part of the unobservable subspace to preserve privacy of the initial conditions in
a consensus problem. The addition of noise to achieve the same goal in an average consen-
sus algorithm is used in [60]. In [61], the privacy of trajectories is investigated in a dynamic
average consensus problem where an average of dynamic inputs is obtained while the agents
add static or dynamic signals to their inputs to hide their true values. Two other approaches
deal with privacy in smart grids. The first one [62] uses storage devices such as batteries to
smoothen the revealed power consumption and hide specific usage profiles. Similarly, the
authors of [63] propose delaying usage data signals and using different sampling periods to
hide specific private usage events.

While privacy of signals and behaviors is certainly an important problem, model data pri-
vacy is also an interesting and relevant aspect that is often neglected. There is one result
that considers privacy of dynamic model data which is given in [64]. This paper considers
the scenario in which several scalar subsystems share a common scalar input and a com-
mon scalar output, and it presents methods to achieve differential privacy in terms of the
individual system parameters.

In this thesis, however, we consider a different notion of privacy, namely local model
information. This means that subsystems need to share their model data only with a limited
subset of all nodes, possibly along a specific cooperation graph structure without global or
central aggregation of model data.

2.4 System description

In this section, we present the general system dynamics that are considered in this thesis.
We present the relevant differential equations and introduce the structural description of the
system using several graphs.

2.4.1 Differential equation model

Throughout the majority of this thesis we consider interconnected LTI systems consisting
of N subsystems. Each subsystem has the following dynamics

ẋ i(t) = Aii x i(t) +
N
∑

i=1
i 6= j

Ai j x j(t) + Biui(t), (2.8)

where x i ∈ Rni is the subsystem state, ui ∈ Rmi is the local input, Aii ∈ Rni×ni represents local
dynamics, Ai j ∈ Rni×n j denotes coupling to other subsystems and Bi ∈ Rni×mi is the input
matrix. By concatenating the subsystem states, the overall system is compactly written as

ẋ(t) = Ax(t) + Bu(t), (2.9)

17

2 Background and related work

where x = [xT
1 , ..., xT

N]
T ∈ Rn, u= [uT

1 , ...,uT
N]

T ∈ Rm,
∑N

i=1 ni = n and
∑N

i=1 mi = m.
Because the structure of large-scale systems in practice is often sparse [65], we also assume

that system (2.9) has a sparsity structure, that is no subsystem is connected to every other
subsystem.

The stated system dynamics are slightly adjusted for the stability analysis in Chapter 3
and for the decay analysis in Chapter 5 in that we remove the input u(t) from the system
equations (2.9). For most of the control design results in Chapter 4 the system dynamics re-
main unchanged. However, the results are then extended to DAE systems with an additional
equality constraint, and later to general nonlinear systems.

2.4.2 Structural description using graphs

The structure of the system, and the structure of the control design and system analysis prob-
lems are described using graphs. For a short introduction to the relevant graph theoretical
concepts for this thesis, please see Section A.2.

In the following, we define several graphs that are used throughout the thesis. The first
one is the system graph which is defined as follows.

Definition 2.2. The system graph Gs = (Vs,Es) describes the given physical, open-loop inter-
connection structure of the individual subsystems. An edge (j, i) belongs to the edge set Es

if and only if the matrix Ai j 6= 0.

Hence, the graph Gs describes the block structure of the state matrix A. Based on that, we
define the following subsets of the system graph.

Definition 2.3. Nout,i = { j|(i, j) ∈ Es} are the nodes j influenced by i, Nin,i = { j|(j, i) ∈ Es}
are the nodes j that influence node i and we define the set of neighboring nodes as the union
of both as

Ni = { j|(i, j) ∈ Es ∨ (j, i) ∈ Es}=Nin,i ∪Nout,i.

The second graph that we define is the computation graph.

Definition 2.4. The computation graph Gcomp = (Vcomp,Ecomp) is an undirected graph that de-
scribes which subsystem communicates with which other subsystem to compute the solution
to a common problem.

The mentioned problem in Definition 2.4 may be a system analysis problem, a control
design problem, or a consensus problem among other things. The communication along this
graph usually takes place offline and it entails the exchange of model data, optimization
variables or simulated trajectories.

The third graph is the control graph.

Definition 2.5. The control graph Gcontrol = (Vcontrol,Econtrol) determines which subsystem
communicates with which other subsystem to compute its input signal.

Subsystems exchange their state measurements along the control graph which naturally
takes place online while the system is running. This graph furthermore determines the struc-
ture of the control law.

In addition, we also define the undirected version of the system graph.

18

2.4 System description

Definition 2.6. The undirected system graph is given by Gs,u = (Vs,u,Es,u) with Es,u = Es∪ET
s ,

where ET
s is the edge set of the transpose graph of Gs.

For all graphs so far, the nodes of the graphs represent the subsystems and the node sets
coincide, i.e. Vs = Vcontrol = Vcomp = Vs,u.

Using the problem of control design as an example, an illustration of the three different
graphs is shown in Figure 2.1. A common approach to control large-scale systems is shown
in Figure 2.1a. Here, we have a decentralized control law and a single entity, in this case
subsystem one, that has knowledge of the overall system model as every other node shares
its model data with subsystem one during the computation phase. After the design, sub-
system one passes the individual control laws to the other agents. Equivalently, instead of
subsystem one, a superordinate central entity could design the control law and pass it to the
subsystems. In the case of a centralized design, the computation graph Gcomp contains a star
topology where one node is directly connected to every other node. In Figure 2.1b, we have a
disconnected control graph Gcontrol indicating a decentralized control law and an incomplete
computation graph Gcomp not containing a star topology. In this example, subsystem three
gets information from subsystem one during the design phase, identically to how subsys-
tem one receives information from subsystem four, in addition to the information that every
subsystem has about itself already. In recent years, many distributed control approaches have
been introduced, assuming full model knowledge, which is depicted in Figure 2.1c. In this
thesis, we consider the case that the graph Gcontrol is incomplete and Gcomp does not contain
a star topology, as illustrated in Figure 2.1d.

One last graph is introduced, based on the matrix Asym = (A+ AT).

Definition 2.7. The graph GLMI = (VLMI,ELMI) describes the individual element structure of
the matrix Asym, i.e. (i, j) ∈ ELMI if and only if the individual entry Asym

i j 6= 0.

While Gs,u describes the block structure of Asym, GLMI describes the individual element
structure. Therefore, Gs,u is a hypergraph to GLMI that is obtained by merging the nodes that
correspond to the states of one individual subsystem to a compressed subsystem node. Given
these graphs, the following definition represents the overall theme of this thesis.

Definition 2.8. A system analysis or control design method uses only local model information
when the offline information exchange is in accordance with the computation graph Gcomp

and there is no central entity with global knowledge. The subsystems can know the overall
system size N and the total number of states n. If the method requires online information
exchange, it has to be in accordance with the control graph Gcontrol.

Methods using local model information ensure privacy of the subsystems in the sense that
the subsystems need to share their dynamic model (2.8) and other information only with a
small subset of other subsystems, and that there is no central entity which knows the overall
system. This definition will be stated in a more precise and adapted way suitable to the
specific problems in Sections 3.1 and 4.1.

19

2 Background and related work

Σ3Σ4

Σ2Σ1

physical

interconnection

com
pute

con
trol

(a) Disconnected Gcontrol, Gcomp has star topology

Σ3Σ4

Σ2Σ1

(b) Disconnected Gcontrol, arbitrary Gcomp

Σ3Σ4

Σ2Σ1

(c) 1-hop Gcontrol, Gcomp has star topology

Σ3Σ4

Σ2Σ1

(d) 1-hop Gcontrol, 1-hop Gcomp

Figure 2.1: Different graphs: System graph Gs in black, control graph Gcontrol in green, com-
putation graph Gcomp in red.

2.5 Distributed constrained Nesterov algorithm

In Chapters 3 and 4, we formulate optimization problems to answer control questions in a
distributed fashion, namely stability analysis and control design. One key element of the dis-
tributed solution is the application of the distributed constrained Nesterov algorithm (DCNA).
This introduction on the algorithm follows [66, 67, 68] and we refer to these references for
more details. The DCNA incorporates dual decomposition and also its efficiency is higher
by an order of magnitude compared to the standard gradient method. We start with the
introduction of the unconstrained Nesterov algorithm [66].

We consider an optimization problem of the form

min
x∈X

f (x),

where f : X → R is a convex and continuously differentiable function on a closed and
convex set X ⊆ Rn. We assume that the gradient of f is Lipschitz continuous with Lipschitz
constant L. We introduce a prox-function d(x) which is a continuous and strongly convex
function on X with convexity parameter σ > 0. Given this, the Nesterov algorithm is stated
in Algorithm 1 [66].

Algorithm 1 has a complexity of O(
q

L
ε). The algorithm serves as the basis for the DCNA,

but the DCNA is aimed at distributed optimization applications including constraints. For
the DCNA, we consider a partially separable convex optimization problem of the following

20

2.5 Distributed constrained Nesterov algorithm

Algorithm 1 Unconstrained Nesterov algorithm.
For k ≥ 0 do

1. Compute ∇ f (x k).

2. Find

yk = argmin
y∈X

�

∇ f (x k)T y +
L
2
||y − x k||2

�

.

3. Find

zk = argmin
z∈X

�

L
σ

d(z) +
k
∑

j=1

∇ f (x j)Tz

�

.

4. Set

x k+1 =
2

k+ 3
zk +

k+ 1
k+ 3

yk.

form

min
x i∈X i ,(i=1,...,n)

n
∑

i=1

fi(x i) (2.10a)

s.t.
n
∑

i=1

Ai,eq x i = beq, (2.10b)

n
∑

i=1

Ai,ineq x i ≤ bineq, (2.10c)

where fi : Rmi → R is a convex and continuously differentiable function on a given compact
and convex set X i for all i = 1, . . . , n. To describe the equality and inequality constraints,
we use the matrices Ai,eq ∈ Rmeq×mi and Ai,ineq ∈ Rmineq×mi as well as the vectors bi,eq ∈ Rmeq

and bi,ineq ∈ Rmineq . Furthermore, we introduce prox-functions di(x i) which are continuous
and strongly convex functions on X i with convexity parameters σi > 0. The Lagrangian
of (2.10) is given by

L (x1, . . . , xn,µ,λ) =
n
∑

i=1

fi(x i) +µ
T

�

n
∑

i=1

Ai,eq x i − beq

�

+λT

�

n
∑

i=1

Ai,ineq x i − bineq

�

.

As can be observed, the Lagrangian is separable in the variables x i with i = 1, . . . , n. The
corresponding dual function is then

φ(µ,λ) = min
x i∈X i ,(i=1,...,n)

L (x1, . . . , xn,λ,µ),

which can also be evaluated in parallel. It can be shown that the gradient of the dual function
described by

∇φ(µ,λ) =

� ∑n
i=1 Ai,eq x i(µ,λ)− beq

∑n
i=1 Ai,ineq x i(µ,λ)− bineq

�

21

2 Background and related work

is Lipschitz continuous with the Lipschitz constant

L =
n
∑

i=1

||Ai,eq||2 + ||Ai,ineq||2

σi
.

If we then apply the Nesterov algorithm described in Algorithm 1 to the dual problem

argmax
(µ,λ)

φ(µ,λ) = arg min
(µ,λ)
−φ(µ,λ),

we arrive at the DCNA in Algorithm 2.
Note that in comparison to the references [66, 67, 68], we have left out certain constant

terms in the subproblems to simplify the readability of the algorithm. Also note that the liter-
ature [67, 68] does not use the term DCNA. They rather present a proximal center algorithm
or (D)PCA. In their case, proximal center algorithms are needed to tackle optimization prob-
lems that are non-smooth so that they require smoothing techniques leading to the (D)PCA.
The optimization problems considered in this thesis, however, do not require smoothing and,
therefore, we do not introduce those techniques. We do, however, make use of the dual de-
composition aspect of their approach. To reflect these differences to the literature we refer
to the algorithm as DCNA.

Algorithm 2 Distributed constrained Nesterov algorithm.
For k ≥ 0 do

1. Given λk and µk compute for i = 1, . . . , n

x k+1
i = arg min

x i∈X i

�

fi(x i) +µ
kTAi,eq x i +λ

kTAi,ineq x i

�

.

2. Compute

∇φ(µk,λk) =

� ∑n
i=1 Ai,eq x k+1

i − beq
∑n

i=1 Ai,ineq x k+1
i − bineq

�

.

3. Find

(µ̃k, λ̃k) = argmax
(µ,λ)

�

∇φ(µk,λk)T(µT,λT)T −
L
2
||(µT,λT)T − (µkT ,λkT)T||2

�

.

4. Find

(vk, tk) = argmax
(v,t)

�

−
L
σ

d(v, t) +
k
∑

j=1

∇φ(µk,λk)T(vT, tT)T
�

.

5. Set

(µk+1,λk+1) =
2

k+ 3
(vk, tk) +

k+ 1
k+ 3

(µ̃k, λ̃k).

22

3

Distributed stability analysis with local
model information

This chapter addresses the first main contribution of this thesis. It presents two different
distributed tests for stability for the general class of interconnected LTI systems using local
model information. There are no restrictions on the systems themselves and only limited in-
formation exchange with very few subsystems is necessary. The first stability test is based on
the well-known vector Lyapunov condition and the corresponding M-Matrix test from [15].
Instead of testing whether a matrix is an M-matrix in a centralized fashion, we formulate an
optimization problem that contains the stability conditions as constraints. The second stabil-
ity test is based on the Lyapunov inequality and is analogously formulated as an optimization
problem. More specifically, we consider α-block diagonal Lyapunov stability [69, 70] because
of its structural properties. Both optimization problems have a structure which can be ex-
ploited using the distributed constrained Nesterov algorithm (DCNA) from [67, 68], which
is explained in Section 2.5. This yields two different distributed stability tests that allow us
to check if an LTI system is asymptotically stable using only local model information in an
iterative distributed optimization scheme. We stress that the use of distributed optimization
techniques is not mainly aimed at reducing computational effort, but the idea is to obtain
methods that require only local model information and preserve model data privacy for the
subsystems in that way as much as possible. This is achieved in so far that the subsystems
only need to share their dynamic model with their direct neighbors according to the compu-
tation graph, and not globally or centrally. Furthermore, we will see that the developed tools
can also be used to perform a distributed model reduction.

The remainder of this chapter is organized as follows. Section 3.1 contains the prob-
lem statement, followed by an in-depth overview on related work in Section 3.2. Then, we
present the reformulation of the stability conditions as optimization problems in Section 3.3.

23

3 Distributed stability analysis with local model information

Their distributed solution is addressed in Section 3.4. These results are illustrated and an-
alyzed numerically in Section 3.5 before we investigate the conservativeness of the stability
tests in Section 3.6. Finally, Section 3.7 contains our results on distributed model reduction,
and we conclude with a summary in Section 3.8.

3.1 Problem formulation

In this section, we introduce the considered system dynamics for this chapter and specify the
exact problem description of this part of the thesis.

For the system analysis with regards to stability, we consider the system dynamics
from (2.8),(2.9) without an input, that is the subsystem dynamics are

ẋ i(t) = Aii x i(t) +
N
∑

j=1
j 6=i

Ai j x j(t), i = 1, ..., N , (3.1)

where x i ∈ Rni and Ai j ∈ Rni×n j , and the overall system is

ẋ = Ax . (3.2)

Remark 3.1. The division into the N subsystems and the resulting interconnection graph Gs

is motivated by the desire to preserve model data privacy, and the use of only local model
information. Classically, the structuring of the overall system (3.2) into N subsystems (3.1) is
motivated by physics, function or geography. In our setting, in contrast, subsystem (3.1) may
comprise multiple components when we deal with stability analysis. These can be physical,
functional or geographically distant agents which, however, are willing to share their model
data completely among each other, i.e. the clustering of the overall system is induced by
privacy constraints.

Based on these remarks, we make the following assumption for the rest of this chapter.

Assumption 3.1. The computation graph Gcomp coincides with the undirected system
graph Gs,u.

Note that the control graph is irrelevant in this context. We refine Definition 2.8 of local
model information for the case of the system analysis.

Definition 3.1. Given system (3.1),(3.2), a system analysis method is considered to use
local model information if subsystem i has knowledge of Aii, all Ai j, A ji with (i, j) ∈ Ecomp, and
the overall number of subsystems N . Furthermore, it exchanges information only with the
subsystems with (i, j) ∈ Ecomp.

The goal of this chapter is summarized concisely in the following problem.

Problem 1.
Given Assumption 3.1, decide if system (3.1),(3.2) is stable using only local model
information in accordance with Definition 3.1.

24

3.2 Related work

To illustrate the results of this chapter, we introduce a small-scale academic example sys-
tem that we use throughout the chapter.

Example 3.1. Consider a system with N = 4 agents arranged along a line-graph as previ-
ously shown in Figure 2.1d. The system graph Gs, the undirected system graph Gs,u, the
computation graph Gcomp and the control graph Gcontrol all have the same form and we show
it in a simplified form in Figure 3.1. In this example, each agent has ni = 2 states, ∀i, such
that the overall system size is n= 8. The state matrix is given by

A=

−1.2 −0.2 0.6 0.1 0 0 0 0
0.1 −1.3 −0.2 0.1 0 0 0 0
0.1 −0.1 −0.6 0.1 0.2 −0.7 0 0
−0.2 0.2 0.1 −1.3 −0.3 −0.3 0 0

0 0 −0.1 0.1 −1.0 −0.1 −0.2 −0.2
0 0 0.4 0.2 0.1 −2.0 −0.1 −0.2
0 0 0 0 −0.1 −0.5 −1.7 −0.1
0 0 0 0 −0.3 −0.3 −0.1 −2.0

. (3.3)

3.2 Related work

In the following, we provide an overview on related results on stability analysis of inter-
connected dynamical systems and on a few limited results on distributed stability analysis.
Large-scale system stability is analyzed in [71] where the authors derive sufficient stability
conditions under the assumption that every subsystem is dissipative and that both the sup-
ply rate function of each subsystem and the overall interconnection structure are centrally
known. The conditions are then posed in the form of LMIs or definiteness requirements. For
the special case of passive systems, the condition boils down to the diagonal stability of an
associated matrix that contains information about the interconnection structure and the pas-
sivity of each subsystem [72]. Both, the vector Lyapunov method explained in Section 2.1
and the method by [71], have in common that the stability test itself is performed centrally,
but they exploit the subsystem formulation of the interconnected system. In [73], the two ap-
proaches are relaxed and it is pointed out that for the class of positive linear systems, stability
can be evaluated distributedly. That means that for this restricted system class no complete
central model data is required, but that each subsystem knows a part of the overall system
model. In a related fashion, the results in [74] show that a distributed stability test is possi-
ble for positive systems using distributed linear programming. Other results on scalable and
distributed system analysis are given in [75]. The authors present scalable stability condi-
tions for interconnected heterogeneous LTI systems represented by transfer functions that are
feedback coupled through a bipartite graph. The sufficient conditions they derive are based

Σ1 Σ2 Σ3 Σ4

Figure 3.1: Structure of small-scale example system.

25

3 Distributed stability analysis with local model information

on the Nyquist stability criterion, and the conditions are posed in such a way that subsystems
only need to exchange information with those subsystems that they are physically connected
to. The conditions are generalized in [76] using integral quadratic constraints (IQCs). How-
ever, in both cases, the derived conditions need to be evaluated for all frequencies ω and no
analysis of the degree of conservativeness of the sufficient condition is given.

The concept of α-block diagonal Lyapunov stability, a generalization of diagonal stabil-
ity [31], and a notion that is adopted in this thesis, is the subject of [69] and [70], though
not from a perspective where the model knowledge is distributed among subsystems. A re-
lated paper to our approach of decomposing Lyapunov inequalities is [77]. Their work is
based on the same LMI decomposition technique, but their focus is not the solution using
local model information but rather solving the problem more efficiently while maintaining a
centralized solution.

With this overview in hand, it is clear that only very few results on distributed system anal-
ysis with limited model information are available so far and most results take a centralized
perspective or make no statement on the degree of their conservativeness. Furthermore, the
distributed system analysis so far is only achieved for restricted subclasses of linear systems.
This restriction is reduced in this thesis in that we can treat general LTI systems, and we can
analyze them with local model information, distributed among the subsystems.

3.3 Sufficient stability conditions with a sparsity structure

In this section, we lay the foundation for the two distributed stability tests developed in
this chapter. We start with two different stability conditions that are reformulated into the
form of optimization problems. The optimization problems have a sparsity structure which
allows the distributed solution of those problems in the following sections. The principle idea
is that classical stability conditions, vector Lyapunov functions and the Lyapunov inequality,
are used as a constraint in an optimization problem. For the Lyapunov inequality, a structural
constraint is imposed on the solution variable to maintain the desired sparsity structure.

3.3.1 Vector Lyapunov function

In this subsection, we present a test to analyze whether a system is connectively stable based
on the solution of an optimization problem. The notion of connective stability and M-matrices
was already briefly introduced in Section 2.1.

As we have seen there, Theorem 2.1 allows us to construct a test matrix to formulate a
condition for connective stability. With Assumption 3.1, the construction of this test matrix
requires only local model information because the subsystems only require their own row of
the dynamics matrix. It can be seen from (2.4) that the sparsity structure of W is identical
to the block sparsity structure of A as described by the system graph Gs. However, the test
if the matrix W is an M-matrix, i.e. if there exists a d > 0 such that W d > 0, is a global
problem. Hence, to enable the distributed stability test presented in the following section,
we reformulate the condition of Theorem 2.1 as an optimization problem which then allows
the application of distributed optimization techniques.

26

3.3 Sufficient stability conditions with a sparsity structure

As a first step, we reformulate the stability condition as the following optimization problem
with convexity parameters σδ ∈ R++,σdi

∈ R++

min
(d,δ)∈RN+1

f (d,δ) = −δ+
σδ
2
δ2 +

N
∑

i=1

σdi

2N
d2

i (3.4a)

s.t.−W d + γδ1N ≤ 0, (3.4b)

−d +δ1N ≤ 0, (3.4c)

where γ ∈ R++ is arbitrary. In this form, the function f (d,δ) in (3.4a) is strongly convex.
The optimal function value of the problem is denoted by f ∗. The choice for the convexity
parameters σδ,σdi

has an influence on the solution, and for further insight on how to choose
them please see Remark 3.3 below.

Problem 3.4 is inspired by phase-1 problems from linear programming that are solved to
find a feasible solution to a given set of linear constraints [78]. This technique reformulates
a problem that may have infeasible points into a problem that is always feasible. Here,
the strongly convex part −δ + σδ

2 δ
2 in (3.4a) alone guarantees that a vector d∗ > 0 which

satisfies W d∗ > 0 is the candidate for an optimal solution of (3.4), as in this case there exists
a δ∗ > 0 with −δ∗ + σ∗

δ

2 δ
∗2 < 0. Finally, we add the term

∑N
i=1

σdi
2N d2

i in (3.4a) to obtain a
strongly convex objective function f (d,δ)which in turn yields a differentiable dual objective
function. In the following lemma, we show that even with the addition of this strongly
convex term in d, the optimal objective function value of (3.4) indicates the existence of a
vector d > 0 such that W d > 0. The conversion from a feasibility problem to an equivalent
optimization problem allows us to apply distributed optimization algorithms later.

Lemma 3.1. There exists a d > 0 such that W d > 0 if and only if there exists a feasible
point (d,δ) for (3.4) with a negative optimal objective function value f ∗ < 0.

Proof. ⇒: Let W d > 0 hold for some d = d̃ > 0. Set λ1 =mini(d̃i), and λ2 = mini((W d̃)i).
Then, δ̃ :=min(λ1,λ2/γ)> 0. Furthermore, (d,δ) = (0,0) and (d,δ) = (d̃, δ̃) are feasible
for problem (3.4). Hence, by convexity, for all t ∈ [0,1], (d,δ) = (t d̃, tδ̃) is feasible for (3.4).
Now consider the objective function Φ(t) at (t d̃, tδ̃)

Φ(t) := −tδ̃+
σδ
2

t2δ̃2 +
N
∑

i=1

σdi

2N
t2d̃2

i .

Since Φ
′
(0) = −δ̃ < 0, we see that if we choose 0< t ≤ 1 sufficiently small, then Φ(t) <

Φ(0) = 0. We then set (d,δ) = (t d̃, tδ̃) which has the desired properties.
⇐: We now show that if there exists a feasible point (d̃, δ̃) of (3.4) with negative objective
function value, then δ̃ > 0 and W d̃ > 0. In fact, a negative objective function value can only
be achieved if δ̃ > 0. Now

d̃ ≥ δ̃1N > 0, W d̃ ≥ γδ̃1N > 0.

Hence, setting d = d̃ finishes the proof.

The consequence of Lemma 3.1 is that the optimization problem 3.4 can be regarded as
a stability condition, which is summarized in the following theorem.

27

3 Distributed stability analysis with local model information

Theorem 3.1. Given Assumption 2.1, the system (3.1),(3.2) is connectively stable if the opti-
mization problem 3.4 has a negative optimal objective value, i.e. f ∗ < 0.

Proof. The proof is straightforward and follows from Theorem (2.1) and Lemma (3.1).

This theorem is the basis for the distributed stability test that follows in Section 3.4.1.
Notice that it enables us to decide if a system is stable based purely on the sign of the optimal
function value.

Example 3.2. We can apply Theorem 3.1 to the system from Example 3.1. First, we need to
construct the matrix W and obtain

W =

1.28 −1.14 0 0
−0.16 0.59 −0.75 0

0 −0.47 1.01 −0.33
0 0 −0.68 1.67

.

Notice that each multi-dimensional subsystem is summarized by one numerical value. The
optimal function value with σdl

= 10−3,σδ = 10−3 is computed to be f ∗ = −0.0858 < 0.
Therefore, we can conclude connective stability of the system. Indeed, the corresponding
vector d = [8.02, 8.84,4.97, 2.13]T leads to a positive product W d > 0, which means that
the original stability condition is satisfied.

3.3.2 α-block diagonal Lyapunov stability

In this subsection, we present an alternative method for testing stability of large-scale systems
based on the Lyapunov linear matrix inequality (LMI). In Section 2.1, we already mentioned
Lyapunov stability analysis for LTI systems and the special case of diagonal Lyapunov stability.
A generalization of diagonal stability is α-block diagonal Lyapunov stability which we define
as follows.

Definition 3.2. [69, 70] Given is a partition α = (α1, . . . ,αk) of the state indices {1, . . . , n}
where each partition set αi has the cardinality nαi

and
∑k

i=1 nαi
= n. A system is called α-

block-diagonally Lyapunov stable if there exists a block matrix P ∈ S++ with the given block
partition α such that P = diag(P1, . . . , Pk) with P i ∈ S

nαi
++, i = 1, . . . , k, and such that

ATP + PA≺ 0. (3.5)

To illustrate the block partition, consider the following example.

Example 3.3. Given the block partition α = (α1,α2,α3) with α1 = {1},α2 = {2,3},α3 =
{4, 5,6} and nα1

= 1, nα2
= 2, nα3

= 3, a system with a dynamics matrix A∈ R6×6 is α-block-
diagonally Lyapunov stable if there is a matrix P with the following structure

P =

P11 0 0 0 0 0
0 P22 P23 0 0 0
0 P23 P33 0 0 0
0 0 0 P44 P45 P46

0 0 0 P45 P55 P56

0 0 0 P46 P56 P66

,

28

3.3 Sufficient stability conditions with a sparsity structure

such that (3.5) is satisfied.

The notion of α-block diagonal Lyapunov stability is the basis for the second distributed
stability test in the following section. If we do not have the block diagonal structural restric-
tion on the matrix P, then the Lyapunov inequality ATP + PA≺ 0 has no sparsity structure,
and no distributed approaches are applicable.

Assumption 3.1 has the following consequence for this section: The partition α coincides
with the indices of the individual subsystems and it follows that the block sizes nαi

of the
blocks P i, i = 1, . . . , N , are determined by the subsystem sizes ni in (3.1).

Example 3.4. Applying the last comment to the example system from Example 3.1, the
matrix P has four blocks, each with size two. Thus, α= (α1,α2,α3,α4)with α1 = {1, 2},α2 =
{3, 4},α3 = {5,6},α4 = {7,8} and nαi

= 2∀i.

The overall goal of this section is to find a solution to the Lyapunov inequality with
block diagonal P, i.e. to find a solution to the LMI (3.5). Therefore, in the following we
consider a problem with a sparsity structure induced by the term (ATdiag(P1, . . . , PN) +
diag(P1, . . . , PN)A) for any P i ∈ Sni . Given Assumption 3.1, the sparsity structure of this term
is identical to the sparsity structure of Asym = (A+ AT). As stated in Section 2.4.2, it follows
that the block sparsity structure of the problem is also described by the undirected system
graph Gs,u, while the element sparsity structure is described by the graph GLMI = (VLMI,ELMI).

In order to find a solution to the LMI (3.5), we use the same idea as in Section 3.3.1
and formulate an optimization problem. We start with the following problem with convexity
parameters σδ ∈ R++ and σP l ∈ R++,

min
δ∈R,P l∈Snl

f (δ, P l) = −δ+
σδ
2
δ2 +

N
∑

l=1

σP l

2N
||P l ||2F (3.6a)

s.t. F(P,δ)� 0, (3.6b)

P l −δInl
� 0 for l = 1, . . . , N , (3.6c)

where

F(P,δ) := −ATdiag(P1, . . . , PN)− diag(P1, . . . , PN)A− γδIn,

and γ ∈ R++ is arbitrary. Again, the variable δ is used to make the problem feasible, indepen-
dent of the stability of the system. The optimal function value of problem (3.6) is denoted
by f ∗.

Lemma 3.2. The inequality (3.5) holds for some P = P̃ ∈ Sn with P̃ = diag(P̃1, . . . , P̃N) if and
only if there exists a feasible point (P1, . . . , PN ,δ) for (3.6) with f ∗ < 0.

Proof. The proof is identical to the proof of Lemma 3.1 because the overall problem formu-
lation is identical and the objective function of (3.6) is also convex. Additionally, as in the
proof of Lemma 3.1, f ∗ < 0 implies that δ∗ > 0.

Similarly to the vector Lyapunov test, the optimization problem (3.6) can be considered
to be a stability condition based on Lemma 3.2 and we state this in the following theorem.

29

3 Distributed stability analysis with local model information

Theorem 3.2. The system (3.1),(3.2) is α-block-diagonally Lyapunov stable if the optimization
problem (3.6) has a negative optimal objective value, i.e. f ∗ < 0.

Proof. The proof is straightforward and follows from Lemma (3.2) and standard Lyapunov
stability theory.

Example 3.5. When we apply Theorem 3.2 to the system dynamics from Example 3.1
with σP l = 10−3,σδ = 10−3, we obtain the optimal function value f ∗ = −49.4249 < 0,
so the system is α-block-diagonally Lyapunov stable. The obtained corresponding Lyapunov
matrix is given by

P = diag

��

98.85 0
0 98.95

�

,

�

131.71 3.61
3.61 99.25

�

,

�

98.85 0
0 98.95

�

,

�

98.85 0
0 98.95

��

,

which is positive definite, and the matrix AT P + PA is negative definite.

Remark 3.2. It is clear that the approach of using an optimization based approach to solve
Lyapunov inequalities, and especially doing so in a distributed fashion, is not restricted to
stability analysis. In fact, we will see later on in this thesis that it can be used for model
reduction and to guarantee stability of the closed loop in a control design setting. Further
investigations of the applicability are considered for future work.

3.3.3 Summary

In this section, we reformulated classical stability conditions into optimization problems.
Both optimization problems exhibit a sparsity structure that concurs with the interconnection
structure of the original system. For the first condition, the vector Lyapunov condition, the
structure stems from the original stability condition. For the second condition, the Lyapunov
inequality, the structure needs to be imposed, which introduces conservativeness and we lose
the necessity of the original condition. The sparsity structure will be useful in the following
sections to achieve stability conditions that require only local model information.

3.4 Distributed optimization for stability analysis with
local model information

This section continues on the path from the previous one with the goal of developing dis-
tributed stability tests. In the previous section, we have reformulated stability conditions
into optimization problems exhibiting a sparsity structure. In this section, we build upon
this basis and use distributed optimization techniques to check stability of interconnected
LTI systems using local model information.

3.4.1 Vector Lyapunov function

In Section 3.3.1, an optimization problem has been derived which serves as a condition for
connective stability, see Theorem 3.1. In this subsection, we employ distributed optimiza-
tion techniques to solve this optimization problem such that only local model information

30

3.4 Distributed optimization for stability analysis with local model information

according to Definition 3.1 is required. The presented distributed optimization approach is
based on the results in [67, 68]. The information exchange topology of the employed algo-
rithm is determined by the structure of the constraints, which corresponds to the graph Gs,u.
Given Assumption 3.1, the structure also coincides with the computation graph Gcomp, as
desired by our goal formulated in Problem 1. In the following, we describe how the opti-
mization problem can be solved distributedly using the DCNA from [67, 68] and Section 2.5.
We solve the dual problem instead of the original one because it enables the distribution of
the computation. In order to derive the dual problem of (3.4), consider the corresponding
Lagrangian

L (d,δ,λ,µ) = −δ+
σδ
2
δ2 +

N
∑

i=1

σdi

2N
d2

i +λ
T(−W d + γδ1N) +µ

T(−d +δ1N)

= (−1+
N
∑

i=1

(γλi +µi))δ+
σδ
2
δ2 +

N
∑

i=1

�

−
N
∑

j=1

λ jWji −µi

�

di +
σdi

2N
d2

i .

The Lagrangian is clearly separable in δ and in di. The corresponding dual function is given
by

φ(λ,µ) =min
δ∈R

¨

(−1+
N
∑

i=1

(γλi +µi))δ+
σδ
2
δ2

«

+
N
∑

i=1

min
di∈R

¨�

−
N
∑

j=1

λ jWji −µi

�

di +
σdi

2N
d2

i

«

, (3.7)

which can be evaluated in parallel.
Due to the uniqueness of the minimizer di(λ,µi) and δ(λ,µ) in (3.7), it follows that the

gradient of the concave dual function is given by [67, Theorem 3.1]

∇λi
φ(λ,µ) =∇λi

L (d(λ,µ),δ(λ,µ),λ,µ) = γδ(λ,µ)−
N
∑

j=1

Wi jd j(λ,µ j),

∇µi
φ(λ,µ) =∇µi

L (d(λ,µ),δ(λ,µ),λ,µ) = δ(λ,µ)− di(λ,µi).

In addition, it can be shown that the gradient of the dual function is Lipschitz continuous
with Lipschitz constant [67]

L =
N
∑

i=1

N(
∑N

j=1 W 2
ji + 1)

σdi

+
N(1+ γ2)
σδ

. (3.8)

Finally, the DCNA can be applied to maximize the dual function in parallel to obtain Al-
gorithm 3. It should be mentioned that the DCNA can be implemented with event-based
communication to reduce the communication effort as detailed in [68], but this aspect is
outside of the scope and not a contribution of this thesis.

Starting with (λ0,µ0) = (0, 0), the following convergence result for Algorithm 3 holds.

31

3 Distributed stability analysis with local model information

Algorithm 3 Distributed solution of optimization problem (3.4).
For k ≥ 0 do in parallel:

1. Given λk and µk compute

δk+1 = argmin
δ∈R

¨

(−1+
N
∑

i=1

(γλk
i +µ

k
i))δ+

σδ
2
δ2

«

,

dk+1
i = argmin

di∈R

¨

−

�

N
∑

j=1

λk
j Wji +µ

k
i

�

di +
σdi

2N
d2

i

«

.

2. Compute

∇λi
φ(λk,µk) = γδk+1 −

N
∑

j=1

Wi jd
k+1
j ,

∇µi
φ(λk,µk) = −dk+1

i +δk+1.

3. Find

λ̃k
i = arg max

λ≥0

§

∇λi
φ(λk,µk)λ−

L
2
(λ−λk

i)
2
ª

,

µ̃k
i = arg max

µ≥0

§

∇µi
φ(λk,µk)µ−

L
2
(µ−µk

i)
2
ª

.

4. Find

tk
i = arg max

t≥0

¨

−
L
2

t2 +

�

k
∑

j=0

j + 1
2
∇λi
φ(λ j,µ j)

�

t

«

,

vk
i = arg max

v≥0

¨

−
L
2

v2 +

�

k
∑

j=0

j + 1
2
∇µi
φ(λ j,µ j)

�

v

«

.

5. Set

λk+1
i =

k+ 1
k+ 3

λ̃k
i +

2
k+ 3

tk
i ,

µk+1
i =

k+ 1
k+ 3

µ̃k
i +

2
k+ 3

vk
i .

If k = kmax from Theorem 3.3, stop. Otherwise increase k and return to Step 1.

32

3.4 Distributed optimization for stability analysis with local model information

Theorem 3.3. Taking kmax = d
p

8L/εe − 1 with ε > 0 and Lipschitz constant L defined by
(3.8), then after iteration kmax of Algorithm 3 an approximate solution to problem (3.4) is

(d̂, δ̂) :=
kmax
∑

j=0

2(j + 1)
(kmax + 1)(kmax + 2)

(d j+1,δ j+1),

which satisfies the following bounds on the primal gap

−ε||
�

λ∗

µ∗

�

||2 ≤ −δ̂+
σδ
2
δ̂2 +

N
∑

i=1

σdi

2N
d̂i

2
− f ∗ ≤ 0, (3.9)

as well as the following bound on the constraint violation

||
�

−W d̂ + γδ̂1N

−d̂ + δ̂1N

�+

|| ≤ ε||
�

λ∗

µ∗

�

||, (3.10)

where f ∗ is the optimal function value of problem (3.4) and []+ is the componentwise projection
onto the nonnegative real numbers. Moreover, λ∗ and µ∗ are optimal dual multipliers, i.e. they
maximize the concave dual function φ(λ,µ) in (3.7).

Proof. For ease of notation, we define

f (d,δ) = −δ+
σδ
2
δ2 +

N
∑

i=1

σdi

2
d2

i , W (d,δ) =

�

−W d + γδ1N

−d +δ1N

�

, Λ= (λT,µT)T.

It can be shown that the following inequality holds [67, Lemma 3.3,Remark 3.8]

−||Λ∗||||[W (d̂, δ̂)]+|| ≤ f (d̂, δ̂)− f ∗ ≤ f (d̂, δ̂)−φ(λ̂, µ̂), (3.11)

where (λ̂, µ̂) := (λ̃k, µ̃k). Moreover, applying Theorem 3.4 in [67] we have

f (d̂, δ̂)−φ(λ̂, µ̂)≤ min
Λ∈R2N

+

§

2L
(kmax + 1)2

||Λ||2 − ||W (d̂, δ̂),Λ||
ª

. (3.12)

It is straightforward to show that the optimal solution of the right-hand side of (3.12) is
obtained at Λ= (kmax + 1)2/(4L)[W (d̂, δ̂)]+ and it follows that

f (d̂, δ̂)−φ(λ̂, µ̂)≤ −
(kmax + 1)2

8L
||[W (d̂, δ̂)]+||2 ≤ 0. (3.13)

Combining (3.11) and (3.13) yields

(k+ 1)2

8L

�

W (d̂, δ̂)
�+

2
− ‖Λ∗‖

�

W (d̂, δ̂)
�+

≤ 0

and inequality (3.10) follows immediately as well as (3.9).

A similar proof for this convergence rate is given in [79].
As the norm of the optimal dual multipliers λ∗ and µ∗ is not known beforehand, the lower

bound on the primal gap in (3.9) and the upper bound on the constraint violation in (3.10)
cannot be evaluated directly with the results from the distributed algorithm in order to decide
if a system is connectively stable. Therefore, we propose the use of Algorithm 4.

Finally, given Algorithms 3 and 4, we can state the following theorem.

33

3 Distributed stability analysis with local model information

Algorithm 4 Iterative adjustment of accuracy parameter ε.

1. Choose a minimum accuracy parameter εmin, an initial accuracy parameter ε0 and run
Algorithm 3. Set ε1 = θε0, where θ ∈ (0,1).

2. Rerun Algorithm 3.

3. If εi > εmin, set εi+1 = θεi and go back to step 2. Otherwise stop.

The subsystems then need to evaluate if the obtained series of objective function values of
all steps converge to a negative value, or if a convergence to 0 occurs.

Theorem 3.4. Given Assumptions 2.1 and 3.1, and the parameters εmin and ε0, the subsys-
tems (3.1) can make a distributed decision on the connective stability of system (3.2) using
Algorithms 3 and 4 using local model information according to Definition 3.1.

Proof. Algorithm 3 can be set up to be completely distributed with respect to the computation
graph Gcomp which in this case corresponds to the undirected system graph Gs,u. Thus, only
neighboring subsystems need to communicate during the optimization to exchange their
variables. This follows immediately from the sparsity structure of W for the computation
of dk+1

i in Step 2 of Algorithm 3. The computation of δk+1 in Step 1 of Algorithm 3, which
is a globally shared variable, can also be performed with local communication by using a
consensus algorithm [80]: Each agent computes the term γλi + µi, and the average of all
terms is determined with only local communication in a consensus phase. Knowing the size
of the network N , as allowed by Definition 2.8, each agent obtains the sum over all individual
terms, and it can compute δk+1 by itself. In the same way, the approximate objective function
value f (d̂(ε), δ̂(ε)) and the Lipschitz constant L defined in (3.8) can be computed with only
local communication.

With Algorithm 4, the subsystems decide on connective stability if f (d̂(ε), δ̂(ε)) 6→ 0. In
this case, the subsystems observe a consistent convergence to an optimal value for decreasing
values of ε. If f (d̂(ε), δ̂(ε)) → 0 for ε → 0, i.e. no convergence to a value other than 0 is
observed, no decision on connective stability can be made because of the known sufficiency
of the condition.

Remark 3.3. Regarding the choice of the convexity parameters σdi
and σδ in the cost func-

tion, we observe that Algorithm 3 has a complexity of O(
q

L
ε) according to Theorem 3.3. It

follows, on the one hand, that large convexity parameters σdi
and σδ yield a small Lipschitz

constant L defined by (3.8), which reduces the number of iterations. On the other hand,
in this case the accuracy ε has to be chosen smaller, which raises the number of iterations,
as the objective function value (3.4a) and, therefore, the primal gap moves closer to zero.
It follows that there is a trade-off in the choice, but that the choice has little effect on the
overall computational effort.

Remark 3.4. In parallel to the work presented in this thesis, a new distributed dual gradient
algorithm for linearly constrained separable problems with strongly convex objective func-
tion is published in [81] where a linear convergence rate is shown. This is a good alternative
to the algorithm that we use. However, our focus is on the presentation of the feasibility of a

34

3.4 Distributed optimization for stability analysis with local model information

distributed stability test with local model information, and not primarily on the numerical al-
gorithm. Therefore, using the DCNA is just as valid as the algorithm from [81]. Furthermore,
the DCNA facilitates an event-triggered communication [68].

Concluding this section, we now have a method to test connective stability of system (3.2)
using local model information according to Definition 3.1 based on Theorem 3.4.

3.4.2 α-block diagonal Lyapunov inequality

Similarly to the previous subsection, we employ a distributed optimization approach to dis-
tributedly decide on α-block diagonal Lyapunov stability according to Theorem 3.2. In order
to realize this, we need to solve optimization problem (3.6), which is achieved with a decom-
position method for LMIs such that we can apply distributed optimization methods. How-
ever, in order for the decomposition method to be applicable, we have to make the following
assumption [82].

Assumption 3.2. GLMI is a chordal graph.

A chordal graph is defined to be a graph where every cycle of length ≥ 4 has a chord,
i.e. an edge joining non-consecutive vertices of the cycle [83]. Examples of chordal graphs
are line graphs, star graphs and trees. Chordal graphs occur in practice, e.g. in vehicle
platoons. Distribution systems such as power systems are typically not chordal because of
their mesh-like structure. As a reminder, the graph GLMI describes the element structure of
the matrix Asym = A+ AT. As we have previously noted in relevance to Assumption 3.1, this
structure coincides with the element structure of the LMI ATP+PA� 0. IfGLMI does not satisfy
this assumption, it is possible to chordalize GLMI in polynomial time [82]. This effectively
means that we need to allow additional blocks in the matrix P, which leads to additionally
required connections in the computation graph Gcomp. Consequently, the subsystems cannot
decide on α-block diagonal Lyapunov stability using local model information according to
Definition 3.1, unless they decide to cooperate with additional subsystems.

Remark 3.5. The authors of [77] investigate system structures that result in a Lyapunov
inequality with a graphical representation that is chordal. However, they make no connection
between the chordal structure of the Lyapunov inequality and the original structure. They
are merely concerned with the possibility of any decomposition, not a decomposition among
subsystems.

To decompose the LMI (3.6b), we apply the range-space conversion method [82]. The
idea of this decomposition method is to introduce additional slack variables that ensure that
overlapping elements of the decomposed LMI are equal. This allows the application of the
DNCA, which was already employed in the previous subsection.

To achieve the decomposition, we need to introduce some notations. First, let N =
{1, . . . , n} and consider the r-space sparsity pattern [82] of constraint (3.6b), which is

SPLMI = {(i, j) ∈ N ×N : Fi j(P,δ) 6=0 for some (P1, . . . , PN ,δ) ∈ Sn1 × . . .× SnN× R, i 6= j}.

We use the following definitions [82]:

35

3 Distributed stability analysis with local model information

Let F ⊆N ×N and define

F • = F ∪ {(i, i) : i ∈ N } ,

Sn(F, 0) =
�

X ∈ Sn : X i j = 0 if (i, j) /∈ F •
	

,

SC =
�

X ∈ Sn : X i j = 0 if (i, j) /∈ C × C
	

∀ C ⊆N ,

SC
+ =

�

X ∈ SC : X � 0
	

∀ C ⊆N ,

J(C) = {(i, j) ∈ C × C : i ≤ j} ∀ C ⊆N .

One has F(P,δ) ⊆ Sn(SPLMI, 0) for all (P1, . . . , PN ,δ) and the sparsity structure of Sn(SPLMI, 0)
coincides with that of the adjacency matrix of GLMI.

Consider the maximal cliques C1, . . . , Cp of GLMI and denote by Ei j the n × n sym-
metric matrix whose components (i, j) and (j, i) are 1 and all others are 0. Thus, the
set

�

Ei j : (i, j) ∈ N ×N , i ≤ j
	

is a basis of Sn. Defining the sets [82]

J =
p
⋃

s=1

J(Cs) and Γ (i, j) = {s : i ∈ Cs, j ∈ Cs} ∀(i, j) ∈ J ,

the LMI (3.6b) is equivalent to

Ei j •
∑

s∈Γ (i, j)

W s − Ei j • F(P,δ) = 0 (3.14)

for (i, j) ∈ J and W s ∈ SCs
+ for s = 1, . . . , p. For details, we refer to Section 5.2 in [82]. It

follows that problem (3.6) can be written as

min
δ∈R,P l∈Snl

−δ+
σδ
2
δ2 +

N
∑

l=1

σP l

2N

P l

2

F (3.15a)

Ei j •
∑

s∈Γ (i, j)

W s − Ei j • F(P,δ) = 0 for (i, j) ∈ J , (3.15b)

W s ∈ SCs
+ for s = 1, . . . , p, (3.15c)

δInl
− P l � 0 for l = 1, . . . , N . (3.15d)

To obtain a strongly convex objective function for (3.15) which guarantees the differentia-
bility of the gradient of the corresponding dual objective function, we modify (3.15) to

min
δ∈R,P l∈Snl

−δ+
σδ
2
δ2 +

N
∑

l=1

σP l

2N

P l

2

F +
p
∑

s=1

σW s

2p
‖W s‖2

F (3.16a)

Ei j •
∑

s∈Γ (i, j)

W s − Ei j • F(P,δ) = 0 for (i, j) ∈ J , (3.16b)

W s ∈ SCs
+ for s = 1, . . . , p, (3.16c)

δInl
− P l � 0 for l = 1, . . . , N . (3.16d)

Lemma 3.3. The inequality (3.5) holds for some P = P̃ ∈ Sn with P̃ = diag(P̃1, . . . , P̃N) if and
only if there exists a feasible point (P1, . . . , PN ,δ, W 1, . . . , W p) for (3.16) with f ∗ < 0, where f ∗

denotes the optimal function value of problem (3.16).

36

3.4 Distributed optimization for stability analysis with local model information

Proof. The proof is similar to the proof of Lemma 3.1.
⇒: Let (3.5) hold for some P = P̃ ∈ Sn with P̃ = diag(P̃1, . . . , P̃N). Set λ1 = λmin(P̃)

and λ2 = λmin

�

−ATdiag(P̃1, . . . , P̃N)− diag(P̃1, . . . , P̃N)A
�

. Then, δ̃ := min(λ1,λ2/γ) > 0
holds. Furthermore, (P1, . . . , PN ,δ) = (P̃1, . . . , P̃N , δ̃) and (P1, . . . , PN ,δ) = (0, . . . , 0) are
feasible for problem (3.6) and, due to the equivalency of (3.14) and (3.6b), there exist W̃ s ∈
SCs
+ for s = 1, . . . , p such that (P1, . . . , PN ,δ, W 1, . . . , W p) = (P̃1, . . . , P̃N , δ̃, W̃ 1, . . . , W̃ p)

and (P1, . . . , PN ,δ, W 1, . . . W p) = (0, . . . , 0) are feasible for the problem (3.16). Hence, by
convexity, for all t ∈ [0,1], (P1, . . . , PN ,δ, W 1, . . . W p) = (t P̃1, . . . , t P̃N , t̃δ, tW̃ 1, . . . , tW̃ p)
is feasible for the problem (3.16). Now consider the objective function value Φ(t) at
(t P̃1, . . . , t P̃N , t̃δ, tW̃ 1, . . . , tW̃ p)

−tδ+
σδ
2

t2δ2 +
N
∑

l=1

σP l

2N
t2‖|P l ||2F +

p
∑

s=1

σW s

2p
t2||W s||2F .

Since Φ
′
(0) = −δ̃ < 0, note if we choose 0 < t ≤ 1 sufficiently small, then Φ(t) < Φ(0) =

0. We then set (P1, . . . , PN ,δ, W 1, . . . W p) = (t P̃1, . . . , t P̃N , t̃δ, tW̃ 1, . . . , tW̃ p) which has the
desired properties.
⇐: We now show that if there exists a feasible point (P̃1, . . . , P̃N , δ̃, W̃ 1, . . . , W̃ p) of (3.16)

with negative objective function value, then δ̃ > 0 and (P̃1, . . . , P̃N) satisfies (3.5). As a
negative objective function value can only be achieved if δ̃ > 0, the equivalency of (3.14)
and (3.6b) yields that

ATdiag(P̃1, . . . , P̃N) + diag(P̃1, . . . , P̃N)A� −γδ̃In ≺ 0

and

P̃ l � δ̃Inl
� 0 for l = 1, . . . , N .

Setting diag(P1, . . . , PN) = diag(P̃1, . . . , P̃N) finishes the proof.

Finally, we rewrite F(P,δ) in a such way that it allows a decomposition. To this end, letBl

be defined as

Bl =

¨

l−1
∑

i=1

ni + 1, . . . ,
l
∑

i=1

ni

«

×

¨

l−1
∑

i=1

ni + 1, . . . ,
l
∑

i=1

ni

«

.

For l = 1, . . . , N and (i, j) ∈Bl , we define

F0 = −γIn,

F l
i j =

1
2

�

−ATEi j − Ei jA
�

if i < j,
1
2

�

−ATE ji − E jiA
�

if i > j,

−ATEi j − Ei jA if i = j,

and with il := i −
∑l−1

s=1 ns, we can rewrite F(P,δ) as

F(P,δ) = F0δ+
N
∑

l=1

∑

(i, j)∈Bl

F l
i j P

l
il jl

.

37

3 Distributed stability analysis with local model information

To solve problem (3.16) in parallel, we again employ the DCNA. To obtain the dual problem,
consider the following Lagrangian of problem (3.16)

L (δ, P, W,Λ, M)

= −δ+
σδ
2
δ2 +

N
∑

l=1

σP l

2N

P l

2

F +
p
∑

s=1

σW s

2p
‖W s‖2

F

+
∑

(i, j)∈J

Λi j

Ei j •
∑

s∈Γ (i, j)

W s − Ei j • F(P,δ)

!

+
N
∑

l=1

M l •
�

δInl
− P l

�

= −

∑

(i, j)∈J

Λi j Ei j • F0 + 1−
N
∑

l=1

M l • Inl

!

︸ ︷︷ ︸

xδ

δ+
σδ
2
δ2

+
N
∑

l=1

�

∑

(i, j)∈Bl

−

∑

(a,b)∈J

ΛabEab • F l
i j +M l

il jl

!

︸ ︷︷ ︸

=X l
P il jl

P l
il jl
+
σP l

2N

P l

2

F

�

+
p
∑

s=1

�

−
∑

(i, j)∈J(Cs)

−Λi j Ei j

︸ ︷︷ ︸

X s
W

•W s +
σW s

2p
‖W s‖2

F

�

= −xδδ+
σδ
2
δ2 +

N
∑

l=1

h

−X l
P • P l +

σP l

2N

P l

2

F

i

+
p
∑

s=1

�

−X s
W •W s +

σW s

2p
‖W s‖2

F

�

,

which is separable in δ, P1, . . . , PN , and W 1, . . . , W p. The corresponding dual function is

ϕ(Λ, M) = min
δ∈R,P l∈Snl ,W s∈SCs

+

L (δ, P, W,Λ, M)

=min
δ∈R

n

−xδδ+
σδ
2
δ2
o

+
N
∑

l=1

min
P l∈Snl

n

−X l
P • P l +

σP l

2N

P l

2

F

o

+
p
∑

s=1

min
W s∈SCs

+

�

−X s
W •W s +

σW s

2p
‖W s‖2

F

�

= −xδδ(Λ, M) +
σδ
2
δ(Λ, M)2 +

N
∑

l=1

h

−X l
P • P l(Λ, M) +

σP l

2N

P l(Λ, M)

2

F

i

+
p
∑

s=1

�

−X s
W •W s(Λ, M) +

σW s

2p
‖W s(Λ, M)‖2

F

�

,

where δ(Λ, M), P l(Λ, M), and W s(Λ, M) are the unique solutions. As before, in the vector
Lyapunov function case, ϕ(Λ, M) can be evaluated in parallel and is continuously differen-
tiable due to the uniqueness of the solutions δ(Λ, M), P l(Λ, M), and W s(Λ, M). Moreover,

38

3.4 Distributed optimization for stability analysis with local model information

the gradient of ϕ(Λ, M) with

∇Λi j
ϕ(Λ, M) = Ei j •

∑

s∈Γ (i, j)

W s(Λ, M)

−Ei j •
�

F0δ(Λ, M) +
N
∑

l=1

∑

(i, j)∈Bl

F l
i j P

l
il jl
(Λ, M)

�

for (i, j) ∈ J

and

∇M lϕ(Λ, M) = δ(Λ, M)Inl
− P l(Λ, M) for l = 1, . . . , N ,

is again Lipschitz continuous with Lipschitz constant

L =
p
∑

s=1

p‖ECs
‖2/σW s +

N
∑

l=1

N
�

F̂ l

2
+ 1

�

/σP l +

∑

(i, j)∈J

�

Ei j • F0
�2
+ n

!

/σδ, (3.17)

where ECs
∈ R|J(Cs)|×n2

is the matrix that contains the rows vec(Ei j)T for (i, j) ∈ J(Cs) and F̂ l ∈
R(|J |)×n2

l is the matrix that contains rows (Eab • F l
i1 j1 , . . . , Eab • F l

i|Bl | j|Bl |
) for (a, b) ∈ J . Finally,

the DCNA can be applied to maximize the dual function in parallel to obtain Algorithm 5.
Again, for ease of presentation, the aspect of event-based communication is not presented,
but we refer to [68] for details.

A convergence result analogous to Theorem 3.3 can be made for Algorithm 5 and is stated
in the following theorem.

Theorem 3.5. Taking kmax = d
p

8L/εe − 1 with ε > 0 and Lipschitz constant L defined by
(3.17), then after iteration kmax of Algorithm 5 an approximate solution to problem (3.16) is
given by

(P̂, Ŵ , δ̂) :=
kmax
∑

j=0

2(j + 1)
(kmax + 1)(kmax + 2)

(P j+1, W j+1,δ j+1)

and the following bounds on the primal gap are obtained

−ε||Ω∗||2F ≤ −δ̂+
σδ
2
δ̂2 +

N
∑

l=1

σP l

2N
||P̂ l ||2F +

p
∑

s=1

σW s

2p
||Ŵ s||2F − f ∗ ≤ 0,

where Ω∗ = diag(diag((Λ∗11, . . . ,Λ∗nn)), M1∗, . . . , M N ∗) denotes the matrix with optimal dual
multipliers on its diagonal and f ∗ is the optimal function value of problem (3.16). Moreover,
the following bound on the constraint violation is obtained

||Π(P̂, Ŵ , δ̂)||F ≤ ε||Ω∗||F ,

where Π(P, W,δ) = diag(diag(E(P, W,δ)), [δIn1
− P1]+, . . . , [δInN

− PN]+) and E(P, W,δ) :=
(E11 •

∑

s∈Γ (1,1)W
s − E11 • F(P,δ), . . . , Enn •

∑

s∈Γ (n,n)W
s − Enn • F(P,δ))T. Here []+ denotes the

projection onto the space of symmetric positive semidefinite matrices.

Proof. The proof is similar to the proof of Theorem 3.3.

39

3 Distributed stability analysis with local model information

Algorithm 5 Distributed solution of optimization problem (3.16).
For k ≥ 0 do

1. Given the necessary M l,k and components Λk
i j, each subsystem computes

δk+1 = arg min
δ∈R

n

−xδδ+
σδ
2
δ2
o

using a consensus algorithm. Furthermore, the subsystems compute in parallel:

P l,k+1 = argmin
P l∈Snl

n

−X l
P • P l +

σP l

2N

P l

2

F

o

,

W s,k+1 = argmin
W s∈SCs

+

§

−X s
W •W s +

σW s

2p
‖W s‖2

F

ª

,

for l = 1, . . . , N , s = 1, . . . , p, and send P l,k+1, and W s,k+1 to their neighbors.

For (i, j) ∈ J and l = 1, . . . , N , the subsystems do in parallel:

2. Given δk+1, P l,k+1, and W s,k+1 compute

∇Λi j
ϕ(Λk, M k) = Ei j •

∑

s∈Γ (i, j)

W s,k+1 − Ei j •

F0δk+1 +
N
∑

l=1

∑

(i, j)∈Bl

F l
i j P

l,k+1
il jl

!

,

∇M lϕ(Λk, M k) = δk+1Inl
− P l,k+1.

3. Find

Y k
i j = argmax

Yi j∈R

§

∇Λi j
ϕ(Λk, M k)Yi j −

L
2

�

Yi j −Λk
i j

�2
ª

,

H l,k = argmax
H l∈Snl

+

§

∇M lϕ(Λk, M k) •H l −
L
2

H l −M l,k

2

F

ª

.

4. Find

Z k
i j = arg max

Zi j∈R

¨

−
L
2

Z2
i j +

k
∑

j=0

j + 1
2
∇Λi j

ϕ(Λ j, M j)Zi j

«

,

T l,k = arg max
T l∈Snl

+

¨

−
L
2

T l

2

F +
k
∑

j=0

j + 1
2
∇M lϕ(Λ j, M j) • Tl

«

.

5. Set

Λk+1
i j =

k+ 1
k+ 3

Y k
i j +

2
k+ 3

Z k
i j,

M l,k+1 =
k+ 1
k+ 3

H l,k +
2

k+ 3
T l,k.

6. If k = kmax from Theorem 3.5, stop. Otherwise, increase k and go to Step 1.

40

3.5 Numerical illustration and validation of stability tests

These results yield the following theorem.

Theorem 3.6. Given Assumptions 3.1 and 3.2, and the parameters εmin and ε0, the subsys-
tems (3.1) can make a distributed decision on the α-block diagonal Lyapunov stability of sys-
tem (3.2) using Algorithms 5 and 4 using local model information according to Definition 3.1.

Proof. Due to the definition of X l
P and X s

W in Step 1 of Algorithm 5 and the definition
of ∇Λi j

ϕ(Λk, M k) in Step 2, it follows that the required communication topology of Algo-
rithm 5 equals the given communication topology of Gcomp as we assumed GLMI to be chordal
in Assumption 3.2. Hence, Algorithm 5 uses only local model information according to Def-
inition 3.1.

The rest of the proof is identical to the proof of Theorem 3.4.

Note that all subproblems in the above algorithm have closed form solutions. For example,
we derive the closed form solution for W s,k+1 in Step 1: Consider the spectral decomposition
of the symmetric matrix X s

W

X s
W =QΣQT = (Q+,Q−)

�

Σ+ 0
0 Σ−

��

QT
+

QT
−

�

,

where Σ+ contains the non-negative eigenvalues of X s
W . It follows that the optimal solu-

tion W s,k+1 is the projection on the positive semidefinite part of X s
W

W s,k+1 =
pQ+Σ+Q

T
+

σW s

.

Identically, solutions for H l,k and T l,k can be obtained.

3.4.3 Summary

In this section, we derived two different methods to check if an interconnected system is
stable. Both tests are based on the stability conditions from the previous section, namely
two optimization problems. The first condition is based on the vector Lyapunov function
approach, the second on α-block diagonal Lyapunov stability. Using modern distributed op-
timization techniques in the form of the DCNA, two algorithms were obtained that allow
the subsystems to decide on stability using only local model information. In particular, the
subsystems only need to share model data and their optimization variables with neighbor-
ing systems. The illustration and validation of these results based on numerical experiments
follow in the next section.

3.5 Numerical illustration and validation of stability tests

In this section, the two presented approaches for testing stability are evaluated. In the first
subsection, both distributed algorithms are applied to test systems that satisfy both condi-
tions, while in the second subsection only one condition is satisfied to show the reduced
conservativeness. Finally, the tests are applied to a power system example.

41

3 Distributed stability analysis with local model information

3.5.1 Systems satisfying the vector Lyapunov condition

For the vector Lyapunov test from Section 3.4.1, 100 asymptotically stable systems with N =
25 subsystems are randomly created, with ni = 2∀i, and with connection probability be-
tween subsystems of 0.1. The created systems have the following properties: The minimal
real parts of the eigenvalues of A are between −50.6 and −46.6, and the maximal ones are
between −7.4 and −0.001. There are 82 to 190 directed edges (on average 133) between
the subsystems, and there is never the case that a subsystem is connected to every other
subsystem. They are also created in such a way that they satisfy Assumption 3.2 necessary
to apply the α-block diagonal Lyapunov stability test.

To validate the results of the distributed Algorithm 3, we compare its results with a central-
ized implementation in Yalmip [84]. The comparison with Yalmip is not in terms of efficiency
but only serves as validation with regards to the final obtained function values, because the
goals of our distributed algorithm and a centralized implementation are different in terms of
privacy vs. efficiency. The convexity parameters are chosen as σδ = 10−3, σdi

= 10−3. The
values of the cost function obtained with Yalmip lie between −18 and −4.78 · 10−4. The ap-
proximate result from the distributed algorithm is always smaller than the Yalmip result, as
expected by Eq. (3.9). Using Algorithm 4 with ε0 = 10−1,εmin = 10−5 and θ = 0.1, we obtain
the objective function differences between the values obtained with Yalmip and the values
obtained with Algorithm 3 that are summarized in Table 3.1 with minimum, maximum and
mean values. They show that the approximated solution given by Algorithm 3 improves
with decreasing ε, as expected. Furthermore, the numerical computations show that, with
decreasing ε, convergence to negative objective function values is observed in all 100 cases.
Hence, all systems are correctly identified to be connectively stable by Theorem 3.4.

The systems are also analyzed with the distributed α-block diagonal Lyapunov stability
test. We first compare the results of optimization problem (3.16) solved with Yalmip with the
results from Algorithm 5. The convexity parameters are set to σδ = 10−3,σP l = 10−3,σW s =
10−5. Using Algorithm 4 with ε0 = 10−1,εmin = 10−3, and θ = 0.1 the differences in Ta-
ble 3.2 are obtained, indicating that Algorithm 5 approximates the optimal solution well.
Also, convergence to negative cost function values is observed for all 100 systems and hence,
we correctly identify all systems to be α-block diagonally Lyapunov stable by Theorem 3.6.
In conclusion, both methods identify all 100 stable systems correctly.

Furthermore, the numerical effort of both tests is compared. For the same accu-
racy ε= 10−3, the vector Lyapunov test requires between 173956 and 283095 iterations

Table 3.1: Difference in objective function value between Yalmip (f ∗Yalmip) and Algorithm 3
(f ∗
ε

) for different values of accuracy parameter ε for Section 3.5.1.
ε min(| f ∗

ε
− f ∗Yalmip|) max(| f ∗

ε
− f ∗Yalmip|) mean(| f ∗

ε
− f ∗Yalmip|)

10−1 0.0041 0.090 0.012
10−2 4.08 · 10−4 0.0089 0.0012
10−3 4.08 · 10−5 8.91 · 10−4 1.16 · 10−4

10−4 4.13 · 10−6 8.89 · 10−5 1.17 · 10−5

10−5 4.5 · 10−7 8.90 · 10−6 1.19 · 10−6

42

3.5 Numerical illustration and validation of stability tests

Table 3.2: Difference in objective function value between Yalmip (f ∗Yalmip) and Algorithm 5
(f ∗
ε

) for different values of accuracy parameter ε for Section 3.5.1.
ε min(| f ∗

ε
− f ∗Yalmip|) max(| f ∗

ε
− f ∗Yalmip|) mean(| f ∗

ε
− f ∗Yalmip|)

10−1 0.0019 0.041 0.0033
10−2 1.86 · 10−4 0.0048 3.89 · 10−4

10−3 1.92 · 10−5 7.58 · 10−4 8.57 · 10−5

while the α-block diagonal Lyapunov test requires between 1736306 and 2385591. In ad-
dition to the higher number of iterations, the individual iterations of the α-block diagonal
Lyapunov test are more costly than the vector Lyapunov test because they involve matrix
operations while the vector Lyapunov test involves only scalars on a subsystem level. The
solution of LMIs that is part of the α-block diagonal Lyapunov test is inherently more costly
than the linear program structure of the vector Lyapunov test. The overall size of the problem
is also clearly smaller for the vector Lyapunov test because it uses a scalar approximation for
every subsystem while the α-block diagonal Lyapunov test works with the complete model.

To visualize the principle behavior of the optimization algorithm and the influence of ε,
the cost evolution for one example system is shown in Figure 3.2a where the α-block diagonal
Lyapunov stability test is applied. The benefit of the additional number of iterations caused
by a smaller value of ε can be observed. The evolution starts with a negative value and then
approaches the optimal value from below. In Figure 3.2b, we see the decrease in distance
from the actual optimal value which is always smaller than the respective ε.

3.5.2 Systems violating the vector Lyapunov condition

In Section 3.5.1, it is shown that the α-block diagonal Lyapunov stability test also identifies
all systems to be asymptotically stable that satisfy the vector Lyapunov condition. In this
subsection, again 100 systems are randomly created, each with N = 25 subsystems and ni =
2∀i, but in such a way that they fail the vector Lyapunov condition while satisfying the
α-block diagonal Lyapunov condition. The minimal real parts of the eigenvalues of A lie
between −22.03 and −18.6, the maximal ones between −2.6 and −0.03, and there are 78
to 197 directed interconnections. They are also ensured to satisfy Assumption 3.2.

Employing Algorithm 4 with ε0 = 10−1,εmin = 10−3 and θ = 0.1, the cost difference
between Yalmip (values between −3.3 and −0.068) and Algorithm 5 are given in Table 3.3.
This procedure indicates convergence to negative cost function values in all 100 cases. Hence,
we conclude α-block diagonal stability by Theorem 3.6.

When the vector Lyapunov test is applied to the systems using Yalmip, the objective value is
between 1.4 · 10−13 and 1.76 · 10−11 , i.e. the systems do not satisfy the condition for connec-
tive stability. When applying Algorithm 3 with Algorithm 4, the obtained objective functions
become closer and closer to zero with decreasing ε (10−3→ 10−6). While one cannot guar-
antee that the condition may be satisfied for even smaller values of ε, the subsystems have
to choose an appropriate εmin to make their decision. Summarizing the two subsections, the
α-block diagonal Lyapunov stability test identifies a larger class of systems at a higher nu-
merical effort. This trade-off is summarized in Table 3.4. In addition, it can be observed that

43

3 Distributed stability analysis with local model information

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·106

−0.5

−0.49

−0.48

−0.47

−0.46

−0.45

ε= 1

ε= 10−1

ε= 10−2 ε= 10−3

Iterations

C
os
t

(a) Cost evolution for different ε

1 10−1 10−2 10−3
−0.47

−0.46

−0.45

ε

F
in
al

C
os
t

(b) Final cost for different ε

Figure 3.2: Algorithm behavior for different values of ε. Final optimal value is -0.4466 in
black (dashed).

the distributed solution can be very close to the actual, centralized solution, which illustrates
the applicability of the distributed approach.

Naturally, there are systems that violate both the vector Lyapunov condition and the α-
block diagonal Lyapunov stability condition. However, the α-block diagonal Lyapunov sta-
bility condition is clearly less conservative than the vector Lyapunov condition at the cost of
an increased numerical cost. On the other hand, the vector Lyapunov condition establishes
connective stability, i.e. a form of robust stability with respect to the interconnections. In
practice, it is recommended to first check the simple vector Lyapunov condition and only
check the α-block diagonal Lyapunov condition if the vector Lyapunov condition fails.

44

3.5 Numerical illustration and validation of stability tests

Table 3.3: Difference in objective function value between Yalmip (f ∗Yalmip) and Algorithm 5
(f ∗
ε

) for different values of accuracy parameter ε for Section 3.5.2.
ε min(| f ∗

ε
− f ∗Yalmip|) max(| f ∗

ε
− f ∗Yalmip|) mean(| f ∗

ε
− f ∗Yalmip|)

10−1 0.0017 0.0376 0.0076
10−2 1.89 · 10−4 0.0038 0.0011
10−3 2.22 · 10−5 0.0035 4.86 · 10−4

Table 3.4: Comparison between the vector Lyapunov test and the α-block diagonal Lyapunov
test. The α-block diagonal Lyapunov test is clearly less conservative at a larger
computational effort.

vector Lyapunov test Lyapunov Test
identified stable systems out of 200 100 200
Average # iterations for ε= 10−3 156468 1751734

3.5.3 Application to 30 bus power system

In this subsection, we apply the presented tests to a power system model. The dynamics of
each subsystem follow [85]

δ̇i(t) = 2π fi(t),

ḟi(t) = −
fi(t)
TPi

−
KPi

2πTPi

∑

j∈Nin,i

KSi j
[δi −δ j]

!

+
KPi

Pgi

TPi

,

where δi is the phase angle, fi the frequency, Pgi
the generator output (input to the sys-

tem), TPi
the system model time constant, KPi

the system gain and KSi j
the synchronizing

coefficient of the tie-line between the ith and the jth area. The parameters for all areas are
identical with TPi

= 25, KPi
= 100, KSi j

= 0.5. As the original system is only marginally stable,
we use a structured feedback for stabilization, and refer to Chapter 4 for details on how to
achieve this.

The interconnection topology is taken from the IEEE 30 bus test case [86] and is also
visualized in Figure 3.3. The system graph is not a chordal graph. Thus, for the α-block
diagonal Lyapunov stability test, the computation graph needs to be at least the chordal
extension of the system graph to allow a distributed test. The chordal extension is also
shown in the figure.

Eventually, stability cannot be shown using the vector Lyapunov condition because of
its inherent conservativeness, as the obtained function value is essentially 0. Applying
the α-block diagonal Lyapunov stability test, the value of the cost obtained with Yalmip
is −1.7004. Using the distributed Algorithm 5 with Algorithm 4 with accuracy values ε =
{1,10−1, 10−2, 10−3}, the following corresponding objective function values are obtained:
−1.7164,−1.7036,−1.7023,−1.7022. One can see that, with decreasing ε, convergence to
a negative cost function value is observed. Thus, the distributed α-block diagonal Lyapunov
test indicates asymptotic stability of this practical example of a large-scale dynamical system

45

3 Distributed stability analysis with local model information

1

2

3

4

5

6
78910

11

12

13

14

15

16

17

18

19

20

21
22 23 24 25

26

27

28

29

30

Figure 3.3: Topology of 30 bus power system, in red/dashed the additional edges of its
chordal extension.

based on Theorem 3.6.

Remark 3.6. If one simply wishes to check stability of this system, there are methods, of
course, which require a smaller computational effort. However, the purpose of the method
is mainly to achieve a stability result without centralized model knowledge and this example
illustrates the feasibility of the approach.

3.5.4 Summary

In this section, we illustrated the results from Section 3.4 using various numerical examples.
We observed that the algorithms exhibit different conservativeness properties. While the
vector Lyapunov test is far more conservative, its numerical effort is much smaller, which
means that both approaches have their respective advantages. The conservativeness is the
subject of the next section. Furthermore, we showed that the distributed algorithms lead to
accurate results in comparison to the centralized solution

3.6 Analysis of the conservativeness of the stability
conditions

In this section, we take a closer look at the conservativeness of the two stability conditions
which stems from their respective sufficiency. We start by comparing the two conditions
in terms of their specific forms to illustrate their differences. We then present a necessary
condition for α-block diagonal Lyapunov stability. Subsequently, this result is analyzed and
illustrated more deeply in a numerical experiment, which also gives an insight in the overall
conservativeness of the α-block diagonal Lyapunov stability condition.

46

3.6 Analysis of the conservativeness of the stability conditions

3.6.1 Comparison of the two conditions

In this subsection, we discuss the two tests with respect to differences in terms of conserva-
tiveness, and respective advantages and disadvantages. Both tests have in common that they
use a block diagonal quadratic Lyapunov function. The vector Lyapunov function has the
form VM =

∑N
i=1 di x

T
i (T

T
i)
−1T−1

i x i while the α-block diagonal Lyapunov stability approach
has the Lyapunov function VL =

∑N
i=1 xT

i Pi x i. Since both are restricted to a block diagonal
form, both constitute only sufficient conditions. They also have in common that the sum-
mands need to represent Lyapunov functions of the individual subsystems. This means that
both require the individual isolated subsystems to be stable. However, by comparing the
structure of the Lyapunov functions VM and VL, one can see that VM has only N degrees of
freedom since the transformation matrices Ti are fixed. On the other hand, VL has

∑N
i=1

ni(ni+1)
2

degrees of freedom, which reduces conservativeness except for the special case that all sub-
systems are scalar. Thus, the vector Lyapunov condition is more conservative because it
evaluates the stability of the overall system using scalar (worst case) approximations of the
individual subsystems. In fact, the vector Lyapunov test can be regarded as a special case of
the α-block diagonal Lyapunov condition. It requires diagonal stability of the transformed
system Ã that is comprised of the blocks Ãi j given in Eq. (2.4), but using only N parameters
on the diagonal instead of n. Clearly, the vector Lyapunov test is more conservative than
the α-block diagonal Lyapunov test, but numerical investigations in Section 3.5 have shown
that it has computational advantages. However, a difference that should be noted is that the
conservativeness of the vector Lyapunov test is not introduced for the sake of the distributed
solution but is inherent to the approach of vector Lyapunov functions. For the Lyapunov in-
equality test, the conservativeness stems from the block diagonal restriction necessary for the
distributed solution. Furthermore, the α-block diagonal Lyapunov test has the disadvantage
that the communication topology needs to be a chordal graph, so there may be a need for
additional communication links instead of only the ones that are allowed by the computation
graph Gcomp. This is visualized in Figure 3.4 for a small example.

The conservativeness is illustrated with the following example.

Σ3Σ4

Σ2Σ1

c
o
m
m
u
n
ic
a
te

c
o
m
m
u
n
ic
a
te in

�
u
e
n
c
e
sin

�
u
e
n
c
e
s

ch
or
da
l e
xt
en
si
on

in�uence

in�uences

communicate

communicate

Figure 3.4: Communication topology for the two stability tests. M-Matrix test (red, solid),
additional links for Lyapunov test (blue, dashed) because of chordal extension.

47

3 Distributed stability analysis with local model information

Example 3.6. The A-matrix of a system with two subsystems is given by

A=

−1 0 1
2

1
10

0 − 1
10 −1 −1

2

1 1 −1
2 0

−3
2

1
3 0 −1

The real parts of the eigenvalues of A are (−1.37,−0.59,−0.32,−0.32) so all eigenvalues
of A have negative real parts and, therefore, the system is asymptotically stable, and the in-
terconnection topology is chordal. The test matrix W , according to (2.4), is W =

�

0.16 −1.15
−1.92 0.54

�

with eigenvalues (−1.15, 1.85). One eigenvalue of W has negative real part so the matrix is
not an M-matrix. However, it is possible to determine a block diagonal Lyapunov matrix P
as

P =

49.23 12.16 0 0
12.16 40.76 0 0

0 0 35.36 9.58
0 0 9.58 17.47

,

which is positive definite and satisfies the Lyapunov inequality (3.19) showing α-block di-
agonal stability.

3.6.2 Necessary condition for α-block diagonal Lyapunov stability

In this subsection, we identify a necessary condition for the case that a system is α-block-
diagonally Lyapunov stable.

Before we begin, we introduce the following notation. Given a matrix A and an index
partition α = (α1, . . . ,αN), the block submatrix A(αi1 ,...,αik

) for a set {i1, . . . , ik} ⊆ {1, . . . , N}
is obtained by removing the blocks corresponding to the indices in the set (α j1 , . . . ,α jl)
with { j1, . . . , jl}= {1, . . . , N} \ {i1, . . . , ik}.

Example 3.7. Given is the matrix

A=

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66

with index partition α = (α1,α2,α3) with α1 = {1, 2},α2 = {3, 4},α3 = {5, 6}. Then, we
have, for example,

A(α1,α2) =

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

48

3.6 Analysis of the conservativeness of the stability conditions

and

A(α1,α3) =

A11 A12 A15 A16

A21 A22 A25 A26

A51 A52 A55 A56

A61 A62 A65 A66

.

In order to obtain the necessary condition, we first need to introduce another notion of
stability in the following definition.

Definition 3.3. Given a block index partition α = (α1, . . . ,αN), a matrix A ∈ Rn×n is
called totally BD-stable if ABD and all its block submatrices ABD(αi1

,...,αik
)

for all possible sub-

sets {i1, . . . , ik} ⊆ {1, . . . , N} are Hurwitz stable for any positive diagonal matrix BD.

A necessary condition for a matrix A to be totally BD-stable is given in the following lemma.

Lemma 3.4. Given a matrix A∈ Rn×n and an index partition α= (α1, . . . ,αN), the matrix A is
totally BD-stable only if

(−1)sdet(A(αi1 ,...,αik
))> 0, (3.18)

for all possible subsets {i1, . . . , ik} ⊆ {1, . . . , N} and where s is the size of the block subma-
trix A(αi1 ,...,αik

), i.e. s =
∑k

l=1 nαil
.

Proof. A necessary condition for Hurwitz stability of a matrix A∈ Rn×n is

(−1)ndet(A)> 0,

because only then it is possible that all eigenvalues are negative. For A to be totally BD-
stable, this needs to hold for all block submatrices of ABD. Because det(BD) > 0 and be-
cause det(ABD) = det(A)det(BD), this requirement is equivalent to (3.18).

We furthermore have the following lemma regarding α-block diagonal Lyapunov stability.

Lemma 3.5. Given are a matrix A ∈ Rn×n and an index partition α = (α1, . . . ,αN). If the
matrix A isα-block-diagonally Lyapunov stable, all its block submatrices A(αi1 ,...,αik

) for all possible
subsets {i1, . . . , ik} ⊆ {1, . . . , N} are also α-block-diagonally Lyapunov stable.

Proof. This follows directly from the specialization of the quadratic form: Negative definite-
ness of (3.19) means that xT(ATP + PA)x < 0 for all x ∈ Rn. That means that it must also
hold for vectors x where elements corresponding to particular index subsets αi are set to
zero.

The next lemma gives a relation between the two forms of stability, total BD stability and
α-block diagonal Lyapunov stability.

Lemma 3.6. Given are a matrix A ∈ Rn×n and an index partition α = (α1, . . . ,αN). If the
matrix A is α-block-diagonally Lyapunov stable, it is also totally BD-stable.

49

3 Distributed stability analysis with local model information

Proof. Assume that A is α-block-diagonally Lyapunov stable. Then there is a block diagonal P
with block partition α such that

ATP + PA=Q ≺ 0.

Pre- and post-multiplying by the diagonal matrix BD � 0 gives

BDATPBD + BDPABD = BDQBD ≺ 0.

By defining PD := PBD = BDP we get

BDATPD + PDABD = BDQBd ≺ 0.

From this, it follows that ABD is also α-block-diagonally Lyapunov stable with the Lyapunov
matrix PD. Using Lemma 3.5, this also holds for all submatrices with partition α. As α-block-
diagonally Lyapunov stable (sub)matrices are also Hurwitz stable, it follows that A is totally
BD-stable.

The consequence of Lemma 3.6 is that the class of α-block-diagonally Lyapunov stable
matrices is a subclass of the set of totally BD-stable matrices. Therefore, a necessary condi-
tion for totally BD-stable matrices is also necessary for α-block-diagonally Lyapunov stable
matrices. To summarize this, we combine the result of Lemma 3.6 with Lemma 3.4 to arrive
at the following Theorem, which is the main result of this subsection.

Theorem 3.7. Given are a matrix A ∈ Rn×n and an index partition α = (α1, . . . ,αN). The
matrix A is α-block-diagonally Lyapunov stable only if

(−1)sdet(A(αi1 ,...,αik
))> 0, (3.19)

for all possible subsets {i1, . . . , ik} ⊆ {1, . . . , N} and where s is the size of the block subma-
trix A(αi1 ,...,αik

), i.e. s =
∑k

l=1 nαil
.

Proof. This follows directly from Lemmas 3.4, 3.5 and 3.6.

The concept of a matrix being totally BD-stable extends the known notion of total D-
stability [31] and the line of reasoning in this subsection is similar to the diagonal case, but
the result is more general. In the next subsection, we analyze the implications of this theorem
with a numerical experiment.

3.6.3 Numerical analysis of Theorem 3.7

In order to gain an intuition into when systems satisfy the necessary condition for α-block
diagonal Lyapunov stability given by Theorem 3.7, we conduct an in-depth numerical exper-
iment. To achieve that, we first consider the case of a network with N = 6 agents. In total,
there are 112 possible different connected interconnection topologies. For each topology, we
create 100 random systems in the following way: All diagonal blocks Aii ∈ R2×2 are identical
and all coupling matrices Ai j ∈ R2×2 are identical to each other, but Aii and Ai j are not iden-
tical. At first, all entries of Aii and Ai j are selected from a normal distribution. Afterwards,
to tip the scale towards stability of the resulting matrix, the diagonal entries of Aii are set
to −0.5× x , where x is a number selected from a uniform distribution between 0 and 1. This
gives us a total of 11200 different stable test systems.

50

3.6 Analysis of the conservativeness of the stability conditions

With these systems, we check whether the block diagonal Lyapunov inequality (3.5) is
satisfied where the block sizes of the six blocks are 2× 2 and correspond to the subsystem
sizes. Out of the 11200 stable systems, there are 1738 (15.51%) of them for which the block
diagonal Lyapunov inequality is not satisfied. When condition (3.19) from Theorem 3.7 is
applied to the 11200 test systems, it is observed that all 1168 systems that fail the condition
also fail the α-block diagonal Lyapunov stability condition. However, there remain 570 sys-
tems that satisfy the condition but are still not α-block-diagonally Lyapunov stable, hinting
that the condition is not sufficient. The condition is, however, a first test whether it is possible
for a system to be α-block-diagonally Lyapunov stable – the system is not if it fails (3.19) –
and in this numerical experiment, the condition covers about two thirds of the systems that
are not α-block-diagonally Lyapunov stable.

We repeat the same analysis where we construct the systems in the same fashion, but the
diagonal offset factor is set to the values 0.2 and 1.0, respectively, instead of 0.5. There
is an additional fourth case where the blocks are not all identical. In this fourth case, the
block sizes of the subsystems are either 2 or 3, and the block entries are created randomly
where the diagonal is offset by the factor 1 as described earlier. This case is chosen to make
sure that we are not only looking at the special case with all identical block sizes and block
entries. The results of all four cases are summarized in Table 3.5. From the first three cases, it
can be observed that the number of systems that are not α-block-diagonally Lyapunov stable
increases with decreasing diagonal offset factor. This is to be expected as the dominance of
the diagonal entry is decreased and with that the margin of stability. On the other hand, the
percentage of systems identified by condition (3.19) is not correlated to the diagonal factor,
but it is always roughly two thirds of the systems. What is remarkable about the fourth case
is that more than 94% of the considered systems are not α-block-diagonally Lyapunov stable.
It is not entirely clear why this is the case, but we assume that the difference in block entries
plays a larger role than the difference in block sizes, and it is attributed to the way the test
systems are created. Nevertheless, even in case 4, condition (3.19) identifies 70% of the
systems that are not α-block-diagonally Lyapunov stable.

Next, we do the same analysis for a network with N = 8 agents. For eight agents, there
are 11117 different possible connected topologies. The parameters are selected in the same
fashion as in the case with N = 6 agents, and we obtain 1111700 different stable test systems.
This means that there are about 100 times more test systems in this system class than in

Table 3.5: Analysis of α-block diagonal Lyapunov stability for all possible graphs with 6 ver-
tices (112 graphs, each with 100 different A-matrices) with different diagonal en-
tries. Cases 1-3: all subsystems have dimension 2, the diagonal entries are offset
by the factors 0.5, 0.2 and 1, respectively. Case 4: subsystems have dimension 2
or 3, diagonal entries are offset by the factor 1.

Case 1 2 3 4
systems not α-block-diagonally Lyapunov stable 1738 2859 1377 10629
systems not α-block-diagonally Lyapunov stable [%] 15.5 25.5 12.3 94.9
systems identified by Theorem (3.7) 1168 1726 883 7512
systems identified by Theorem (3.7) [%] 67.2 60.4 64.1 70.7

51

3 Distributed stability analysis with local model information

the case of six subsystems. The systems are constructed in the same way as before with
the diagonal offset of 0.5. Out of the 1111700 systems, 115268 (10%) are not α-block-
diagonally Lyapunov stable. Condition (3.19) identifies 96343 (83.6%) of those systems.
These results indicate that condition (3.19), while only necessary, can identify a large portion
of the systems that are not α-block-diagonally Lyapunov stable.

To see if there is a correlation to properties of the connection graph, different graph mea-
sures are analyzed in addition to (3.19), namely algebraic connectivity, node degree, be-
tweenness centrality, clustering coefficients, closeness centrality, number of cycles and eigen-
value centrality. For details on these graph measures, see A.2. However, no correlation at all
could be observed between these purely structural properties and the results of the Lyapunov
inequality.

Remark 3.7. Note that a similar condition to (3.19) exists for diagonal stability and it re-
quires that this sign condition holds for all actual principal minors, instead of just the block
minors as in our case in Theorem 3.7. Checking this condition, however, reveals that there
are numerous systems that violate this requirement for diagonal stability while beingα-block-
diagonally Lyapunov stable. This is, of course clear, as this would, for example, require that
the entry A11 is negative. The negativeness of this entry is required for diagonal stability, but
not for α-block diagonal Lyapunov stability. Therefore, the introduction of the block-wise
condition in the form of (3.19) makes sense.

3.6.4 Further comments on α-block diagonal Lyapunov stability

The numerical experiment from the previous subsection indicates that the conservativeness
of the α-block diagonal Lyapunov stability condition is highly dependent on the system pa-
rameters, their interplay and the variance between them. This can be seen very well in the
second row of Table 3.5 where all four cases exhibit the same interconnection topologies
but vary dramatically in the portion of systems that are not α-block-diagonally Lyapunov
stable. Unfortunately, as also seen in the previous subsection, we cannot state a necessary
and sufficient condition for general LTI systems for the case that they are α-block-diagonally
Lyapunov stable.

An issue that is related to the previous point is the following: For a full matrix P, Lyapunov
stability is equivalent to Hurwitz stability which in turn is equivalent to the spectral property
of the matrix A that all eigenvalues have negative real part. Neither diagonal [87] nor α-block
diagonal Lyapunov stability is directly equivalent to a spectral property of the matrix A.

Another related difficulty is that diagonal stability and with that α-block diagonal Lya-
punov stability is not a coordinate-free property [31] meaning that if the matrix A is not α-
block-diagonally Lyapunov stable, there may be a coordinate transformation matrix T such
that T−1AT is α-block-diagonally Lyapunov stable. In fact, for diagonal Lyapunov stability,
it is known that such a transformation exists for any nonderogatory Hurwitz matrix [31]
which means that the matrix has exactly one eigenvector per eigenvalue. Because diagonal
Lyapunov stability is a subclass of α-block diagonal Lyapunov stable systems, this statement
naturally extends to the block diagonal case. However, a coordinate transformation of this
form is in general not block diagonal and, therefore, removes the original structure of the
system, which makes the application of the presented distributed approach impossible.

52

3.7 Distributed model reduction using balanced truncation

3.6.5 Summary

In this section, we investigated the conservativeness of the two stability tests with an em-
phasis on the α-block diagonal Lyapunov stability case. First, we compared the two condi-
tions and illustrated that the vector Lyapunov case is a special case of the α-block diagonal
Lyapunov case. Then, we introduced a necessary condition for α-block diagonal Lyapunov
stability and, using a large numerical experiment, we investigated how strict this condition
is. We observed that the condition covers the majority of the systems that are not α-block-
diagonally Lyapunov stable, but no sufficient condition was found.

3.7 Distributed model reduction using balanced truncation

In the previous sections, distributed optimization is used to investigate α-block diagonal Lya-
punov stability of an interconnected system by distributedly solving a Lyapunov inequality. It
is well known, however, that Lyapunov inequalities also play other roles in the field of control
and system analysis. One of these roles is model reduction. Therefore, in this section, we
adjust the Lyapunov inequality considered in the distributed optimization problem in order
to apply the overall approach used in the previous sections to the different task of model
reduction.

3.7.1 Introduction to model reduction using generalized gramians

In this subsection, we briefly recapitulate a common method for model reduction. Model re-
duction is an important issue, especially when dealing with large-scale systems. The purpose
of model reduction is to find a model of smaller order than the original model that exhibits
a behavior that is as close to the original model as possible. A well-known and standard tool
to achieve this is balanced truncation [88]. For a short introduction on balanced truncation,
please see Section A.3. The key idea is to use the controllability and observability gramians,
or their generalized form, to determine so-called Hankel values and to use these Hankel val-
ues to choose which states to remove from the model. Essentially, the Hankel values are a
measure for how large the influence of a state is in the input-output-behavior of the overall
system. At the same time, the Hankel values provide an error bound of the reduced model in
comparison to the actual one. In order to maintain the interconnection structure, the authors
in [89] propose the use of structured gramians that contain a block diagonal structure. With
this, the main steps to perform a distributed model truncation are the following.

1. Given a block index partition α= (α1, . . . ,αN), solve the Lyapunov inequalities

AXc,g + Xc,gA
T + BBT � 0, (3.20a)

ATYo,g + Yo,gA+ CTC � 0, (3.20b)

where the generalized controllability gramian Xc,g and the generalized observability
gramian Yo,g are restricted to a block diagonal structure with the block partition α.

2. Balance the gramians using a block diagonal coordinate transformation T such
that T Xc,gTT = (TT)−1Yo,gT−1 = Σ, whereΣ is a diagonal, positive definite matrix. This

53

3 Distributed stability analysis with local model information

can be done distributedly for each individual subsystem using singular value decom-
position. The result of this step is the set of the generalized Hankel singular values γi

which are the diagonal entries of Σ.

3. Distributedly choose a desired order r < n and truncate the overall system by the
transformed states with Hankel singular values smaller than γr .

The most challenging step in a distributed setting is the first one. Nevertheless, as we
have seen in Section 3.4.2, it is possible to distributedly solve a Lyapunov LMI of a similar
form using distributed optimization. With that basis, we will see in the next subsection that
a similar approach can be used to find generalized gramians.

3.7.2 Distributed optimization techniques for model reduction

In this subsection, we address the problem of distributed model reduction. The problem that
we need to solve is to find solutions to the two LMIs (3.20). In order to achieve this using
only local model information, we follow the same approach that was used in Sections 3.3.2
and 3.4.2. Instead of solving the feasibility problem of finding just any solutions to the two
LMIs (3.20) we formulate two different optimization problems in order to apply the DCNA.
The goal is to obtain two optimization problems that have the same form as problem (3.16).
In order to avoid the repetition of the results from Section 3.4.2, we only state the main steps
of our general approach which transforms the basic LMI conditions (3.20) into optimization
problems:

1. Introduce a cost function of the form

fc,g = −δ+
σδ
2
δ2

c,g +
N
∑

l=1

σl
X

2N
||X l

c,g||
2
F

and the corresponding cost function for the observability problem.

2. Introduce new slack variables W s
c and W s

o with s = 1, . . . , p and augment the cost
function with the new variables, as in the problem (3.16), to obtain

fc,g = −δ+
σδ
2
δ2

c,g +
N
∑

l=1

σl
X

2N
||X l

c,g||
2
F +

p
∑

s=1

σW s

2p
||W s

c ||
2
F

and the corresponding cost function for the observability problem.

3. Replace the LMI condition F(P,δ) � 0 with the respective controllability and observ-
ability LMI resulting in the form stated below.

This yields the following optimization problems.

min
δ∈R,X l

c,g∈S
nl

f (δc,g, X l
c,g) = −δc,g +

σδ
2
δ2

c,g +
N
∑

l=1

σl
X

2N
||X l

c,g||
2
F +

p
∑

s=1

σW s

2p
||W s

c ||
2
F (3.21a)

s.t. Fc(Xc,g,δc,g)� 0, (3.21b)

X l
c,g −δc,gInl

� 0 for l = 1, . . . , N , (3.21c)

54

3.7 Distributed model reduction using balanced truncation

and

min
δ∈R,Y l

o,g∈S
nl

f (δo,g, Y l
o,g) = −δo,g +

σδ
2
δ2

o,g +
N
∑

l=1

σY l

2N
||Y l

o,g||
2
F +

p
∑

s=1

σW s

2p
||W s

o ||
2
F (3.22a)

s.t. Fo(Yo,g,δo,g)� 0, (3.22b)

Y l
o,g −δo,gInl

� 0 for l = 1, . . . , N , (3.22c)

where

Fc(Xc,g,δc,g) := −Adiag(X 1
c,g, . . . , X N

c,g)− diag(X 1
c,g, . . . , X N

c,g)A
T − γδc,gBBT, (3.23)

and

Fo(Yo,g,δo,g) := −ATdiag(Y 1
o,g, . . . , Y N

o,g)− diag(Y 1
o,g, . . . , Y N

o,g)A− γδo,gCTC , (3.24)

and γ ∈ R++ is arbitrary. Based on these optimization problems we can state the following
theorem, which gives a connection between them and the original LMI conditions (3.20).

Theorem 3.8. The inequalities (3.20) hold for some block diagonal Xc,g = X̃c,g and Yo,g = Ỹo,g

with a given block partition α if and only if there exists a feasible point (Xc,g,δc,g) and (Yo,g,δo,g)
for (3.21) and (3.22) respectively, such that their optimal function values are negative, i.e. f ∗c,g <

0 and f ∗o,g < 0.

Proof. The first part of the proof is identical to the proof of Lemma 3.1 because the overall
problem formulation is identical and the objective function of (3.6) is also convex. This first
part of the proof establishes that there exist solutions to the inequalities

AXc,g + Xc,gA
T + γδc,gBBT � 0,

ATYo,g + Yo,gA+ γδo,gCTC � 0,

when the optimal function values are negative. Furthermore, by scaling the two inequalities
above, we obtain

A
Xc,g

γδc,g
+

Xc,g

γδc,g
AT + BBT � 0,

AT
Yo,g

γδo,g
+

Yo,g

γδo,g
A+ CTC � 0,

and with that

AX̃c,g + X̃c,gA
T + BBT � 0,

ATỸo,g + Ỹo,gA+ CTC � 0,

where X̃c,g =
Xc,g

γδc,g
and Ỹo,g =

Yo,g

γδo,g
. Hence, X̃c,g and Ỹo,g are solutions to the inequalities (3.20)

which concludes the proof.

Given this result, we can apply the same approach as in Section 3.4.2 and use the DCNA to
distributedly find the solutions to the optimization problems (3.21) and (3.22). The overall
distributed model reduction approach is summarized in Algorithm 6.

We see that Algorithm 6 and Theorem 3.8 are another interesting application of distributed
optimization techniques to solve classical problems from the control and system analysis field.

55

3 Distributed stability analysis with local model information

Algorithm 6 Distributed balanced truncation model reduction using DCNA.

1. Solve problem (3.21) using Algorithms 5 and 4 adapted to this problem.

2. Solve problem (3.22) using Algorithms 5 and 4 adapted to this problem.

3. Each agent locally balances the solution as follows: First, the agent performs a singular

value decomposition of the matrix X i
1
2

c,gY i
o,gX i

1
2

c,g, which gives

X i
1
2

c,gYo,gX i
1
2

c,g = U iΣiU i∗ ,

where U i is unitary and Σi � 0 is diagonal. Then, set T−1
i = X i

1
2

c,gU i, which gives the
state transformation matrix Ti and the generalized Hankel singular values from the
entries of Σi.

4. The agents distributedly decide which Hankel values, and with that, which states are
truncated by repeatedly using a minimum consensus approach [90]. This is repeated
until a specific desired accuracy of the reduced model, or a desired system order is
achieved.

3.7.3 Numerical examples

In this subsection, we illustrate the model reduction approach from this section using numer-
ical examples. First, we give a small scale illustrating example and then apply the approach
to the power system model introduced for the stability test example in Section 3.5.3.

3.7.3.1 Illustrating example

To illustrate the overall approach, a small-scale example is used. We consider N = 4 sub-
systems in a line-graph topology where each subsystem has ni = 4 states, giving us a total
system order of n = 16. The A-matrix of the system is created randomly where the entries
are picked from a normal distribution. The diagonal entries are replaced by larger negative
entries to obtain a stable system. The resulting system matrices are

A=

−3.1 −0.7 −1.7 −1.1 −1.0 −0.8 0.2 −1.6 0 0 0 0 0 0 0 0
1.4 −7.6 0.9 0.2 0.3 −0.7 1.4 −1.2 0 0 0 0 0 0 0 0
−1.6 −0.4 −9.6 0.5 −1.9 0.1 1.3 −1.7 0 0 0 0 0 0 0 0
−0.1 −0.6 0.4 −9.2 1.1 1.5 0.4 0.7 0 0 0 0 0 0 0 0
1.8 0.3 0.5 1.3 −3.3 −1.6 −0.3 0.2 0.3 0.1 0.7 1.1 0 0 0 0
0.6 −1.0 −0.6 0.5 0.2 −8.3 0.2 0.8 −0.1 0.1 −1.3 0.2 0 0 0 0
−0.7 −0.4 −0.3 0.1 −0.3 −1.2 −6 −0.9 0.2 −1.0 0.3 −0.3 0 0 0 0
−1.1 −1.0 −0.6 0.4 0.6 0.1 −1.1 −7.1 0 −1.7 −0.7 −1.2 0 0 0 0

0 0 0 0 0.5 0.4 2.6 1.0 −7.3 1.1 −1.2 2.7 1.2 0.6 0.9 −0.1
0 0 0 0 1.0 −0.3 −0.2 0 −0.6 −3.5 −0.7 0.1 0 −1.5 −0.1 −0.3
0 0 0 0 −1.7 0.3 0.8 0 1.3 0.5 −6.3 −0.3 −0.4 0.7 1.3 −0.2
0 0 0 0 0 −0.3 −0.9 −0.2 0.2 −0.7 −0.2 −3.2 0.7 −0.9 −0.4 1.4
0 0 0 0 0 0 0 0 0.1 −1.3 1.7 1.9 −0.2 −0.4 0.2 0.2
0 0 0 0 0 0 0 0 0.3 1.1 −0.4 1.1 0.8 −1.3 0.9 1
0 0 0 0 0 0 0 0 −1.2 0.1 0.8 0.3 −0.1 0.1 −2.1 0.1
0 0 0 0 0 0 0 0 −0.9 −1.3 −0.5 −1.0 0 −2.4 −0.3 −0.4

,

56

3.7 Distributed model reduction using balanced truncation

B = diag
�

�

0 0 0 1
�T

,
�

0 0 0 1
�T

,
�

0 0 0 1
�T

,
�

0 0 0 1
�T
�

,

C = diag
��

1 0 0 0
�

,
�

1 0 0 0
�

,
�

1 0 0 0
�

,
�

1 0 0 0
��

.

In the following, we apply Algorithm 6 to the above system. Furthermore, we do the same
model reduction based on the optimization problems (3.21) and (3.22) but with the standard
LMI software Yalmip [84] as a benchmark for our distributed solution. Additionally, we look
at the model reduction based directly on the Lyapunov inequalities (3.20) both with block
diagonal restriction and with full gramian matrices. In all four cases, we choose to reduce
the system order by four, such that only 12 states remain. It has to be noted that, in general,
the resulting behaviors of the four cases cannot be compared directly because the solutions
of LMIs are not necessarily unique leading to different model reductions.

The first observation is that the distributed solution using Algorithm 6 gives practically
identical results to the solution based on Yalmip. The largest relative difference in resulting
generalized Hankel singular values is 0.353%. This indicates again that the distributed algo-
rithm performs well. Next, we need to evaluate the model reduction. The reduction leads to
the removal of two states each of the first two subsystems. In Figure 3.5, we see four of the 16
step responses of the reduced system. The four selected responses are those from input i to
output i, i = 1, . . . , 4. For the second subsystem, a deviation can be observed stemming from
the removed states. In absolute terms the deviation is, however, still quite small. The effect
on the first subsystem is negligible and the third and fourth subsystems behave completely
identical to the full system model. Similarly, in Figure 3.6, we see the Bode magnitude plot
of the same input-output-combinations and we can make the same observations. The second
subsystem stands out in that the transfer functions do not coincide. For the first subsystem
they do at least up to a certain frequency. The third and fourth subsystem have identical
transfer functions.

Next, we look at the model reduction based on the Lyapunov inequalities (3.20) with block
diagonal restriction. In this case, removing the four smallest generalized Hankel singular
values leads to the removal of three states of the first subsystem and one of the second.
This is reflected in the step responses in Figure 3.7, where now the second subsystem of the
reduced model behaves quite similarly to the full model while there is a larger discrepancy
for the first one. Again, the third and fourth subsystems are unaffected.

Last, the case of the Lyapunov inequalities (3.20) with full gramian matrices is considered.
The model reduction procedure removes one state from subsystem three, and three states
from subsystem four. This is in accordance with the differences observed in the step-responses
in Figure 3.8.

In conclusion, all four variants perform satisfactorily and there is no clear advantage visi-
ble. Notably, however, the proposed distributed approach performs reasonably well and does
not need a complete system model, which opens up new possibilities for distributed model
reduction.

3.7.3.2 Application to 30 bus power system

In the following, we apply Algorithm 6 to the 30 bus power system example system from
Section 3.5.3. For details on the system dynamics, we refer to that section. The original
system order is n= 60.

57

3 Distributed stability analysis with local model information

0 2 4 6 8

−0.06

−0.04

−0.02

0

Time t

u 1
→

y 1

full model
reduced model

0 2 4 6 8
−0.04

−0.02

0

0.02

Time t

u 2
→

y 2

0 2 4 6 8
0

0.05

0.1

0.15

Time t

u 3
→

y 3

0 2 4 6 8
0

0.5

1

Time t

u 4
→

y 4

Figure 3.5: Comparison of step responses of system with N = 4 agents. Full model (blue,
solid) n = 16, reduced model (red, dashed) n = 12. Balanced truncation with
Algorithm 6.

10−3 10−2 10−1 100 101 102 103
10−6

10−4

10−2

Frequency [rad/s]

u 1
→

y 1

full model
reduced model

10−3 10−2 10−1 100 101 102 103
10−7

10−4

10−1

Frequency [rad/s]

u 2
→

y 2

10−3 10−2 10−1 100 101 102 103
10−6

10−4

10−2

Frequency [rad/s]

u 3
→

y 3

10−3 10−2 10−1 100 101 102 103

10−5

100

Frequency [rad/s]

u 4
→

y 4

Figure 3.6: Comparison of transfer functions of system with N = 4 agents. Full model (blue,
solid) n = 16, reduced model (red, dashed) n = 12. Balanced truncation with
Algorithm 6.

58

3.7 Distributed model reduction using balanced truncation

0 2 4 6 8
−0.06

−0.04

−0.02

0

Time t

u 1
→

y 1

full model
reduced model

0 2 4 6 8
−0.02

−0.01

0

0.01

0.02

Time t

u 2
→

y 2
0 2 4 6 8

−0.2

−0.15

−0.1

−0.05

0

Time t

u 3
→

y 3

0 2 4 6 8
−0.4

−0.3

−0.2

−0.1

0

Time t

u 4
→

y 4

Figure 3.7: Comparison of step responses of system with N = 4 agents. Full model (blue,
solid) n = 16, reduced model (red, dashed) n = 12. Balanced truncation with
Lyapunov inequalities (3.20) with block diagonal restriction.

0 2 4 6

0

0.02

0.04

Time t

u 1
→

y 1

full model
reduced model

0 2 4 6

−0.06

−0.04

−0.02

0

Time t

u 2
→

y 2

0 2 4 6
−0.04

−0.02

0

Time t

u 3
→

y 3

0 2 4 6

0

0.02

0.04

Time t

u 4
→

y 4

Figure 3.8: Comparison of step responses of system with N = 4 agents. Full model (blue,
solid) n = 16, reduced model (red, dashed) n = 12. Balanced truncation with
Lyapunov inequalities (3.20) with full gramian matrices.

59

3 Distributed stability analysis with local model information

As for the previous example, Algorithm 6 gives results that are practically identical to the
solution based on Yalmip. We then decide to remove 15 states which reduces the system order
by 25%. Because the presentation of the analysis of all step and frequency responses for every
input-output combination would be too exhaustive we pick four as examples, namely those
from input i to output i for i = 1, . . . , 4. The resulting step responses and Bode magnitude
plots are shown in Figure 3.9 and 3.10. In the step responses, we can see that for subsystems
one, two and four, there is practically no difference in the behavior. The third subsystem is
affected by the changes in that the steady state changes by 19%. This can be explained by
the fact that out of the four systems, only subsystem three has a state removed. However,
note that subsystems one and four are neighbors of subsystem three, but there is no visible
effect of the model reduction on them. A similar observation can be made for the frequency
response. Only subsystem three is obviously affected by the model reduction. The responses
are similar up to a certain frequency at about 10rad/s but then diverge.

Similar observations can be made for the other 26 subsystems where those affected by the
reduced order show slightly different behavior in the reduced case. This example illustrates
the applicability of the approach to larger systems. It also shows that the reduced model is
not in perfect alignment with the full model, but of course this is expected.

3.7.4 Summary

In this section, a new idea was presented that allows to reduce a dynamic model in a dis-
tributed fashion. The overall approach follows the same line of thinking as the distributed

0 2 4 6 8 10 12
0

0.5

1

1.5

2

Time t

u 1
→

y 1

full model
reduced model

0 2 4 6 8 10 12
0

0.5

1

1.5

Time t

u 2
→

y 2

0 2 4 6 8 10 12
0

1

2

Time t

u 3
→

y 3

0 2 4 6 8 10 12
0

0.5

1

1.5

Time t

u 4
→

y 4

Figure 3.9: Comparison of step responses of 30 bus power system system for inputs/outputs
1-4. Full model (blue, solid) n = 60, reduced model (red, dashed) n = 45.
Balanced truncation with Algorithm 6.

60

3.8 Chapter summary

10−2 10−1 100 101 102 103
10−5

10−3

10−1

Frequency [rad/s]

u 1
→

y 1

full model
reduced model

10−2 10−1 100 101 102 103
10−5

10−3

10−1

Frequency [rad/s]

u 2
→

y 2
10−2 10−1 100 101 102 103

10−4

10−2

100

Frequency [rad/s]

u 3
→

y 3

10−2 10−1 100 101 102 103
10−5

10−3

10−1

Frequency [rad/s]
u 4
→

y 4

Figure 3.10: Comparison of transfer functions of 30 bus power system system for in-
puts/outputs 1-4. Full model (blue, solid) n = 60, reduced model (red,
dashed) n= 45. Balanced truncation with Algorithm 6.

stability tests of the previous section. Lyapunov LMIs are solved distributedly based on the
formulation of a distributed optimization problem that contains the LMIs as constraints.
Then, the DCNA can be applied to find the solution. This allows a model reduction based
on balanced truncation that takes the overall system model into account and the approach
is based on well-known and established model reduction tools and results. The results were
illustrated using a small-scale numerical experiment, and the approach was applied to a 30
bus power system model.

3.8 Chapter summary

In this chapter, we developed two different distributed stability tests. These two tests enable
us to make a distributed decision on the stability of an interconnected dynamical system
using only local model information. The first test is based on the concept of vector Lyapunov
functions and consists of the test of a matrix to see if it is an M-matrix. The second test is
based on the block diagonal form of the Lyapunov inequality. Both stability conditions are
first reformulated into optimization problems. The structure of these optimization problems
allow a distributed solution based on the application of the distributed constrained Nesterov
algorithm (DCNA).

In addition to the development of the conditions, we also analyzed them in terms of con-
servativeness and in terms of their numerical behavior. For the α-block diagonal Lyapunov
stability case, a necessary condition was found, and numerical investigations show that a

61

3 Distributed stability analysis with local model information

large portion of systems that are not α-block-diagonally Lyapunov stable can be identified
using it.

Finally, we saw that the same distributed optimization approach used in the stability anal-
ysis can also be employed to achieve distributed model reduction based on Lyapunov in-
equalities and balanced truncation.

All results of this chapter were corroborated using numerical investigations and illustra-
tions.

Note that the results of this chapter are partly based on the work in [20].

62

4

Stabilizing distributed optimal control de-
sign with local model information

This chapter addresses the second aspect of this thesis, namely the distributed optimal con-
trol design with local model information. The control law exhibits a prescribed control law
structure and is optimal with respect to a linear quadratic (LQ) cost functional. The solution
of the optimal control problem is obtained iteratively using a gradient descent approach.
The employed gradient descent method is described thoroughly including details on the dis-
tributed step size selection, how to guarantee convergence, and extensions to a conjugate
gradient method. The control design guarantees stability of the closed loop. This is achieved
by making use of a terminal cost term that can be computed in a distributed fashion by
adapting Algorithm 5 from Chapter 3.

As the distributed approach is based on simulated trajectories, which leads to a large
requirement of communication, we also present a method to reduce this communication ef-
fort by using event-based information exchange. Furthermore, the control design method
is extended to singular, differential-algebraic systems. Then, the approach is applied to the
problem of optimal formation control in a multi-robot setting. Finally, we present two gen-
eralized forms of the control law.

The remainder of this chapter is organized as follows. Section 4.1 contains the problem
statement. This is followed by a literature overview on related work in Section 4.2. In
Section 4.3, we provide the solution to the considered distributed control problem. Results on
distributed step size selection are presented in Section 4.4. We address event-based trajectory
simulation in Section 4.5, and show the two extensions of the approach to different problem
classes in Sections 4.6 and 4.7. Last, two generalizations to time-varying and nonlinear
control laws are presented in Section 4.8. We conclude with a summary in Section 4.9.

63

4 Stabilizing distributed optimal control design with local model information

4.1 Problem formulation

In this section, we state the system dynamics considered for the majority of this chapter,
formulate the considered control design problem, and refine the definition of local model
information.

The system dynamics we consider in this chapter are the ones already introduced in Sec-
tion 2.4 in Equations (2.8),(2.9). For ease of reference, we restate them here. Each subsystem
has the dynamics described by

ẋ i(t) = Aii x i(t) +
N
∑

i=1
i 6= j

Ai j x j(t) + Biui(t), (4.1)

with x i ∈ Rni , ui ∈ Rmi , Ai j ∈ Rni×n j , and Bi ∈ Rni×mi . The overall system is compactly
written as

ẋ(t) = Ax(t) + Bu(t), (4.2)

where x = [xT
1 , ..., xT

N]
T ∈ Rn, u= [uT

1 , ...,uT
N]

T ∈ Rm,
∑N

i=1 ni = n and
∑N

i=1 mi = m.

To describe the problem in a concise way, we state the following definition which consti-
tutes what we mean by local model information in this chapter.

Definition 4.1. The set K consisting of feasible control laws under local model information
are those control laws u= −K x that satisfy the following two conditions:

1. The design process of the control law is restricted to the computation graph Gcomp,
i.e. during the control design information is exchanged only along the edges of that
graph. Additionally, the subsystems know the overall system size N and the number of
states n.

2. The structure of the feedback law is in accordance with the control graph Gcontrol, i.e.
Ki j 6= 0 iff (j, i) ∈ Econtrol.

A design method satisfying these conditions requires only local model information in ac-
cordance with Definition 2.8. We emphasize here that we consider the word distributed to
apply in two phases, both during the control design itself, and also in the online use of the
control law. The first part is often neglected. Therefore, the goal of this part of the the-
sis is to design a stabilizing distributed feedback matrix Kdist that satisfies Definition 4.1 and
optimizes an LQ cost functional. This goal is summarized concisely in the following problem.

64

4.2 Related work

Problem 2. Given system (4.1),(4.2), find the solution to the following optimization
problem using only local model information in accordance with Definition 4.1:

min
x ,u

J∞(t, x , u) =

∫ ∞

t

xT(τ)Qx(τ) + uT(τ)Ru(τ)dτ, (4.3a)

s.t. ẋ(τ) = Ax(τ) + Bu(τ), x(t) = x t (4.3b)

u(τ) = −Kdist x(τ), (4.3c)

Kdist is stabilizing, (4.3d)

Kdist ∈K , (4.3e)

where Q ∈ Sn
+ and R ∈ Sm

++

Note that the constraint (4.3d) is already implicitly included in (4.3a)-(4.3c) be-
cause (4.3a) only has a finite value for a stable closed-loop system, but we state it for clarity.

4.2 Related work

In Section 2.2.2, we already presented an overview on results on distributed control. All
the results mentioned there have the unifying property that the control design is performed
from a centralized perspective. This means that while the implementation of the control
law, that is the computation of the actual control inputs, is in accordance with a sparse
interconnection structure the design requires a central and complete system model. The
presented methods in this chapter circumvent this requirement. In addition, they offer some
degrees of freedom in terms of the structure of the control law, and like many of the results
mentioned in Section 2.2.2 they make use of optimization techniques such as LMIs, dual
decomposition and descent methods. Other work has tried to achieve similar goals, which is
described in the following.

One direction that tries to minimize central coordination with the use of optimization
tools is distributed model predictive control (MPC) [85, 91, 92, 93, 94]. In [91], a dual
decomposition approach is used to distributedly find an optimal input trajectory. However,
to show stability, the method requires global knowledge about the system behavior, and
a solution of the distributed optimization problem may be too slow for a real-time MPC
application. The convergence speed is improved in [92] using the Nesterov algorithm. For
a broader overview on this research direction, there are also several survey articles [85, 93,
94].

The control design with limited, local model information has been subject to some re-
search efforts in the last few years [95, 96, 97, 98, 99, 100]. The authors of [95] consider
scalar, discrete-time subsystems and they investigate the best achievable performance when
the subsystems only know their own row of the system dynamics matrix during the control
design, and show that a deadbeat strategy is the optimal one. These results are extended
to multidimensional systems in [96] where, in addition, other design topologies are consid-

65

4 Stabilizing distributed optimal control design with local model information

ered. The systems, however, need to be fully actuated. For stochastically varying systems, the
value of model information is investigated in [97] where it is assumed that the subsystems
know the mean and variance of the overall system dynamics. This latter aspect, however,
has a negative influence on the scalability of the approach. A similar approach to the one
presented in this chapter is derived in [98]. There, a distributed gradient method is used
to iteratively improve a feedback matrix and the individual subsystems exchange informa-
tion only with direct neighbors. However, there is no distributed stopping criterion for the
distributed algorithm, no convergence guarantee and no stability guarantee. The authors
of [99] consider the finite horizon LQ problem and investigate conditions such that an opti-
mal input trajectory can be determined using information according to a given optimization
graph. However, their result is not a feedback law and stability is not considered. For the
special case of vehicle systems on a line graph, a distributed design method for LQ optimized
feedback laws is presented in [100].

The mentioned results make limiting assumptions on the dynamics or the interconnection
structure, or they do not guarantee convergence or stability. Therefore, the methods in this
chapter solve these problems and guarantee stability, convergence and are valid for general
LTI systems. The work on distributed MPC relies on the repeated distributed online solution
of large optimization problems to obtain an open-loop input trajectory. This may not be
possible in real-time. For this reason, the design method presented in this chapter yields a
feedback law, which gives an additional degree of robustness with regards to computational
effort, possible communication problems and model uncertainties.

4.3 Distributed linear quadratic optimal control design
with guaranteed stability

In this section, we present a solution to problem 4.1, that is we aim to find a structured
LQ-optimal feedback law which is stabilizing and in accordance with Definition 4.1.

Before we proceed, we introduce the finite horizon version of the optimization prob-
lem (4.3):

min
x ,u

J(t, x , u) = xT(t + tf)Sx(t + tf) +

∫ t+tf

t

xT(τ)Qx(τ) + uT(τ)Ru(τ)dτ, (4.4a)

s.t. ẋ(τ) = Ax(τ) + Bu(τ), x(t) = x t (4.4b)

u(τ) = −Kdist x(τ), (4.4c)

Kdist is stabilizing, (4.4d)

Kdist ∈K . (4.4e)

We will later see that through an appropriate choice of the matrix S ∈ Sn
+, the finite horizon

cost (4.4a) serves as an upper bound to the infinite horizon cost (4.3a). Therefore, solving
problem (4.4) simultaneously leads to an optimized – but admittedly possibly suboptimal
– solution to the original problem (4.3). However, because the presented approach is only
applicable to finite horizon cost functionals, as will be seen later, we have to accept this pos-
sible suboptimality. Naturally, with increasing horizon, the result converges to the infinite

66

4.3 Distributed linear quadratic optimal control design with guaranteed stability

horizon result. Clearly, considering the finite horizon leads to the question of how stability
can be guaranteed, which will also be addressed. Note that since we do not consider any con-
straints on the input or state, the optimization problems (4.3) and (4.4) are always feasible,
but because Kdist is the optimization variable, both problems are non-convex.

To provide an overview of the approach, the stabilizing optimal control design involves
the following main steps:

1. Consider the finite horizon problem (4.4) instead of the infinite horizon problem (4.3).

2. Determine a suitable terminal cost term xT(t + tf)Sx(t + tf) that guarantees stability.
This is addressed in Section 4.3.3.

3. Find the distributed control law Kdist that minimizes (4.3) given the stabilizing terminal
cost matrix S. This is described in detail in Section 4.3.1.

As will be seen, the presented distributed control design method makes use of simulated
trajectories. This is the reason why the original optimization problem (4.3) needs to be
reformulated to the finite horizon equivalent in (4.4), which corresponds to Step 1 because
trajectories can only be simulated for a finite horizon. Step 2 is required because optimality
with respect to a finite horizon does not itself guarantee stability.

The presentation of the overall solution proceeds in the subsequent subsections as fol-
lows: First, we present an iterative approach of solving (4.4) while ignoring the two last
constraints (4.4d) and (4.4e). Then, we introduce additional assumptions that allow the
solution satisfying the constraint (4.4e). Last, we present a distributed approach that allows
us to guarantee stability and with that satisfy condition (4.4d).

Remark 4.1. In the centralized case, we know that the optimal control law for the finite
horizon is time-varying while we assume a time-invariant control law in the present chapter.
For more insight to this and a performance comparison, see Section 4.8.

4.3.1 Distributed control design using gradient descent

In this section, we look at the distributed solution of problem (4.4) using only information
exchange with neighbors while ignoring the stability constraint (4.4d). In the first step, we
also ignore the constraint (4.4e). The resulting algorithm of this section is the basis for the
design of the control law with guaranteed stability.

Remark 4.2. For the complete distributed stabilizing design, we make several additional
assumptions along the way in this section. We structure the following text in such a way that
all the results up to each assumption are valid but may not allow a completely distributed
computation and still contain centralized aspects. After we state the final Assumption 4.5,
the design is completely distributed. In other words, we reduce the centralization of the
computation step by step with every additional assumption.

By considering the Lagrangian of problem (4.4) and using optimality conditions, the fol-
lowing proposition is derived.

67

4 Stabilizing distributed optimal control design with local model information

Proposition 4.1. Given optimization problem (4.4), the gradient of the cost functional (4.4a)
with respect to the control law blocks Kdist,i j is given by

(∇Kdist
J)i j =

∫ t+tf

t

−2Riui x
T
j + BT

i λi x
T
j dτ, (4.5)

where

λ̇(τ) = −AT
Kdist
λ(τ) + 2QKdist

x(τ), (4.6a)

λ(t + tf) = −2Sx(t + tf), τ ∈ [t, t + tf], (4.6b)

with AKdist
= A− BKdist and QKdist

= (Q+ KT
distRKdist).

Proof. The Lagrangian of the optimization problem is given by

L = xT(t + tf)Sx(t + tf) +

∫ t+tf

t

�

xT(τ)(Q+ KT
distRKdist)x(τ)

+λT(τ)(ẋ(τ)− AKdist
x(τ))

�

dτ+µ(x(t)− x t).

Partial integration gives

L = xT(t + tf)Sx(t + tf) +

∫ t+tf

t

�

xT(τ)(Q+ KT
distRKdist)x(τ)

+xT(τ)(−λ̇(τ)− AT
Kdist
λ(τ))

�

dτ+µ(x(t)− x t) + (λ
T(τ)x(τ)|t+tf

t .

The optimality condition ∂ L
∂ x = 0 gives the dynamics of the adjoint state λ as stated in (4.6).

Similarly, the gradient is given by computing the derivative ∂ L
∂ Kdist

and leads to the formula
stated in (4.5).

Using the search direction from Proposition 4.1, Algorithm 7 is used to find a finite horizon
optimal control law according to the cost functional (4.4a).

The only requirement for the initializing feedback K (0)dist is that it satisfies the allowed struc-
ture according to Definition 4.1 (2). An obvious choice would be the zero matrix of appro-
priate size.

Note that, in principle, Algorithm 7 can be used for a centralized solution to problem 4.4
when the constraints (4.4d) and (4.4e) are ignored to obtain a control law with a desired
sparsity structure. In order to incorporate constraint (4.4e) and enable a solution in accor-
dance with Definition 4.1, however, we make the following assumptions.

Assumption 4.1. The computation graph Gcomp contains the undirected system graph Gs,u

as a subgraph, and the computation graph Gcomp contains the control graph Gcontrol as a –
possibly different – subgraph, i.e. Gs,u(Vs,Es,u) ⊆ Gcomp(Vs,Ecomp) and Gcontrol(Vs,Econtrol) ⊆
Gcomp(Vs,Ecomp).

68

4.3 Distributed linear quadratic optimal control design with guaranteed stability

Algorithm 7 Gradient descent algorithm for the solution of (4.4).
Given K0

dist and x(t), do the following steps.

1. Simulate the states x i(·) of system (4.2) for the horizon tf with the given initial condi-
tion x(t).

2. Simulate the adjoint states λi(·) from (4.6) for the same horizon tf.

3. Every agent calculates its respective entries of the gradient given by

(∇Kdist
J)i j =

n
∑

l=1

∫ t+tf

t

−2Riui,l x
T
j,l + BT

i λi,l x
T
j,ldτ.

4. For each neighboring agent j, update

K (k+1)
dist,i j = K (k)dist,i j − γk(∇Kdist

J)(k)i j

with a step length γk.

5. If a stopping criterion, e.g. ||(∇Kdist
J)(k)i j || < ε, is satisfied, stop. Otherwise, increase k

and go back to 1.

This assumption is reasonable and not very restrictive. It follows from the assumption
that subsystems that are physically interconnected, described by the given system graph Gs,
regardless of the direction, can exchange information during the control design. However,
systems that are not connected may also exchange information. Furthermore, systems com-
municating during the design phase may communicate online to compute their input signal
through the control law, but they do not have to.

Assumption 4.2. The weighting matrix Q ∈ Sn
+ has at most the block sparsity structure

according to the computation graph Gcomp, i.e. Q i j = 0 if (i, j) /∈ Ecomp. The weighting matrix
R ∈ Sn

++ is block diagonal. The block sizes result from the subsystem dimensions.

The assumption is not very restrictive because in most cases in practice, diagonal matrices
are used. The structure allows cost terms that are completely local to each subsystem, using
the main diagonal of Q, as well as coupled costs with neighbors according to the computation
graph. In other words, subsystems need to be able to communicate during the design phase
when they share a cost. Note that this contains the case that subsystems are not physically
connected at all, e.g. in a formation control problem of unconnected vehicles. Then, the
system graph is unconnected, but the computation graph structure can be used to express
the formation goals. This assumption is necessary in order to enable the distribution of
the control design because the weighting matrix structure plays a role in the neighborhood
structure of the adjoint states, as can be seen in (4.6).

This leads to the following proposition.

Proposition 4.2. Given system (4.2) and Assumptions 4.1 and 4.2, Algorithm 7 results in a
distributed feedback law satisfying Definition 4.1, that is Kdist ∈K .

69

4 Stabilizing distributed optimal control design with local model information

Proof. In order to simulate the closed-loop state trajectories in Step 1 and the adjoint state
trajectories in Step 2, agent i only needs to exchange information with neighbors according
to the computation graph Gcomp by Assumption 4.2. Furthermore, to compute the gradient
in Step 3, each agent again needs those trajectories of neighbors j that it plans to use with
a non-zero entry Kdist,i j in its feedback law. By Definition 4.1 and Assumption 4.1, these are
exactly neighbors according to the control graph Gcontrol ⊆ Gcomp.

For an illustration of the idea of the approach so far, see Figure 4.1.
In the next subsection, an improvement of Algorithm 7 is presented, and in the subsection

one after the next, we will see how we can determine a terminal cost term that guarantees
stability, and how we can obtain it in a distributed fashion according to Definition 4.1.

4.3.2 Averaging approach to eliminate dependence on initial condition

In the previous subsection, we presented an iterative and distributed control design approach
that is optimal with respect to a finite horizon LQ cost functional. The key idea behind our
approach to enable the distribution is to use simulated trajectories to compute a gradient.

One inherent problem of Algorithm 7 is that it depends on two independent initial con-
ditions. The first one is K (0)dist, i.e. the feedback matrix to start the iterative process which
is the actual decision variable. Second, in order to start the state and co-state simulations,
an initial condition of the state x(t) for the starting time t needs to be chosen. Thus, the
result of the control law design depends on this choice of the state initial condition which is
unrelated to the actual decision variables, namely the entries of the feedback matrix. This
second initial condition is unwanted and we aim to gain independence of it for two reasons.
First, we would like to find the optimal feedback matrix independent of a specific state initial

Σ3Σ4

Σ1 Σ2

co
m
m
u
n
ica

te

in
�
u
en
ces

in�uence

in�uences

communicate

communicate

co
m
pu
te
s com

putes

com
putes co

m
pu
te
s

∗ ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ ∗

= Kdist

∗ ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ ∗

= Kdist

Kdist =

∗ ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ ∗

Kdist =

∗ ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ ∗

Figure 4.1: Illustration of the distributed control design approach.

70

4.3 Distributed linear quadratic optimal control design with guaranteed stability

condition because we generally do not know the actual initial condition of the process in
advance during the controller design, and because it might be quite different from the one
used in the design algorithm. Second, a systematic approach to pick this one specific initial
condition is not obvious.

Another, more model related point can be made. Since the agents are confined to models
of their own dynamics and have no global model, all the information necessary for the opti-
mal controller design has to be extracted from the simulation data. This makes it important
that all states are sufficiently excited using the initial condition of the state trajectory. By us-
ing just one specific, fixed initial condition x(t), as in the previous subsection, only a limited
direction of the system behavior could be excited, or the coupling structure of the system
could prohibit the spreading of the signal. Imagine that x(t) happens to be only a unit base
vector, such that only one state of one agent is excited by the initial condition. If the system
is large, nodes that do not have a direct coupling to the excited node and are relatively far
away will be likely to get very little information about the system dynamics. Thus, it will not
be able to determine an appropriate controller for every possible excitation of the system.
Naturally, the resulting controller will work well for the specific initial condition, but this is
usually not desired when designing a feedback controller.

In order to overcome this dependence, and to ensure sufficient dynamical excitation of the
system, we propose an averaging approach. Therefore, we make the following assumption
about the initial condition of the state x(t). Note that this assumption is only used for the
initial condition of the simulated trajectories in the design process. This is not related to
the actual initial condition of the online process and, therefore, does not change the original
problem.

Assumption 4.3. The initial condition x(t) is a random variable, uniformly distributed on
the surface of the n-dimensional unit sphere with expected value E[x(t)xT(t)] = 1

n In.

The cost functional (4.4a) is adjusted to the following

J(x , u) = E

�

xT(t + tf)Sx(t + tf) +

∫ t+tf

t

xT(τ)Qx(τ) + uT(τ)Ru(τ)dτ

�

,

where E represents the expected value with respect to the initial condition x(t). Thus, the
cost becomes independent of x(t). Using the solutions for x(·),λ(·), it can be shown that
all terms in the gradients (4.5) are linear in the term x(t)xT(t). To achieve this, we need to
show that λ(·) depends linearly on x(t). The solution for λ(·) can be given as

λ(t ′) = −2eATKdist
(tf+t−t ′)Sx(t + tf) + 2

∫ t+tf

t ′
eATKdist

(τ−t ′)QKdist
x(τ)dτ,

where t ′ ∈ (t, t + tf). Clearly, x(τ) and x(t + tf) depend linearly on x(t), and hence so
does λ(t ′). Therefore, all products in the gradient are linear in x(t)xT(t).

Because of the linearity and in order to average over unit initial conditions, we define
x l(t),λl(t) as the simulated trajectories based on the initial condition el , where el is the lth
unit base vector. With this, we can adjust Algorithm 7 to this averaging approach and arrive
at Algorithm 8.

71

4 Stabilizing distributed optimal control design with local model information

Algorithm 8 Gradient descent algorithm for the solution of (4.4) including initial condition
averaging.
Given K0

dist, do the following steps.

1. Simulate the states x i,l(·) of system (4.2) n times for the horizon tf where the state
initial condition of the lth simulation is the unit base vector el with l = 1, ..., n.

2. Simulate the corresponding adjoint states λi,l(·) from (4.6) for the same horizon tf.

3. Every agent calculates its respective entries of the gradient given by

(∇Kdist
J)i j =

1
n

� n
∑

l=1

∫ t+tf

t

−2Riui,l x
T
j,l + BT

i λi,l x
T
j,ldτ

�

.

4. For each neighboring agent j, update

K (k+1)
dist,i j = K (k)dist,i j − γk(∇Kdist

J)(k)i j

with a step length γk.

5. If a stopping criterion, e.g. ||(∇Kdist
J)(k)i j || < ε, is satisfied, stop. Otherwise, increase k

and go back to 1.

Using Algorithm 8, the resulting controller is independent of the initial condition of the
state. The agents need to have knowledge about the total number of states n in the system
in order to know how many simulations they have to run, but this is still in accordance with
Definition 4.1. Furthermore, a protocol is required that determines which unit base vector is
used at what time as the initial condition.

We see that making use of Assumption 4.3 ensures the point we made earlier because
it leads to the simulation of the system with every unit base vector as an initial condition
in the algorithm, thus exciting every state. Thus, the resulting controller is optimal given
the maximum possible amount of information about the system dynamics without actually
knowing the system model. It is important to note that this does not help to overcome the
non-convexity of the problem with respect to the controller parameters.

In the next section, we address the problem of guaranteeing stability in this distributed
setting with local model information.

4.3.3 Distributed computation of stability guaranteeing terminal cost
term

In this subsection, we describe how a terminal cost weighting matrix is used to guarantee
stability. Next, it is shown how this matrix can be determined using an optimization problem
in a similar fashion to the stability analysis problem in Section 3.4.2. Last, a distributed
approach is presented to solve the optimization problem that requires only local information
exchange among neighboring subsystems according to the computation graph Gcomp.

72

4.3 Distributed linear quadratic optimal control design with guaranteed stability

4.3.3.1 Stability from terminal cost term

The idea of using a terminal cost term to guarantee stability stems from model predictive
control (MPC). We shortly recapitulate the main principles of MPC.

The core idea of MPC is to repeatedly solve an optimal control problem over a finite time
horizon tf based on current state measurements to obtain an optimal open-loop input trajec-
tory u∗(·). Only the first part of the input trajectory is applied to the system for the duration
of the sampling period ∆t and then the optimization problem is solved again with new state
measurements. The problem that finite horizon optimality does not inherently guarantee
stability can be circumvented by using a terminal cost term which represents a bound on
the infinite horizon cost functional [101]. In this thesis, we adapt this approach of using a
terminal cost term to a distributed feedback control law instead of an open-loop trajectory as
is used in MPC. More importantly, we place our focus on the distributed computation of the
desired terminal term in the subsequent subsections which, in contrast, is typically handled
by a centralized solution of a Lyapunov equation.

The starting point to obtain the terminal cost term is a stabilizing, though not necessarily
optimized, auxiliary control law Kaux. Given Kaux, we compute a solution (P,δ) to the linear
matrix inequality (LMI)

FKaux
(P,δ) := AT

Kaux
P + PAKaux

+ γδ (Q+ KT
auxRKaux)

︸ ︷︷ ︸

QKaux

� 0, (4.7)

where AKaux
= A−BKaux, γ > 0 is a pre-specified constant, and the solution variables are P ∈ Sn

and δ ∈ R. The reason for using a Lyapunov inequality is that it links stability with the cost
functional, as will be seen in the following.

Observe that Kaux is stabilizing if the resulting P ∈ Sn
++ and if δ > 0 [20]. If not, Kaux

needs to be re-designed. Note that the auxiliary feedback Kaux is never actually applied but
merely required for the stability proof. The only feedback law that is actually applied is the
distributed control law Kdist. Given a valid solution (P,δ), we state the following lemma.

Lemma 4.1. Given a solution (P,δ) to the LMI (4.7) and a stabilizing feedback law u(τ) =
−Kaux x(τ), the infinite horizon cost functional J∞(t, x , u) is bounded from above by the termi-
nal cost term as

x(t)TSx(t)≥
∫ ∞

t

xT(τ)Qx(τ) + uT(τ)Ru(τ)dτ, (4.8)

where S = P
γδ .

Proof. Differentiation of xTSx along a trajectory of system (4.2) and using (4.7) gives

V̇ =
d
dt

xTSx = xT(AT
Kaux

S + SAKaux
)x ≤ −xTQKaux

x < 0. (4.9)

Integrating both sides from t to ∞, and knowing that Kaux is stabilizing gives the result
from (4.8).

Next, it is shown that the distributed control law Kdist from optimization problem (4.4)
with the terminal cost term with S = P

δγ yields a value function that is non-increasing. This
is stated in the following lemma.

73

4 Stabilizing distributed optimal control design with local model information

Lemma 4.2. For τ ∈ (t, t +∆t] the optimal value function satisfies

J∗(x(τ),τ,τ+ tf)≤ J∗(x(t), t, t + tf)−
∫ τ

t

xT(s)Qx(s) + uT(s)Ru(s)ds.

Proof. The following notation is used: x̄(τ; x(t), t) is the prediction of the state trajectory at
time τ using state information from time t, and x̄∗(τ; x(t), t, t + tf) is the optimal predicted
state trajectory at time τ using state information from time t with optimization horizon tf.

At time t, the optimal feedback input ū∗(·; x(t), t, t+ tf) is computed as ū∗ = −Kdist x̄
∗ and

we additionally have the optimal predicted state trajectory x̄∗(·; x(t), t, t + tf) on [t, t + tf].
Then, the value of the optimal value function is

J∗(x(t), t, t + tf) =

∫ t+tf

t

x̄∗
T

(s; x(t), t, t + tf)Qx̄∗(s; x(t), t, t + tf)

+ ū∗
T

(s; x(t), t, t + tf)Rū∗(s; x(t), t, t + tf)ds

+ x̄∗
T

(t + tf; x(t), t, t + tf)S x̄∗(t + tf; x(t), t, t + tf). (4.10)

For τ in the current interval (t, t + ∆t], the control input is determined by Kdist and the
state trajectory is identical to the predicted trajectory, i.e. x(s) = x̄∗(s; x(t), t, t + tf) for
any s ∈ [t,τ]. Assuming the suboptimal feedback

u(τ) =

¨

−Kdist x(τ), if t ≤ τ≤ t + tf

−Kaux x(τ), if τ > t + tf,
(4.11)

is applied to the system, the resulting trajectories are identical to the ones from optimization
time t, except for the shifted part in the time interval [t + tf,τ + tf]. Thus, we have that
x̄(s; x(τ),τ) = x̄∗(s; x(t), t, t + tf) for all s ∈ [τ, t + tf]. To determine the value of the cost
function forτ ∈ (t, t+∆t], we compute the cost generated in the new part of the optimization
interval, namely [t + tf,τ+ tf]. With the chosen input (4.11), (4.9) is satisfied within that
interval. Integration of (4.9) in the interval of interest [t + tf,τ+ tf] gives

x̄(τ+ tf; x(τ),τ)TS x̄(τ+ tf; x(τ),τ) +

∫ τ+tf

t+tf

x̄(s; x(τ),τ)TQKaux
x̄(s; x(τ),τ)ds

≤ x̄∗(t + tf; x(t), t, t + tf)
TS x̄∗(t + tf; x(t), t, t + tf).

With this, the value of the cost functional for τ ∈ (t, t +∆t] can be bounded as

J̄(x(τ),τ,τ+ tf)≤
∫ t+tf

τ

x̄∗(s; x(t), t, t + tf)
TQKdist

x̄∗(s; x(t), t, t + tf)ds

+ x̄∗(t + tf; x(t), t, t + tf)
TS x̄∗(t + tf; x(t), t, t + tf),

where QKdist
= Q + KT

distRKdist. Combining this with (4.10), and knowing that J∗ is optimal,
we obtain for τ ∈ (t, t +∆t]

J∗(x(τ),τ,τ+ tf)≤ J̄(x(τ),τ,τ+ tf)

≤ J∗(x(t), t, t + tf)−
∫ τ

t

x(s)TQKdist
x(s)ds.

With Q � 0 and R� 0, we conclude that the value function is always non-increasing.

74

4.3 Distributed linear quadratic optimal control design with guaranteed stability

With the help of Lemmas 4.1 and 4.2, we can state the following lemma about the sta-
bility of an MPC implementation of the input u(t) = −Kdist x(t) resulting from optimization
problem (4.4). By MPC implementation, we understand that the control law is applied for
the sampling period ∆t after which the optimization problem (4.4) is solved again and this
process is repeated indefinitely.

Lemma 4.3. The closed loop of system (4.1),(4.2) with an MPC implementation of the in-
put u(t) = −Kdist x(t) resulting from optimization problem (4.4) with S = P

γδ from (4.7) is
asymptotically stable.

Proof. We define V (x) = J∗(x , t, t + tf). This function has the following properties:

• V (0) = 0, V (x)> 0 for x 6= 0,

• along the trajectory of the closed-loop system, there is for 0≤ t1 < t2 ≤∞

V (x(t2))− V (x(t1))≤ −
∫ t2

t1

xT(t)Qx(t)dt, (4.12)

where Lemma 4.2 is used. We now show asymptotic stability, i.e. for every ε > 0, there
is η(ε)> 0 such that ||x(0)||< η(ε) implies ||x(t)||< ε for all t ≥ 0 [30]. From (4.12), we
obtain

V (x(∞))≤ V (x(0))−
∫ ∞

0

xT(t)Qx(t)dt.

Because V (x(∞)) ≥ 0 and V (x(0)) ≤ β > 0, the integral must exist and it is bounded.
Clearly, the closed-loop system given by (2.9) with feedback u = −Kdist x is uniformly con-
tinuous. Hence, we can apply Barbalat’s lemma and conclude that ||x(t)|| → 0 as t →∞,
which implies asymptotic stability.

Remark 4.3. Note that the proofs of the Lemmas in this subsection follow [101] but are
adapted to our needs and to the case of a distributed feedback law instead of an open loop
input trajectory.

Remark 4.4. The choice of Kaux is not unique and it has an influence on the solution of the
LMI (4.7) and effectively on the resulting terminal cost term. Thus, it also has an effect on
the resulting Kdist. Unfortunately, no general guidelines can be stated, but using an optimized
control law, e.g. based on LQR, is a reasonable approach.

We have now shown that the control law resulting from Algorithm 8 is stabilizing, if a
suitable terminal cost term according to the LMI (4.7) is used. However, in order for the
design method to satisfy Definition 4.1, the computation of the matrix S also needs to be
distributed. This is addressed in the next subsection.

75

4 Stabilizing distributed optimal control design with local model information

4.3.3.2 Distributed computation of terminal cost matrix using distributed
optimization

Given the terminal cost term from the previous subsection, we know that the solution to
problem (4.4) is stabilizing. In this subsection, we determine this terminal cost term S = P

γδ

in accordance with Definition 4.1 using distributed optimization. The goal of this subsection
is to find a solution to the LMI (4.7). The approach to achieve this is based on the distributed
stability test in Section 3.4.2 with slight adaptation.

To facilitate a distributed solution of the LMI (4.7) we make the following assumption
concerning its block sparsity structure.

Assumption 4.4. The LMI (4.7) has a block sparsity structure in accordance with the com-
putation graph Gcomp, that is the block (FKaux

(P,δ))i j = 0 iff (i, j) /∈ Ecomp.

The critical terms of (4.7) to satisfy the assumption are ATP + PA and KT
auxRauxK as Q

automatically satisfies the required property by the previous Assumption 4.2. Let us first
consider the simplest case where Gcomp = Gs,u. Then, P is a block diagonal matrix where
the block sizes correspond to the subsystem sizes and Kaux needs to have a form such
that KT

auxRKaux satisfies the assumption. One way to achieve this is that Kaux is a completely
decentralized control law, hence block diagonal. However, there are other possible struc-
tures for Kaux to satisfy the requirement depending on the allowed graphical structure. In
this first case, where Gcomp = Gs,u, the block structure of FKaux

(P,δ) corresponds to the struc-
ture of Asym = A+ AT, which is exactly represented by Gs,u = Gcomp. However, in the case in
which the computation graph contains more edges than the system graph, i.e. Ecomp ⊃ Es,u,
P and Kaux contain larger blocks corresponding to the merging of several subsystems in ac-
cordance with the additional edges. The block size of a larger block then corresponds to the
sum of the individual block sizes. To make the presentation of the results simpler, we focus
on the first case in the following. With the block diagonal restriction, the LMI considered in
the following becomes

AT
Kaux

diag(P1, . . . , PN)
︸ ︷︷ ︸

P

+diag(P1, . . . , PN)AKaux
+ γδ (Q+ KT

auxRKaux)
︸ ︷︷ ︸

QKaux

� 0. (4.13)

The sparsity structure of this LMI is now identical to the original system structure, which
is the basis for the distributed solution. In other words, this means that the block sparsity
structure of the LMI is described by Gs,u while the element sparsity structure is described by
the graph GLMI = (VLMI,ELMI) where (j, i) ∈ ELMI iff the element Asym

i j 6= 0. Note that in this
graph, an edge corresponds to an individual matrix entry, and not to a matrix block. Similarly,
throughout this subsection, the notation X i j refers to the (i, j)-element of the matrix X , and
not to the block.

Remark 4.5. With the structural restriction from Assumption 4.4, it becomes clear that S
also automatically satisfies the same sparsity structure as Q from Assumption 4.2, i.e. Si j = 0
if (i, j) /∈ Ecomp.

To distribute the solution of the LMI, we proceed in the same fashion as in Section 3.4.2
and decompose it by applying the range-space conversion method [82]. Therefore, as in the
referred section, the following assumption is required.

76

4.3 Distributed linear quadratic optimal control design with guaranteed stability

Assumption 4.5. GLMI is a chordal graph.

If GLMI is not a chordal graph we cannot decompose the LMI to solve it distributedly. In that
case, the structure of (4.13) needs to be extended by additional edges to its chordal extension,
and, with that, effectively enlarging the original Gcomp to satisfy Assumption 4.5. This is
achieved by allowing more entries in P, which is equivalent to adding edges to Ecomp that go
beyond Es,u. This extension, however, can be found in polynomial time [82]. In practice, if
the chordal extension is required that means that the affected subsystems need to collaborate
with additional subsystems than originally expressed in Gcomp. Note that Assumption 4.5
cannot be expressed in terms of Gs,u or Gcomp because the element structure is relevant.

Again, the overall idea is to obtain a result with only local information by decomposing
the LMI (4.13), and then to formulate an optimization problem that contains the decom-
posed condition as a constraint. Afterwards, we apply the distributed constrained Nesterov
algorithm (DCNA).

We use the same definitions as in Section 3.4.2. With them, we define the following
matrices for l = 1, . . . , N and (i, j) ∈Bl

F0 = −γQKaux
,

F l
i j =

1
2

�

−AT
Kaux

Ei j − Ei jAKaux

�

if i < j,
1
2

�

−AT
Kaux

E ji − E jiAKaux

�

if i > j,

−AT
Kaux

Ei j − Ei jAKaux
if i = j.

Essentially, the main difference to Section 3.4.2 is that we have replaced the identity matrix
with the matrix QKaux

for F0. Similarly, in F l
i j, the matrix A is replaced by the closed-loop

form AKaux
which includes the pre-determined auxiliary feedback law Kaux.

With this and with il = i −
∑l−1

s=1 ns, the LMI (4.13) can be rewritten as

F(P,δ) := F0δ+
N
∑

l=1

∑

(i, j)∈Bl

F l
i j P

l
il jl
� 0.

Then, following the same steps taken in Section 3.4.2, we eventually arrive at the distributed
optimization problem given by

min
δ∈R,P l∈Snl

−δ+
σδ
2
δ2 +

N
∑

l=1

σP l

2
‖P l‖2

F +
p
∑

s=1

σY s

2
‖Y s‖2

F

s.t. δInl
− P l � 0 for l = 1, . . . , N , (4.14a)

Ei j •
∑

s∈Γ (i, j)

Y s − Ei j • F(P,δ) = 0 for (i, j) ∈ J , (4.14b)

Y s ∈ SCs
+ for s = 1, . . . , p, (4.14c)

which can be solved using Algorithm 9.

Remark 4.6. We refer to Section 3.4.2 for more details on the algorithm’s convergence guar-
antees, closed form solutions to subproblems, its accuracy and the possibility to employ
event-based communication during the optimization.

77

4 Stabilizing distributed optimal control design with local model information

Algorithm 9 Distributed solution of (4.14).
For k ≥ 0 do

1. Set M l,0 = 0nl
and Λ0

i j = 0n .

2. Given M l,k and components Λk
i j, the agents compute

δk+1 = argmin
δ∈R

n

−xδδ+
σδ
2
δ2
o

,

P l,k+1 = argmin
P l∈Snl

n

−X l
P • P l +

σP l

2
‖P l‖2

F

o

,

Y s,k+1 = argmin
Y s∈SCs

+

n

−X s
Y • Y s +

σY s

2
‖Y s‖2

F

o

,

for l = 1, . . . , N and s = 1, . . . , p.

For (i, j) ∈ J and l = 1, . . . , N , the agents do in parallel

2. Given δk+1, P l,k+1, and Y s,k+1 compute

∇Λi j
f (Λk, M k) = Ei j •

∑

s∈Γ (i, j)

Y s,k+1 − Ei j •

F0δk+1 +
N
∑

l=1

∑

(i, j)∈Il

F l
i j P

l,k+1
il jl

!

,

∇M l f (Λk, M k) = δk+1Inl
− P l,k+1.

3. Find

Y k
i j = arg max

Yi j∈R

�

−
L
2

�

Yi j −Λk
i j

�2
+∇Λi j

f (Λk, M k)Yi j

�

,

H l,k = arg max
H l∈Snl

+

�

−
L
2
‖H l −M l,k‖2

F +∇M l f (Λk, M k) •H l

�

.

4. Find

Z k
i j = arg max

Zi j∈R

�

−
L
2

Z2
i j +

k
∑

j=0

j + 1
2
∇Λi j

f (Λ j, M j)Zi j

�

,

T l,k = arg max
T l∈Snl

+

�

−
L
2
‖T l‖2

F +
k
∑

j=0

j + 1
2
∇M l f (Λ j, M j) • Tl

�

.

5. Set

Λk+1
i j =

k+ 1
k+ 3

Y k
i j +

2
k+ 3

Z k
i j,

M l,k+1 =
k+ 1
k+ 3

H l,k +
2

k+ 3
T l,k.

6. Increase k and go back to step 2.

78

4.3 Distributed linear quadratic optimal control design with guaranteed stability

With this algorithm, we can state the following theorem and the main result of this section.

Theorem 4.1. Given Assumptions 4.1-4.5, the control design method consisting of Algorithms 8
and 9 give an LQ-optimized static feedback law Kdist solving problem (4.4) which is stabilizing
for system (4.1),(4.2) and which is a feasible control law according to Definition 4.1.

Proof. All steps of Algorithm 9 can be implemented using only information from direct neigh-
bors in Gcomp. The critical, non-obvious step is the computation of δk+1. However, because
the subsystems know the overall system size N , this can be realized using a consensus algo-
rithm. This leads to a stabilizing cost term S using Lemma 4.3 which results in stability of
the MPC implementation of Kdist. However, Algorithm 8 is independent of any current state
information such that a repeated solution of optimization problem (4.4) always gives the
same solution. Hence, an MPC implementation is identical to a static feedback law that can
be continuously applied.

Note that the resulting control law is technically not an MPC method because no repeated
optimization is used but a static feedback law. MPC arguments are, however, used in order
to guarantee stability for a finite horizon cost functional.

In conclusion, the combination of Algorithms 8 and 9 allow the design of a distributed
control law using only local model information from neighbors according to the computation
graph, and the control structure satisfies the structure of the control graph.

Remark 4.7. We have stated that Algorithm 9 gives only an approximate result. In order
to guarantee stability from a theoretical standpoint, however, we do in fact need the exact
result. Nonetheless, as is shown in Section 3.4.2, we can obtain a value that is arbitrarily
close to the actual result. Future work will explore whether it is possible to guarantee stability
given a certain approximation error.

4.3.4 Numerical results

In this subsection, we illustrate and validate the results from this section. We start with a
simple example illustrating the structure and main steps of the solution of the problem. After-
wards, we show in a numerical fashion that the presented control design approach is indeed
stabilizing. Last, the approach is applied to an academic power system example model.

4.3.4.1 Illustrating example

In this subsection, we use a small-scale example to illustrate the main overall steps of the
two algorithms. The topology that we consider is the one in Figure 4.1, which corresponds
to a line graph with N = 4 agents. This is in fact the smallest system where it makes sense
to use the presented method. For three agents, there is always one subsystem that knows the
overall system. For illustrative purposes, we assume that each subsystem has ni = 1 states,
and the system dynamics are created randomly. The considered state matrix is then

A=

1.35 0.86 0 0
−1.76 0.12 −0.18 0

0 0.74 −1.21 1.24
0 0 −0.25 −1.06

.

79

4 Stabilizing distributed optimal control design with local model information

The input matrix is B = diag(−1.07, 1.44,2.91,−0.47). The weighting matrices Q and R
are set to I4. Two of the eigenvalues have positive real part so the system is unsta-
ble. Because of the scalar subsystems, the graph GLMI coincides with the computation
graph Gcomp = Gcontrol and they are chordal. The resulting graph has p = 3 maximal
cliques with C1 = {1,2}, C2 = {2,3} and C3 = {3,4}. This leads to the sets J(C1) =
{(1,1), (1,2), (2, 2)}, J(C2) = {(2,2), (2, 3), (3, 3)}, J(C3) = {(3,3), (3, 4), (4,4)}. The set J
is their union with seven elements, and we need p = 3 additional slack matrix variables Y s.
The auxiliary feedback matrix Kaux is a decentralized LQR control law. Furthermore, the
terminal cost matrix S is simply a diagonal matrix. To compute S, Algorithm 9 stops after
32348 iterations for an accuracy of ε = 10−2. The cost evolution of Algorithm 9 is shown in
Figure 4.2a. As we have seen before in Section 3.5.1, the algorithm approaches the optimal
value from below. The resulting value of δ is 23.32 and the terminal cost matrix S is given
by S = diag(5.41, 30.6,1, 1.26). The optimization horizon is tf = 5. In Figures 4.2b and 4.2c,
the subsequent behavior of Algorithm 8 is shown. First, it can be seen that the cost converges
quickly after 12 iterations. This is achieved with the Barzilai-Borwein step size that is treated
in the following Section 4.4.2. In Figure 4.2c, the norm of the difference between the feed-
back law of each iteration and the resulting optimal one is shown. The resulting feedback
law is given by

Kdist =

−2.62 −0.21 0 0
0.28 1.23 0.0071 0

0 0.012 0.66 0.11
0 0 −0.019 −0.23

.

All eigenvalues of the closed loop with the resulting feedback have negative real part so the
system is successfully stabilized by the resulting LQ-optimized feedback law. In addition,
an interesting comparison can be made when we look at the centralized, complete infinite
horizon LQ optimal feedback law resulting from the Riccati equation (2.7) which is given by

KLQR =

−2.62 −0.21 0.0085 0.010
0.28 1.23 0.0027 0.012
−0.023 0.0055 0.66 0.11
0.0045 −0.0039 −0.018 −0.23

.

It becomes clear that the entries of the distributed control law are very close to the complete,
centralized control law, especially the diagonal terms, where the largest relative difference
is 0.23%. The available, nonzero off-diagonal terms of Kdist differ slightly, but this is to be
expected as they are required to balance the unavailable entries. The resulting cost of both
control laws for an infinite horizon also only differs by 0.021%.

4.3.4.2 Numerical illustration of stability

This subsection contains a numerical demonstration that the derived feedback law from the
presented Algorithms 8 and 9 is indeed stabilizing. As benchmark systems, 100 different
unstable test systems are randomly created. Each system has N = 40 subsystems, and every
subsystem has ni = 2 states. The systems are created in such a way that the subsystems
can stabilize the system with decentralized LQR control laws designed with only their own
decoupled model (Q = Ini×ni

, R= 100Imi×mi
) which leads to a decentralized control law Kaux.

80

4.3 Distributed linear quadratic optimal control design with guaranteed stability

0 1 2 3

·104

−20

−15

Iterations

C
os
t

J

(a) Cost evolution of Algorithm 9. Optimal
value in black (dashed) is −11.6567.

2 4 6 8 10 12
100

102

Iterations

C
os
t

J

(b) Cost evolution for distributed gradient
descent in Algorithm 8.

2 4 6 8 10 12
0

1

2

3

Iterations

||K
k
−

K
o
p
t||

F

(c) Difference between K(k) and final Kopt in
Algorithm 8.

Figure 4.2: Illustration of behaviors of Algorithms 8 and 9.

As a first step, solutions to (4.14) are obtained. To evaluate the performance of the
distributed Algorithm 9 (Sdist), we compare the results with a centralized solution from
Yalmip [84] (SY). Afterwards, we apply Algorithm 8 to compute the distributed control
law Kdist for the following scenarios: (1) tf = 1 and S = SY from (4.14) solved with Yalmip,
(2) tf = 1 and S = Sdist from (4.14) solved with Algorithm 9, (3) tf = 1 and S = 0n, (4) tf = 2
and S = 0n, (5) tf = 5 and S = 0n, (6) tf = 10 and S = 0n. The scenarios are chosen
to compare two things: First, we compare the results from Yalmip with the distributed al-
gorithm. Second, the presented approach of computing a terminal cost term for stability
(Scenarios (1) and (2)) is compared with the different approach of tuning the optimization
horizon to achieve stability.

The results are summarized in Table 4.1. It shows that the terminal cost term guarantees
stability as expected. When the terminal cost term is not used and instead tuning of the
horizon is used, we notice that it is not clear which horizon should be chosen as it is highly
dependent on the given system dynamics which are not globally known. Only the last sce-
nario without the terminal cost term gives stability for all 100 systems. Tuning of the horizon
to achieve stability can then turn into a “playing of games” [102] which makes clear why the
presented approach involving the terminal cost term is preferable.

Additionally, as a comparison of the results of Yalmip with the distributed Algorithm 9, we
compare the costs of the resulting control laws obtained with SY and Sdist and the average
relative cost difference is less than 0.3%. This indicates that the distributed algorithm gives
results that are very close to the centralized results despite the fact that only neighborhood

81

4 Stabilizing distributed optimal control design with local model information

Table 4.1: Number of stabilized systems out of 100 for the six scenarios: (1): tf =
1, S = SY from (4.14) with Yalmip; (2): tf = 1, S = Sdist from (4.14) with
Algorithm 9; (3) tf = 1, S = 0n; (4) tf = 2, S = 0n; (5) tf = 5, S = 0n;
(6) tf = 10, S = 0n.

Scenario (1) (2) (3) (4) (5) (6)
stabilized systems 100 100 58 80 97 100

information is used and it demonstrates the applicability of the distributed approach.

4.3.4.3 Application to electrical power system model

In this subsection, we apply the presented algorithm to a power system model. The consid-
ered subsystem dynamics are [103, 104]

δ̇i =ωi,

ω̇i =
1
Hi

PMi
−

Di

Hi
ωi −

1
Hi

∑

j∈Nin,i

Γi jδ j +
1
Hi

N+M
∑

j=1

Ψi j PL j
,

ṖMi
=

1
τTi

(PGi
− PMi

),

ṖGi
=

1
τGi

(Prefi
− PGi

−
1
ri
ωi).

Here, i ∈ {1, . . . , N}, δi is the phase angle, ωi the frequency, PMi
the turbine error state

and PGi
the governor error state. The system parameters are the inertia Hi, the damping

coefficient Di, the turbine and governor time constants τTi
and τGi

, as well as the droop
regulator constant ri. Furthermore, there are N nodes that have attached generators, and M
additional nodes that only have loads. In addition, we have the matrices Γ ∈ RN×N and Ψ ∈
RN×(N+M) which are derived as follows. Starting with the adjacency matrix A with Ai j =
−bi j where bi j is the susceptance of the line between the nodes i and j for i, j ∈ {1, . . . , N +
M}, we can define the matrix B :=A −diag(A 1N+M). We can then partition the matrixB
into blocks

�B11 B12
B12 B22

�

and then obtain Γ = (B11−B12B−1
22B21) and Ψ =

�

−IN B12B−1
22

�

. This
process of deriving Γ and Ψ essentially removes the load nodes from the system description
and includes them into the generator nodes, which is called Kron reduction. The control input
of subsystem i is Prefi

and there may be exogenous disturbances in the form of deviations in
power demand represented by PLi

.
The considered cost functional is

J =
N
∑

i=1

∫ tf

0

�

∑

j∈Nin,i

pi j(δi(τ)−δ j(τ))
2 + qiω

2
i (τ) + ri P

2
refi
(τ)

�

dτ, (4.15)

with pi j = 10, qi = 1000, ri = 1 and tf = 100. This cost functional penalizes deviations in
frequency, the control input and the differences in neighboring phases. The phase difference
is proportional to deviations from the scheduled power flow between neighboring areas,
which is undesired.

82

4.3 Distributed linear quadratic optimal control design with guaranteed stability

Concretely, we consider a modified version of the IEEE 39 bus test case. We have modified
the original system for two reasons. First, we increase the number of generators from the
typical 10 to 16 to reflect the trend of having more distributed power generation. Second,
the original IEEE test case has no sparsity structure after the Kron reduction, i.e. the real
power of the proposed approach cannot be demonstrated. The original topology that we
consider is shown in Figure 4.3. The reduced topology is shown in Figure 4.4, and this is
also the structure of the state matrix A, and, therefore, it represents the graphs Gs = Gs,u =
Gcontrol = Gcomp.

To evaluate the performance of the control law, we assume that the load at node 22 in-
creases after 0.1 seconds, i.e. PL22

(t) = 0.1 for t > 0.1. This directly influences generators
3, 11 and 16, which is expressed in the structure of the matrix Ψ. The resulting frequency
behaviors of said nodes and of their neighbors are shown in Figure 4.5. It shows that the
distributed control law stabilizes the frequencies back to the desired ones. In the open loop
a permanent frequency deviation remains after the disturbance.

4.3.5 Summary

In this section, we presented our results on LQ optimal and stabilizing distributed control
design using only local model information. With advanced and modern distributed optimiza-
tion techniques, a terminal cost term is obtained which guarantees stability of the closed loop
even though a finite horizon cost functional is considered. Afterwards, a gradient descent
method iteratively leads to an optimal feedback law. Numerical examples illustrated and
corroborated the numerical results. In the next section, we delve into more details of the

1 8 36 38 39

26 15 37 9

24 28 13 34

27 12 6

10 29 11 25 31 32

35 16 22 14 33

18 17 21 23 30 7

19 2 20 3 5 4

Figure 4.3: Modified IEEE 39 bus test system with 16 generators (6 additional ones). Gen-
erator nodes in red, load nodes in black.

83

4 Stabilizing distributed optimal control design with local model information

1 2 3

4 5

6 7

8

9 10

14

12

13 11 15 16

Figure 4.4: Reduced topology of modified IEEE 39 bus test system with 16 generators (6
additional ones).

0 20 40 60 80 100 120 140 160 180 200
−0.6

−0.4

−0.2

0

Time t

F
re
q
u
en
cy
ω

i(
t)

ω1 ω2
ω3 ω10
ω11 ω12
ω13 ω15
ω16

Figure 4.5: Frequency behavior after disturbance.

gradient algorithm by presenting results on the choice of the step size.

4.4 Distributed step size selection

This section addresses the selection of the step size γk for the distributed gradient descent
method from Algorithm 8 in Section 4.3.2. Several different step sizes are compared and
an extension of the gradient method to a conjugate gradient method is also considered to
evaluate the performance.

4.4.1 Overview

An important property of Algorithm 8 is that it can be implemented in a distributed fashion
using only local information, i.e. there is no central entity with global knowledge. However,
a critical issue when using a gradient descent method is the choice of the step size denoted
by γk. In the following, we compare two different step size methods in terms of their conver-
gence speed and computational effort. The easiest choice for a step size is using a constant
step size. The main advantage is an easy implementation and it requires no additional com-
putations but convergence may be slow. An alternative is the so-called Barzilai-Borwein (BB)

84

4.4 Distributed step size selection

step size [105]. This step size selection method has been shown to yield good convergence
speeds, and for nonquadratic problems it might even outperform conjugate gradient meth-
ods [106]. We refer to A.1.1 for an introduction on step lengths in gradient methods. Note
that even when using a descent direction, both step size methods, constant and BB, are not
necessarily monotonous. In this case, the step might lead to a cost increase. To prohibit
this undesired behavior, it is important to test the Powell-Wolfe conditions to guarantee con-
vergence. The effort of this test is also taken into account in our comparison. In addition,
a comparison is made with a conjugate gradient method. The challenge is to distributedly
determine the Barzilai-Borwein step size, and also to compute the conjugate gradient search
direction. The main concept that we employ is to use a consensus algorithm.

4.4.2 Distributed computation of Barzilai-Borwein step size

The distributed setting of the control design problem makes finding a good step size γk for
Algorithm 8 presented in Section 4.3.2 non-trivial. The straightforward approach of per-
forming a line search to find the optimal γk is not applicable in this distributed environment.
In addition, the exact line search involves the solution of an optimization problem in every
iteration step and can be computationally expensive. A different method for the selection of
the step size is the aforementioned BB method. Applied to the presented problem, the BB
method gives the step size as

γk =
∆vec(Kdist)T∆vec(Kdist)
∆vec(Kdist)T∆vec(∇Kdist

J)
, (4.16)

where ∆vec(Kdist) = vec(K (k)dist) − vec(K (k−1)
dist) and ∆vec(∇Kdist

J) = vec(∇Kdist
J (k)) −

vec(∇Kdist
J (k−1)). This computation requires additional storage because the feedback matrix

and the gradient for the current and the last iterations are necessary.
This step size, however, cannot be directly computed in a distributed fashion using the

formula from (4.16) because the scalar products in numerator and denominator contain the
whole feedback law in a vectorized form. However, exactly because there are scalar products
in both numerator and denominator, one can also write (4.16) as

γk =
1
N

∑N
i=1∆vec(Kdist,i)T∆vec(Kdist,i)

1
N

∑N
i=1∆vec(Kdist,i)T∆vec(∇Kdist,i

J)
,

which means that in both numerator and denominator, we have the sum of all the scalar
products of information available to each particular agent, and then average them over the
number of agents. The averaging factor 1

N can clearly be canceled to obtain (4.16). Because
distributed averaging is related to the consensus problem, we can follow an idea from [107]
to present a method to compute the BB step size distributedly in two steps. In the first
step, each agent uses its own entries of the feedback and gradient matrices to determine an
estimate of the numerator and denominator of the BB step size γk. In the second step, a
distributed consensus algorithm gives the value of (4.16). To begin, each node i, with i =
1, . . . , N , initializes the two scalar values

ρi(k(0)) =∆vec(Kdist,i)
T∆vec(Kdist,i),

85

4 Stabilizing distributed optimal control design with local model information

and
ψi(k(0)) =∆vec(Kdist,i)

T∆vec(∇Kdist,i
J).

Thus, every agent uses its own respective row(s) of the feedback and gradient matrices to
compute the local parameters ρi(k(0)) and ψi(k(0)) corresponding to the iteration k. Then,
the agents start the following consensus iterations during which information exchange is
necessary

ρi(k(t + 1)) =Wiiρi(k(t)) +
∑

j∈Ni

Wi jρ j(k(t)),

ψi(k(t + 1)) =Wiiψi(k(t)) +
∑

j∈Ni

Wi jψ j(k(t)).

Here, W is a symmetric, non-negative, doubly stochastic matrix with strictly positive diagonal
entries. It is important to choose the entries of the matrix W such that its sparsity structure
is in accordance with the computation graph Gcomp. A common choice for W is according to
the so-called Metropolis rule [107, 108]. This leads to the following proposition [107].

Proposition 4.3. If the graph Gcomp is connected, then

lim
t→∞

ρi(k(t))
ψi(k(t))

= γk, for all i = 1, ..., n.

Proof. The result follows from the doubly stochastic property of the matrix W which estab-
lishes the fact that the iteration leads to the respective averages of the ρi and ψi [80, 108].
For details on the proof, see [107].

The consensus phase stops when the relative difference of γk := ρi(k(t))
ψi(k(t))

between consecu-
tive iterations t and (t − 1) falls below a pre-specified threshold.

Because of the prescribed structure of the matrix W , the computation of the BB step size
using the consensus algorithm from Proposition 4.3 is in accordance with our requirements
for local information exchange without a central entity.

4.4.3 Convergence guarantees

Because neither the BB step size nor a constant step size guarantee convergence, a test needs
to be performed to check if the step size satisfies two requirements, namely the Powell-Wolfe
conditions which are

J(K (k)dist + γkdk)≤ J(K (k)dist) + c1γkvec(∇Kdist
J(K (k)dist))

Tdk,

vec(∇Kdist
J(K (k)dist + γkdk))

Tdk ≥ c2vec(∇Kdist
J(K (k)dist))

Tdk,

where c1 and c2 are constants to be chosen, and γk is initially either the BB step size or a
constant step size. Furthermore, for the gradient descent method, the search direction is dk =
−vec(∇Kdist

J(K (k)dist)). It can be shown that this condition is always satisfied for sufficiently
small γk.

86

4.4 Distributed step size selection

As both the left hand and the right hand sides of both inequalities are separable for each
agent by Assumption 4.2, all agents can compute their respective summands in the terms

Φ(k) :=
N
∑

i=1

J(K (k)dist,i − γk∇Kdist,i
J(K (k)dist,i))− J(K (k)dist,i) + c1γk||vec(∇Kdist,i

J(K (k)dist,i))||
2
2,

Ψ(k) :=
N
∑

i=1

vec(∇Kdist,i
J(K (k)dist,i − γk∇Kdist,i

J(K (k)dist,i)))
Tvec(∇Kdist,i

J(K (k)dist,i))

+ c2vec(∇Kdist,i
J(K (k)dist,i))

Tvec(∇Kdist,i
J(K (k)dist,i)).

Then, a consensus phase is used to determine the average of this term. The consensus is
computed correspondingly to the one in the previous subsection and Proposition 4.3. After
reaching consensus, each agent can check whether Φ(k) is smaller or equal to zero, and
whether Ψ(k) is larger or equal to zero. If this is not the case, the step size needs to be
reduced until the conditions are satisfied. Each test with a new step size requires a new
consensus phase.

Admittedly, the test of the Powell-Wolfe conditions raises the computational effort of the
approach, but we need to stress here that this is a necessary step regardless of a distributed
or centralized approach. The distributed setting, however, makes the step more expensive
because of the required consensus phase.

4.4.4 Distributed computation of conjugate gradient search direction

So far, Algorithm 8 uses a gradient descent, which means that the search direction dk is
simply the negative gradient, that is dk = −∇Kdist

J(K (k)dist). A different optimization method
that is superior in many applications in terms of convergence speed, is the so-called conjugate
gradient (CG) method. The search direction is then

dk = −∇Kdist
J(K (k)dist) + βkdk−1.

This means that the gradient is perturbed by the scaled previous search direction. There are
several different methods to choose the scaling parameter βk, but we restrict our attention
to the Fletcher-Reeves (FR) [78] method, which gives

βk =
vec(∇Kdist

J(K (k)dist))
Tvec(∇Kdist

J(K (k)dist))

vec(∇Kdist
J(K (k−1)

dist))Tvec(∇Kdist
J(K (k−1)

dist))
.

By inspection, it becomes clear that the structure of the problem to compute βk is identical
to the structure of computing the BB step size. Therefore, we can apply the same technique
of using a consensus phase for both numerator and denominator from Proposition 4.3 to
converge to the result.

4.4.5 Numerical comparison of step sizes and conjugate gradient
method

In order to evaluate the different step size methods, namely constant and BB, and in order
to compare them to a conjugate gradient approach, Algorithm 8 is applied to 100 different
test systems of two different classes; stable and unstable systems.

87

4 Stabilizing distributed optimal control design with local model information

4.4.5.1 Stable test systems

Each of the 100 test systems has N = 20 subsystems and each subsystem has ni = 2 states,
and hence n = 40. The systems are created randomly and the probability of a connection
between subsystems is 0.1. In this subsection, the system parameters are chosen randomly
while ensuring that the overall open-loop systems are stable. In the following, we compare
the overall number of iterations needed with the five alternatives (1) BB step length, (2)
constant step length γ= 0.01, (3) constant step length γ= 1, (4) constant step length γ= 10,
and (5) conjugate gradient method with constant step length γ = 10. Furthermore, we also
compare the required tests of the Powell-Wolfe conditions for each of the 5 alternatives.

First, the optimization horizon is set to tf = 1. The achieved costs for all 5 cases are
virtually identical with the largest difference being on the order of 10−4 where the range
of achieved costs is between 0.39 and 0.53. Hence, in terms of achieved result, all step
sizes perform equally well. Naturally, this is expected because in principle, the step size
should not have a decisive influence on the final result, but this validates the approach. The
results in terms of overall iterations and overall number of Powell-Wolfe (PW) checks are
summarized in Table 4.2. It shows that the BB step length is vastly superior to the constant
step sizes γ= 0.01 and γ= 1. For γ= 10, still less than half of the iterations are required, but
the number of PW checks is larger. This needs to be taken into account because the effort of a
PW check corresponds to roughly twice the effort of an algorithm iteration. Overall, however,
BB is still superior because the difference in PW checks is not as large as the difference in
iterations. Next, we perform the comparison with the CG method. While the overall number
of iterations is still smaller, the CG method requires virtually no PW checks. Therefore, the
CG method seems to be the best method overall.

Next, the same analysis is performed with an optimization horizon of tf = 10 with the
same example systems. Again, the cost differences are smaller than the desired accuracy of
the algorithm where the achieved costs are between 0.48 and 1.00 indicating identical perfor-
mance in terms of the final result. The number of iterations and PW checks are summarized
in Table 4.3. In this case, the CG method is the worst method with regards to iterations.
In terms of PW checks, the CG method is still vastly superior to the other ones by requiring
merely two checks on average. But because the BB method needs fewer main iterations, in
this case, the BB method is the best method overall.

In conclusion, it is hard to make an ultimate judgment on which method is the best. It
becomes clear that the BB step size is always better than a constant step size, but no clear
preference can be made between BB step size or CG method. This is because the actual
optimization problem to be solved by the algorithm is highly dependent on the considered
system and optimization parameters. However, both clearly outperform the constant step
sizes.

4.4.5.2 Unstable test systems

Consistently to the previous subsection, each of the 100 test systems has N = 20 subsystems
and each subsystem has ni = 2 states, and hence n= 40. The systems are created randomly
and the probability of a connection between subsystems is 0.1, but in this subsection, the
overall open-loop systems are not stable. As was the case for the stable systems, we compare

88

4.4 Distributed step size selection

Table 4.2: Performance comparison for tf = 1 and stable systens: (1) BB, (2) γ = 0.01,
(3) γ= 1,(4) γ= 10, (5) CG.

BB γ= 0.01 γ= 1 γ= 10 CG
Average # Iterations 7.03 24.67 25.14 14.92 12
Average # PW checks 18.29 272.24 109.7 15.34 1.04
Average Iterations BB

Iterations x - 0.29 0.28 0.47 0.59
Average PW checks BB

PW checks x - 0.068 0.17 1.23 18.04

Table 4.3: Performance comparison for tf = 10 and stable systens: (1) BB, (2) γ = 0.01,
(3) γ= 1,(4) γ= 10, (5) CG.

BB γ= 0.01 γ= 1 γ= 10 CG
Average # Iterations 18.38 46.33 52.43 115.14 120.87
Average # PW checks 23.76 391.61 231.51 194.30 2.25
Average Iterations BB

Iterations x - 0.39 0.45 0.30 0.26
Average PW checks BB

PW checks x - 0.06 0.15 0.25 17.69

the overall number of iterations needed with the five alternatives (1) BB step length, (2)
constant step length γ= 0.01, (3) constant step length γ= 1, (4) constant step length γ= 10,
and (5) conjugate gradient method.

The optimization horizon is set to tf = 1. The achieved costs for all 5 cases are again very
similar to each other with the largest difference being on the order of 10−3 where the range
of achieved costs is between 0.75 and 1.3. Hence, in terms of achieved result, all step sizes
perform equally well. The results on overall iterations and overall number of Powell-Wolfe
(PW) checks are summarized in Table 4.4.

While the overall number of iterations and PW checks increase for all 5 alternatives, the
overall conclusion remains unchanged in the sense that the BB method is superior to all
alternatives in terms of algorithm iterations. However, the CG method is vastly superior of
PW checks which outweighs the algorithm iterations. Hence, in this case, the CG method is
best overall.

Table 4.4: Performance comparison for tf = 1 and unstable systems: (1) BB, (2) γ = 0.01,
(3) γ= 1,(4) γ= 10, (5) CG.

BB γ= 0.01 γ= 1 γ= 10 CG
Average # Iterations 15.6 37.02 34.38 30.12 29.81
Average # PW checks 28.74 390.93 140.03 35.39 2.27
Average Iterations BB

Iterations x - 0.41 0.44 0.67 0.64
Average PW checks BB

PW checks x - 0.071 0.19 1.14 20.95

89

4 Stabilizing distributed optimal control design with local model information

4.4.6 Summary

In this section, we developed a distributed method for computing the step size for Algo-
rithm 8 in the form of the Barzilai-Borwein step size. We compared the performance of the
step size with an alternative, namely the use of of a constant step size. Furthermore, conver-
gence of the gradient descent is guaranteed by the Powell-Wolfe conditions, which are also
evaluated in a distributed fashion. The key to these computations is consensus whose com-
putation structure is designed to be in accordance with the computation graph Gcomp such
that only local information exchange is required. Therefore, the overall approach remains
completely distributed and does not need a centralized computational entity. Finally, based
on the insights from the step size computations, we extended the gradient descent approach
to a conjugate gradient method. The effectiveness of both the Barzilai-Borwein step size and
the conjugate gradient method were shown in numerical experiments. No general preference
could be stated based on these results, however, both clearly outperformed the constant step
size.

4.5 Event-based trajectory simulation

In the previous sections, we addressed the design of an optimal control law where the knowl-
edge about the dynamical model is distributed among the subsystems. It is evident that the
price that needs to be paid for this distribution is an increase in required communication
among the agents. For Algorithm 9, we already mentioned that an event-based implementa-
tion is possible, see [68] for details. In this section, the trajectory simulation in Algorithm 8
is investigated more closely, and an approach is shown to reduce the communication effort.

4.5.1 Theoretical results

A typical approach to simulate the trajectories, i.e. to solve the ordinary differential equa-
tion (ODE) in a distributed fashion, is to use the Euler discretization. Thus, system (4.2) is
approximated by

xSE(k+ 1) = xSE(k) +∆t [(AxSE(k) + Bu(k)] , xSE(0) = x0, (4.17)

where k = 0, . . . , tf/∆t and∆t is the time discretization step. However, in order to update its
state, agent i needs the state information from every neighboring agent in every step, which
leads to a high communication effort. In the following, the goal is to reduce this effort in
Algorithm 8.

As a basic approach we propose here a novel event-based Euler scheme. We assume that
local computation by the agents is cheap in comparison to information exchange. Hence,
while agents can always use accurate information about their own state, they only receive
quantized information from neighbors. Concretely, system (4.2) is approximated by

xEBE(k+ 1) = xEBE(k) +∆t
�

blockdiag(A)xEBE(k) + (A− blockdiag(A))q(k) + Bu(k)
�

, (4.18)

xEBE(0) = x0,

90

4.5 Event-based trajectory simulation

where q(k) is given by

qi(k) =

qi(k− 1) + b xEBE,i(k)−qi(k−1)
∆Q c∆Q if xEBE,i(k)− qi(k− 1)≥∆Q

qi(k− 1)− b xEBE,i(k)−qi(k−1)
∆Q c∆Q if qi(k− 1)− xEBE,i(k)≥∆Q

qi(k− 1) otherwise,

(4.19)

and the block sizes of blockdiag(A) correspond to the subsystem block sizes. In words, qi(k)
approximates xEBE,i(k) by the closest multiple of the quantum ∆Q. The idea behind this is
that in addition to discretizing time, the state is also discretized, thus requiring communica-
tion only when the quantized version of the state qi(k) changes. For an illustration of this
quantization, see Figure 4.6.

The next theorem shows that the global error bound of this integration scheme scales
linearly with ∆t, which is identical to the conventional Euler method (4.17).

Theorem 4.2. Let ∆Q = h∆t with h ∈ R++. Then, the norm of the global error ||x(k∆t)−
xEBE(k)|| of the event-based Euler scheme (4.18),(4.19) is O(∆t).

Proof. The true state at step k+ 1 given by xk+1 = x((k+ 1)∆t) is described using Taylor’s
theorem by

xk+1 = xk +∆tAxk +
∆t2

2
d
dt
(Ax(t∗)),

where t∗ lies in the interval [k∆t, (k+ 1)∆t]. We can write qk = xEBE +∆xk where |∆xk| ≤
∆Q from (4.19), and furthermore define the error as ek = xk − xEBE. We can then write

ek+1 = ek +∆tAek −∆t(A− blockdiag(A))∆xk +
∆t2

2
d
dt
(Ax(t∗)).

As we are only interested in a bound on the error magnitude we can write

||ek+1|| ≤ (1+∆t||A||)||ek||+∆t||A− blockdiag(A)||∆Q+
∆t2||A2||

2
︸ ︷︷ ︸

c(∆t,∆Q)

.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

Time t

x(
t)
,q
(t
)

x(t)
q(t)

Figure 4.6: State trajectory x(t) (blue) and quantized state trajectory q(t) (red) for system
ẋ(t) = −x(t) and ∆Q = 0.1,∆t = 10−3.

91

4 Stabilizing distributed optimal control design with local model information

Because the error is initially zero, i.e. e0 = 0, this leads to

||en|| ≤ c(∆t,∆Q)
n−1
∑

k=0

(1+∆t||A||)k

=
�

(1+∆t||A||)k − 1
� c(∆t,∆Q)
∆t||A||

.

From this, one can obtain that [109, Chapter 2]

||e(t)|| ≤
c(∆t,∆Q)
∆t||A||

�

e||A||t − 1
�

.

Because ∆Q = h∆t and because the fraction depends linearly on ∆t and ∆Q, it is clear
that ||e(t)||= O(∆t).

The communication effort for the classical Euler method is comprised of the following. In
each time step, each agent has to send ni state values to all its neighbors. This is also the
upper bound for the event-based Euler method. In the event-based method, however, each
agent only has to send those states that changed at least by ∆Q. This reduces the required
communication drastically while the computational effort remains the same. Naturally, the
event-based Euler method has a larger error because the classical Euler method is a special
case (∆Q→ 0), but the order of the error bound stays the same. For the ease of presentation,
we focus here on the Euler method, but an extension to higher order methods is possible.

Because the dependence of the approximation error is linear in ∆t and ∆Q from Theo-
rem 4.2, both parameters need to be chosen in a similar fashion as they would be for the
conventional Euler method. As this is highly dependent on the system dynamics, no general
guideline can be given. However, our numerical evaluations have shown that choosing them
to be on the same order leads to good results. The error should not be too large to ensure
that the trajectories are accurate such that the gradient for Algorithm 8 is accurate. Other-
wise convergence may not be guaranteed. With this in hand, we state our final result of this
section.

Theorem 4.3. Given are Assumptions 4.1-4.5. Using the event-based Euler scheme for the
trajectory simulations in Algorithm 8 and the event-based implementation of Algorithm 9 [68]
results in a complete event-based design method to determine an LQ-optimized static feedback
law Kdist solving Problem (4.4) which is stabilizing for system (4.1),(4.2), and which is a feasible
control law according to Definition 4.1.

Proof. The theorem follows directly from Theorem 4.1, Theorem 4.2 and the results in [68].

Note that the idea presented here is related to the results in [110, 111], the so-called
quantized state system (QSS) method. The QSS method discretizes only the state and not the
time. This, however, leads to an asynchronous method that requires coordination between
the agents when to take steps, thus requiring additional communication. Our approach re-
mains a synchronous method.

92

4.5 Event-based trajectory simulation

4.5.2 Numerical evaluation of communication effort in Algorithm 8

In order to evaluate the results of this section, we use the same 100 example systems as in
Section 4.3.4.2 but restrict our attention to the first scenario (tf = 1, S = SY). We compare the
communication effort of Algorithm 8 in the case that we use a standard Euler discretization
with the event-based Euler discretization. The selected quantization width is ∆Q = 10−3,
which is identical to the time discretization ∆t = 10−3. The goal is to compare the ratio
of the communication events that occur. We denote the number of communication events
for the event-based method by cx/λ,EBE and the number of communication events for the
standard Euler method by cx/λ,SE. A communication event is the requirement to send a new
state value to a neighbor. As mentioned before, the standard Euler method requires this
in every step for every state and for every neighbor. The event-based method only sends
those states that changed at least by ∆Q. The results are summarized in Table 4.5. It shows
that the communication effort is drastically reduced using the event-based scheme because
only a fraction of the communication events is required. It has to be noted, however, that
the resulting costs are always slightly higher with the event-based approach, on average by
3.8%. The reason is that the gradient is slightly disturbed in comparison to the standard
Euler method.

As a side comment, we note that using an emulation-based control approach, see
e.g. [112], it is also possible to use event-based communication online, i.e. when the control
law is in use, instead of only in the design phase. This is, however, outside of the scope of
this thesis and is possible future work.

4.5.3 Summary

In this section, we developed a new event-based distributed solution method for ODE systems
that reduces the communication effort between subsystems to simulate the overall system
behavior. Message sending is only required when the state changes by a certain quantization
value. It was shown that the error bound is on the same order as for the standard Euler
method. The advantages were illustrated using numerical experiments.

Table 4.5: Comparison of communication effort for standard Euler and event-based Euler
discretization in Algorithm 8.

x-trajectories λ-trajectories Total
Average cx/λ,SE 1.42 · 109 1.42 · 109 2.84 · 109

Minimal cx/λ,SE 7.15 · 108 7.14 · 108 1.43 · 109

Maximal cx/λ,SE 6.12 · 109 6.11 · 109 1.22 · 1010

Average cx/λ,EBE 1.43 · 107 3.07 · 107 4.50 · 107

Minimal cx/λ,EBE 6.90 · 106 3.91 · 106 1.16 · 107

Maximal cx/λ,EBE 6.92 · 107 1.86 · 108 2.55 · 108

Average
cx/λ,EBE

cx/λ,SE
0.0102 0.0196 0.0149

Minimal
cx/λ,EBE

cx/λ,SE
0.0048 0.0046 0.0072

Maximal
cx/λ,EBE

cx/λ,SE
0.0184 0.0543 0.0340

93

4 Stabilizing distributed optimal control design with local model information

4.6 Optimal distributed control of singular systems

Throughout Sections 4.1–4.5, the considered system dynamics consisted of an ordinary dif-
ferential equation (ODE). In this section, we present an extension of the approach to singular
systems, also referred to as differential-algebraic systems (DAE). Many application examples
of large-scale interconnected dynamical systems can be modeled to contain some kind of
conservation constraint. For example, the exact representation of the power system needs
to satisfy the Kirchhoff laws. Water or other distribution systems also need to satisfy mass,
energy or current balances. These conservation laws or other algebraic constraints lead to a
differential-algebraic form for the system equation. For an introduction to singular systems,
see [113]. In the general nonlinear form, DAE systems are often written as

ẋ(t) = f (xd, xa, u), (4.20a)

0= g(xd, xa, u), (4.20b)

where xd are dynamic states, xa are purely algebraic states, and u is the input. One method
to control this system class is to substitute the solution of the algebraic constraints (4.20b)
into the dynamic equations (4.20a) and then to proceed with standard control design meth-
ods. However, for a general distributed system, this approach destroys the inherent sparsity
structure. This structure, however, is necessary when distributed design methods with local
model information are desired, e.g. in large-scale systems. The contribution of this sec-
tion is a gradient descent method to iteratively and distributedly determine an optimal state
feedback controller for linear singular systems. The algebraic part of the system equations
are taken into account explicitly during the controller design and the algebraic variables are
also used for feedback. The method to design the control law is based on the results from
Section 4.3.

4.6.1 Problem formulation

In this section, we consider an interconnected LTI system consisting of N subsystems subject
to linear equality constraints. More specifically, we assume that the subsystems are not cou-
pled dynamically but only through the constraints. The dynamics of the ith agent can thus
be written as a semi-explicit DAE of the form

ẋdi
= Addi

xdi
+ Adai

xai
+ Bdi

ui, (4.21a)

0=
N
∑

j=1

Aadi j
xd j
+

N
∑

j=1

Aaai j
xa j
+ Bai

ui, (4.21b)

where xdi
∈ Rndi , xai

∈ Rnai , ui ∈ Rmi , Addi
∈ Rndi

×ndi , Adai
∈ Rndi

×nai , Aadi j
∈ Rnai

×nd j , Aaai j
∈

Rnai
×na j , Bdi

∈ Rndi
×mi and Bai

∈ Rnai
×mi . Again, xdi

denotes the dynamic state of subsystem i
and xai

is the algebraic state of subsystem i. More compactly, the system dynamics are written
as

ẋd = Add xd + Ada xa + Bdu, xd(0) = xd,0, (4.22a)

0= Aad xd + Aaa xa + Bau. (4.22b)

94

4.6 Optimal distributed control of singular systems

Here, as in (4.20), we denote by xd ∈ Rnd the differential or dynamic variables, by xa ∈ Rna

the algebraic variables and by u ∈ Rm the input to the system. The dimensions satisfy nd =
∑N

k=1 ndk
, na =

∑N
k=1 nak

, n = nd + na and m =
∑N

k=1 mk. Note that xa(0) is not specified,
but it is determined through the algebraic constraints. This is necessary to ensure that the
whole initial condition of the system is admissible and does not cause any discontinuous
behavior. Furthermore, we have that Add = diag(Addi

), Ada = diag(Adai
), i.e. the systems

are not coupled through the dynamic equations. Instead, in this section, the coupling is
expressed in the matrices of the algebraic constraints Aad and Aaa. These are sparse matrices
that signify which subsystems are coupled. This is typical for large-scale DAE systems, where
every agent has only few neighbors relative to the total number of agents.

For the subsequent distributed optimal control design, we make the following assumptions
about Aaa.

Assumption 4.6. xxx

• Aaa is invertible.

• Aaa is row diagonally dominant.

The first part of Assumption 4.6 ensures that there is a unique solution to the algebraic
constraint, and it makes the system a DAE of index 1, where the index is the number of
derivations of parts of the system equations with respect to time necessary to obtain an
ODE. The second part of the assumption is necessary to guarantee that the system can be
simulated in a distributed fashion using a Jacobi algorithm (see [114]), as will be seen in
Section 4.6.2.2. If this second part is not met, there are alternative methods to solve the
algebraic part, e.g. BiCGstab as presented in [115]. This method can also be completely
distributed (see e.g. [116]), when scalar products are computed using a consensus scheme.
These methods require, however, a higher communication effort and for ease of presentation
we focus on the well-known Jacobi algorithm.

A typical real world example satisfying these assumptions is (a linearized version of) a
DAE model of the power system (see [117]), where the dynamic states are the states of each
generator (frequency, mechanical power, etc.) and the algebraic states are voltages, currents
or electrical power flows.

Lemma 4.4. [118] If the matrix Aaa in system (4.22) is invertible, the system has no impulsive
modes and the pencil (sE − A) is regular, where

E =

�

I nd×nd 0
0 0

�

, A=

�

Add Ada

Aad Aaa

�

.

By Lemma 4.4 and Assumption 4.6, the considered system class in this section has the
important characteristic of no discontinuous behavior.

As stated in the opening remarks of this section, instead of directly addressing (4.22), one
could plug the solution of (4.22b) into (4.22a) to obtain an ODE. This yields

ẋd = (Add − AdaA
−1
aa Aad)xd + (Bd − AdaA

−1
aa Ba)u.

95

4 Stabilizing distributed optimal control design with local model information

However, this system description in general lacks the sparsity structure of the original system
because of the inversion of the matrix Aaa. The structure is important to enable distributed
control design methods with local information exchange. Furthermore, a controller designed
for the system in this reduced form does not explicitly incorporate feedback information of
the static states. Therefore, we work with the system in its original form given in (4.22).

In this section, the neighborhood structure is not determined by the dynamical part of A as
in the previous sections, but it is determined by the coupling through the algebraic constraints
and is thus derived from the sparsity structure of the matrices Aad and Aaa. Thus, if systems
are coupled in the constraints, they are considered to be neighbors. In order to define the set
of neighbors of a subsystem i, we therefore slightly modify the system graph definition and
consider the directed graphGs,DAE(Vs,DAE,Es,DAE) associated with the matrices Aad and Aaa. The
vertex set Vs,DAE is given by the set of subsystems Vs,DAE = {1, ..., N}, and the edge set Es,DAE

contains the edge (j, i) ∈ Es,DAE iff Aad,i j 6= 0 ∨ Aaa,i j 6= 0. This means an edge (j, i) ∈ Es,DAE

iff the algebraic constraint of subsystem i is influenced directly by either the dynamic or the
algebraic states or both of agent j. We also introduce the undirected version of this system
graph and denote it by Gs,u,DAE. The control graph Gcontrol and the computation graph Gcomp

remain unchanged.
Definition 4.1 of feasible control laws still holds in this section except that the feedback

law is now u = −[Kd, Ka][xT
d (t), xT

a (t)]
T = −Kdist[xT

d (t), xT
a (t)]

T. With this definition, we
declare the goal of this section, which is to solve the following optimization problem:

min
x ,u

J(x , u) =

∫ tf

0

xT
d (t)Qdd xd(t) + xT

a (t)Qaa xa(t) + uT(t)Ru(t)dt, (4.23a)

s.t. ẋd(t) = Add xd(t) + Ada xa(t) + Bdu(t), xd(0) = xd,0, (4.23b)

0= Aad xd(t) + Aaa xa(t) + Bau(t), (4.23c)

u(t) = −Kdist[x
T
d (t), xT

a (t)]
T, (4.23d)

Kdist ∈K . (4.23e)

By Assumption 4.6 and Lemma 4.4, the system has no impulsive modes, thus guaranteeing
that the cost functional (4.23a) exists. Similarly to Assumption 4.2 in the ODE case, we make
the following assumption for the DAE case.

Assumption 4.7. The weighting matrices Qdd ∈ S
nd
+ and Qaa ∈ S

na
+ have at most the block

sparsity structure according to the computation graph Gcomp, i.e. Qd,i j = 0 and Qa,i j = 0
if (i, j) /∈ Ecomp. The weighting matrix R ∈ Sn

++ is block diagonal. The block sizes result from
the subsystem dimensions.

Furthermore, for the distributed computation with local model information in accordance
with Definition 4.1, we require the following assumption to be satisfied.

Assumption 4.8. The computation graph Gcomp contains the undirected DAE system
graph Gs,u,DAE as a subgraph, and the computation graph Gcomp contains the con-
trol graph Gcontrol as a – possibly different – subgraph, i.e. Gs,u,DAE(Vs,DAE,Es,u,DAE) ⊆
Gcomp(Vs,DAE,Ecomp) and Gcontrol(Vs,DAE,Econtrol) ⊆ Gcomp(Vs,DAE,Ecomp).

The consequence of Assumption 4.8 is that systems that are physical neighbors according
to the system graph and systems that share control information need to cooperate in the
computation during the design. However, further cooperation is possible in the approach.

96

4.6 Optimal distributed control of singular systems

4.6.2 Control synthesis

In this subsection, we present the adaptation of the results from Section 4.3 to the system
dynamics (4.22). The approach follows the same steps as in the ODE case: Adjoint dynamics
are derived which are employed to distributedly compute a gradient. This gradient is then
used to iteratively determine the optimal control law. Afterwards, we explain in detail how
everything can be computed distributedly.

4.6.2.1 Adjoint states and gradient descent direction

In this subsection, we derive the adjoint dynamics and the gradient descent direction which
is then used to find the optimal control law.

To derive the adjoint states, we use the following abbreviations: AK ,dd = (Add −
BdKd), AK ,da = (Ada − BdKa), AK ,ad = (Aad − BaKd), AK ,dd = (Add − BaKa).

Proposition 4.4. Given optimization problem (4.23), the gradient of the cost functional (4.23a)
with respect to the controller blocks Kdi j

and Kai j
are given by

(∇Kd
J)i j =

∫ tf

0

−2Riui x
T
d j
+ (BT

di
λdi
− BT

ai
λai
)x T

d j
dt,

(∇Ka
J)i j =

∫ tf

0

−2Riui x
T
a j
+ (BT

di
λdi
− BT

ai
λai
)xT

a j
dt,

where the adjoint states follow the dynamics

λ̇d = −AT
K ,ddλd + AT

K ,adλa + 2(Qdd + KT
d RKd)xd + 2KT

d RKa xa, λd(tf) = 0, (4.24a)

0= −AT
K ,daλd + AT

K ,aaλa + 2(Qaa + KT
a RKa)xa + 2KT

a RKd xd. (4.24b)

Proof. The proof is similar to the proof of Proposition 4.1.
The Lagrange function for the problem is written as

L =

∫ T

0

�

xT
d Qdd xd + xT

a Qaa xa + xT
d KT

d RKd xd + xT
a KT

a RKa xa + 2xT
a KT

a RKd xd

+λT
d (ẋd − AK ,dd xd − AK ,da xa) +λ

T
a (AK ,ad xd + AK ,aa xa)

�

dt +µT(xd,0 − xd(0)).

The first adjoint equation is obtained by requiring that ∂ L
∂ xd
= 0. From this, we obtain (4.24a)

and

µ= −λd(0).

Since µ is not necessary in the following, we disregard it, but it gives us the justification
that λd(0) is free while λd(tf) is fixed to 0. The second adjoint equation comes from ∂ L

∂ xa
= 0.

The gradient is then obtained from the derivatives ∂ L
∂ Kd

and ∂ L
∂ Ka

.

97

4 Stabilizing distributed optimal control design with local model information

Using the proposed gradient descent direction, Algorithm 10 can be used to find a locally
optimal controller.

As the initializing feedbacks K (0)d and K (0)a every choice is possible which satisfies the al-
lowed structure of the controller. An obvious choice would be the zero matrix of appropriate
size.

For the step size γk, we suggest a Barzilai-Borwein (BB) step size as presented in Sec-
tion 4.4.2, which can be computed distributedly using consensus. Also note that it is possible
to average the initial condition similarly to the results in Section 4.3.2 because all states and
adjoint states depend linearly on xd,0. This results in Algorithm 11.

Remark 4.8. Unless the resulting controller has entries such that rows or columns of (Aaa −
BaKa) become linearly dependent, thus making the matrix non-invertible, the controller does
not cause any impulsive modes and the pencil (sE − (A− BK)) is regular.

Remark 4.9. The presented approach finds a controller for systems that inherently satisfy
the given equality constraints which are part of the system dynamics of semi-explicit singular
systems by themselves. The problem considered in this section is not directly related to
controller design for ODE systems that ensures satisfaction of equality constraints which we
would want to impose on the system.

As expected, and as observed in the ODE case, the communication effort of the distributed
design is higher than for a centralized design. The reason for this is, again, the requirement
to simulate the system trajectories which requires neighborhood information. However, note
that the design can be performed entirely offline. Online, that is during the process, a state
measurement exchange between neighboring nodes is necessary to compute the control input
using the feedback Kdist, but this is typical for the use of distributed control laws and no
disadvantage of the design.

Algorithm 10 Gradient descent algorithm for optimal feedback design for singular systems.

1. Simulate the states xdi
(t), xai

(t) of system (4.21) for the finite horizon tf.

2. Simulate the adjoint states λdi
(t),λai

(t) for the same finite horizon tf in the backwards
direction according to Eqs. (4.24).

3. Every agent calculates the respective entries of the gradient by the formulas given in
Proposition 4.1.

4. For each neighboring agent j, update

K (k+1)
di j

= K (k)di j
− γk(∇Kd

J)(k)i j ,

K (k+1)
ai j

= K (k)ai j
− γk(∇Ka

J)(k)i j ,

with a suitable scalar step length γk, independent of i, j.

5. If all ||(∇K J)(k)i j || < ε, or if a different stopping criterion is satisfied, stop. Otherwise,
increase k and go back to 1.

98

4.6 Optimal distributed control of singular systems

Algorithm 11 Gradient descent algorithm for optimal feedback design for singular systems
including initial condition averaging.

1. Simulate the states xdi ,l(t), xai ,l(t) of system (4.21) for the finite horizon tf for every
initial condition el with l = 1, . . . , n.

2. Simulate the adjoint states λdi ,l(t),λai ,l(t) for the same finite horizon tf in the back-
wards direction according to Eqs. (4.24).

Steps 3-5 are identical to Algorithm 10.

4.6.2.2 Distributed computation

In this subsection, we show how it is possible to simulate the states and adjoint states using
only local and neighborhood information according to the computation graph Gcomp and
hence how to compute the gradient. One method to simulate semi-explicit singular systems
as considered in this section is to solve the algebraic part and to plug in the solution into the
dynamic part in every step of the simulation.

The closed loop of the dynamic state (4.21a) for subsystem i is written as

ẋdi
= Addi

x i − Bdi

∑

(j,i)∈Gcontrol

(Kdi j
xd j
+ Kai j

xa, j).

It is easy to see that each agent i can update its dynamic state by communicating state infor-
mation with its neighbors according to the control graph Gcontrol which is a subgraph of the
computation graph Gcomp. As for the algebraic part, we can rewrite (4.21b) as

−
∑

(j,i)∈Gcontrol

AK ,aai j
xa j
=

∑

(j,i)∈Gcontrol

AK ,adi j
xd j

.

Using a simple Jacobi algorithm, this system of linear equations can be solved for xa j
using

only information from the neighbors following the iteration

xai
= −A−1

K ,aaii

�

∑

(j,i)∈Gcontrol

AK ,aai j
xa j
+

∑

(j,i)∈Gcontrol

AK ,adi j
xd j

�

.

Similar investigations can be performed for the adjoint state. The dynamic part of subsystem i
is written as

λ̇di
=−

∑

(i, j)∈Gcontrol

AT
K ,dd ji

λd j
− 2

∑

(i, j)∈Gcontrol

KT
d ji

R ju j +
∑

(i, j)∈Gcontrol

AT
K ,ad ji

λa j
+ 2Qdi

x i.

Similarly, for the static co-state we obtain

0=−
∑

(i, j)∈Gcontrol

AT
K ,da ji

λd j
− 2

∑

(i, j)∈Gcontrol

KT
a ji

R ju j + (i, j) ∈ GcontrolA
T
K ,aa ji

λa j
+ 2Qai

yi.

This can also be solved for λa j
using a Jacobi algorithm using only information (states, inputs,

system model) from neighbors of the computation graph Gcomp.
As for the gradient, the formulation in Proposition 4.1 makes it obvious that the gradients

can be computed locally if agent i can communicate with agent j, and because Gcontrol ⊆ Gcomp

this is clearly possible.

99

4 Stabilizing distributed optimal control design with local model information

4.6.3 Numerical results

In this subsection, we present several numerical experiments to illustrate the contributions of
this section of the thesis. First, we give a short illustrative example. Second, we compare the
resulting controllers to a centralized approach. Third, the advantages of using the averaged
initial condition are shown. Last, we show a practical example of a small power system.

4.6.3.1 Illustrative example

To illustrate the approach to the reader, we treat an example system with N = 4 subsystems,
each having only one dynamic state, one static state and one input.

The corresponding graph Gs,DAE is shown in Figure 4.7. We also show the allowed commu-
nication topology which is the undirected version of the same graph. From this, we obtain
that both feedback matrices Kd and Ka have the following form for all iterations (except for
the first iteration where the feedback matrices are zero)

Kd/a =

∗ 0 ∗ ∗
0 ∗ 0 ∗
∗ 0 ∗ 0
∗ ∗ 0 ∗

,

which reflects the desired communication structure. The nonzero entries are optimized by
the distributed algorithm and every agent only manipulates its own row using information
from its neighbors, e.g. the first subsystem makes changes to K11, K13 and K14. In Figure 4.8,
we also show the cost resulting from using the feedback matrices in every iteration and we
see that the cost is monotonically decreasing as guaranteed by the Powell-Wolfe conditions.

Σ4

Σ2

Σ3

Σ1

Figure 4.7: Graph for the example system. Physical coupling in black (solid), control com-
munication in red (dashed).

0 2 4 6 8 10 12 14 16

1.8

2

2.2

2.4

Iterations

C
os
t

J

Figure 4.8: Cost evolution over the iterations of the algorithm.

100

4.6 Optimal distributed control of singular systems

4.6.3.2 Comparison between sparse and non-sparse controller

In order to evaluate the performance of the presented distributed controller, we compare
the performance of the resulting controller of Algorithm 11 with a prescribed sparsity struc-
ture with the resulting controller without the structure (K is a full matrix). As test systems,
we randomly construct singular systems of the form given in Eq. (4.22). We use systems
with N = 4 subsystems, each having a random number of dynamic (between 1 and 3) and
static states (1 or 2) and each having 1 input. We perform the comparison for 100 randomly
created systems for which a stabilizing feedback is obtained with the gradient method. On
average, the systems have a total number of 12 states (dynamic and static combined). The
weighting matrices Q and R are set to be identity matrices of appropriate sizes. We choose
a finite horizon of tf = 5. With these parameters, the gradient method needs 27 iterations
on average to converge. Convergence is assumed to be achieved in these simulations when
the largest element of the gradient is smaller than 10−3. It turns out that the average cost
difference is only 0.41% in favor of the non-sparse controller. The reason for this is that the
optimal controller obtained without a demanded sparsity structure still results in a sparse
controller. Note that the same is true for the feedback matrices resulting from the central-
ized infinite horizon result from [118]. Naturally, it is to be expected that the difference
increases with increasing system size. Nevertheless, only the presented approach is able to
combine the goal of an optimal controller with the desire to secure model data privacy of the
subsystems.

4.6.3.3 Averaged initial condition

In this subsection, we investigate the difference between Algorithm 10 and Algorithm 11.
To perform this comparison, we compute the controller matrices with both algorithms and
then compare the cost caused by each controller. We use two different scenarios for the
comparison: First, we use a different initial condition for the cost simulations than for the
controller computations in Algorithm 10. Second, we use the same initial condition that was
used in the design. We perform this test for 100 randomly generated systems which were
created the same way as in the previous numerical example. In this case, on average, the total
number of states is also 12. The simulation horizon is tf = 1. As for the simulation effort, the
Jacobi algorithm for typical systems of the used system size needs 16 iterations on average
to converge. When using a different initial condition for the cost simulations, the resulting
controllers with the averaged initial condition produce a cost that is on average 10.72%
smaller than the cost with one arbitrary initial condition, displaying the positive effect of the
averaging process. In addition, according to these simulations, Algorithm 11 only needs 20
iterations on average to converge, while Algorithm 10 needs 42. Granted, the individual
iterations of the averaging process are more costly, but combined with the cost improvement,
Algorithm 11 should be the preferred option in this scenario.

In the second case, where we use the same initial condition for the cost calculation as in
the design, the cost with the controller of Algorithm 10 is 0.22% lower than the cost with
the controller of Algorithm 11, which can be considered to be negligible. This illustrates that
Algorithm 11 achieves optimality independently of the initial condition of the process.

101

4 Stabilizing distributed optimal control design with local model information

4.6.3.4 Small power system

As a practical example, we apply the method to a small power system with ntotal = 8 buses
where we have ng = 5 generator nodes and 3 load nodes. We consider the following example
of a power system with 8 nodes [119]. The interconnection graph of the generators and
loads is shown in Figure 4.9. Each of the 5 generators follows the differential equation given
in [120]

δ̇i

ω̇i

Ṗm,i

ȧi

=

0 1 0 0
0 − Di

Ji

1
Ji

0
0 0 − 1

Tu,i

1
Tu,i

0 − 1
Tg,i

0 − Ri
Tg,i

︸ ︷︷ ︸

Addi

+

0
− 1

Ji

0
0

︸ ︷︷ ︸

Aadi

E0,i Iq,i +

0
0
0
1

Tg,i

︸ ︷︷ ︸

Bdi

u,

where δi is the phase angle of the generator, ωi is the angle velocity, Pm,i is the mechanical
power, ai is the valve position, Di is the damping coefficient, Ji is the inertia constant, Tu,i is
a time constant representing the delay between the control valves and the turbine nozzles,
Tg,i is the time constant of the valve servomotor, and Ri is the permanent speed droop of the
turbine [121]. Each generator thus has the dynamic states xdi

= [δi,ωi, Pm,i, ai]T and xd of
the total system is the stacked vector of all xdi

.
Each generator node has the four algebraic variables xa,Gi

= [Vi,θi, Id,i, Iq,i], each load
node has only two algebraic states xa,Li

= [Vi,θi], where Vi is the bus voltage magnitude, θi

is the bus voltage angle, Id,i is the d-axis current and Iq,i is the q-axis current. All algebraic
variables need to satisfy the following algebraic constraints given in [120]

0= Vie
jθi + (Rs,i + jXd,i)(Id,i + j Iq,i)e

j(δi−
π
2) − E0,ie

jδi , i = 1, ..., ng, (4.25a)

0= Vie
jθi(Id,i − j Iq,i)e

− j(δi−
π
2) + PL,i(Vi) + jQ L,i(Vi)−

n
∑

k=1

ViVkYike j(θi−θk−αik), i = 1, ..., ng,

(4.25b)

0= PL,i(Vi) + jQ L,i(Vi)−
n
∑

k=1

ViVkYike j(θi−θk−αik), i = ng + 1, ..., ntotal, (4.25c)

where Rs,i and Xd,i are internal resistors and impedances of the generators, Y is the mag-
nitude of the admittance matrix of the network and α is the corresponding angle of the

1

8

5

7

2

3 6

4

Generator 1Generator 3

Generator 2 Generator 4

Generator 5

Load 3

Load 2

Load 1

Figure 4.9: 8 bus power system with 5 generators and 3 load nodes.

102

4.6 Optimal distributed control of singular systems

admittance matrix. The loads in this system are assumed to have a linear dependence with
respect to the bus voltage, i.e. PL,i(Vi) = kp,iVi and QL,i(Vi) = kq,iVi. The equations (4.25a)-
(4.25c) can be split into real and imaginary parts and then linearized around operating points
δi,0, Vi,0,θi,0, Id,i,0, Iq,i,0. The operating points result from a load flow calculation. These linear
equations can then be written in the form 0 = Aad xd + Aaa xa, where Aad is block diagonal,
because the equations for node i only depend on xdi

in the form of δi. The block Aaa has a
sparsity structure resembling that of the admittance matrix Y . The algebraic equations have
no input so Ba is zero in this case.

The dynamical part can also be written in a form ẋd = Add xd + Ada xa + Bdu, where Add

and Ada are block diagonal with Addi
and Adai

on the respective diagonal. Bd is also block
diagonal with Bdi

on the diagonal. For the considered system size, we have xd ∈ R20 and xa ∈
R26.

Thus, we obtain a singular system of the considered system class. We apply Algorithm 11
to the system with a time horizon tf = 10s. The weighting matrices are Q = diag(Qd,Qa) =
I46×46 and R = I5×5 with appropriate units. The algorithm stops after 60 iterations when
the change in the gradient is considered to be small (less than ε = 0.02). During these
iterations, the nodes only communicate with their neighbors according to Gcomp to simulate
the trajectories, which requires considerable information exchange but realizes privacy.

As we take a closer look at the interconnection graph of the system, we observe that none
of the generators (the dynamic parts of the system) are directly coupled. This means that
during the design phase, the generators do not communicate directly with each other but only
with the load nodes. In the process phase, Kd is, for this reason, essentially a decentralized
controller and no dynamic states are communicated between the systems. However, the
nodes 6-8, which only have static states, are coupled to the generator nodes and they can
be used. Thus, Ka is not decentralized, but its coupling structure is based on the structure of
the admittance matrix. Therefore, Kd and Ka have the following structures

Kd =

∗ 0 0 0 0
0 ∗ 0 0 0
0 0 ∗ 0 0
0 0 0 ∗ 0
0 0 0 0 ∗

, Ka =

∗ 0 0 0 0 0 ∗ 0
0 ∗ 0 0 0 0 0 0
0 0 ∗ 0 0 ∗ 0 0
0 0 0 ∗ 0 0 0 ∗
0 0 0 0 ∗ ∗ 0 0

.

In summary, for this example system, the main difference to classical decentralized con-
trol is that this controller also makes use of local static variables (voltages, currents) and
additionally static variables from adjacent load nodes.

For power systems, it is of interest how the system reacts to a disturbance. For this rea-
son, we simulate a load increase in one of the loads by offsetting the corresponding bus
voltage between time 0.1 and 0.2. The simulated state trajectories of the phase angles are
shown in Figure 4.10. It shows that the controller from the presented algorithm handles the
disturbance well and stabilizes the system to the equilibrium.

4.6.4 Summary

In this section, we adapted the results from the previous sections to differential-algebraic
systems. The general approach remained unchanged and consists of deriving adjoint state

103

4 Stabilizing distributed optimal control design with local model information

0 2 4 6 8 10 12 14 16

−2

−1

0

·10−4

Time t

δ
i

Figure 4.10: Evolution of the phase angles δi of the 5 generators.

dynamics and a gradient of the cost functional with respect to the feedback matrix entries.
Averaging of the initial condition is still possible and we made use of the same step size
techniques as in the ODE case. It has to be noted that the computational effort of the approach
is quite large because it requires the solution of a Jacobi iteration in each time step.

4.7 Application of distributed control in optimal formation
control

A relevant and important application of distributed or structured control laws is formation
control of a multi-robot system. In this section, we present the adaptation of our iterative
control design method to this problem. We start by formulating a state space model for
multi-robot cooperation. Then, we make use of the approach of the adjoint states and simu-
lated trajectories already employed in the previous Sections 4.3 and 4.6 to derive an optimal
control law that maintains a relaxed rigidity requirement. The focus in this section is not
on the distributed design under model data privacy constraints, which enables us to use a
Quasi-Newton method. Therefore, in addition to a gradient descent, we also employ the
Quasi-Newton method BFGS and analyze its benefits. The approach is used to solve an op-
timization problem that does not allow a standard analytical solution. The considered cost
functional is similar to the previously considered LQ cost functional but is extended by a
biquadratic term to include the formation constraint. Numerical evaluations are presented
to validate the approach.

4.7.1 Problem formulation

In this subsection, we specify the present problem raised in this section. We start with de-
scribing the overall situation, after which we set up a state space model for interconnected
cooperative multi-robot teams and then formulate the formation constraint in the form of an
optimization problem that resembles the ones we have encountered in previous sections.

The schematics of the cooperating mobile manipulators are depicted in Figure 4.11 with
the attached coordinate systems. For the ith manipulator, position and orientation of the
end-effector frame Σi are expressed in a world coordinate system Σw. An object-centered

104

4.7 Application of distributed control in optimal formation control

Object

Σw

Σo

Σ1

Σi
ΣN

ro
1

ro
iro

N

Figure 4.11: Illustration of the coordinate frames for robots, object, and world [25].

frame Σo is aligned to the principal axes of the object. The matrix Ri
o describes the rotation

of Σi relative to Σo.

4.7.1.1 State space model for multi-robot cooperation

In this subsection, we formulate the required state space model for the optimal control de-
sign problem. We consider a cooperative team of interacting robots i = 1, . . . , N , each one
evolving according to the inverse dynamic feedback-linearized impedance control.

Impedance control scheme
The fact that an impedance control scheme enforces a compliance of the manipulator to
its environment makes it attractive for manipulation tasks where it is hence widely used.
According to the impedance control scheme the system dynamics of one manipulator evolve
according to [122]

Miξ̈i + Di

�

ξ̇i − ξ̇i,d

�

+ Ki

�

ξi − ξi,d

�

= fi,d − fi. (4.26)

Here, ξi ∈ Rn, i = 1, . . . , N is the Cartesian position of the ith manipulator, its time derivatives
ξ̇i and ξ̈i are velocity and acceleration, respectively. The matrices Mi ∈ Sn

++, Di ∈ Sn
++,

and Ki ∈ Sn
++ are the inertia, damping, and stiffness constituting the motion control scheme

with respect to the control inputs; the desired force fi,d and the desired velocity ξ̇i,d. Because
our multi-robot system is driven by a velocity interface, the desired manipulator position is
integrated from the desired velocity as ξi,d =

∫ t

t0
ξ̇i,ddτ. Furthermore, fi ∈ Rn denotes the

resulting force. For a single robotic manipulator, this force fi arises from contact with the
environment. However, since cooperating manipulators are in contact through the object,
an internal force among the physically cooperating manipulators is present.

Partition of fi

In general, we consider a measured end-effector force f ∗i composed of rigid-body dynam-
ics fmotion, external force fext, and internal force fi,int. We make the following assumption.

Assumption 4.9. The rigid-body dynamics fmotion and external force fext are equally dis-
tributed among the manipulators.

105

4 Stabilizing distributed optimal control design with local model information

The approximation in Assumption 4.9 demands equal impedance parameters Mi, Di,
and Ki for all manipulators. With this assumption, we write the measured end-effector force
as

f ∗i =
1
N
(fmotion + fext) + fi,int. (4.27)

Assumption 4.9 leads to the factor 1
N . The resulting force fi in (4.26) can be unequal to the

measured force f ∗i , and in our case we set fi = f ∗i −
1
N fmotion. Hence, the rigid body dynam-

ics fmotion are suppressed in the impedance (4.26). This is reasonable because a compliance
resulting from the dynamics of the object leads to a permanent undesired position devia-
tion of the multi-robot team, for example in the case where the object mass pulls down the
manipulators.

The resulting object force fmotion arises from Newton’s second law of motion and it can
generally be expressed as

fmotion = Moξ̈o + fo(ξo, ξ̇o), (4.28)

where ξo is the position of the object with its inertia Mo. Here, we assume that Mo and fo

are precisely known and thus the impedance control is independent of the object dynamics.
The external force fext can originate from an undesired obstacle or from a desired physical
human input.

To calculate the virtual linkage model of internal forces, all measured end-effector forces

in the object frame Σo are aggregated into f o =
�

f oT

1 , . . . , f oT

N

�T
. Following [123], we know

that internal forces fint lie in the null-space of the grasp matrix

G = (G1, G2, . . . , GN) with Gi = I3

with respect to all measured forces. In the case of Cartesian positions, the grasp matrix is
simply the identity matrix. The grasp matrix G describes the relation of the forces of each
robot frame and the object frame, and is well-established for robotic grasping and dexterous
multi-fingered manipulation. As G is not square, its Moore-Penrose pseudo-inverse

G† =
�

G†
1, G†

2, . . . , G†
N

�T
with G†

i =
1
N

I3

is used for the null-space calculation of

f o
int =

�

I − G†G
�

f o. (4.29)

For the sake of clarity, we make the following assumptions.

Assumption 4.10. Because we are mainly concerned with the tracking performance in
this section, we assume that at the initial time t0 all current and desired positions are
equal, ξi(t0) = ξi,d(t0). Initial configurations ξi,d(t0) are chosen to have no internal stress
at the beginning. This is required because an internal stress at the initial time leads to an in-
duced movement of the robotic manipulators, which is undesired for maintaining formation.

106

4.7 Application of distributed control in optimal formation control

Assumption 4.11. There is no external force, that is fext = 0, and the exact dynamic
model (4.28) is known and can be used as a basis for the subtraction from fi as a feedforward
term.

Assumption 4.12. The multi-robot team moves only at moderate velocities. Thus, the dis-
tributed impedances are in a quasi-equilibrium state and act thereby primarily via its stiff-
ness Ki. The influences of the damping Di and of the inertia Mi are then negligible for the
internal forces in (4.29), which simplifies the cooperative robot model significantly.

With these assumptions, the major part of each force f o
i in (4.29) arises from the difference

between desired and current manipulator position. A balance of forces due to the impedance
model is then approximated as

f o
i = Ki(ξi,d − ξi), (4.30)

where terms involving Mi and Di vanish due to the previously made assumptions. When
we establish the internal force model, we obtain the ith internal force partition by insert-
ing (4.30) into (4.29) and evaluating the result row-wise as

fi,int = Ki

�

ξi,d − ξi

�

− Ro
wG†

i

n
∑

j=1

G jR
w
o K j

�

ξ j,d − ξ j

�

. (4.31)

Note that for the transformation of the forces to the world frame Σw, each agent is aware of
all rotation matrices Ro

w and Rw
o .

Cooperative impedance control
Combining the results (4.26), (4.27), and (4.31), we obtain

Miξ̈i + Di

�

ξ̇i − ξ̇i,d

�

+ Ki

�

ξi −
∫ tf

t0

ξ̇i,ddτ
�

= fi,d−

Ki(

∫ tf

t0

ξ̇i,ddτ− ξi) + Ro
wG†

i

n
∑

j=1

G jR
w
o K j(

∫ tf

t0

ξ̇ j,ddτ− ξ j). (4.32)

The last term on the left-hand side and the second term on the right-hand side cancel, and
furthermore we have that G†

i Gi =
1
N I3. With this, we can present the complete state space

model.

Complete state space model

Let x i =

�

(
t
∫

t0

ξ̇i,ddτ)T,ξTi , ξ̇Ti

�T

be the system state and ui =
�

ξ̇Ti,d, f T
i,d

�T
be the control input.

Then, a state space model for a single manipulator in cooperation results in

ẋ i = Aii x i + Biui +
∑

j 6=i

Ai j x j,

107

4 Stabilizing distributed optimal control design with local model information

with

Aii =

0 0 0
0 0 1

1
N M−1

i Ki −
1
N M−1

i Ki −M−1
i Di

 ,

Ai j = M−1
i Ro

wG†
i

0 0 0
0 0 0

G jR
w
o K j −G jR

w
o K j 0

 ,

Bi =

1 0
0 0

M−1
i Di M−1

i

 ,

where Aii is the system matrix of a single manipulator i, Bi is its input matrix, and Ai j repre-
sents the physical coupling from manipulator j to manipulator i.

These individual subsystem dynamics of each manipulator can be combined to the overall
multi-robot cooperative system and we obtain the overall LTI system as

ẋ = Ax + Bu, (4.33)

with the aggregated state vector x =
�

xT
1 , . . . , xT

N

�T
and the aggregated input vector u =

�

uT
1 , . . . , uT

N

�T
. The complete system is written as A =

�

Ai j

�

and B = diag(B1, . . . , BN). This
model is the basis for the optimal control problem which we formulate in the next subsection.

4.7.1.2 Formation rigidity in multi-robot cooperation

In this subsection, we describe the control goal considered in this section. A typical con-
trol approach for driving a multi-robot team from an initial configuration to a desired final
configuration is depicted in Figure 4.12.

A task plan is obtained from a supervisory high-level instance, e.g. a human operator
commanding the goal. Here, the task plan involves an initial configuration x0 and a final

Robot 1

Robot i

Robot N

u= −K x

u1

ui

uN

f

fTask

Plan

xe, x0

Controller

Design

xe

K̃

Q, R, S

x1

x i

x i

Figure 4.12: Schematic overview of the cooperative mobile manipulation control architec-
ture [25].

108

4.7 Application of distributed control in optimal formation control

configuration xf of the multi-robot team. To achieve this, we design a linear state feedback
controller u = −K x which optimally drives a formation of interconnected manipulators de-
scribed by the system dynamics (4.33) from the initial condition x0 to the desired end point xf

while maintaining the initial formation. In the following, we describe the cost functional of
our LQR-like optimal control problem and how the desired rigidity is relaxed.

In order to achieve goal regulation to xf, we use the standard transformation of our state x
into

x̃ = x − xf. (4.34)

Then, we can formulate the LQR cost functional which gives a controller driving to the end
point in an optimal fashion as

J = x̃T(tf)S x̃(tf) +

∫ tf

t0

x̃T(t)Qx̃(t) + uT(t)Ru(t)dt, (4.35)

where S ∈ Sn
+, Q ∈ Sn

+ and R ∈ Sm
++ are weighting matrices expressing the desired perfor-

mance.
Next, we define rigidity of the formation and explain how we can add a relaxed form of

the rigidity requirement into the cost functional above. The formation is described by a static
set of edges E with cardinality ||E || between the manipulators such that the virtual structure
of the formation is rigid during the movement phase. Rigidity of the formation is described
by an edge function f (x) =

�

. . . ,‖ξi − ξ j‖, . . .
�

∈ R‖E‖ which is required to satisfy f (x) = p.
Here, x is the system state from (4.33) which contains manipulator positions ξi, and p =
�

. . . , pi j, . . .
�

is the desired rigid distance between two manipulators. The distances pi j are
constant when the formation is rigid. Taking the derivative of f (x)with respect to time leads
to

�

ξi − ξ j

�T �

ξ̇i − ξ̇ j

�

= 0 ∀(i, j) ∈ E . (4.36)

The geometrical interpretation of (4.36) is that the difference in position between two linked
manipulators is orthogonal to the difference in velocity. This equation represents our second
control goal of maintaining formation rigidity. Given Assumption 4.10, it is sufficient to
maintain the formation instead of having to establish it because the manipulators start with
the desired one. In order to include the rigidity condition (4.36) into our LQR cost func-
tional (4.35), we transform it into a quadratic term of the states. Thus, (4.36) is written
as xT

i, jQ i j x i, j with x i, j = [xT
i , xT

j]
T by defining the blocks

[qii] =

0n×n 0n×n 0n×n

0n×n 0n×n
1
2 In

0n×n
1
2 In 0n×n

∀(i, j) ∈ E ,
�

qi j

�

=
�

q ji

�

=

0n×n 0n×n 0n×n

0n×n 0n×n −1
2 In

0n×n −
1
2 In 0n×n

∀(i, j) ∈ E .

The resultant matrix Q i j =
� qii qi j

q ji q j j

�

is symmetric but indefinite and thus it cannot be employed
in a standard LQR problem directly. Because the equality constraint described in Eq. (4.36)
can be violated in both directions, the indefiniteness of xT

i, jQ i j x i, j is obvious, and its global
minimum is −∞. The biquadratic term (xT

i, jQ i j x i, j)2, on the other hand, has a minimum

109

4 Stabilizing distributed optimal control design with local model information

of 0, and is thus suitable to be included in an optimization to ensure relaxed rigidity. In
other words, minimizing (xT

i, jQ i j x i, j)2 for all (i, j) ∈ E relaxes the equality constraint (4.36)
into a minimization problem. Relaxation means that the resulting controller does not guar-
antee exact satisfaction of (4.36) for all times, but for appropriate weighting matrices the
controller design leads to values that are at least close to zero. Proper partitioning allows
writing (xT

i, jQ i j x i, j)2 as
(xTQk x)2 ∀ k ∈ {1, ..., ||E ||} . (4.37)

While the design objective of goal regulation requires the transformation to the coordinates x̃
from (4.34), it is important to note that the relaxed rigidity condition (4.37) still needs to
be satisfied in the original coordinate system x . In order to formulate a cost functional that
contains both coordinate systems, we introduce an extended state vector

x̂ =
�

x̃T, 1
�T

. (4.38)

With this state vector, we reformulate the relaxed rigidity condition (4.37) into
�

xTQk x
�2
∀ k ∈ {1, ..., ||E ||}

=

�

x̃
1

�T�

Qk Qk xf

xT
f Qk xT

f Qk xf

�

︸ ︷︷ ︸

Q̂k

�

x̃
1

�

2

∀ k ∈ {1, ..., ||E ||}

=
�

x̂TQ̂k x̂
�2
∀ k ∈ {1, ..., ||E ||} . (4.39)

We can now combine all the terms into one cost functional and restate our control goal.
The goal of our optimal control problem is to find a controller u= −K̂ x̂ with structure K̂ =
[K , 02nN×1] in order to minimize the following cost functional

J = x̂(tf)
TŜ x̂(tf) +

∫ tf

t0

||E ||
∑

k=1

�

x̂T(t)q̂kQ̂k x̂(t)
�2
+ uT(t)Ru(t) + x̂TQ̂ x̂dt,

where Ŝ and Q̂ have the structure Ŝ = diag(S, 0) and Q̂ = diag(Q, 0) in order not to penal-
ize the additional 1-state, Q̂k is given in (4.39) and q̂k is a positive scalar weighting factor.
The term x̂(tf)TŜ x̂(tf) represents the penalty term resulting from the distance between x
and xf for the final time tf. Control input constraints are indirectly realized by uT(t)Ru(t).
This cost functional represents our combined control goals of maintained formation by the
term

∑||E ||
k=1

�

x̂T(t)Q̂k x̂(t)
�2

, and goal regulation by the term x̂TQ̂ x̂ . The zero column in K̂ is
necessary to discard the augmented 1-state from (4.38).

The overall control design can then be summarized in the following optimization problem

min
K̂

J = x̂(tf)
TŜ x̂(tf) +

∫ tf

t0

||E ||
∑

k=1

�

x̂T(t)q̂kQ̂k x̂(t)
�2
+ uT(t)Ru(t) + x̂TQ̂ x̂dt, (4.40a)

s. t. ˙̂x(t) = Âx̂(t) + B̂u(t) (4.40b)

u(t) = −K̂ x̂(t) (4.40c)

x(t0) = x0, (4.40d)

110

4.7 Application of distributed control in optimal formation control

where Â= diag(A, 0) and B̂ = [BT, 0T
1×2nN]

T. In the next section, an approach is presented to
solve this optimization problem.

4.7.2 Iterative optimal control design for relaxed rigidity formation
control

In this subsection, we present two algorithms to solve the optimization problem (4.40) in
order to design a control law that achieves our two control goals; goal regulation of a group
of robot manipulators and maintaining a rigid formation. Furthermore, an idea is presented
to alleviate the local character of the resulting control law.

4.7.2.1 Optimal control design via gradient descent method using adjoint states

In this subsection, we describe a solution algorithm to determine a suboptimal feedback to
solve the optimization problem (4.40), based on the results in Sections 4.3 and 4.6. Dis-
regarding structural constraints, there is a linear relationship in the standard LQR problem
between the primal states x and the adjoint states λ given by λ(t) = P(t)x(t), allowing for
the centralized solution to use a (differential) Riccati equation for the matrix P(t), see Sec-
tion 2.2.1. This is not the case here. Because of the biquadratic term in the cost functional we
are forced to use an alternative method based on the previously presented iterative approach
of using simulated trajectories to compute a gradient. In previous sections, the approach of
using simulated trajectories is motivated by the desire to obtain a control law using only local
model information. In this section, we actually use the approach out of necessity because no
analytical solution is possible even in the centralized, full information case. The basis for the
gradient method is the following proposition.

Proposition 4.5. Given optimization problem (4.40), the gradient of the cost functional (4.40a)
with respect to the feedback matrix K̂ is

∇K̂ J =

∫ tf

t0

2RK̂ x̂(t) x̂T(t) + BTλ̂(t) x̂T(t)dt, (4.41)

where the adjoint states follow the dynamics

˙̂
λ(t) = (Â− B̂K̂)Tλ̂(t)− 2K̂TRK̂ x̂(t)− 2Q̂ x̂(t)− 4

||E||
∑

k=1

(x̂T(t)q̂kQ̂k x̂(t))q̂kQ̂k x̂(t), (4.42a)

λ̂(tf) = −2Ŝ x̂(tf). (4.42b)

Proof. The proof is similar to the proof of Proposition 4.1. The corresponding Lagrangian
function of problem (4.40) is

L = x̂(tf)
TŜ x̂(tf) +

∫ tf

0

||E||
∑

k=1

�

x̂T(t)q̂kQ̂k x̂(t)
�2
+ x̂TQ̂ x̂

+ λ̂T(t)(˙̂x(t)− (Â− B̂K̂) x̂(t)) + x̂T(t)K̂TRK̂ x̂(t)dt + µ̂(x̂(0)− x̂0). (4.43)

111

4 Stabilizing distributed optimal control design with local model information

Partial integration of (4.43) gives

L = x̂(tf)
TŜ x̂(tf) +

∫ tf

0

||E||
∑

k=1

�

x̂T(t)q̂kQ̂k x̂(t)
�2
+ x̂T(t)K̂TRK̂ x̂(t) + x̂TQ̂ x̂ − x̂T(t) ˙̂λ(t)

− x̂T(t)(Â− B̂K̂)Tλ̂(t)dt +
�

λ̂(t)T x̂(t)
�tf

0
+ µ̂(x̂(0)− x̂0).

With this, we can derive the dynamics of the adjoint state through the optimality condi-
tion ∂ L

∂ x̂ = 0 which eventually leads to (4.42). The gradient comes from the derivative of the
Lagrangian L with respect to K̂ . This concludes the proof.

Given the gradient from Proposition 4.5, the feedback matrix is iteratively determined
using Algorithm 12. The choice of the step size γk is important for the speed of convergence.
A possible choice is the BB step size (see Sections 4.4 and A.1.1) given by

γk =
(∆vec(K̂))T(∆vec(K̂))
(∆vec(K̂))T(∆vec(∇K̂ J))

, (4.44)

where ∆vec(K̂) = vec(K (k)) − vec(K̂ (k−1)) and ∆vec(∇K̂ J) = vec(∇K̂ J (k)) − vec(∇K̂ J (k−1)).
An alternative is to search for a suitable step size based on the Powell-Wolfe conditions (see
Sections 4.4.3 and A.1.1) given by

J(K̂ + γkmat(sk))− J(K̂)≤ γkc1(vec(∇K̂ J))Tsk (4.45a)

(vec(∇K̂+γksk
J))Tsk ≥ c2(vec(∇K̂ J))Tsk, (4.45b)

where c1 ∈ (0,1) and c2 ∈ (c1, 1). For Algorithm 12, the search direction sk is given by the
vectorization of the negative gradient, i.e. sk = −vec(∇K̂ J). If the BB step size is used, it also
needs to satisfy the conditions (4.45) to ensure monotonous behavior.

In the next subsection, we replace the gradient method with an improvement to a Quasi-
Newton method, but the approach is still based on the same general concept.

Algorithm 12 Iterative solution of (4.40) using gradient descent.

1. Simulate the states x̂(t) for the finite horizon tf.

2. Simulate the adjoint states λ̂(t) for the same horizon according to (4.42).

3. Compute the gradient according to (4.41).

4. Update the feedback matrix

K̂ (k+1) = K̂ (k) − γk∇K̂ J (k),

where γk is a scalar step length.

5. If
�

�

�

J (k)−J (k−1)

J (k−1)

�

�

�< ε, stop. Otherwise, increase k and go back to step 1.

112

4.7 Application of distributed control in optimal formation control

4.7.2.2 Minimization via BFGS method

The downside of Algorithm 12 presented in the previous section is that gradient methods gen-
erally converge slowly. However, the availability of the gradient according to (4.41) allows
us to use more advanced optimization methods, like the Quasi-Newton Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method, for details see Section A.1.2. Thus, instead of the negative
gradient we use the following search direction

sk = −Hkvec(∇K̂(k)J),

where Hk approximates the inverse of the Hessian matrix.
With this, we obtain Algorithm 13.

Remark 4.10. Despite the fact that the two algorithms should lead to the same control law
with the same cost this is not always the case. We attribute this to the nonconvexity of the
cost functional causing the algorithms to converge to different local minima caused by the
differences in search directions and step sizes.

4.7.2.3 Averaging over the initial configuration x0

One possible problem concerning the resulting feedback matrices of Algorithms 12 and 13
is that they are optimized with respect to one specific initial configuration x0. In practice,

Algorithm 13 Iterative solution of (4.40) using BFGS method.

1. Choose c1, c2 ∈ R, K̂ (0) ∈ Rm×n. Pick a positive definite matrix H0 ∈ Rmn×mn, e.g.
H0 = Imn.

2. Compute the search direction sk as

sk = −Hkvec(∇K̂ J),

where the gradient ∇K̂ J is given by to (4.5).

3. Compute the step size γk according to the Powell-Wolfe conditions (4.45).

4. Update the feedback matrix

K̂ (k+1) = K̂ (k) + γkmat(sk).

5. Set pk = vec(K̂ (k+1))−vec(K̂ (k)) and qk = vec(∇K̂ J(K̂ (k+1)))−vec(∇K̂ J(K̂ (k))). Update Hk

as

Hk+1 = Hk +
(pk −Hkqk)pT

k + pk(pk −Hkqk)T

pT
k qk

−
(pk −Hkqk)Tqk

(pT
k qk)2

pkpT
k .

6. If
�

�

�

J (k)−J (k−1)

J (k−1)

�

�

�< ε, stop. Otherwise, increase k and go back to step 1.

113

4 Stabilizing distributed optimal control design with local model information

however, the initial configuration might not be known in advance or might be slightly dis-
turbed from the assumed one. This problem was already encountered in Section 4.3 where
a solution was presented. A similar approach is presented here in order to circumvent this
problem. We propose to average over several initial configurations for the simulated tra-
jectories to obtain a control law that performs well for an area. The algorithms principally
remain unchanged except for the gradient which is now given by

∇K̂ J =
1

nsamples

� nsamples
∑

i=1

∫ tf

0

2RK̂ x̂ i(t) x̂
T
i (t) + BTλ̂i(t) x̂

T
i (t)dt

�

,

where x̂ i(t) and λ̂i(t) are the trajectories resulting from the ith initial configuration,
and nsamples is the number of selected initial configurations, see Section 4.3 for more details.

Remark 4.11. While this extension enlarges the area of possible initial configurations, this
does not lead to a globally optimal control law. In fact, our numerical investigations show that
initial configurations that are not considered directly in the design may lead to undesirable
performance. This is also later shown in the example in Section 4.7.3.1. Furthermore, notice
that the averaging approach from Section 4.3 of using all unit vectors as initial condition
is not completely suitable here because of the nonlinearity of the adjoint states caused by
the biquadratic term. Therefore, the chosen approach of averaging several reasonable initial
conditions is preferred.

4.7.3 Numerical results

In this subsection, we validate the control design algorithm using several numerical experi-
ments. We provide an illustrating example, evaluate the respective performance of the two
algorithms, and compare the presented approach with an open loop input optimization.

4.7.3.1 Illustrating numerical example

In this subsection, we illustrate the result of Algorithm 13 with averaging over the initial
configuration x0. The considered system consists of three physically interconnected robots
with system dynamics described by (4.33), all having identical parameters Mi = I3, Di =
2
p

3I3 and Ki = 3I3. Because each subsystem has nine states, we have an overall system
dimension of 27. As weighting matrices, we choose R = 5I18, Ŝ = diag(10I27, 0), q̂k =
100 and Q̂ = diag(0.1I27, 0) because we emphasize the maintenance of the formation. The
optimization horizon is 40 seconds. The optimization algorithm stops when the change in
cost between iterations is less than 10−3. For the design, we select four different initial
configurations. The coordinates of the center points of the respective triangles are given in
Table 4.6 and are marked as gray crosses in Figure 4.13. In the simulations, the goal is to
move the triangle formation of the three interconnected robots from four different initial
configurations to a desired end point. These four initial configurations and the end point are
also given in the table. Three of the initial configurations belong to the area surrounded by
the four points used in the design, with two of them used directly in the design, while the
fourth point is outside the area.

114

4.7 Application of distributed control in optimal formation control

−4 −2 0 2 4

−2

0

2

4

1

2
3

1 2

3

1 2

3

1 2

3

1

2

3

x in [m]

y
in

[m
]

Figure 4.13: Three mobile robots drive from four different initial configurations (red dashed,
olive dashed dotted, green solid, blue dashed) to a common goal while trying
to maintain the formation. Bold colored triangles illustrate the initial robot
configuration, the bold black triangle is the final configuration. The blue triangle
clearly loses formation because the shape of the triangle stretches during the
movement, while the other three triangles maintain their shape.

Figure 4.13 shows the resulting movements from all four initial configurations. We can
see that the control design works well for all three points inside the area because the desired
end point is reached and all the intermediate steps also show the initial formation. This
shows that the relaxed rigidity condition is satisfied by the control design and the control law
achieves all of its goals. For the point outside the area the desired end point is still reached,
but it can clearly be seen that the formation is violated in the intermediate steps because
the formation stretches in all directions. This illustrates that the optimized control law has a
local character and is not guaranteed to work well away from the initial configurations used
during the optimization.

Remark 4.12. A phenomenon we observed during our numerical investigations is that while
the classical LQR problem is invariant to scaling in the cost functional, meaning that the
control law for Q and R is identical as the control law for cQ and cR with c > 0 ∈ R, this
is not the case here. The reason is that the adjoint states depend nonlinearly on x as well
as Q̂k.

4.7.3.2 Comparison between the two presented algorithms

In this subsection, we compare the computational performance between Algorithm 12 using
the Barzilai-Borwein step size (4.44) and Algorithm 13. The system parameters are identi-
cal to the previous subsection. As a comparison scenario we move an initial triangle on the

115

4 Stabilizing distributed optimal control design with local model information

Table 4.6: Starting and end points for visualizing example.
Phase Center Point
Design x0,1 = [2,−2]
Design x0,2 = [2,4]
Design x0,3 = [−2, 4]
Design x0,4 = [−2,−2]
Simulation x0,1 = [2,0]
Simulation x0,2 = [2,4]
Simulation x0,3 = [−2, 4]
Simulation x0,4 = [−4,−1]
Design & Simulation xf = (

p
3

6 , 2.5)

edges of the rectangle marked by the four crosses in Figure 4.13 in steps of length 0.5, re-
sulting in 40 different starting points. The weighting matrices are chosen as q̂k = 5, R= I18,
Q̂ = diag(I27, 0), Ŝ = diag(I27, 0) with a horizon of 40. The optimization algorithms stop
when the change in cost between iterations is less than 10−3. The results of the compari-
son are summarized in Table 4.7. We see that the number of iterations is comparable for
both algorithms. The fact that the number of iterations is lower for the gradient method is
counter-intuitive and might be due to the fact that different local minima are found by the
two algorithms. We observed in our investigations that even though both algorithms may
achieve almost comparable costs, the actual resulting control matrices might be completely
different. While the gradient descent algorithm has advantages in the computation time, the
BFGS algorithm always achieves lower costs. Note that for some categories we choose the
median instead of the average because the BFGS algorithm produces some outliers that are
not representative for its overall performance. In conclusion, if computational time is not an
issue, the BFGS algorithm should be preferred because of the lower achieved cost.

4.7.3.3 Comparison with open loop input

In this subsection, we compare the performance of the resulting feedback matrix from Al-
gorithm 13 with an open loop input obtained with the Matlab function fminunc. The test
scenario is the movement of a formation of three robots with identical system parameters as
in Section 4.7.3.1. The open loop case corresponds to the generation of desired trajectories
which are tracked by the impedance control law. The shape is a triangle with an initial cen-

Table 4.7: Comparison between Algorithms 12 and 13.
Algorithm 12 Algorithm 13

Median number of iterations 184 191
Average achieved cost 82.09 75.92
Median computation time [s] 59.1 142.4
Average cost decrease by BFGS - 9.2%
Median cost decrease by BFGS - 8.1%

116

4.8 Generalization of distributed control design approach

ter point (0, 0). The desired end formation is a triangle with center point (
p

3
6 , 2.5) which is

rotated by −π2 . The starting and end formations are shown in Figure 4.14. We choose the
weighting matrices q̂k = 40, R = 5I18, Ŝ = diag(10I27, 0) and Q̂ = diag(10−2I27, 0), with the
horizon 20.

The presented Algorithm 13 leads to a feedback control law which achieves the cost 11.13
after 958 iterations and 1543 seconds of computation time. The open loop trajectory is able
to achieve a lower cost of 7.92 which is to be expected by the additional degree of freedom in
the input signal but the computation time is much higher (117021 seconds ≈ 1.35 days). In
addition to a lower computation time, the feedback clearly has advantages when disturbances
or uncertainties are considered.

4.7.4 Summary

In this section, we presented an extension of our control design method to optimal forma-
tion control. First, a new non-quadratic term was included into the cost functional which
expresses a relaxed form of the rigidity requirement of the formation. Then, we applied the
same idea as in the previous sections by introducing adjoint states and iteratively optimize
the feedback law. In addition to the previously used gradient method, we also made use of a
Quasi-Newton method. All results were illustrated and validated in numerical experiments.
A full-scale robotic experiment was also completed, but the details are outside of the scope
of this thesis. For details, we refer to [25].

4.8 Generalization of distributed control design approach

In this section, we present two generalizations of the distributed control design approach
used throughout this chapter, namely the iterative optimization based on simulated trajec-

−1 0 1
−1

0

1

2

3

1 2

3

1

2

3

x in [m]

y
in

[m
]

Figure 4.14: Initial condition (blue, solid) and end formation (red, dashed) for comparison
between Algorithm 13 and the open loop trajectory.

117

4 Stabilizing distributed optimal control design with local model information

tories. The first one is the generalization to a time-varying control law, the second one is to
nonlinear system dynamics. Naturally, both generalizations can be combined, but we present
them separately to allow for an easier understanding.

4.8.1 Time-varying control law

In this subsection, we essentially consider optimization problem (4.4), but we allow the
control law to have the additional degree of freedom to be time-varying. Thus, the problem
is

min
x ,u

J(t, x , u) = xT(t + tf)Sx(t + tf) +

∫ t+tf

t

xT(τ)Qx(τ) + uT(τ)Ru(τ)dτ, (4.46a)

s.t. ẋ(τ) = Ax(τ) + Bu(τ), (4.46b)

u(τ) = −Kdist(τ)x(τ), (4.46c)

Kdist is stabilizing, (4.46d)

Kdist ∈K . (4.46e)

Based on the same ideas as before, we can state the following proposition.

Proposition 4.6. Given optimization problem (4.46), the gradient of the cost functional (4.46a)
with respect to the control law blocks Kdist,i j(τ) is given by

(∇Kdist
J)i j(τ) = −2Riui(τ)x

T
j (τ) + BT

i λi(τ)x
T
j (τ), (4.47)

where

λ̇(τ) = −AT
Kλ(τ) + 2(Q+ KT

dist(τ)RKdist(τ))x(τ), (4.48a)

λ(t + tf) = −2Sx(t + tf), τ ∈ [t, t + tf], (4.48b)

with AK = A− BKdist(τ).

Proof. The proof is identical to the proof of Proposition 4.1.

The proposition essentially remains unchanged and the adjoint states are also the same,
except that Kdist is time-varying. The only major difference is that the gradient itself is not an
integral anymore, but that it is also, naturally, time-varying. What is noteworthy is that the
simulation based design approach presented in this thesis also allows intermediate variants.
Instead of having only a time-invariant control law, or a completely time-varying control law
we can also take the wish into account of splitting the time horizon t f into several parts
where the control law is constant, or that the control law is time-varying only in parts of the
horizon.

Remark 4.13. A remark is in order on the optimality of the time-invariant or the time-varying
control law presented here and in Section 4.3.1. In Section 2.2.1, we saw that the full in-
formation optimal control law for a finite LQ problem is time-varying. However, given the
sparsity structure of the problem it is actually an open question what form the optimal con-
trol law has. Therefore, we cannot be certain if a time-varying control law is superior to a
time-invariant one or if, for example, a nonlinear feedback may be better than our assumed
linear one. We compare the performance of the time-varying control law of this section with
the time-invariant one later in Section 4.8.3 in a numerical experiment.

118

4.8 Generalization of distributed control design approach

4.8.2 Nonlinear system dynamics and control law

In this subsection, we consider generalized forms of both the system dynamics and of the
control law. The system dynamics are input affine nonlinear systems and the control law is a
nonlinear control law with a known parameterization. The dynamics of each subsystem are

ẋ i(t) = fi(x i(t), x j1(t), . . . , x jk(t)) + gi(x i(t), x j1(t), . . . , x jk(t))ui(t),

where all j1, . . . , jk ∈ Nin,i and where f : Rn→ Rni and g : Rn→ Rni×mi . That means that we
still consider an interconnected dynamical system with a sparsity structure, but the dynamics
are now nonlinear. The overall dynamics are

ẋ(t) = f (x(t)) + g(x(t))u(t),

where f : Rn→ Rn and g : Rn→ Rn×m are obtained by stacking fi and gi. The control law is
given by

ui(t) = −kdist,i(x i(t), x j1(t), . . . , x jk(t)),

where kdist,i : Rn→ Rmi×n all j1, . . . , jk ∈ Ni, i.e. the control graph is the undirected system
graph. Furthermore, the function kdist,i is parameterized by the parameters {ki,1, . . . , ki,pi

}
where pi is the number of parameters of the control law of subsystem i.

The optimal control problem is

min
x ,u

J(t, x , u) = s(x(t + tf))

∫ t+tf

t

q(x(τ)) + r(u(τ))dτ, (4.49a)

s.t. ẋ(τ) = f (x(τ)) + g(x(τ))u(τ), (4.49b)

u(τ) = −kdist(x(τ)), (4.49c)

kdist ∈K . (4.49d)

Again, using the Lagrangian of the problem, we can derive adjoint states and the gradient
and arrive at the following proposition.

Proposition 4.7. Given optimization problem (4.49), the gradient of the cost functional (4.49a)
with respect to the control law parameter ki, j is given by

(∇ki, j
J) =

∫ t+tf

t

∂ r(−k(x(τ)))
∂ ki, j

+ g(x(τ))Tλ(τ)
∂ k(x(τ))
∂ ki, j

T

dτ, (4.50)

where

λ̇(τ) = −
�

∂ f (x(τ))
∂ x(τ)

−
∂ g(x(τ))
∂ x(τ)

kdist(x(τ))− g(x(τ))
∂ kdist(x(τ))
∂ x(τ)

�T

λ(τ)

+
∂ q(x(τ))
∂ x(τ)

+
∂ r(−kdist(x(τ)))

∂ x(τ)
, (4.51a)

λ(t + tf) = −
∂ s(x(t + tf))
∂ x(t + tf)

, τ ∈ [t, t + tf]. (4.51b)

119

4 Stabilizing distributed optimal control design with local model information

Proof. The proof follows in the same fashion as the proof of Proposition 4.1. We construct the
Lagrangian of the optimization problem and then require that ∂ L

∂ x = 0 to derive the adjoint
states. The gradient also results from the Lagrangian.

It can be easily verified that the result of Proposition 4.1 is recovered from Proposition 4.7
when the special case of LTI dynamics and the linear control law is considered.

Remark 4.14. The results in this subsection serve as an illustration of the overall applicabil-
ity of the iterative design approach based on simulated trajectories. In principle, completely
nonlinear cost functionals, system dynamics and control laws can be addressed as long as
the control law is parameterized with known parameters. A typical approach for a nonlinear
control law with a known parameterization is a polynomial control law. In practice, however,
there is no guarantee that the approach will give acceptable results. Even for LTI systems
the design is non-convex, but for nonlinear dynamics the form of the optimization problem
becomes even more complicated such that the presented gradient approach can give unsat-
isfactory results.

4.8.3 Numerical evaluation

In this subsection, we evaluate the performance of the time-varying control law in comparison
with the time-invariant result from Section 4.3. As stated in Remark 4.13, it is unclear for
structured control laws whether the time-varying control law is indeed better in terms of
performance. To compare the two control laws, we consider the same test systems that
we used in Section 4.4.5, i.e. we first look at 100 stable test systems where each system
has N = 20 subsystems and the total number of states is n = 40. Then, we look at the same
number of unstable test systems.

4.8.3.1 Stable test systems

We compare the performance of the result of Algorithm 8 with the time-invariant and with
the time-varying control law. Because we expect that performance advantages of one of
the two may depend on the optimization horizon tf, we solve the problem for the following
horizons: 0.01, 0.05, 0.1, 0.5, 1, 5, 10. The evaluation of the resulting costs is summarized
in Table 4.8.

We observe that the time-varying control law has a slightly better performance for short
horizons, but the advantage is negligible. However, the longer the horizon gets, the better the
time-invariant control law becomes in comparison to the time-varying one. We attribute this

Table 4.8: Performance comparison of time-invariant (TI) and time-varying (TV) control law
based on relative cost difference JTI−JTV

JTV
for stable test systems.

Horizon tf 0.01 0.05 0.1 0.5 1 5 10
Average JTI−JTV

JTV
[%] 9.79 · 10−4 0.019 0.067 0.55 0.64 -0.95 -2.38

Maximum JTI−JTV
JTV

[%] 0.0016 0.031 0.11 0.82 1.07 0.99 -0.73

Minimum JTI−JTV
JTV

[%] 5.45 · 10−4 0.011 0.037 0.24 0.26 -2.12 -4.71

120

4.9 Chapter summary

result to the non-convexity of the problem because, in principle, the time-invariant control
law is just a special case of the time-varying one and should not be able to outperform the
more general case. However, numerical issues and local minima can lead to this result.
Future work should investigate the optimal solution of the structured control design further.

4.8.3.2 Unstable test systems

We perform the same analysis for 100 unstable test systems for the same horizons as in the
stable case. The results are summarized in Table 4.9. For unstable systems, the trend seems
to be that the time-varying control law outperforms the time-invariant one for every horizon
except for the last one. This result is more in accordance with intuition but still not fully
conclusive. Furthermore, a disadvantage of the time-varying control law is the increased
storage capacity required for the control law.

4.8.4 Summary

In this section, we developed two generalizations of the control design approach presented
throughout this chapter. The first generalization is the time-varying control law, the second
addresses nonlinear dynamics, cost functionals and control laws. Numerical investigations
showed that there is an advantage of the time-varying control law in some cases but not in
all. Future work on the optimal form of the control law is required for an ultimate judgment.

4.9 Chapter summary

In this chapter, we developed and analyzed a distributed optimal control design method that
relies only on local model information. The problem formulation is similar to the standard
LQR problem but is complicated by the aim to design the control law without a central entity,
and also by the desired structure in the control law. The design method is based on deriving
adjoint dynamics specific to the optimal control problem. Then, simulated trajectories of the
states and adjoint states are used to distributedly compute a gradient of the cost functional
with respect to the feedback matrix. This gradient is then used to iteratively optimize the
feedback law. Because it is based on simulated trajectories, the design approach can only
consider finite horizon cost functionals. Therefore, we needed to use a specific terminal
cost term to guarantee stability of the closed loop. A distributed computation method to
compute this terminal cost term was also presented, and it makes use of the techniques used

Table 4.9: Performance comparison of time-invariant (TI) and time-varying (TV) control law
based on relative cost difference JTI−JTV

JTV
for unstable test systems.

Horizon tf 0.01 0.05 0.1 0.5 1 5 10
Average JTI−JTV

JTV
[%] 9.77 · 10−4 0.021 0.078 1.25 3.69 3.51 -1.03

Maximum JTI−JTV
JTV

[%] 0.0015 0.034 0.13 2.23 16.78 25.09 2.00

Minimum JTI−JTV
JTV

[%] 4.85 · 10−4 0.011 0.041 0.71 1.29 -1.12 -2.22

121

4 Stabilizing distributed optimal control design with local model information

in Chapter 3 to solve a Lyapunov inequality. The effectiveness of the terminal cost term and
of the gradient algorithm was shown in numerical simulations.

Considerable effort was put into the complete distribution of the presented gradient algo-
rithm and we presented methods to distributedly decide on a step size and how to guarantee
convergence. In particular, we employed a consensus algorithm to compute the Barzilai-
Borwein step size in a distributed fashion. Also, a conjugate gradient method was derived
that makes use of the same consensus techniques. The performance of the different step
size and descent methods was evaluated in a numerical experiment. The BB step size and
the conjugate gradient method both perform well and no ultimate judgment on the better
alternative could be made.

Because the approach relies only on local model information and local information ex-
change, it requires a large communication effort to obtain an optimal control law. One par-
ticular problem is the communication required for the trajectory simulation to obtain the
gradient. We proposed a new event-based Euler method to reduce this communication effort
and its positive effect is illustrated in numerical fashion.

Furthermore, we extended the control design method using adjoint states to two problem
classes beyond the standard LQR problem formulation. The first one is the case of DAE
systems where the control design method also only requires local model information. The
resulting control law makes explicit use of algebraic states. The second one is the application
of the approach to an optimal formation control problem where the rigidity requirement
is reformulated into a biquadratic form. The biquadratic form does not allow an analytic
solution so the approach of using adjoint states and simulated trajectories was especially
useful.

Last, we presented two generalizations of the form of the control law and their corre-
sponding gradient method, namely a time-varying structure and a nonlinear one for nonlin-
ear systems.

Note that the results of this chapter are partially based on [21, 22, 24, 25, 26].

122

5

Decay analysis in interconnected systems

In this chapter, we address the third and last aspect of this thesis: the decay analysis in in-
terconnected systems. Specifically, we analyze how an input or a disturbance at one node
spreads throughout a network of subsystems and how far the effect of the signal is notice-
able. We abandon the notion of performing the analysis from a distributed perspective, but
the results of this chapter give further insight into the behavior of interconnected systems.
The main contribution of this chapter is an analytical investigation of the decay between
subsystems in response to a steady state disturbance. We consider the case of a constant
input at a single node and then look at the generalization to a sinusoidal input. The results
are illustrated using numerical simulations. In order to obtain meaningful results, certain
assumptions on the system parameters need to be made. Therefore, we consider stable sys-
tems whose stability can be shown using a vector Lyapunov function. The concept and the idea
of vector Lyapunov functions is summarized well in [15] and we briefly introduced them in
Section 2.1. In addition, we already made use of vector Lyapunov functions in Chapter 3. We
think that this assumption is reasonable on several grounds. First, the analysis in this type of
setup is known to remain valid even when interaction gains change, a property which makes
the results more robust. Second, it allows the analysis of nonlinear large-scale systems using
linear system tools. Last, it is an old and in a sense tested theory which has been rigorously
evaluated with many established results.

The main idea behind our analysis is that, instead of analyzing the original system dynam-
ics, we use a comparison system that approximates every multi-dimensional subsystem by a
scalar representation. This approach is motivated by our interest in the overall interaction
between the subsystems along the system graph and not in the detailed behavior of each
state of every subsystem.

The remainder of this chapter is organized as follows. Section 5.1 contains the problem
statement. An overview on related work is given in Section 5.2. Then, we explain the general

123

5 Decay analysis in interconnected systems

approach and give preliminary information in Section 5.3. The main analysis is presented in
Section 5.4, and these results are illustrated in Section 5.5. We conclude with a summary in
Section 5.6.

5.1 Problem formulation

In this chapter, we consider an interconnected dynamical system with a structure described
by a graph as shown in Figure 5.1.

The original system dynamics are of the standard LTI form already considered in the pre-
vious chapters. Thus, every subsystem follows

ẋ i(t) = Aii x i(t) +
N
∑

j=1
j 6=i

Ai j x j(t), i = 1, ..., N , (5.1)

and the overall system is
ẋ = Ax . (5.2)

In the context of this chapter, we do not try to achieve a distributed analysis method so the
only graph of interest is the system graph Gs. However, to make the notation more intuitive
in terms of the analysis in this chapter, we consider the transpose system graph GT

s = (Vs,ET
s)

instead of the original system graph Gs. Hence, there is an edge in the directed graph GT
s

with (i, j) ∈ ET
s iff Ai j 6= 0. This can be interpreted as subsystem i accessing j to update its

state. We denote the set of neighboring nodes of node i, i.e. nodes that affect it, by Ni =
{ j|(i, j) ∈ ET

s }.
The problem raised in this chapter can be summarized as follows.

Problem 3. Given system (5.1),(5.2), how does an input signal at one node propagate
through the network with increasing distance to the source, and under what conditions
is there a decay property?

5.2 Related work

Despite the fact that the question of signal decay in interconnected systems is practically
relevant and far from trivial, we are not aware of many previous results in the literature
that address it directly. However, the decay property for constant disturbances considered
here turns out to be related to a decay property of entries of the inverse of a matrix whose
structure captures that of the underlying system graph with a path graph corresponding to
a tridiagonal matrix. In [124], a decay property along the rows and columns of the inverse
is developed for a symmetric tridiagonal matrix. In this chapter, a similar result is derived
but for much more general matrix structures. Also related are the results in [125] where the

124

5.3 Preliminaries and assumptions

10

21 31 41

52 62 72

u

Figure 5.1: Example graph. The number denotes the nodes, the subscripted index denotes
the distance to the source node. Note that the input is not an edge of the graph
and does not follow the edge direction convention of the rest of the graph used
throughout this chapter.

authors investigate properties of M-matrices in the context of linear systems of equations,
and the sensitivity of the solution to changes in the entries of the M-matrix. The authors
in [126] look at vehicle formations in a regular lattice structure, and investigate how local
feedback laws can perform under stochastic disturbances. This is related to the question at
hand because the considered signal can represent a disturbance. For consensus dynamics,
the results in [127] provide an online optimization algorithm that changes interconnection
weights in a graph to achieve an optimal disturbance rejection. For the special case of directed
lattices with leader-follower-dynamics, the authors in [128] derive transfer functions from
disturbances to the states of nodes. This approach goes in a similar direction as the work
here, we, however, consider more general dynamics and graphs. Also, a similar research
direction is taken in [129] where a local average consensus algorithm is developed, which
involves both temporal and decaying spatial behavior. Our goal is to take that viewpoint of
considering both temporal and spatial behavior as well, and investigate how physical signals
propagate spatially through a dynamical system and whether the gain over a multihop path
can be bounded in terms of the hop count.

5.3 Preliminaries and assumptions

In this section, we state preliminary assumptions and explain the principal idea of the pre-
sented analysis method. As mentioned earlier, we are interested in the overall influence one
subsystem node has on another. This means that we are not necessarily interested in the
behavior of individual states of each subsystem but rather in the total subsystem interaction.
This leads to our first main idea: Instead of considering the original system dynamics (5.2)
directly, we investigate the behavior of a comparison system where the multidimensional
subsystem states x i ∈ Rni are aggregated into scalar superstates wi ∈ R. This is illustrated in
Figure 5.2.

One intuitive method, and our choice for the comparison system here, is to use vector
Lyapunov functions that we have already encountered in the first distributed stability test in
Section 3.3.1. There are two reasons for this choice. First, a decay analysis is only meaningful

125

5 Decay analysis in interconnected systems

Node 1

x1 ∈ Rn1

Node 2

x2 ∈ Rn2

Node 3

x3 ∈ Rn3

Node 1

w1 ∈ R

Node 2

w2 ∈ R
Node 3

w3 ∈ R

Figure 5.2: Subsystem states x i are aggregated into scalar superstates wi which correspond
to a comparison system.

for stable systems and the vector Lyapunov function is a well-known tool to establish stability
of interconnected systems. Second, the individual subsystem Lyapunov functions provide a
weighted norm of the state, which is an appropriate property for a superstate. In order
to further improve the understanding of the following analysis, we delve deeper into the
details of vector Lyapunov functions. To achieve this, we provide additional information that
go beyond the description in Section 2.1. We start by giving an extension of Lemma 2.1 with
an additional aspect required only in this chapter.

Lemma 5.1. [130, §6.2] A matrix W ∈ RN×N is a non-singular M-matrix if it has positive
diagonal elements, nonpositive off-diagonal elements and if it satisfies the following equivalent
conditions:

• There exists a vector d ∈ RN
++ such that W d ∈ RN

++.

• There exists a positive diagonal matrix D = diag(d1, . . . , dN) ∈ SN
++ such that W D is

strictly diagonally dominant, i.e. diWii >
∑

j 6=i d j|Wi j|∀i = 1, . . . , N.

Furthermore, Assumption 2.1 holds in this chapter, that is we assume that the isolated,
decoupled subsystems described by

ẋ i = Aii x i (5.3)

are asymptotically stable. Hence, for any Q i � 0, there is a Pi � 0 such that

PiAii + AT
ii Pi = −Q i, (5.4)

and then clearly
νi = (x

T
i Pi x i)

1
2 (5.5)

is a local Lyapunov function for the isolated subsystem i. Thus, with (5.4), we have
that ν̇i,iso = −

1
2(x

T
i Pi x i)−

1
2 xT

i Q i x i < 0 is the isolated derivative of νi along the dynamics (5.3).
With the following bounds

Æ

λm(Pi)||x i|| ≤ νi(x i)≤
Æ

λM(Pi)||x i||,

∂ νi

∂ x i

=

(xT
i Pi x i)

− 1
2 Pi x i

≤
λM(Pi)
p

λm(Pi)
,

Ai j x j

≤ σM(Ai j)||x j||,

126

5.3 Preliminaries and assumptions

we can write the coupled derivative of νi as

ν̇i = ν̇i,iso + (x
T
i Pi x i)

− 1
2 xT

i Pi

N
∑

j∈Ni

Ai j x j

≤ −
λm(Q i)

2
p

λM(Pi)
||x i||+

N
∑

j=1
j 6=i

λM(Pi)σM(Ai j)
p

λm(Pi)
||x j||

≤ −α̃i,iνi +
N
∑

j∈Ni

α̃i, jν j, (5.6)

where α̃i,i =
λm(Q i)
2λM (Pi)

, α̃i, j =
λM (Pi)σM (Ai j)p
λm(Pi)
p
λm(Pj)

. With this, we can state a modified form of Theo-

rem 2.1.

Theorem 5.1. [131, 15] Given Assumption 2.1, consider system (5.1),(5.2) and the local Lya-
punov functions (5.5) with Pi and Q ii from (5.4). If the matrix −Ã with elements from (5.6)

Ãi j =

¨

−α̃i,i if i = j

α̃i, j if i 6= j

is a non-singular M-matrix, then system (5.1),(5.2) is stable and V (x) = dTν(x),
where d = [d1, . . . , dN]

T > 0 and ν= [ν1(x1), . . . ,νN (xN)]
T, is a Lyapunov function for the sys-

tem. Furthermore, we call ν with ν̇≤ Ãν a vector Lyapunov function of system (5.2).

There are several other ways to set up a vector Lyapunov function to show stability, but
since stability investigations are not the focus of this chapter, we refer the reader to [15, §2]
for more details.

Remark 5.1. Note that due to the use of vector Lyapunov function theory, the results in this
chapter are extendable to a wide class of nonlinear systems. Necessary assumptions are the
existence of constants c1,i > 0, c2,i > 0 such that c1,i||x i|| ≤ νi ≤ c2,i||x i||, and the intercon-
nection between subsystems needs to be bounded. To allow for an easier understanding, we
restrict our attention in this chapter to linear systems.

In the following, we use the dynamics of νi as the comparison system in order to investi-
gate signal decay in the interconnected system. An illustration of the bound that the vector
Lyapunov function ν provides is shown in Figure 5.3.

Based on the comparison principle [131, §1.4], instead of the inequality (5.6), we con-
sider w̃(t) with w̃(0) = ν(0) and

˙̃wi = −α̃i,iw̃i +
N
∑

j∈Ni

α̃i, jw̃ j, (5.7)

or ˙̃w= Ã w̃, (5.8)

where w̃ ∈ RN and Ã ∈ RN×N . Here, it is clear that νi(t)≤ w̃i(t). Thus, the system (5.7)
in a limited and special way approximates system (5.1) as a scalar system, and we can con-
sider w̃(t) as a super-state for the actual system state x(t). In particular, we will use it to
make estimates on the signal decay in interconnected systems. As already mentioned in the
introductory remarks of this chapter, we make the following assumption on system (5.8).

127

5 Decay analysis in interconnected systems

0 1 2 3 4 5 6 7
−1

0

1

2

Time t

x(
t)

,ν
(t
)

x1(t) x2(t)
x3(t) ν(t) = (xT(t)P x(t))

1
2

Figure 5.3: Vector Lyapunov function serves as a superstate to a multidimensional system.

Assumption 5.1. −Ã is a non-singular M-matrix.
Then, there is a positive diagonal matrix D such that the matrix A := D−1Ã D with ele-

ments αi j is row diagonally dominant [130], i.e.

αi,i −
∑

j∈Ni

αi, j ≥ 0 ∀ i.

This also implies that the following condition holds

αi,i −

∑

j∈Ni
αi, j

1− γ
≥ 0 ∀ i, (5.9)

for a known 0< γ < 1 where equality holds for at least one i.

Example 5.1. Consider the matrix

A =
�

−2 1
2 −3

�

.

From the first row, γ would be 1
2 while it would be 1

3 from the second row. The overall value
of γ is then the minimum of them all, in this case 1

3 , such that equality of (5.9) holds for the
second row, and is only a bound for the first row.

Hence, γ can be seen as a measure of how row dominant the matrix A is. When the
original system does not satisfy Assumption 5.1, the authors in [132] present a system class
for which decentralized controllers can be designed such that Assumption 5.1 is satisfied. The
identification of further system classes where distributed controllers lead to Assumption 5.1
being satisfied is future work.

As a side note: Using (5.9) and Gershgorin arguments, the eigenvalues of A can easily
be bounded. Finally, the transformed system dynamics according to Assumption 5.1 are

ẇ=Aw. (5.10)

In the next section, we begin our decay analysis based on the comparison system dynam-
ics (5.10).

128

5.4 Decay analysis

5.4 Decay analysis

In this section, we present the main analytical results, namely the investigation of a way to
describe the steady state of system (5.10) for two cases: (1) The system has a scalar constant
input at a single node. (2) The system has a scalar sinusoidal input at a single node. In this
way, we aim at developing an insight as to how a physical signal propagates spatially from
system to system.

5.4.1 Steady state decay with constant input

In this subsection, we investigate how the steady state of an interconnected system behaves
when there is one node with a constant and positive external input and the remaining nodes
are not excited. The system dynamics (5.10) are extended to include the input and we obtain

ẇ=Aw+ bu, (5.11)

where b ∈ RN is a vector consisting of only one nonzero entry, namely a one, and for conve-
nience of derivation and presentation u ∈ R++. These are the system dynamics considered
throughout the rest of the chapter. Note that the graphical structure ofA is identical to the
graph GT

s , i.e. there is an edge from node i to node j when i uses information from j to
update its state, in other words when i is influenced by j.

Remark 5.2. A few remarks about the superstate dynamics (5.11) are in order. The super-
state represents an upper bound to a scaled vector Lyapunov function. In relation to the
original system, it serves as a bound on a scaled and weighted norm of the original system
state. The system dynamics represent a positive system because the matrix A is a Metzler
matrix. Last, as the setup is linear, by the superposition principle the results are straight-
forward to expand to multiple or negative inputs. Also, since only the limit case t →∞ is
considered, the results also cover inputs that become constant after a finite time.

In the following, we consider the steady state of w, which we denote by w̄,
i.e. limt→∞w(t) = w̄. Therefore, we can set the left hand side of (5.11) to zero. Next, we
introduce the main concept of this chapter that we use throughout the analysis.

Definition 5.1. Let w̄i ∈ R, w̄ j ∈ R for j ∈ { j1, . . . , jl} where i /∈ { j1, . . . , jl}, and 0< γ < 1
from (5.9). If there exist βi, j for j ∈ { j1, . . . , jl} such that

w̄i =
jl
∑

k= j1

βi,kw̄k, (5.12)

where
∑ jl

k= j1
βi,k < 1− γ and 0≤ βi, j < 1− γ for all j ∈ { j1, . . . , jl}, then w̄i is termed a steady

state conic combination (SSCC) of the steady states w̄ j with j ∈ { j1, . . . , jl}. This is written
as w̄i ∈ C(w̄ j1 , . . . , w̄ jl).

The notion of a steady state conic combination (SSCC) is illustrated in Figure 5.4.
Note that C(. . .) is a special case of a conic combination of steady state values. With

this notion of SSCC, it can be shown that if w̄i is an SSCC of the steady states of some

129

5 Decay analysis in interconnected systems

0 w̄ j1 w̄ j2 w̄i (1− γ)w̄ j3

Figure 5.4: Illustration of steady state conic combination (SSCC): w̄i ∈ C(w̄ j1 , . . . , w̄ jl) can be
larger than some w̄ j but is bounded by at least one w̄ j with j ∈ { j1, . . . , jl}.

nodes j1, . . . , jl , and if the steady state of one of those nodes w̄ jl is an SSCC of the steady
states of i and other nodes k1, . . . , km, then w̄ jl can be replaced in the SSCC of w̄i by the
steady states of nodes k1, . . . , km. We summarize this more formally in the following lemma.

Lemma 5.2.
If w̄i ∈ C(w̄ j1 , . . . , w̄ jl) and w̄ jl ∈ C(w̄i, w̄k1

, . . . , w̄km
), then w̄i ∈ C(w̄ j1 , . . . , w̄ jl−1

, w̄k1
, . . . , w̄km

)
for i /∈ { j1, . . . , jl}.

Proof. Using (5.12), we start with

w̄i = βi, j1 w̄ j1 + . . .+ βi, jl−1
w̄ jl−1

+ βi, jl (β jl ,iw̄i + β jl ,k1
w̄k1
+ . . .+ β jl ,km

w̄km
)

and obtain

w̄i =
βi, j1

1− βi, jlβ jl ,i
w̄ j1 + . . .+

βi, jl−1

1− βi, jlβ jl ,i
w̄ jl−1

+
βi, jlβ jl ,k1

1− βi, jlβ jl ,i
w̄k1
+ . . .+

βi, jlβ jl ,km

1− βi, jlβ jl ,i
w̄km

.

(5.13)

With the conditions of the lemma and (5.12), one can see that all coefficients on the right
in (5.13) and their sum are smaller than 1− γ, i.e.

1
1− βi, jlβ jl ,i

�

l−1
∑

r=1

βi, jr + βi, jl

m
∑

s=1

β jl ,ks

�

< 1− γ,

βi, jr

1− βi, jlβ jl ,i
< 1− γ,

βi, jlβ jl ,ks

1− βi, jlβ jl ,i
< 1− γ,

for 1≤ r ≤ l − 1 and 1≤ s ≤ m. Notice that based on Definition 5.1, the lemma also sub-
sumes the case where we only have w̄ jl ∈ C(w̄k1

, . . . , w̄km
) instead of w̄ jl ∈ C(w̄i, w̄k1

, . . . , w̄km
).

The reason is that this is equivalent to setting β jl ,i to zero, which only decreases the coeffi-
cients in the right hand side of equation (5.13). This concludes the proof.

To state the results in a precise fashion, we state some additional definitions before we
come to the main result of this chapter.

Definition 5.2. [83] A directed path in the directed graph GT
s is a sequence v0, e1, v1, . . . , en, vr

such that vi ∈ Vs and vi 6= v j for all 0≤ i, j ≤ r, and such that ei ∈ ET
s is a directed edge

from vi−1 to vi for every 1≤ i ≤ r.

For example, in Figure 5.1, the node sequence (7,4, 3) with its corresponding edges does
not constitute a directed path, but the node sequence (7, 6,3) does.

Definition 5.3. Given a designated source node in the interconnection graph GT
s associated

with the system dynamics (5.11), the distance of a node is the least number of directed edges
across all paths between the node and the source node.

130

5.4 Decay analysis

Definition 5.4. Given a designated source node in the interconnection graph GT
s associ-

ated with the system dynamics (5.11), and given a node v with distance d from the source
node, the unique (d − 1)-paths are those paths starting at v and ending at a node with dis-
tance (d − 1) without containing any other node with distance (d − 1). The set of nodes that
can be reached via a unique (d − 1)-path from node v are called the unique (d − 1)-nodes
and is denoted by Vv,d−1.

Seen from a different point of view, if there is a path from v1 with distance d to the
source node, and that path has only strictly decreasing distance after reaching a node v2

with distance (d − 1), v2 belongs to the set Vv1,d−1. For example, in Figure 5.1, we have the
sets V6,d−1 = {3,4}, V7,d−1 = {3,4} and V5,d−1 = {2}.

In the following, there will be a slight abuse of notation: When w̄i is an SSCC of the steady
states of some set of nodes V̄ = { j1, . . . , jl}, instead of having to write w̄i ∈ C(w̄ j1 , . . . , w̄ jl)
where w̄ jk is the steady state of node jk, we will write w̄i ∈ C(V̄).

Theorem 5.2. Given the system dynamics (5.11), Assumption 5.1 with (5.9), and a constant
input u ∈ R++ at a designated source node, the steady state value of a node v with distance d
from the source node is an SSCC as defined in (5.12) of the steady state values of unique (d − 1)-
nodes of node v, i.e.

w̄v ∈ C(Vv,d−1).

Proof. Given a designated source node, we denote the set of nodes with distance d from
that source node by Vd . The maximum distance in the network is dM . All the nodes on
level dM from the source node either have only neighbors in the set VdM−1 or additionally in
the set VdM

. Thus, for any node vdM
∈ VdM

, we have

w̄vdM
∈ C(NvdM ,dM

,NvdM ,dM−1),

because of (5.9) where the set NvdM ,dM
denotes the neighboring nodes of node vdM

with dis-
tance dM from the source node, and it could be the empty set, while NvdM−1,dM

denotes those
with distance dM − 1. In this case, we have w̄vdM

∈ C(NvdM ,dM−1) and the result of Theo-
rem 5.2 is apparent. Otherwise, suppose that node vdM

is connected to nodes v1,dM
, . . . , vn,dM

in addition to nodes with distance dM − 1. Then, we have

w̄vdM
∈ C(w̄v1,dM

, . . . , w̄vn,dM
,NvdM ,dM−1).

Applying Lemma 5.2 to the w̄vi,dM
replaces them with their neighbors, all of which again be-

long to the sets VdM
or VdM−1, and all can be reached from node vdM

via a directed path. Even-
tually, Lemma 5.2 can be used repeatedly to cancel out all nodes on the layer dM , i.e. those
belonging to the set VdM

, and replace them by nodes from the set VdM−1. In the end, w̄vdM
is an

SSCC of nodes on the level dM − 1 that can be reached from vdM
via a directed path through

its multihop neighbors on the level dM . However, there may be nodes on the level dM − 1 that
do not have neighbors in the part of the layer dM that can be reached from vdM

via several
hops. Furthermore, there are nodes on the level dM − 1 that can only be reached through
nodes on the level dM − 1, i.e. nodes not belonging to VvdM ,d−1. Both types of nodes do not
occur in any of the SSCCs of the multihop neighbors and thus we obtain

w̄vdM
∈C(NvdM ,dM−1,Nv1,dM ,dM−1, . . . ,Nvn,dM ,dM−1,NNv1,dM

,dM ,,dM−1,, . . . ,NNvn,dM
,dM ,dM−1

, . . .).

131

5 Decay analysis in interconnected systems

Thus, we have the result of Theorem 5.2 for the nodes with maximum distance.
We proceed to the level with distance dM − 1, and choose a node of interest, call it vdM−1.

On this level, each node can have neighbors on the current level, the one below and the one
above, i.e.

w̄vdM−1
∈ C(NvdM−1,dM−1,NvdM−1,dM

,NvdM−1,dM−2).

With the results shown to be valid for nodes from level dM and Lemma 5.2, the neighboring
sets of nodes from level dM can be replaced by multihop neighborhood nodes from the current
level, i.e.

w̄vdM−1
∈ C(NvdM−1,dM−1,NNvdM−1,dM ,dM−1,NvdM−1,dM−2).

The second term in the parentheses describes those nodes in the set VdM−1 that are not direct
neighbors of node vdM−1, i.e.NNvdM−1,dM ,dM−1 ∩NvdM−1

= ;, but which can be reached from vdM−1

through nodes from the set VdM
via a directed path. We proceed via the same reasoning

as previously, and replace all dependencies on nodes from the current level dM − 1 with
nodes from the set VdM−2 by repeatedly applying Lemma 5.2. All these neighborhoods on
layer dM − 2 contain nodes that can be reached either directly from vdM−1 or through other
nodes on the current layer dM − 1 or the previous layer dM . Notice again that there may
be nodes with distance dM − 2 that cannot be reached from vdM−1 or any of its multihop
neighbors and, therefore, never occur in their neighborhoods and their SSCCs. Thus, they
can never enter the description of vdM−1 and the result of Theorem 5.2 is obtained. The levels
dM − 2≤ d ≤ 1 can be treated in the same way which concludes the proof.

We illustrate the result of Theorem 5.2 in the following example.

Example 5.2. Tridiagonal systems
For tridiagonal systems represented by a line graph as shown in Figure 5.5a, the gain from

one node to the next is less than 1− γ as we move away from the source node. At the end
of the line, we have

w̄N =
αN ,N−1

αN ,N
w̄N−1 = βN ,N−1 ≤ (1− γ)w̄N−1

and for all other nodes with i = 2, . . . , N − 1

w̄i =
αi,i−1

αi,i −αi,i+1βi+1,i
w̄i−1 = βi,i−1 ≤ (1− γ)w̄i−1.

Furthermore, at the source node, one has

w̄1 =
1

α1,1 −α1,2β2,1
u.

1 2 i N

u

(a) Input at node 1.

1 2 ĩ N

u

(b) Input at node ĩ.

Figure 5.5: Line graph topology.

132

5.4 Decay analysis

Clearly, there is a strict decay from w̄1 as we step through each one of the nodes to w̄N and
the gain is bounded by 1− γ per hop, or by (1− γ)d , where d is the distance of a node from
the source node.

Note that this result can be generalized to having the input at an arbitrary node ĩ as
depicted in Figure 5.5b. One obtains the relationships

w̄i =
αi,i+1

αi,i −αi,i−1βi−1,i
w̄i+1 = βi,i+1w̄i+1 < (1− γ)w̄i+1, i = 1, . . . , ĩ − 1,

w̄i =
αi,i−1

αi,i −αi,i+1βi+1,i
w̄i−1 = βi,i−1w̄i−1 < (1− γ)w̄i−1, i = ĩ + 1, . . . , N .

For i = ĩ, i.e. the node with excitation, we have

w̄ ĩ =
1

αĩ,ĩ −αĩ,ĩ+1βi+1,i −αĩ,ĩ−1βi−1,i
u.

This shows that we have the same result as before, only that now the decay is in both di-
rections. Furthermore, each direction is essentially independent of the other one in steady
state. This decay property in a line graph is depicted in Figure 5.6 in the form of the upper
bound (1 − γ)d for a particular selected value of γ = 0.1. Again, it is straightforward to
extend this result to more general, but related, topologies such as stars or trees.

Note that for completely general graphs, there does not necessarily need to be a decay
between neighboring nodes with increasing distance between hops. Nevertheless, there still
is a form of a decay property because the steady state value of a node with distance d is
smaller than the largest steady state value among the nodes in the set of unique (d−1)-nodes
although it is not necessarily a direct neighbor of the considered node. In other words, for
general topologies, the decay is from set to set rather than from node to node.

5.4.2 Steady state magnitude decay with sinusoidal input

In this subsection, we examine the same scenario as in the previous one, only now instead
of u(t) = |u| we consider u(t) = |u|e jωt , i.e. we have a sinusoidal input. While in one sense
the results of the previous subsection are a special case corresponding toω= 0 of the results
of this subsection, we will see here that the results for general ω are best viewed in the light

i − 3 i − 2 i − 1 i i + 1 i + 2 i + 3
Node i

|w̄
i|

Figure 5.6: Illustration of decay in line graph for γ= 0.1.

133

5 Decay analysis in interconnected systems

of those for ω= 0. Because the system is stable, the steady states of the subsystems are also
of sinusoidal form with the same frequency but with a constant phase shift. Hence, we have

w̄i(t) = |w̄i|e j(ωt+ϕi) (5.14)

for time t after an initial settling time, and we define the vector ϕ = [ϕ1, . . . ,ϕN].
To start off, we only consider the line graph case. Beginning at the end of the line, only

considering the magnitudes and by using the differential equation (5.7) as well as the as-
sumed solutions (5.14), we obtain the relationship

|w̄N |=
αN ,N−1

q

α2
N ,N +ω2

|w̄N−1|= βN ,N−1(ω,ϕ)|w̄N−1|

< (1− γ)|w̄N−1|.

For the other nodes with i = 2, . . . , N − 1, the bounds on the gain are given by

|w̄i|=
αi,i−1|w̄i−1|

Æ

(αi,i −αi,i+1βi+1,i(ω,ϕ) cos(ϕi+1 −ϕi))2 + (ω−αi,i+1βi+1,i(ω,ϕ) sin(ϕi+1 −ϕi)2

= βi,i−1(ω,ϕ)|w̄i−1|< (1− γ)|w̄i−1|.

The relationship for the source node is

|w̄1|<
1

Æ

(α1,1 −α1,2β2,1(ω,ϕ) cos(ϕ2 −ϕ1))2 + (ω−α1,2β2,1(ω,ϕ) sin(ϕ2 −ϕ1))2
u.

By inspection, we notice that with ω= 0 and all ϕi+1 −ϕi = 0, we obtain that βi, j(0,0) cor-
responds to βi, j from the constant input case such that the results from the constant input are
recovered and are in fact generalized here. Notice also that the constant input case βi, j(0,0)
is always an upper bound for the sinusoidal case.

If we consider the general dynamics of subsystem i described by (5.7) with a sinusoidal
input and neighbors in the set { j1, . . . , jl}, one obtains for the steady state magnitude that

|w̄i|=

Ç

(αi, j1 |w̄ j1 |+
∑ jl

j= j2
αi, j|w̄ j| cos(ϕ j −ϕ j1))

2 + (
∑ jl

j= j2
αi, j|w̄ j| sin(ϕ j −ϕ j1))

2

Æ

α2
ii +ω2

≤
jl
∑

j= j1

αi, j

αi,i
|w̄ j|.

We observe that the major difference to the case with constant input is that one cannot
express the steady state magnitude as a linear combination of the neighboring steady state
magnitudes, but that it can be bounded by the same linear combination obtained in the
constant input case. Hence, the steady state magnitude in the sinusoidal case is always
bounded by the steady state of the constant input case. Therefore, we can state the following
corollary, omitting the proof.

Corollary 5.1. Given the system dynamics (5.11), and a sinusoidal input u(t) = |u|e jωt at
a designated source node, the steady state magnitude of a node v with distance d from the
source node is upper bounded by an SSCC as defined in (5.12) of the steady state magnitudes
of the unique (d − 1)-nodes of node v.

134

5.5 Numerical example

5.5 Numerical example

In this section, we illustrate the obtained results in a numerical example.
We consider the following system dynamics for the ith subsystem

ẋ1,i = x2,i,

ẋ2,i = −k0,i x1,i − b0,i x2,i +
∑

j∈Ni

�

k1,i x1, j + b1,i x2, j

�

,

and we assume that the interconnection topology is given by the line graph shown in Fig-
ure 5.5a. We consider N = 10 subsystems, and the parameters k0,i and b0,i are chosen
from the set {1,2, 3} while the parameters k1,i and b1,i are selected randomly from the
set {0.01,0.02, 0.03,0.04, 0.05}. The parameters are chosen in this manner to ensure that a
matrixA exists such that −A is an M-matrix. The system dynamics can represent a platoon
of vehicles where the velocity of the ith vehicle is influenced by the position and the velocity
of the preceding and the following vehicle, e.g. through a control law, or because of an actual
physical connection.

Given the state matrix A, we first construct Ã where we choose Q i to be the identity
matrix of size two. Then, we determine a diagonal matrix D such that A = D−1Ã D is row
diagonally dominant. The resulting reduced system dynamics are described by (5.11), where

A =

−0.96 0.86 0 0 0 0 0 0 0 0
0.09 −0.31 0.19 0 0 0 0 0 0 0

0 0.5 −0.57 0.01 0 0 0 0 0 0
0 0 0.48 −1.14 0.05 0 0 0 0 0
0 0 0 0.07 −0.97 0.22 0 0 0 0
0 0 0 0 0.14 −0.58 0.15 0 0 0
0 0 0 0 0 0.34 −0.87 0.09 0 0
0 0 0 0 0 0 0.1 −1.1 0.26 0
0 0 0 0 0 0 0 0.06 −0.44 0.18
0 0 0 0 0 0 0 0 0.44 −0.83

,

and we choose b = [1,0, . . . , 0]T.
In this case, γ = 0.1021. Therefore, we expect the gain between hops from subsystem

to subsystem to be at most (1 − γ) = 0.8979. The response of the system to the constant
input signal u(t) = 1 is shown in Figure 5.7. The steady state values w̄i of the subsystems
are shown in Figure 5.8. The spatial decay is clearly observed. The gain between hops
(w̄i

w̄i−1
) lies between 0.0745 and 0.8808 as shown in Figure 5.9. It can be seen that the upper

bound (1− γ) per hop is conservative in general, but in one case it is very close to the actual
gain. The bound would be accurate for identical subsystems, otherwise the conservativeness
of the bound depends on the degree of heterogeneity between the subsystems.

Next, we apply a sinusoidal input u(t) = sin(ωt) to the system. The system response
for ω= 1 is shown in Figure 5.10 and one can easily see that (1) the spatial decay between
nodes, and (2) the phase shift between hops. In order to illustrate the spatial decay, the
steady state magnitudes are also added to Figure 5.8. The gain between hops, now described

135

5 Decay analysis in interconnected systems

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

w̄1

w̄2

w̄3w̄4

w̄5–w̄10

Time t

w
(t
)

Figure 5.7: Response to u(t) = 1 for line-graph.

by |w̄i |
|w̄i−1|

, is between 0.0484 and 0.4316. All the values, in addition to the values of the gain
for ω= 0.5 and ω= 2, are shown in Figure 5.9. The constant input case is an upper bound
for the sinusoidal case, as expected from the general analysis. Also, as expected, while the
bound is close in some cases, it is quite conservative in others and it becomes more and more
conservative for increasingω. However, at least for relatively small values ofω, the constant
input case can be considered to be a good approximation as a bound for the sinusoidal case
and offers easier computations.

5.6 Chapter summary

In this chapter, we investigated the propagation of an input signal through a dynamical sys-
tem. The first main idea was to replace the original dynamics by comparison dynamics. In
order to achieve this, the individual subsystems were represented by a scalar approximation
such that the overall system was in the form of a vector Lyapunov function. We then assumed
that the new system dynamics matrix satisfied an M-matrix condition. For two special cases,
a constant input and a sinusoidal input, an analytical analysis of the steady state values was
carried out to see what the gain was between hops from subsystem to subsystem. The main
result shows that the steady state value of a node with a specific distance d to the source
node can be expressed as a so-called steady state conic combination of the steady state val-
ues of nodes with distance (d − 1) to the source node. For special cases such as line-graphs
or trees, the gain between hops can be bounded by a parameter γ that is in direct relation
to the entries of the system dynamics matrix. In addition, it was shown that the constant
input case can serve as an upper bound to the case with sinusoidal input. The results were
validated and illustrated using numerical simulations. Furthermore, the results of Chapter 5
have implications for linear algebra applications. The derived decay property is relevant for
sparse approximations of inverse matrices used as preconditioners [133]. The results here
represent such a decay property for general matrix structures.

Note that the results of this chapter are partially based on [27].

136

5.6 Chapter summary

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

i

|w̄
i|

u(t) = 1
u(t) = sin(t)

Decay property clearly visible

Figure 5.8: Steady state values showing spatial decay for line graph.

1
↓
2

2
↓
3

3
↓
4

4
↓
5

5
↓
6

6
↓
7

7
↓
8

8
↓
9

9
↓

10

0

0.2

0.4

0.6

0.8
(1− γ)

Hop (i − 1)→ i

G
ai
n
b
et
w
ee
n
h
op

s
|w̄

i|
|w̄

i−
1
|

u(t) = 1 u(t) = sin(t)
u(t) = sin(2t) u(t) = sin(0.5t)

Figure 5.9: Actual gain between hops with upper bound (1− γ) = 0.8979.

137

5 Decay analysis in interconnected systems

476 478 480 482 484 486 488 490 492 494 496 498 500

−0.5

0

0.5

Time t

w
(t
)

w1(t)
w2(t)
w3(t)
w4(t)

Figure 5.10: Response to u(t) = sin(t) for line-graph.

138

6

Conclusions and outlook

System analysis and distributed optimal control of large-scale interconnected systems in and
of themselves are very challenging problems. However, the desire to preserve model data
privacy for the subsystems as well as computational reasons related to ever increasing num-
bers of subsystems raise additional fundamental challenges. The central question is how
to achieve these tasks without a central entity, and relying only on local model knowledge
that is distributed among the subsystems. The overall problem is to develop control related
methods to solve problems in a distributed setting while achieving a performance that is as
close to a centralized solution as possible. This entails developing completely new methods
as well as translating existing ones to the non-centralized perspective. Modern distributed
optimization methods are an enabling technique to distributed decision-making to achieve
this. This thesis contributes to this endeavor by addressing three separate, but ultimately
related problems, presented in Chapters 3-5.

Distributed system analysis. The main contribution to the field of distributed system anal-
ysis with local model information was presented in Chapter 3 in the form of two different
stability tests. The first developed method is based on vector Lyapunov functions and the test
itself eventually consists of a linear program. While the formulation of the problem requires
only local model information already, the main contribution is the application of distributed
optimization methods such as the DCNA to solve it. This allows the systems to determine
whether the overall interconnected system is connectively stable by cooperatively solving an
optimization problem. In summary, this first developed stability test enables the distributed
test of a well-known and established stability condition for interconnected dynamical sys-
tems using only local model information. The second developed method is based on the
Lyapunov inequality. In general, however, the Lyapunov inequality does not exhibit a partic-
ular structure, which makes finding a solution in a distributed setting impossible. Therefore,

139

6 Conclusions and outlook

we focused our attention on the special case of α-block diagonal Lyapunov stability. While
this sacrifices the necessity of the Lyapunov stability condition for LTI systems, it enabled us
to set up an optimization problem that can be solved without requiring a centralized entity.
One of the key steps is introducing additional slack variables which help in decomposing
the LMI among subgroups of the overall system. Then, we could again employ the DCNA to
solve the distributed optimization problem. The advantage of this stability test over existing
distributed stability tests is that general LTI systems can be analyzed as long as the allowed
communication topology is chordal.
The second test is essentially a generalization of the first one and is considerably less con-
servative at the price of a higher computational demand. In addition to the conservativeness
comparison between the two tests, we also investigated the conservativeness of the α-block
diagonal Lyapunov condition compared to the standard Lyapunov inequality. No definitive
judgment could be made on the conservativeness because a high dependence on the system
parameters was observed. However, we introduced a new necessary condition for α-block
diagonal Lyapunov stability and showed in numerical experiments that it identifies the ma-
jority of the considered systems correctly.
The final contribution of Chapter 3 was that we showed that it is also possible to use the same
approach from the α-block diagonal Lyapunov stability test to achieve distributed model re-
duction. Based on the method of generalized gramians, we formulated a distributed opti-
mization problem that allowed us to determine the generalized Hankel values using only
local model information. Based on the generalized Hankel values and minimum consensus,
we could then make distributed decisions on which states can be reduced to obtain a reduced
order model.

Distributed optimal control design. In Chapter 4, we presented our contributions to the
distributed optimal control design with local model information. The problem that we ad-
dressed considers LTI systems with an LQ cost functional. The first idea was that instead of
an infinite horizon cost functional, we considered a finite horizon cost functional but use a
specific terminal cost term such that the finite horizon cost is an upper bound to the infinite
horizon cost. The finite horizon then allowed us to compute the gradient of the cost with re-
spect to the entries of the linear state feedback matrix based on simulated trajectories of the
state and of an introduced adjoint system. With this gradient, we can iteratively optimize the
distributed control law using only local model information. The approach allows that three
graphs describing the problem, namely the computation, control and design graphs, do not
have to be identical. This offers an additional degree of freedom. The price of the problem
reformulation to a finite horizon is that stability of the closed loop is not straightforward and
is not a direct result of optimality. We solved this challenge by using the terminal cost term to
guarantee stability. Furthermore, and more importantly for the distributed problem setting,
we employed the techniques from the distributed stability test to present an algorithm to
compute the terminal cost term using only local model information.
To accelerate the gradient method, we also made use of a consensus algorithm to distribut-
edly compute the BB step size. The same approach was also applied to compute the conjugate
gradient search direction. The performance of different step size methods and of the con-
jugate gradient method revealed that no clear decision can be made between the gradient

140

approach with BB step size and the conjugate gradient method. However, both outperformed
the naive choice of a constant step size. In addition, we can distributedly guarantee conver-
gence, which is of high significance. Combining all these results, we presented a complete
approach to determine a distributed control law without a centralized entity and with dis-
tributed model knowledge that guarantees stability and which is optimized with respect to
an LQ cost functional.
The inherent price to computing the control law in a distributed fashion is the communi-
cation effort that is vastly increased in comparison to a centralized design. In the control
design, a part of this communication effort is due to the need to simulate trajectories of
the system, which requires the subsystems to exchange state information. To alleviate this
problem, we presented an event-based Euler method which drastically reduces the required
communication during the trajectory simulation.
Additionally, we were able to extend the design approach to two further problem classes.
The first class was systems whose dynamics follow a differential-algebraic equation. This
system class is of practical relevance as it is often used to model distribution networks in an
exact way. The resulting algorithm, however, requires even more information exchange than
in the ODE case to simulate the trajectories. The second problem class is optimal formation
control of a multi-robot system. While we disregarded a distributed design here, the problem
was still challenging for the following reason. To include the formation rigidity requirement
into the cost functional, the cost had to be reformulated to a biquadratic form which violates
the standard LQ problem form. Therefore, the approach of using simulated trajectories to
obtain a gradient was useful in finding an optimal control law because no analytical solution
is available. In addition to the gradient method, we also used a Quasi-Newton method to
improve the performance of the iterative control design.
Finally, we presented two generalizations of the control design method. The first one was a
time-varying control law, the second one was a nonlinear parameterized control law for non-
linear systems. These results illustrated the versatility of the design method. Interestingly,
a numerical experiment indicated that the time-varying control law does not necessarily im-
prove the performance in comparison to the time-invariant one, at least when it is determined
with the presented approach. This raises questions for future work.

Decay analysis in interconnected systems. Chapter 5 addressed the final problem related
to interconnected systems and their treatment from a distributed perspective. The chapter
analyzed the problem of the decay of a signal, e.g. of a disturbance, along the graph repre-
senting the system. As we were mostly interested in the interaction between subsystems and
not the detailed behavior inside each subsystem, we used the idea of introducing comparison
system dynamics that approximate every multi-dimensional subsystem by a scalar represen-
tation. Based on the assumption that the stability of the overall system can be shown using
a vector Lyapunov function, we showed a decay property with increasing distance from that
source node given a single constant or sinusoidal input at one node. The decay property,
however, is not necessarily from one node to a neighboring node, but rather between sets of
nodes where the two sets have different distances to the source. For special cases such as
line-graphs and combinations of line-graphs such as trees and stars, the property boils down
to a simple decay from one node to the next.

141

6 Conclusions and outlook

While we abandoned the distributed perspective in this last chapter, there still is a relevant
connection to the previous ones. The results of the decay analysis provide a considerable
insight into the behavior of interconnected systems and how strong the interaction between
subsystems is. This is relevant for the design of control laws in two ways. (1) If one knows
that there is a decay property of the presented form in a given system, it indicates that
subsystems at a certain distance can be removed from the control graph without any loss of
performance. (2) In most applications, though not all, it is desirable to have such a decay
property, which raises interest in new control design methods to achieve it. In addition, we
have noticed some relevance of the results for linear algebra applications.

In summary, this thesis presents considerable contributions to the analysis and control of
interconnected systems from a distributed perspective with local model information.

6.1 Outlook

In this thesis, we presented results to take a step towards system analysis and distributed
control design with local model information. The results consist of novel and innovative
methods as well as insightful analyses. However, several open research problems in the area
remain to be addressed in the future and we summarize them in the following.

Localized (re-)design of control laws
In Chapter 4, we considered the control design for the overall LTI systems. Based on the
results from Chapter 5, however, it is apparent that for many interconnected systems, the
interaction between subsystems does not affect the whole system. This implies that it is
possible to design local control laws for only parts of the system and then combine the parts
to an overall control law in an appropriate way without sacrificing performance. This reduces
the computational and communication effort of the approach and further localizes the control
design. A related problem is the identification of subsystem clusters that collaborate in the
control design.
Similarly, while we considered the offline design of a control law for LTI systems, it is un-
reasonable to assume that the system remains unchanged for all times. System changes
can include new subsystems joining the system, old subsystems leaving the system or the
change of system parameters. In the current state, the presented approach requires a com-
plete redesign of the control law. It is, however, more desirable, and in the light of the results
of Chapter 5 also likely possible, to re-design the new control law only locally around the
change while keeping the rest intact and unchanged. The idea is that subsystems that are far
away from the change are not affected anyway.
Another possibility is to adapt the control law online. Reinforcement learning is a promising
possibility in this regard in that it can react to changes but still considers optimality with
respect to a user-specified cost. So far, however, distributed results are not available.

Further reduction of communication effort
One inherent problem of distributed approaches is that the communication effort is vastly
increased over centralized methods. We presented approaches to alleviate this problem, like

142

6.1 Outlook

the event-based trajectory simulation and the possibility of the event-based DCNA imple-
mentation. Further steps include, for example, an emulation-based event-based controller.
This means that the control law is designed according to the presented methods, and then
implemented with event-based communication using an appropriate message scheduling.
In addition, an event-based solution for the DAE dynamics is useful in reducing the com-
munication effort for the control design for this system class. Furthermore, extending the
event-based Euler approach to higher order ODE solution methods can also reduce the re-
quired communication. Finally, a connection to the previous paragraph can be made. If we
can localize the control design, this can also reduce the communication effort by ensuring
that subsystems do not have to exchange information in the first place. This aspect of future
work is especially relevant on the way to implementations of distributed control design in
practice.

Distributed design for more general optimal control problems
This thesis presented control design methods that mostly pertained to the linear quadratic
problem setup. While we have formulated extensions and generalizations, there are still
various optimal control problems that are not addressed. Of particular interest are the well-
established problem classes of general H2 and H∞ optimal control. It is expected that the
presented methods do not carry over directly to these problem classes. One major concern
is that it is not clear how to represent the respective cost functionals based on simulated
trajectories which is an important step in the present approach and one of the key enabling
techniques to achieve distributed computation. It may be possible, however, to identify fur-
ther subclasses that permit this approach.

Transient decay analysis
The analysis in Chapter 5 focused on the steady state analysis given a constant or sinusoidal
input. Naturally, it is also of interest how the transient behavior is affected with increasing
distance to a source node. An interesting question is the maximum state amplitude at a node,
given a disturbance at a distant node. This insight can also help in justifying a localized re-
design of control laws mentioned earlier. In addition, further control design methods should
be developed that enforce the decay property presented in this work.

Detailed analysis of privacy constraints
In this thesis, we considered the notion of model data privacy. Under this privacy notion, we
understood that subsystems do not need to share their model data globally or centrally but
only with a small subset of the other subsystems. Two further points should be considered.
(1) What other privacy notions can be included in the control design and system analysis.
(2) Given simulated trajectories, what information can be inferred or reconstructed about the
overall system. The latter question is also related to the results in Chapter 5 in that a decay
property implies that far away subsystems cannot infer any information and only trajectories
from close neighbors contain enough meaningful information. This needs to be analyzed
in more detail because privacy is of enormous relevance when it comes to the widespread
practical implementation of distributed control.

143

A

Appendix

In this appendix, we provide some introductions to well established concepts that are used
in this thesis. The first section concentrates on descent methods for the minimization of a
function. The second part is devoted to graph theory and the third one to model reduction
based on balanced truncation.

A.1 Descent methods for minimization

In this section, we review some basic results on descent methods to minimize a given function.
For more details, and a broader overview, we refer the reader to well-known textbooks such
as [78, 134] upon which this introduction is based.

The goal of descent methods is to minimize the function f (x), i.e.

min
x∈Rn

f (x),

where n≥ 1. In order to find an approximation of the optimal solution x∗ and of the optimal
value f ∗, the idea of descent methods is to iteratively improve the approximate solution
which gives

xk+1 = xk + γkdk, (A.1)

where γk ∈ R is a step length, and dk ∈ Rn is a search direction. The search direction is a
descent direction if it satisfies the property dT

k ∇ f (xk)< 0.
The two typical forms for search directions that are used in this thesis are

dk = −B−1
k ∇ f (xk) (A.2)

145

A Appendix

and

dk = −∇ f (xk) + βkdk−1. (A.3)

The first form, Equation (A.2), reduces to the steepest descent or gradient descent method,
when Bk = In; it is the Newton method when Bk = ∇2 f (xk) and it is a Quasi-Newton
method when Bk is an approximation of the Hessian matrix ∇2 f (xk). The second form,
Equation (A.3), is a conjugate gradient method when βk satisfies certain properties.

A.1.1 Step length

The step length γk in (A.1) has a large influence on the convergence speed of a given descent
method. For the Newton method, where Bk = ∇2 f (xk), the step size is typically always 1.
For all other methods, there is no straightforward choice that is always optimal for any given
problem. An intuitive way is to select the step length γk that gives the largest cost decrease,
that is

γk =min
γ

f (xk + γdk).

This represents a one-dimensional optimization problem, but in general it is computationally
expensive. Furthermore, it has been shown that this approach is not the best one in terms of
overall convergence speed because it may lead to unnecessarily small steps [135]. Instead, a
typical choice in practice is to use the result of an inexact line search using the Powell-Wolfe
conditions. The two conditions are

f (xk + γkdk)≤ f (xk) + c1γk∇ f (xk)
Tdk,

∇ f (xk + γkdk)
Tdk ≥ c2∇ f (xk)

Tdk,

where the first one requires a sufficient decrease of the objective function value, while the
second one is called curvature condition. It can be shown that there always exists a step
length γk that satisfies both conditions if the function f is smooth and bounded from be-
low [78]. Furthermore, the curvature condition can be replaced by the strong Wolfe condi-
tion which is

|∇ f (xk + γkdk)
Tdk| ≤ |c2∇ f (xk)

Tdk|.

Typical values for the parameters are c1 = 10−4 and c2 = 0.9 for Quasi-Newton methods,
or c2 = 0.1 for gradient and conjugate gradient methods. The sufficient decrease condition
guarantees that we have a monotonous decrease with every step, while the curvature con-
dition ensures that the steps are not too short. The two conditions can be used to identify
a good step length starting from an initial guess. If the initial guess satisfies the conditions,
it can be used. Otherwise, the step length is iteratively decreased until the conditions are
satisfied.

146

A.1 Descent methods for minimization

Constant step length
An easy and intuitive choice for the initial guess is a constant step size γk = γ0 for all k. This
step length choice requires no computations except for the Powell-Wolfe condition check,
but it does not take into account any knowledge obtained during the solution. Furthermore,
it can be difficult to select the right γ0 as a good choice highly depends on the individual
problem.

Barzilai-Borwein (BB) step length
A different approach is the Barzilai-Borwein (BB) step length, first introduced in [105]. The
BB step length approximates a certain Quasi-Newton property. Quasi-Newton methods re-
quire that the Hessian approximate Bk satisfies the so-called secant equation

Bksk = yk, (A.4)

where sk = xk − xk−1 = γkdk and yk = ∇ f (xk)−∇ f (xk−1). In order to derive the BB step
length, we assume that Bk = γk In and we aspire to satisfy (A.4) as closely as possible. Hence,
we aim to minimize ||sk − γk yk||2. It is easy to verify that this leads to

γk =
yT

k sk

yT
k yk

.

The step length has two special properties. First, its computation uses gradient information
from the current and the previous iterations. Second, it is non-monotonous by itself which
means that it does not necessarily lead to a decrease in the function value with each iteration.
Convergence can be shown for quadratic problems, but monotonicity must be required for
general nonlinear problems. The Powell-Wolfe conditions allow this test. Therefore, one can
compute the BB step length, check the conditions and then possibly decrease it.

Investigations have shown that for quadratic problems, a gradient method with the BB step
length is competitive even with conjugate gradient methods, and for nonquadratic problems,
it might even outperform conjugate gradient methods [106].

A.1.2 Search direction

In this thesis, mainly three different search directions are employed.

Gradient descent
In this case, the search direction is dk = −∇ f (xk), i.e. the negative gradient, and it corre-
sponds to the steepest possible descent. This method requires the least computational effort
to compute the search direction itself, but it has generally slow convergence.

Conjugate gradient method
For a conjugate gradient method, the search direction is given by

dk = −∇ f (xk) + βkdk−1.

147

A Appendix

There are several different methods to choose the parameter βk, but the most popular ones
are the Fletcher-Reeves (FR) method which gives

βk =
∇ f (xk)T∇ f (xk)
∇ f (xk−1)T∇ f (xk−1)

,

and the Polak-Ribière (PR) method which yields

βk =
∇ f (xk)T(∇ f (xk)−∇ f (xk−1))

∇ f (xk−1)T∇ f (xk−1)
.

The conjugate gradient descent method requires additional computations but is generally
faster than the steepest descent approach, especially for quadratic problems.

Quasi-Newton methods
As already mentioned, Quasi-Newton methods approximate the inverse of the Hessian ma-
trix to avoid a costly inversion, and to avoid computing the Hessian matrix itself. There are
several Quasi-Newton methods, but the most popular one is the Broyden-Fletcher-Goldfarb-
Shanno method (BFGS). The approximation of B−1

k is denoted by Hk and it follows the iter-
ation

Hk+1 = (I −ρksk yT
k)Hk(I −ρk yksTk) +ρksksTk ,

with

ρk =
1

yT
k sk

.

Quasi-Newton methods are generally faster than both gradient and conjugate gradient meth-
ods, especially for quadratic problems, but the computational effort is significantly higher and
the distribution of the computation is difficult, if at all possible.

A.2 Basics of graph theory

This section gives a short introduction into the main graph theoretic concepts relevant to this
thesis. For an in-depth introduction to the topic, the reader can consult the textbooks [83,
136, 137]. This overview is based on these textbooks.

A graph G = (V ,E) consists of the two sets V and E where the elements of V are the
vertices or nodes, and the elements of E are the edges. The cardinality of the setV determines
the number of nodes and with that the size of the graph N . Each edge has a set of two
associated vertices which it joins to make up the structure of the graph. The two nodes vi

and v j connected by an edge e = (vi, v j) are called the endpoints of e and the nodes are said
to be incident on e. Also, vi and v j are adjacent to each other in that case. A clique in a
graph G is a subset of the vertices C ⊆ V such that every combination of two vertices in
the set is adjacent. A maximal clique is a clique that cannot be extended by including an
additional node.

148

A.2 Basics of graph theory

Each vertex v has a degree associated with it which is the number of edges incident on v
and is denoted by deg(v). The adjacency matrix AG ∈ RN×N for a graph G is defined as

AG (i, j) =

¨

1, if vi and v j are adjacent,

0, otherwise.

The adjacency matrix is enough to describe the structure of the graph. Additionally, we can
give the degree matrix DG which is given by

DG (i, j) =

¨

deg(vi), if i = j,

0, otherwise.

With this, the Laplacian matrix LG ∈ RN×N is

LG = DG − AG . (A.5)

Because of the way it is constructed, clearly all rows of LG sum to zero. Therefore, it has at
least one zero eigenvalue. It can also be shown that it is positive semidefinite and we have
the relationship

λ1(LG)≤ λ2(LG)≤ · · · ≤ λN (LG).

If the graph is connected, we have λ2(LG)> 0. In fact, λ2(LG) is a well-known graph measure
and is called the algebraic connectivity of G .

A different graph measure is the clustering coefficient C defined as

C =
(number of triangles)× 3

(number of connected triples)
.

Furthermore, there are several measures of centrality: Degree centrality, betweenness cen-
trality, closeness centrality and eigenvalue centrality. Degree centrality corresponds iden-
tically to the degree of a node. Next, we define the two numbers gst , which denotes the
number of shortest paths between nodes s and t, and ni

st , which denotes the number of those
paths that pass through node i. Then, the betweenness centrality is defined as

bi =
∑

s 6=t 6=i

ni
st

gst
.

Betweenness centrality is, therefore, a measure of how often a vertex lies on paths between
other vertices. A different notion is given by closeness centrality which describes the mean
distance from a vertex to other vertices. If the number di j denotes the length of the shortest
path from node i to node j, then the mean distance from i to all other nodes is

li =
1
n

∑

j

di j

and the inverse of this value is the closeness centrality given by

ci =
1
li
=

n
∑

j di j
.

149

A Appendix

Last, the eigenvalue centrality of node i is given by

ei =
1

λM(AG)

∑

j

AG ,i j x j,

where λM(AG) is the largest eigenvalue of the adjacency matrix AG .

A.3 Model reduction using balanced truncation

In this section, a brief overview on balanced truncation is given. For details, we refer the
reader to [88] and the references therein.

The goal of balanced truncation is the following. Given a system with transfer function

G(s) =

�

A B
C D

�

,

where A∈ Rn×n, we wish to find a reduced model

Gr(s) =

�

Ar Br

Cr Dr

�

,

where Ar ∈ Rr×r with r < n such that

||G − Gr||∞

is small. The first step in balanced truncation is the computation of the controllability
gramian Xc and the observability gramian Yo, which are the solutions to the following Lya-
punov equations

AXc + XcA
T + BBT = 0, (A.6a)

ATYo + YoA+ CTC = 0. (A.6b)

In general, Xc and Yo are different from each other. It can be shown, however, that there
is always a coordinate transformation to obtain a so-called balanced realization where X̃c =
Ỹo = Σ, where Σ� 0 has the diagonal form

Σ=

σ1

σ2
. . .

σn

.

The diagonal entries σi are called Hankel singular values and they can be ordered such that

σ1 ≥ σ2 ≥ · · · ≥ σn.

If we assume that there is a strict inequality for r < n such that

σr+1 < σr ,

150

A.3 Model reduction using balanced truncation

we can partition the original system as

A=

�

A11 A12

A21 A22

�

, B =

�

B1

B2

�

, C =
�

C1 C2

�

,

where A11 ∈ Rr×r , and the reduced order model of size r is given by

Gr(s) =

�

A11 B1

C1 0

�

.

It can then be shown, see [88], that this realization is again balanced with the Hankel sin-
gular values σ1, . . . ,σr . Furthermore, by denoting the distinct values among σr+1, . . . ,σn

by σt
1, . . . ,σt

k, i.e. by removing repetitions, the following bound on the approximation error
can be given:

||G − Gr||∞ ≤ 2(σt
1 + · · ·+σ

t
k).

Instead of solving the Lyapunov equations (A.6), one can also solve the more general Lya-
punov inequalities given by

AXc,g + Xc,gA
T + BBT � 0,

ATYo,g + Yo,gA+ CTC � 0,

and their solutions Xc,g and Yo,g are called the generalized controllability and observability
gramians. It is then possible to balance the generalized gramians in the same way as the
system gramians Xc and Yo. Then, one has the generalized Hankel singular values γ1 ≥ γ2 ≥
γn where we have

γi ≥ σi, i = 1, . . . , n.

By removing duplicates again and by using the same notation as before, one can determine
a truncated system model Gr,g in the same way based on generalized gramians and obtains
the error bound

||G − Gr,g||∞ ≤ 2(γt
1 + · · ·+ γ

t
k).

The benefit of using generalized gramians is twofold. First, LMIs are better suited for a
distributed solution than equations. Second, the additional degree of freedom allows to
arrange the generalized Hankel singular values to repeat more often and thus to decrease
the error bound. The second point, however, is far from being trivial and for us, the first
point is more relevant.

151

Bibliography

[1] D. J. Hill and G. Chen. “Power systems as dynamic networks.” In: Proc. IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). 2006, pp. 722–725.

[2] M. Cantoni et al. “Control of large-scale irrigation networks.” In: Proceedings of the
IEEE 95 (2007), pp. 75–91.

[3] R.R. Negenborn and H. Hellendoorn. “Intelligence in transportation infrastructures
via modelbased predictive control.” In: Intelligent Infrastructures. Ed. by R.R. Negen-
born, Z. Lukszo, and H. Hellendoorn. Springer, 2010, pp. 3–24.

[4] T. Salsbury. “A survey of control technologies in the building automation industry.”
In: Proc. 16th IFAC World Congress. 2005, pp. 1396–1407.

[5] D. G. MacMartin et al. “Dynamic analysis of the actively-controlled segmented mirror
of the thirty meter telescope.” In: IEEE Transactions on Control Systems Technology 22
(2014), pp. 58–68.

[6] K. D. Frampton, O. N. Baumann, and P. Gardonio. “A comparison of decentralized,
distributed, and centralized vibro-acoustic control.” In: The Journal of the Acoustical
Society of America 128.5 (2010), pp. 2798–2806.

[7] S. H. Low, F. Paganini, and J. C. Doyle. “Internet congestion control.” In: IEEE Control
Systems 22 (2002), pp. 28–43.

[8] W. Ren and N. Sorensen. “Distributed coordination architecture for multi-robot for-
mation control.” In: Robotics and Autonomous Systems 56.4 (2008), pp. 324–333.

[9] S. A. Levin et al. “Mathematical and computational challenges in population biology
and ecosystems science.” In: Science 275.5298 (1997), pp. 334–343.

[10] A. Nagurney et al. “Dynamics of supply chains: a multilevel (logistical-informational-
financial) network perspective.” In: Environment and Planning B 29.6 (2002),
pp. 795–818.

[11] G. Iñiguez et al. “Opinion and community formation in coevolving networks.” In:
Physical Review E 80.6 (2009), p. 066119.

[12] P. Kundur, N. J. Balu, and M. G. Lauby. Power System Stability and Control. McGraw-
Hill New York, 1994.

[13] B. D. O. Anderson et al. “UAV formation control: theory and application.” In: Recent
advances in learning and control. Ed. by V. D. Blondel, S. P. Boyd, and H. Kimura.
Springer, 2008, pp. 15–33.

[14] J. A. Fax and R. M. Murray. “Information flow and cooperative control of vehicle
formations.” In: IEEE Transactions on Automatic Control 49.9 (2004), pp. 1465–1476.

[15] D. D. Siljak. Decentralized Control of Complex Systems. Courier Dover Publications,
2011.

153

Bibliography

[16] M. D. Ilic. “From hierarchical to open access electric power systems.” In: Proceedings
of the IEEE 95.5 (2007), pp. 1060–1084.

[17] J. Wang et al. “Cross-layer optimization in TCP/IP networks.” In: IEEE/ACM Trans-
actions on Networking 13.3 (2005), pp. 582–595.

[18] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and design.
Vol. 2. Wiley New York, 2007.

[19] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall New
Jersey, 1996.

[20] F. Deroo et al. “Distributed stability tests for large-scale systems with limited model in-
formation.” In: IEEE Transactions on Control of Network Systems 2.3 (2015), pp. 298–
309.

[21] F. Deroo et al. “Accelerated iterative Distributed Controller Synthesis with a Barzilai-
Borwein Step Size.” In: Proc. 51st IEEE Conference on Decision and Control (CDC).
2012, pp. 4864–4870.

[22] F. Deroo et al. “Distributed controller design for a class of sparse singular systems
with privacy constraints.” In: Proc. 4th IFAC Workshop on Distributed Estimation and
Control in Networked Systems (NecSys). 2013, pp. 190–197.

[23] F. Deroo et al. “Distributed control design with local model information and guaran-
teed stability.” In: Proc. 19th IFAC World Congress. 2014, pp. 4010–4017.

[24] D. Sieber, F. Deroo, and S. Hirche. “Iterative optimal feedback controller design un-
der relaxed rigidity constraints for cooperative manipulation.” In: Proc. 52nd IEEE
Conference on Decision and Control (CDC). 2013, pp. 971–976.

[25] D. Sieber, F. Deroo, and S. Hirche. “Formation-based approach for cooperative manip-
ulation based on iterative optimal controller design.” In: Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2013, pp. 5227–5233.

[26] F. Deroo and S. Hirche. “Stabilizing distributed control design under model data pri-
vacy constraints.” In: to be submitted (2016).

[27] F. Deroo, S. Hirche, and B. D. O. Anderson. “Spatial decay analysis in interconnected
dynamical systems using vector Lyapunov functions.” In: Proc. 53rd IEEE Conference
on Decision and Control (CDC). 2014, pp. 3654–3660.

[28] K. J. Aström and R. M. Murray. Feedback systems: An introduction for Scientists and
Engineers. Princeton University Press, 2010.

[29] A. M. Lyapunov. “The general problem of the stability of motion.” PhD thesis. Kharkov
University, 1892.

[30] H. K. Khalil. Nonlinear Systems. 3rd ed. Prentice hall, 2002.

[31] E. Kaszkurewicz and A. Bhaya. Matrix Diagonal Stability in Systems and Computation.
Springer, 2000.

[32] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási. “Controllability of complex networks.” In:
Nature 473.7346 (2011), pp. 167–173.

[33] H. J. Sussmann and J. C. Willems. “300 years of optimal control: from the brachys-
tochrone to the maximum principle.” In: IEEE Control Systems 17.3 (1997), pp. 32–
44.

[34] B. D. O. Anderson and J. B. Moore. Linear optimal control. Vol. 197. Prentice-Hall
Englewood Cliffs, NJ, 1971.

[35] B. D. O. Anderson and J. B. Moore. Optimal control: Linear quadratic methods. Courier
Dover Publications, 2007.

[36] L. Bakule. “Decentralized control: an overview.” In: Annual reviews in control 32
(2008), pp. 87–98.

154

Bibliography

[37] H. S. Witsenhausen. “A counterexample in stochastic optimum control.” In: SIAM
Journal on Control 6 (1968), pp. 131–147.

[38] Y.-C. Ho and K.-C. Chu. “Team decision theory and information structures in opti-
mal control problems–Part I.” In: IEEE Transactions on Automatic Control 17 (1972),
pp. 15–22.

[39] M. Rotkowitz and S. Lall. “A characterization of convex problems in decentralized
Control.” In: IEEE Transactions on Automatic Control 51.2 (2006), pp. 274–286.

[40] L. Lessard and S. Lall. “Quadratic invariance is necessary and sufficient for convexity.”
In: Proc. American Control Conference (ACC). 2011, pp. 5360–5362.

[41] J. Swigart and S. Lall. “Optimal synthesis and explicit state-space solution for a de-
centralized two-player linear-quadratic regulator.” In: Proc. 49th IEEE Conference on
Decision and Control (CDC). 2010, pp. 132–137.

[42] P. Shah and P. A. Parrilo. “H2-optimal decentralized control over posets: a state space
solution for state-feedback.” In: Proc. 49th IEEE Conference on Decision and Control
(CDC). 2010, pp. 6722–6727.

[43] P. Shah and P. A. Parrilo. “An optimal controller architecture for poset-causal sys-
tems.” In: Proc. 50th IEEE Conference on Decision and Control and European Control
Conference (CDC-ECC). 2011, pp. 5522–5528.

[44] C. Langbort, R.S. Chandra, and R. D’Andrea. “Distributed control design for systems
interconnected over an arbitrary graph.” In: IEEE Transactions on Automatic Control
49.9 (2004), pp. 1502–1519.

[45] A. S. M. Vamsi and N. Elia. “Optimal realizable networked controllers for networked
systems.” In: Proc. American Control Conference (ACC). 2011, pp. 336–341.

[46] P. Massioni and M. Verhaegen. “Distributed control for identical dynamically coupled
systems: a decomposition approach.” In: IEEE Transactions on Automatic Control 54
(2009), pp. 124–135.

[47] F. Borrelli and T. Keviczky. “Distributed LQR design for identical dynamically decou-
pled systems.” In: IEEE Transactions on Automatic Control 53.8 (2008), pp. 1901–
1912.

[48] M. Fardad, F. Lin, and M. R. Jovanovic. “On the dual decomposition of linear
quadratic optimal control problems for vehicular formations.” In: Proc. 49th IEEE
Conference on Decision and Control (CDC). 2010, pp. 6287–6292.

[49] F. Lin, M. Fardad, and M. R. Jovanovic. “Design of optimal sparse feedback gains via
the alternating direction method of multipliers.” In: IEEE Transactions on Automatic
Control 58.9 (2013), pp. 2426–2431.

[50] A. Das and F. L. Lewis. “Distributed adaptive control for synchronization of unknown
nonlinear networked systems.” In: Automatica 46.12 (2010), pp. 2014–2021.

[51] W. Yu et al. “Distributed adaptive control of synchronization in complex networks.”
In: IEEE Transactions on Automatic Control 57.8 (2012), pp. 2153–2158.

[52] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis. “Reinforcement learning and feedback
control: using natural decision methods to design optimal adaptive controllers.” In:
IEEE Control Systems 32.6 (2012), pp. 76–105.

[53] A. Gusrialdi and S. Hirche. “Performance-oriented communication topology design
for large-scale interconnected systems.” In: Proc. 49th IEEE Conference on Decision
and Control (CDC). 2010, pp. 5707–5713.

[54] S. Schuler et al. “Controller structure design for decentralized control of coupled
higher order subsystems.” In: Proc. 2nd IFAC Workshop on Distributed Estimation and
Control of Networked Systems (NecSys). 2010, pp. 269–274.

155

Bibliography

[55] C. Dwork. “Differential privacy: a survey of results.” In: Theory and Applications of
Models of Computation. Ed. by M. Agrawal et al. Springer, 2008, pp. 1–19.

[56] S. Han, U. Topcu, and G. J. Pappas. “Differentially private convex optimization with
piecewise affine objectives.” In: Proc. 53rd IEEE Conference on Decision and Control
(CDC). 2014, pp. 2160–2166.

[57] J. Le Ny and G. J. Pappas. “Differentially private filtering.” In: IEEE Transactions on
Automatic Control 59.2 (2014), pp. 341–354.

[58] Z. Huang et al. “On the cost of differential privacy in distributed control systems.” In:
Proc. 3rd International Conference on High Confidence Networked Systems (HiCoNS).
2014, pp. 105–114.

[59] S. Pequito et al. “Design of communication networks for distributed computation
with privacy guarantees.” In: Proc. 53rd IEEE Conference on Decision and Control
(CDC). 2014, pp. 1370–1376.

[60] Y. Mo and R. M. Murray. “Privacy preserving average consensus.” In: Proc. 53rd IEEE
Conference on Decision and Control (CDC). 2014, pp. 2154–2159.

[61] S. S. Kia, J. Cortés, and S. Martinez. “Dynamic average consensus under limited
control authority and privacy requirements.” In: International Journal of Robust and
Nonlinear Control 25 (2015), pp. 1941–1966.

[62] J. Yao and P. Venkitasubramaniam. “The privacy analysis of battery control mecha-
nisms in demand response: revealing state approach and rate distortion bounds.” In:
Proc. 53rd IEEE Conference on Decision and Control (CDC). 2014, pp. 1377–1382.

[63] J. Giraldo et al. “Delay and sampling independence of a consensus algorithm and
its application to smart grid privacy.” In: Proc. 53rd IEEE Conference on Decision and
Control (CDC). 2014, pp. 1389–1394.

[64] J. Le Ny and G. J. Pappas. “Privacy-preserving release of aggregate dynamic mod-
els.” In: Proc. 2nd international conference on High Confidence Networked Systems
(HiCoNS). 2013, pp. 49–56.

[65] N. Martins. “Efficient eigenvalue and frequency response methods applied to power
system small-signal stability studies.” In: IEEE Transactions on Power Systems (1986),
pp. 217–224.

[66] Y. Nesterov. “Smooth minimization of non-smooth functions.” In: Mathematical Pro-
gramming 103.1 (2005), pp. 127–152.

[67] I. Necoara and J. Suykens. “Application of a smoothing technique to decomposition
in convex optimization.” In: IEEE Transactions on Automatic Control 53.11 (2008),
pp. 2674–2679.

[68] M. Meinel, M. Ulbrich, and S. Albrecht. “A class of distributed optimization methods
with event-triggered communication.” In: Computational Optimization and Applica-
tions 57.3 (2014), pp. 517–553.

[69] D. Carlson, D. Hershkowitz, and D. Shasha. “Block diagonal semistability factors
and Lyapunov semistability of block triangular matrices.” In: Linear Algebra and its
Applications 172 (1992), 1–25.

[70] A. Berman, F. Goldberg, and R. Shorten. “Comments on Lyapunov α-stability with
some extensions.” In: Variational and Optimal Control Problems on Unbounded Do-
mains. American Mathematical Society, 2014, pp. 19–29.

[71] P. Moylan and D. Hill. “Stability criteria for large-scale systems.” In: IEEE Transactions
on Automatic Control 23.2 (1978), pp. 143–149.

[72] M. Vidyasagar. Input-Output Analysis of Large-Scale Interconnected Systems. Lecture
Notes in Control and Information Sciences. Springer, 1981.

156

Bibliography

[73] R. H. Gielen and M. Lazar. “Non-conservative dissipativity and small-gain conditions
for stability analysis of interconnected systems.” In: Proc. 51st IEEE Conference on
Decision and Control (CDC). 2012, pp. 4187–4192.

[74] A. Rantzer. “Distributed control of positive systems.” In: Proc. 50th IEEE Conference on
Decision and Control and European Control Conference (CDC-ECC). 2011, pp. 6608–
6611.

[75] R. Pates and G. Vinnicombe. “Stability certificates for networks of heterogeneous
linear systems.” In: Proc. 51st IEEE Conference on Decision and Control (CDC). 2012,
6915–6920.

[76] S. Z. Khong and A. Rantzer. “Scalable stability conditions for heterogeneous networks
via integral quadratic constraints.” In: Proc. European Control Conference (ECC).
2014, 2863–2867.

[77] R. P. Mason and A. Papachristodoulou. “Chordal sparsity, decomposing SDPs and the
Lyapunov equation.” In: Proc. American Control Conference (ACC). 2014, pp. 531–
537.

[78] J. Nocedal and S. J. Wright. Numerical Optimization. 2nd ed. Springer New York,
2006, pp. 497–528.

[79] I. Necoara and V. Nedelcu. “Rate analysis of inexact dual first order methods. Applica-
tion to dual decomposition.” In: IEEE Transactions on Automatic Control 49.5 (2014),
1232–1243.

[80] R. Olfati-Saber, J. A. Fax, and R. M. Murray. “Consensus and cooperation in net-
worked multi-agent systems.” In: Proceedings of the IEEE 95 (2007), pp. 215–233.

[81] I. Necoara and V. Nedelcu. “On linear convergence of a distributed dual gradient
algorithm for linearly constrained separable convex problems.” In: Automatica 55
(2014), pp. 209–216.

[82] S. Kim et al. “Exploiting sparsity in linear and nonlinear matrix inequalities via pos-
itive semidefinite matrix completion.” In: Mathematical Programming 129 (2011),
pp. 33–68.

[83] J. L. Gross and J. Yellen. Handbook of Graph Theory. CRC press, 2004.

[84] J. Löfberg. “YALMIP: a toolbox for modeling and optimization in MATLAB.” In: Proc.
CACSD Conference. 2004. URL: http://users.isy.liu.se/johanl/yalmip.

[85] E. Camponogara et al. “Distributed model predictive control.” In: IEEE Control Sys-
tems 22 (2002), pp. 44–52.

[86] R. Christie. IEEE 30 Bus Test Case. http://www.ee.washington.edu//research/
pstca/pf30/pg_tca30bus.htm/. 1993.

[87] D. Hershkowitz. “Recent directions in matrix stability.” In: Linear Algebra and its
Applications 171 (1992), pp. 161–186.

[88] G. E. Dullerud and F. Paganini. A Course in Robust Control Theory: A Convex Approach.
Vol. 36. Springer New York, 2000.

[89] H. Sandberg and R. M. Murray. “Model reduction of interconnected linear systems
using structured gramians.” In: Proc. 17th IFAC World Congress. 2008, pp. 8725–
8730.

[90] A. Tahbaz-Salehi and A. Jadbabaie. “A one-parameter family of distributed consensus
algorithms with boundary: from shortest paths to mean hitting times.” In: Proc. 45th
IEEE Conference on Decision and Control (CDC). 2006, pp. 4664–4669.

[91] P. Giselsson and A. Rantzer. “Distributed model predictive control with suboptimal-
ity and stability guarantees.” In: Proc. 49th IEEE Conference on Decision and Control
(CDC). 2010, pp. 7272–7277.

157

http://users.isy.liu.se/johanl/yalmip
http://www.ee.washington.edu//research/pstca/pf30/pg_tca30bus.htm/
http://www.ee.washington.edu//research/pstca/pf30/pg_tca30bus.htm/

Bibliography

[92] P. Giselsson et al. “Accelerated gradient methods and dual decomposition in dis-
tributed model predictive control.” In: Automatica 49.3 (2013), pp. 829–833.

[93] R. Scattolini. “Architectures for distributed and hierarchical model predictive control
– a review.” In: Journal of Process Control 19.5 (2009), pp. 723–731.

[94] I. Necoara, V. Nedelcu, and I. Dumitrache. “Parallel and distributed optimization
methods for estimation and control in networks.” In: Journal of Process Control 21.5
(2011), pp. 756–766.

[95] C. Langbort and J. Delvenne. “Distributed design methods for linear quadratic con-
trol and their limitations.” In: IEEE Transactions on Automatic Control 55.9 (2010),
pp. 2085–2093.

[96] F. Farokhi, C. Langbort, and K. H. Johansson. “Optimal structured static state-
feedback control design with limited model information for fully-actuated systems.”
In: Automatica 49.2 (2013), pp. 326–337.

[97] F. Farokhi and K. H. Johansson. “Optimal control design under limited model infor-
mation for discrete-time linear systems with stochastically-varying parameters.” In:
IEEE Transactions on Automatic Control 60.3 (2015), pp. 684–699.

[98] K. Martensson and A. Rantzer. “A scalable method for continuous-time distributed
control synthesis.” In: Proc. American Control Conference (ACC). 2012, pp. 6308–
6313.

[99] I. Shames and M. Cantoni. “Constrained linear quadratic control in networks with
limited model-information sharing.” In: 21st International Symposium on Mathemat-
ical Theory of Networks and Systems (MTNS). 2014, pp. 29–34.

[100] A. A. Alam, A. Gattami, and K. H. Johansson. “Suboptimal decentralized controller
design for chain structures: Applications to vehicle formations.” In: Proc. 50th IEEE
Conference on Decision and Control and European Control Conference (CDC-ECC).
2011, pp. 6894–6900.

[101] H. Chen and F. Allgöwer. “A quasi-infinite horizon nonlinear model predictive control
scheme with guaranteed stability.” In: Automatica 34.10 (1998), pp. 1205–1217.

[102] R. R. Bitmead, M. Gevers, and V. Wertz. Adaptive Optimal Control: The Thinking Man’s
GPC. Prentice Hall, 1990.

[103] R. M. Hermans. “Distributed control of deregulated electrical power networks.” PhD
thesis. Ph. D. thesis, Eindhoven University of Technology, The Netherlands, 2012.

[104] R. V. Bobiti, R. H. Gielen, and M. Lazar. “Non-conservative and tractable stability tests
for general linear interconnected systems with an application to power systems.” In:
Proc. 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems
(NecSys). Vol. 4. 2013, pp. 152–159.

[105] J. Barzilai and J. M. Borwein. “Two-point step size gradient methods.” In: IMAJ of
Numerical Analysis 8 (1988), pp. 141–148.

[106] R. Fletcher. “On the Barzilai-Borwein method.” In: Optimization and Control with
Applications. Ed. by L. L. Qi, K. Teo, and X. Yang. Vol. 96. Applied Optimization.
Springer US, 2005, pp. 235–256.

[107] G.C. Calafiore, L. Carlone, and M. Wei. “A distributed gradient method for localiza-
tion of formations using relative range measurements.” In: Proc. IEEE International
Symposium on Computer-Aided Control System Design (CACSD). 2010, pp. 1146–
1151.

[108] L. Xiao, S. Boyd, and S. Lall. “A scheme for robust distributed sensor fusion based
on average consensus.” In: Proc. Fourth International Symposium on Information Pro-
cessing in Sensor Networks (IPSN). 2005, pp. 63–70.

158

Bibliography

[109] J. C. Butcher. Numerical Methods for Ordinary Differential Equations. Wiley Online
Library, 2005.

[110] E. Kofman and S. Junco. “Quantized-state systems: a DEVS approach for continu-
ous system simulation.” In: Transactions of the Society for Modeling and Simulation
International 18.3 (2001), pp. 123–132.

[111] G. Migoni, E. Kofman, and F. Cellier. “Quantization-based new integration methods
for stiff ordinary differential equations.” In: Simulation 88.4 (2011), pp. 387–407.

[112] P. Tabuada. “Event-triggered real-time scheduling of stabilizing control tasks.” In:
IEEE Transactions on Automatic Control 52.9 (2007), pp. 1680–1685.

[113] F. L. Lewis. “A survey of linear singular systems.” In: Circuits, Systems, and Signal
Processing 5 (1986), pp. 3–36.

[114] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed computation. Prentice Hall,
1989.

[115] H. A. Van der Vorst. “Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems.” In: SIAM Journal on Scientific and
Statistical Computing 13.2 (1992), pp. 631–644.

[116] L.T. Yang and R. P. Brent. “The improved BiCGStab method for large and sparse un-
symmetric linear systems on parallel distributed memory architectures.” In: Proc. 5th
Int. Conference on Algorithms and Architectures for Parallel Proc. 2002, pp. 324–328.

[117] F. Iavernaro and M. La Scala. “Boundary values methods for time-domain simulation
of power system dynamic behavior.” In: IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications 45 (1998), pp. 50–63.

[118] D. Bender and A. Laub. “The linear-quadratic optimal regulator for descriptor sys-
tems.” In: IEEE Trans. on Automatic Cont. 32.8 (1987), pp. 672–688.

[119] J. Liu et al. “Joint controller-communication topology design for distributed wide-
area damping control of power systems.” In: Proc. 18th IFAC World Congress. 2011,
pp. 519–525.

[120] P. W. Sauer and M. A. Pai. Power System Dynamics and Stability. Prentice Hall, 1998.

[121] A. Kiani and A. Annaswamy. “Distributed hierarchical control for renewable energy
integration in a Smart Grid.” In: Proc. IEEE PES Innovative Smart Grid Technologies.
2012, pp. 1–8.

[122] M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control. John
Wiley & Sons, 2006.

[123] D. Williams and O. Khatib. “The virtual linkage: a model for internal forces in multi-
grasp manipulation.” In: Proc. IEEE International Conference on Robotics and Automa-
tion (ICRA). 1993, pp. 1025–1030.

[124] G. Meurant. “A review on the inverse of symmetric tridiagonal and block tridiagonal
matrices.” In: SIAM Journal on Matrix Analysis and Applications 13.3 (1992), pp. 707–
728.

[125] T. Fujimoto, C. Herrero, and A. Villar. “A sensitivity analysis for linear systems involv-
ing M-matrices and its application to the Leontif model.” In: Linear Algebra and its
Applications 64 (1985), pp. 85–91.

[126] B. Bamieh et al. “Coherence in large-scale networks: dimension-dependent limita-
tions of local feedback.” In: IEEE Transactions on Automatic Control 57.9 (2012),
pp. 2235–2249.

[127] A. Chapman, E. Schoof, and M. Mesbahi. “Distributed online topology design for
disturbance rejection.” In: Proc. 52nd IEEE Conference on Decision and Control (CDC).
2013, pp. 817–822.

159

Bibliography

[128] F. Lin, M. Fardad, and M. R. Jovanovic. “Performance of leader-follower networks in
directed trees and lattices.” In: Proc. 51st IEEE Conference on Decision and Control
(CDC). 2012, pp. 734–739.

[129] K. Cai, B. D. O. Anderson, and C. Yu. “Local average consensus in distributed mea-
surement of spatial-temporal varying parameters: 1D case.” In: Proc. 52nd IEEE Con-
ference on Decision and Control (CDC). 2013, pp. 2139–2144.

[130] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences.
SIAM, 1979.

[131] D. D. Siljak. Large-Scale Dynamic Systems: Stability and Structure. North-Holland,
1978.

[132] M. Ikeda and D. D. Šiljak. “On decentrally stabilizable large-scale systems.” In: Au-
tomatica 16.3 (1980), pp. 331–334.

[133] R. Nabben. “Decay rates of the inverse of nonsymmetric tridiagonal and band ma-
trices.” In: SIAM Journal on Matrix Analysis and Applications 20.3 (1999), pp. 820–
837.

[134] D. P. Bertsekas. Nonlinear Programming. 2nd ed. Athena Scientific, Belmont, MA,
1999.

[135] Y.-X. Yuan. “Step-sizes for the gradient method.” In: Proc. 3rd International Congress
of Chinese Mathematicians. Vol. 42. 2. AMS IP Studies in Advanced Mathematics,
2008, pp. 785–796.

[136] M. Newman. Networks: An Introduction. Oxford University Press, 2010.

[137] C. Godsil and G. F. Royle. Algebraic Graph Theory. Springer Science & Business Media,
2013.

160

	Introduction
	A brief introduction to feedback control
	Interconnected dynamical systems
	Analysis and control of interconnected dynamical systems
	Motivation
	Distributed stability analysis
	Distributed control design
	Decay analysis in interconnected systems

	Outline and contribution

	Background and related work
	Stability analysis of interconnected systems
	Optimal control design
	Background
	Relevant work on distributed optimal control

	Privacy notions in control
	System description
	Differential equation model
	Structural description using graphs

	Distributed constrained Nesterov algorithm

	Distributed stability analysis with local model information
	Problem formulation
	Related work
	Sufficient stability conditions with a sparsity structure
	Vector Lyapunov function
	-block diagonal Lyapunov stability
	Summary

	Distributed optimization for stability analysis with local model information
	Vector Lyapunov function
	-block diagonal Lyapunov inequality
	Summary

	Numerical illustration and validation of stability tests
	Systems satisfying the vector Lyapunov condition
	Systems violating the vector Lyapunov condition
	Application to 30 bus power system
	Summary

	Analysis of the conservativeness of the stability conditions
	Comparison of the two conditions
	Necessary condition for -block diagonal Lyapunov stability
	Numerical analysis of Theorem 3.7
	Further comments on -block diagonal Lyapunov stability
	Summary

	Distributed model reduction using balanced truncation
	Introduction to model reduction using generalized gramians
	Distributed optimization techniques for model reduction
	Numerical examples
	Summary

	Chapter summary

	Stabilizing distributed optimal control design with local model information
	Problem formulation
	Related work
	Distributed linear quadratic optimal control design with guaranteed stability
	Distributed control design using gradient descent
	Averaging approach to eliminate dependence on initial condition
	Distributed computation of stability guaranteeing terminal cost term
	Numerical results
	Summary

	Distributed step size selection
	Overview
	Distributed computation of Barzilai-Borwein step size
	Convergence guarantees
	Distributed computation of conjugate gradient search direction
	Numerical comparison of step sizes and conjugate gradient method
	Summary

	Event-based trajectory simulation
	Theoretical results
	Numerical evaluation of communication effort in Algorithm 8
	Summary

	Optimal distributed control of singular systems
	Problem formulation
	Control synthesis
	Numerical results
	Summary

	Application of distributed control in optimal formation control
	Problem formulation
	Iterative optimal control design for relaxed rigidity formation control
	Numerical results
	Summary

	Generalization of distributed control design approach
	Time-varying control law
	Nonlinear system dynamics and control law
	Numerical evaluation
	Summary

	Chapter summary

	Decay analysis in interconnected systems
	Problem formulation
	Related work
	Preliminaries and assumptions
	Decay analysis
	Steady state decay with constant input
	Steady state magnitude decay with sinusoidal input

	Numerical example
	Chapter summary

	Conclusions and outlook
	Outlook

	Appendix
	Descent methods for minimization
	Step length
	Search direction

	Basics of graph theory
	Model reduction using balanced truncation

