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Foreword

First Workshop on Co-Scheduling of HPC
Applications

(COSH 2016)

Prague, Czech Republic, January 19, 2016
Co-located with HiPEAC 2016

Welcome from the Organisers

Welcome to COSH 2016, the first workshop on Co-Scheduling of HPC Applica-
tions! The workshop is held in conjunction with the HiPEAC 2016 conference in
the wonderful medieval city of Prague, Czech Republic. Holding the workshop
for the first time, we received nine submissions from four different countries.
Out of these, the programme committee selected six high quality papers for
publication. In the process, each paper received three reviews. In addition, we
very much appreciate a keynote by Christopher Dahnken of Intel Corporation on
recent hardware support and latest developments in microprocessor technology
within the co-scheduling context.
We are grateful for the outstanding job of our programme committee which
managed to return all reviews within the very tight time constraints. We hope
this workshop will lead to new insights and fruitful discussions around its rela-
tively novel topic within the context of High Performance Computing.

Munich, December 2015

Carsten Trinitis, Josef Weidendorfer
Workshop Co-Chairs



Workshop Description

The task of a high performance computing system is to carry out its calcula-
tions (mainly scientific applications) with maximum performance and energy
efficiency. Up until now, this goal could only be achieved by exclusively as-
signing an appropriate number of cores/nodes to parallel applications. As a
consequence, applications had to be highly optimised in order to achieve even
only a fraction of a supercomputer’s peak performance which required huge
efforts on the programmer side.
This problem is expected to become more serious on future exascale systems
with millions of compute cores. Many of today’s highly scalable applications
will not be able to utilise an exascale system’s extreme parallelism due to node
specific limitations like e.g. I/O bandwidth. Therefore, to be able to efficiently
use future supercomputers, it will be necessary to simultaneously run more
than one application on a node. To be able to efficiently perform co-scheduling,
applications must not slow down each other, i.e. candidates for co-scheduling
could e.g. be a memory-bound and a compute bound application.
Within this context, it might also be necessary to dynamically migrate appli-
cations between nodes if e.g. a new application is scheduled to the system. In
order to be able to monitor performance and energy efficiency during opera-
tion, additional sensors are required. These need to be correlated to running
applications to deliver values for key performance indicators.

Main topics

Exascale architectures, supercomputers, scheduling, performance sensors, en-
ergy efficiency, task migration
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ABSTRACT
In this paper we present a resource-centric application clas-
sification approach that monitors data flow along the path
from main memory to the cores to locate spots of high re-
source utilization and potential resource contention. We des-
ignate three application classes, i.e. streaming applications,
last-level cache sensitive applications and applications that
restrict their activity either within the cores or in the private
levels of the memory hierarchy. Our classification scheme
can form the basis for a number of preliminary prediction
models that are capable of predicting application interfer-
ence with high accuracy.

Keywords
Application classification, contention-aware, prediction

1. INTRODUCTION
Chip Multiprocessors (CMPs) encapsulate several cores

that share a number of critical resources such as memory
links, cache memory and memory controllers. Applications
running simultaneously may compete for these resources,
leading to resource contention and eventually to performance
degradation. Contention on shared resources may even vic-
timize the threads of a single parallel application moderat-
ing, or even mitigating benefits of parallel execution. Be-
yond performance degradation that can be severe in many
cases, performance instability is another critical issue espe-
cially in computing environments where performance guar-
antees need to be maintained. To address the problems
created by resource contention, researchers have proposed
modifications in hardware (e.g. cache partitioning [12]) or
software (e.g. contention-aware scheduling [3, 10, 14]). In
all cases, a classification scheme is employed that utilizes
information regarding shared resource utilization [2, 3], ap-
plication resource footprints [6,7,15] or co-execution behav-
ior [4, 8].
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Contention-mitigating mechanisms build upon this knowl-
edge to take better optimization decisions. For example,
contention-aware schedulers rely on application classification
that predicts interference of co-execution scenarios. Cache
utilization patterns [6, 7, 15], LLC miss rate [3], memory
link bandwidth [2, 10], contentiousness and sensitivity [14]
have been proposed towards this direction. Ultimately, these
schedulers aim at reversing the effects of contention on QoS,
throughput [16] or energy consumption [10].

The accuracy of the classification scheme in the prediction
of application co-execution penalties is one of the most crit-
ical factors for a co-scheduling framework. However, most
of these schemes capture applications’ activity in a limited
part of the architecture, i.e. either memory link or last level
cache (LLC). Thus, they cannot infer application utiliza-
tion at each specific hardware resource. In this paper we
present a classification scheme based on previous work [5]
that inspects the entire memory hierarchy from main mem-
ory down to the compute cores and captures data flow and
resource utilization. This information is utilized to under-
stand application behavior and predict interference prob-
lems. In this way we are able to spot contention on both
memory link and LLC. Our classifier distinguishes between
three application classes: streaming applications; cache in-
tensive applications; and applications that exhibit no sig-
nificant activity on the shared resources of the system. We
demonstrate interactions between applications from various
classes are adequately predictable through simple prediction
models, therefore could be applied in an optimized schedul-
ing mechanism.

The rest of the paper is organized as follows: Section II
presents our classification approach and Section III presents
experimental results. In Section IV we discuss related work.
Finally, Section V concludes the paper and discusses ideas
for future work.

2. CLASSIFICATION
Our application characterization approach has the follow-

ing objectives: a) to be capable of locating contention on
both the shared memory link and LLC simultaneously, in
order to more accurately capture the application’s resource
utilization pattern, b) to rely solely on information that can
be collected at runtime from the existing monitoring facili-
ties of modern processors (requiring no additional hardware
support) in order to increase its applicability as much as
possible, and c) to be sufficiently fast in order to be capable
of supporting prompt decisions, required in dynamic execu-
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Figure 1: Activity in application classes

tion environments where applications enter, exit and change
behavior frequently.

2.1 Application classes
In our analysis, the following three application classes are

relevant:
Class N : Applications that restrict their activity either

within the core or in the private caches of the core. The
members of this class create no contention to the shared
system resources. The class includes applications with heavy
computations, very small working sets or optimized data
reuse that can be serviced by the private caches.

Class C : Applications with high activity on the shared
LLC. This is a wide class including members with a com-
bination of main memory access and LLC data reuse, or
members with varying characteristics, such as those that
operate on small data sets with heavy reuse, optimized code
for the LLC (e.g. via cache blocking with a block size fitting
the LLC), or latency-bound applications that make irregular
data accesses and benefit a lot from LLC hits.

Class S : Applications of this class have a stable data flow
on all links of the memory hierarchy. This class typically in-
cludes applications that perform streaming memory accesses
on data sets that largely exceed the size of the LLC, or have
either no reuse or large reuse distances Although they fetch
data on the entire space of the LLC, they do not actually
reuse them either because their access pattern does not re-
cur to the same data, or because they have been swept out
of the cache. No level of cache memories helps S applica-
tions accelerate their execution. Thus, they tend to pollute
all levels of caches. Figure 1 indicates the activity spot of
each class.

2.2 Classification method
Having defined the application classes, we need a concrete

method to perform the classification using runtime statistics.
The core idea is to inspect the data path from main memory
down to the core to locate links with high utilization. We
have focused only on the stream flowing towards the core, as
we have empirically found that this direction concentrates
the largest portion of contention. Figure 2 illustrates this
idea.

Our classification method implements the decision tree
shown in Figure 3. We follow a hierarchical approach in
the classification. First, we look at the application activity
in L1 cache. No activity in L1 means that data used from
the entire path of memory are too few, indicating that the
application’s activity is restrained within the core. Applica-

Figure 2: Inspected data flow in the memory hierarchy

L1 Activity

ReuseN

Reuse LocationS

C N

Low High

No Yes

Shared 
Cache

Private
Caches

Figure 3: Decision tree for application classification

tions that exhibit this attribute are classified as N. If we are
unable to locate reuse at any level of the cache hierarchy,
then the application has a streaming attitude and is marked

as S. As cache reuse factor, we use the ratio CRi =
Bini−1

Bini
.

The rationale is simple: if data flow out of a cache towards
the core with a much higher rate than they flow in, then we
can safely assume that reuse is present. We empirically set
a threshold of 2 to designate reuse. If there is cache reuse,
reuse location needs to be examined. If reuse is higher in
the private caches, then the application is classified as N,
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else the application is classified as C (as the dominant reuse
is on the LLC).

2.3 Co-execution effects
Despite the fact that inside each class one may find appli-

cations with quite different execution patterns, the classes
themselves can be used to capture the big picture of how
applications access common resources and of co-execution
interference between applications. In the following we de-
note xy the co-execution of an application from class x with
an application from class y. We use ∗ as a wildcard for “any
class”. Here is what we expect from the co-execution of all
combinations:
N – * : As applications from class N do not activate in any
shared resource, this co-execution does not create interfer-
ence with any of the applications.
S – S : Applications compete for the memory link. The con-
tention pattern in this case indicates that the shared re-
source which in this case is the memory link bandwidth is
divided (not necessarily equally) between the competing ap-
plications.
S – C : As S applications tend to pollute caches, C applica-
tions may suffer from the coexistence with S applications. In
cases of high pace of data fetching their co-execution can be
catastrophic for the C application. On the contrary, S appli-
cations having low pace of data fetching may cause no harm
to C applications. The streaming nature of S applications
causes data that are potentially heavily reused by C appli-
cations to be swept out of the LLC rapidly, enforcing them
to access main memory. This contention pattern can lead to
dramatic slowdowns for C applications. On the other hand,
S applications suffer no severe penalty from co-execution.
C – C : This is the most difficult to predict co-execution. In
the general case, we expect cache organization and replace-
ment policies to be able to handle adequately high activity
from different applications on the shared LLC. However, if
both exhibit similar data access patterns, contention is ex-
pected to be high. To go deeper into the class and better
understand possible interactions, one would require informa-
tion on the data allocated to each application on the LLC
and the access pattern. This would require either informa-
tion from static analysis, or additional hardware support.

2.4 Interference prediction models
A successful classification model is the core of an accurate

prediction model that will ultimately be used by resource
management mechanisms such as contention-aware sched-
ulers. Interference prediction is the most useful one, since
it can be directly applied to scheduling policies. Interfer-
ence effects are more complicated as the number of appli-
cations running simultaneously, increases. To confirm the
validity of the expected co-execution effects, co-execution
scenarios have to be simple. Therefore these scenarios con-
sist of two applications competing for shared resources of the
same package at the same time. There are six possible sce-
narios derived from our classification model, described next.
We denote DX−Y the degradation of application X when
executed with application Y .
S – S : In this case both applications compete for the mem-
ory link. As the available bandwidth of the link is limited,
applications need to share it. Even S applications that are
running alone may have a small LLC reuse, this will be lost
due to the high pace of LLC pollution, that their competitor

causes. Because of this, we expect that the degradation will
be expressed as:

DS−S =
BWmax

BW in
mem→LLC + BW co

mem→LLC

where BW is the bandwidth, in denotes the inspected ap-
plication and co the co-executed one.
S – C : S applications invalidate C applications’ cached data.
We expect that as the bandwidth of S applications increases,
the consequences will be more dramatic for C applications.
The wide pallet of different memory access patterns de-
mands observation on a large number of parameters. How-
ever, as an initial attempt, we experiment with a linear func-
tion of degradation with the bandwidth of the co-executed
application. Thus, our prediction model is expressed as:

DC−S = α × BW co
mem−>LLC + β

On the other hand, we expect S applications to suffer min-
imal pain, and we set DS−C = c1, with c1 taking a value
close to 1.
C – C : As cache hardware is expected to efficiently handle
the conflicts in this case, degradation prediction is defined
as a constant value taken from the average value of our ex-
perimental results, i.e. DC−C = c2

N – S, N – C, N – N : N applications do not affect and
are not affected by other applications. In all of these cases
all the degradation’s predictions are taken as constants, i.e.
DS−N = c3, DC−N = c4 and DN = c5, again with c3, c4

and c5 taking values close to 1.
We calculate parameters α, β and c1 . . . c5 with regression

utilizing experimental data from the co-execution of our ap-
plication test suite, which is presented in Section 3.2. We
split our set in sliding windows of 80% training and 20%
testing sets.

3. EVALUATION

3.1 Experimental Platform
The evaluation of the classification scheme is performed

on an IntelR⃝ XeonR⃝ CPU E5-4620. The architectural de-
tails are presented in Table 1. All the available hardware
prefetchers are enabled whereas Hyperthreading and Turbo
Boost are disabled. The platform runs Debian Linux 6.0.6
with kernel 3.7.10.

Cores 8

L1
Data cache: private, 32 KB, 8-way, 64 bytes
block size
Instruction cache: private, 32 KB, 8-way, 64
bytes block size

L2 private, 256 KB, 8-way, 64 bytes block size
L3 shared, 16 MB, 16-way, 64 bytes block size
Memory 64 GB, DDR3, 1333 MHz

Table 1: Processor details

In order to monitor the applications and acquire their pro-
file, we employ hardware performance counters to collect
performance data. Specifically, we use UNHLT_CORE_CYCLES,

INSTR_RETIRED, L1D.REPLACEMENT, L2_LINES.IN. Further-
more, we use OFFCORE_REQUESTS (0xB7, 0x01; 0xBB, 0x01).

3.2 Experimental Setup
In our evaluation, we populated all four application classes

selecting benchmarks from a variety of multithreaded suites
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Name Source Details
Bin3=LLC CRllc =

Bin2
Bin3

CRl2 =
Bin1
Bin2

IPC class(GB/sec)

jacobi l polybench large data set 10.321 1.50 1.02 0.559

S
stream [9] array size = 50000000, offset = 0,

NTIMES = 10, kernel = TRIAD
11.646 1.00 1.03 0.724

bt NAS class A 8.566 0.97 1.36 0.813
fw polybench small data set 7.468 1.02 1.16 1.903

Dynprog polybench custom data set 8.220 0.98 1.54 1.384

Mvt polybench custom data set 1000 0.006 4.21 565.29 0.455
Mvt polybench custom data set 6000 2.274 0.92 8.31 0.343

C

atax polybench large data set 2.426 0.82 8.61 0.336
cg NAS class B 5.955 1.37 4.38 0.728

syr2k polybench large data set 5.883 2.07 2.00 1.919
gemver polybench large data set 2.873 0.82 7.23 0.440
cholesky polybench large data set 0.156 0.85 195.56 1.876
pchase [1] A pointer-chasing benchmark with

data set fitting in LLC.
0.135 1.00 222.01 0.148

lu t inhouse Classic implementation of tiled LU de-
composition with data set fitting in
LLC.

0.009 8.67 178.91 1.635

jacobi s polybench small data set 0.534 1.15 35.17 1.209
fw t inhouse Implementation of tiled Floyd-

Warshall algorithm from [13]. Data
size fits in LLC.

0.063 9.92 34.45 2.181

ep NAS class A 0.000 0.97 2644.41 0.746
mm t inhouse Classic implementation of tiled Matrix

Multiplication with data set fitting in
LLC.

0.030 17.82 5.68 2.933

N

blackscholes PARSEC large data set 0.186 0.65 5.63 1.732

Table 2: Application suite

and inhouse implementations of classic kernels. Table 2
presents our application suite, together with key metrics
used to classify each application according to our scheme.
The test platform includes one shared LLC and two pri-
vate caches (L1 and L2). In order to evaluate our classifi-
cation scheme, we co-execute all possible pairs of applica-
tions, totally 361 pairs. We allocated half of the available
cores to each application. If an application terminates, it is
respawned in order to keep contention at the same level.

S C N

class average slowdown
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Figure 4: Average application slowdown due to co-execution
at the class level. The horizontal dimension represents the
slowdown imposed by each class, while the vertical dimen-
sion shows the slowdown suffered.

Figure 4 provides a class-level view of average slowdowns
of each class measured. We may observe that our classifica-
tion scheme is able to capture the general trend in interfer-
ence penalties. In particular, we observe that whenever a N
application is involved, the interference overhead is negligi-
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Figure 5: Relative errors for the SCN, ‘median’ and ‘no
contention’ predictors.

ble. On the other side of the spectrum, the most contentious
pairings arise in S-S and S-C collocations.

Figure 5 shows the absolute values of the relative errors
for all co-executions for our predictor (SCN) and two naive
predictors, i.e. the ‘median’ predictor that always predicts
the median of all cases (1.27) the ‘no contention’ predic-
tor that neglects the effects of contention and always pre-
dicts a degradation factor of 1.05. Note that we favored the
naive predictors by using the same training and testing sets
(i.e. we did not split training and testing sets in 80% and
20% subsets as we did for SCN). We may notice that SCN
achieved a prediction error of less than 5% for 55% of the co-
executions and less than 30% for 94% of the co-executions.
On the other hand, the naive predictors provided guesses
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with significantly lower accuracies, i.e. the ‘median’ predic-
tor had a prediction error of less than 5% for 9% of the co-
executions and less than 30% for 89% of the co-executions,
and the ‘no interference’ predictor had a prediction error of
less than 5% for 38% of the co-executions and less than 30%
for 80% of the co-executions.
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Figure 6: Co-execution with S.

Figure 6 shows the absolute values of the relative errors of
SCN prediction for applications of all classes when they are
co-executed simultaneously with S class applications. We
may notice that despite their simplicity, the prediction mod-
els for C–S and S–S co-executions are able to capture the
general degradation penalties and keep the prediction errors
lower than 30% for 72% of the co-executions. On the other
hand, as expected co-execution of S with N applications is
predicted with high accuracy.
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Figure 7: Co-execution with C.

Figure 7 shows the absolute values of relative errors of
SCN prediction of all classes when executed with applica-
tions from the C class. Quite interestingly, our simple con-
stant predictor for the C–C co-execution keeps errors lower
than 30% for 97% of the co-executions, showing that in our
experimental scenarios cache sensitive applications tend to
share gracefully the shared LLC cache. We also note that
S and N co-executions with C applications are accurately
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Figure 8: Co-execution with N.

predicted. Finally, Figure 8 shows the absolute values of
relative errors of our predictor for applications of all classes
when they are co-executed simultaneously with N class ap-
plications. Clearly, this is an easy to predict scenario since
N applications indeed cause no substantial harm to the their
co-executors, a fact that is captured by our predictor.

4. RELATED WORK
Various characterizations schemes have been proposed in

the past. Lin et al. [7] proposed a scheme that partitions
the LLC cache between two programs using cache coloring.
The scheme is employing a program classification based on
each program’s performance degradation when running us-
ing a 1MB cache compared to running using a 4MB cache.
Looking also at cache partitioning, Moreto et al. [11] pro-
posed two metrics, namely wP% and wLRU(thi). The first
metric refers to the number of ways needed by a benchmark
to reach at least the P% of its maximum IPC, while the
second one refers to the ways allocated to each thread by
LRU when two benchmarks are executed together. Based
on these two metrics applications were classified in one of
three different classes.

Xie and Loh [15] proposed an animalistic approach of the
application classification problem. All applications may be-
long to one of four classes, named Turtle, Sheep, Rabbits and
Tasmanian Devils. Applications that do not make much use
of the LLC are turtles, while applications that make use of
the LLC but are not sensitive to the number of ways al-
located to them belong to the sheep group. Rabbits are
applications that are very sensitive to the ways allocated to
them, and, finally, devils are the applications that make use
of the LLC while having very high miss rates.

Jaleel et al. [6] categorize applications in four classes. Core
Cache Fitting (CCF) are applications with a dataset that
fits in the lower levels of the memory hierarchy and do not
benefit from the shared level of cache. On the other hand,
LLC Thrashing (LLCT) applications have a data set bigger
than the available LLC. Under LRU, these applications de-
grade performance of any co-running application that uses
the LLC. LLC Fitting (LLCF) applications require almost
the whole LLC and their performance is severely impacted if
there cache trashing occurs. Finally, LLC Friendly (LLCFR)
applications are ones that even though they could improve
their performance using more cache resources, they do not
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suffer significantly when these resources are reduced.
Finally, Tang et al. [14] are employing two metrics for each

application, namely Contentiousness and Sensitivity. Based
on these, applications belong to one of the following four
classes: 1) contentious and sensitive; 2) not contentious and
insensitive; 3) contentious but not highly sensitive; or 4)
not highly contentious but sensitive. Contentiousness and
sensitivity are statistical numbers but, as authors claims,
can be easily calculated through performance counters.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented a resource-centric application

classification scheme that monitors data traffic across the
entire memory hierarchy, using existing hardware monitor-
ing mechanisms. We base a number of preliminary inter-
ference predictors on the classification scheme and evaluate
them on a set of parallel applications. The prediction ac-
curacy is very promising and sets a solid basis to support
contention-mitigating mechanisms. As a future work, we
intend to extend this work in the following directions: a)
augment our prediction approach to minimize errors and
mispredictions, b) apply this model in scenarios where more
than two applications run concurrently c) apply this work
to a contention-aware application scheduling environment.
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ABSTRACT
Heading towards exascale, the challenges for process man-
agement with respect to flexibility and efficiency grow ac-
cordingly. Running more than one application simultane-
ously on a node can be the solution for better resource
utilization. However, we believe that this approach of co-
scheduling can also be the way to go for gaining a degree of
process malleability and dynamicity that can enable some
kind of interactivity also in the domain of high-performance
computing. In this paper, we present the recent advances
made in this respect within ParaStation MPI, a high perfor-
mance MPI library supplemented by a complete framework
comprising a scalable and dynamic process manager. The
paper presents four new scheduling policies, implemented in
ParaStation MPI, for starting multiple MPI sessions concur-
rently and interactively within a single allocation of nodes.
The features of these policies are detailed and evaluated
by applying the Dynamic Job Scheduler Benchmark (djsb),
a tool developed by the Barcelona Supercomputing Center
especially for measuring interactivity and dynamicity met-
rics.

Keywords
Scheduling Policies, Co-Scheduling, Process Management,
Interactive Supercomputing, High-Performance Computing

1. INTRODUCTION
Since the beginning of the pre-exascale era, there has been

a rising demand for the support of interactivity and mal-
leability also in the domain of high-performance comput-
ing. Such a support will allow supercomputer users to in-
teract with their running applications, for example, in order
to steer the progress of a simulation during runtime. It is
widely believed that—besides some kind of a conceivable
real-time interaction, for example, via graphical user inter-
faces for in-situ visualization—on large-scale supercomput-
ers, such an interaction will primarily be conducted via ad-
ditional applications to be started concurrently on the user’s
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demand. (For proving this statement refer, for example, to
the Technical Requirement Document [1] of Pre-Commercial
Procurement (PCP) announcement issued by the Human
Brain Project (HBP): In the context of the HBP it is fore-
seen to build up (pre-) exascale supercomputing systems fea-
turing interactivity for large-scale brain simulations.1)

According to this, each job will consist of multiple job
steps (potentially divisible into primary and secondary ones)
that may be launched interactively and that in turn can
interact among each other. So, for instance, a user may
run a large and long lasting simulation application, which
then can interact during runtime with intermediately started
auxiliary applications. Such secondary applications, which
are then to be co-located with the primary application (ei-
ther within its existing allocation or by requesting further
resources) could then attach and interact with the long-
running simulation in order to track and even govern its
evolution. By co-locating the processes within the existing
allocation, the linked applications can then take advantage
especially of data and communication locality. Conceivable
use case scenarios are, for example, visualization pipelines
and the online post-processing of intermediate simulation
steps as well as computational workflows and coupled codes
for providing further input parameters during runtime of the
primary simulation. Since such user interventions as well as
the reactions made by the applications based on their inter-
action are not predictable, a dynamic and continuous sub-
partitioning of the allocated resources is the consequence.

Such an allocation-internal co-scheduling may on the one
hand aim at optimal system utilization. On the other hand,
as user interactivity is also a matter of responsivity, the
scheduling policy may focus on some kind of priorities. At
this point, the above-mentioned demand for job malleabil-
ity comes into play: Such a malleability comprises the ques-
tion of the actual starting order of concurrently launched
MPI sessions, the related question of a dynamic process-to-
core assignment, the demand for the ability to reduce or
increase the number of cores devoted to a certain MPI ses-
sion, and the request for the possibility to suspend a whole
MPI session on a temporary basis. Although these aspects
are in the first instance relevant to the job-internal process
management, at least the issue of reducing or increasing the
number of processes and/or cores of an MPI session may
also involve the system’s higher-level resource manager.

For clarifying the different terms used in this paper, Fig-
ure 1 should illustrate the hierarchy of entities that have
to be taken into account for the overall resource manage-

1www.humanbrainproject.eu
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ment: The whole system is usually a cluster composed of
nodes, while each node commonly features multiple cores
resp. hardware threads. The user can request for a set of
nodes/cores in terms of a job allocation for starting multi-
ple parallel applications in terms of concurrent MPI sessions
within.

Taken as a whole, the comprehensive management sys-
tem then forms a three-tier hierarchy: At node level, the
Linux scheduler manages the processes and threads, poten-
tially governed by a predefined process pinning scheme. At
job level, the local process manager handles the process-to-
node/core assignment by starting, controlling and monitor-
ing parallel MPI processes within the allocation devoted to
the respective job. Finally, at cluster level, an outer resource
manager maintains the different job queues of the batch sys-
tem and performs the overall resource assignments granted
by a job scheduler.

Cluster (System)

Cores belonging to N
odes

Allocation (Job)

M
PI Sessions / Applications

App. A

App. B

App. C

Figure 1: Naming of tiers in the system hierarchy

2. PARASTATION MPI
ParaStation MPI is an open-source MPI library, devel-

oped and supported by ParTec GmbH2 under the umbrella
of the ParaStation Consortium—an alliance consisting of
ParTec, the University of Wuppertal, the Karlsruhe Insti-
tute of Technology (KIT), and the Jülich Supercomputing
Centre (JSC). This MPI library has already proven to scale
very well on large parallel production systems: In June 2009,
ParaStation pushed the 3,288 node JuRoPA cluster at the
JSC with more than 25,000 MPI processes to No. 10 in the
world according to the Top 500 list. Furthermore, its suc-
cessor, the JURECA system at the JSC with 49,476 cores,
has just recently entered the November 2015 list at No. 50—
again propelled by ParaStation [2].

The ParaStation MPI library (psmpi) is embedded into
a complete framework for providing state-of-the-art cluster-
based supercomputing [3]: Besides a robust and efficient
cluster middleware, the ParaStation software suite also com-
prises sophisticated administration components like the Pa-
raStation ClusterTools (for provisioning and maintenance),
the ParaStation HealthChecker (for automated error detec-
tion and integrity checking) and the ParaStation TicketSuite
(for analyzing and keeping track of issues).

psmpi is fully MPI-3 compliant [5], including support for
the recent additions to the RMA interface, and also supports

2www.par-tec.com

the MPICH-related Process Manager Interface (PMI) [4] as
well as MPI-2 compliant dynamic process spawning—a fea-
ture long time neglected by other MPI implementations, but
efficiently used by psmpi in the context of the Dynamical Ex-
ascale Entry Platform (DEEP) project [6], a project funded
from 2011 to 2015 by the EU 7th Framework Programme.3

2.1 The Process Management System
The management facility of psmpi, called ParaStation Man-

agement (psmgmt), offers a complete process management
system that can in turn be combined with an outer and more
generic resource manager together with a batch queuing sys-
tem plus job scheduler like TORQUE/MAUI or SLURM.
The process management of psmgmt includes the creation
of processes on remote nodes, control of the I/O channels
of the remotely started processes, and the management of
signals across node boundaries.

Since psmgmt knows about the dependencies between the
processes and threads building a parallel session on a number
of nodes of the cluster, it is able to take them respectively
into account. That way, processes are no longer independent
but form an entity in the same sense as the nodes are no
longer independent computers but form a cluster of nodes as
a self-contained system. This feature of psmgmt for handling
distributed processes as a single unit plays an important
role especially in the context of job control and allocation-
internal scheduling—as it will be detailed later in this paper.

One important key to ParaStation’s scalability is its effi-
cient communication subsystem for inter-daemon messages.
This subsystem, which uses the implementation of a highly-
scalable Reliable Datagram Protocol (RDP), is used for re-
source monitoring as well as for launching and controlling
the parallel processes by means of a network of ParaStation
Daemons (psid). So, for example, this subsystem also per-
forms process pinning, I/O forwarding and signal handling,
and it ensures a proper resource cleanup after job termina-
tion.

2.2 Relation to the Resource Manager
Following a one daemon per cluster node concept, the dae-

mon architecture is kept such generic that it can easily be
extended by plugins for consolidating various services. Fur-
thermore, this network of daemons also enables third-party
services to piggyback their payload on the ParaStation com-
munication subsystem. So, for instance, a TORQUE-related
plugin (psmom) and a SLURM-related plugin (psslurm) ef-
ficiently replace the native daemons of these resource man-
agers on the compute nodes in a ParaStation environment.

Figure 2 illustrates the orchestration between psmgmt and
SLURM, as it is currently employed on the JURECA sys-
tem at the Jülich Supercomputing Centre. As one can see,
the psid together with its psslurm plugin plays the central
role regarding process startup and job control on the com-
pute nodes. SLURM itself is designed to operate even in
heterogeneous clusters with up to tens of millions of proces-
sors and can accept thousands of job submissions per second
with a sustained throughput rate of hundreds of thousand
jobs per hour. Its direct linkage on JURECA to the net-
work of distributed psids makes this orchestration between
SLURM and ParaStation highly scalable and very flexible.

However, in case that the number of computing resources
should actually be increased by MPI-2 compliant dynamic

3www.deep-project.eu

14



Master
running the SLURM 

Control Daemon:

slurmctld

MPI Session BMPI Session A

Node M

Login
accepting the user’s
SLURM Commands:

squeue

scontrol

sbatch

srun

Node 1
spawning the

actual MPI session

mpiexec

jobscript

psid

Rank 0

psslurm

Job Requests

interactive
stdout/stderr

N
od

e 
Re

gi
st

ra
tio

n
Jo

b 
Te

rm
in

at
io

n

psid

Rank M-1

psslurm…
RDP RDP

…

N
od

e 
Re

gi
st

ra
tio

n
Jo

b 
Te

rm
in

at
io

n

N
od

e 
Re

gi
st

ra
tio

n
Jo

b 
Te

rm
in

at
io

n

Node NNode M+1
spawning the

actual MPI session

mpiexec

jobscript

psid

Rank 0

psslurm

psid

Rank N-M-1

psslurm…
RDP RDP

…

N
od

e 
Re

gi
st

ra
tio

n
Jo

b 
Te

rm
in

at
io

n

N
od

e 
Re

gi
st

ra
tio

n
Jo

b 
Te

rm
in

at
io

n

Node N+1

psid

psslurm …
RDP RDP

Figure 2: Orchestration between SLURM and ParaStation Management (psmgmt) via its psslurm plugin

process spawning during a job’s runtime, the MPI layer
would need the capability of requesting such a post-allocation
of nodes from the resource management system. Such a re-
quest has then to be negotiated between the entities, but
may very well also be rejected if the requested resources are
currently not available. In fact, this feature has recently
also been added to the ParaStation environment in the con-
text of the above-mentioned DEEP project: The TORQUE
server, which is used together with the MAUI scheduler in
the DEEP project, has been enhanced by facilities to receive,
queue and process new resource requests by applications via
the ParaStation daemon subsystem during the runtime of a
job. Moreover, the porting of these features to a SLURM en-
vironment, where the psslurm plugin for the psid and an ad-
ditional plugin for the SLURM resource manager will jointly
accomplish these tasks, is currently on-going work.

3. DYNAMIC PROCESS MANAGEMENT
As already stated in the introduction, dynamic process

management at job level targets the malleability of MPI
processes within an existing job allocation represented by a
certain set of nodes currently assigned to a particular user
or user group. A first degree of interaction between the user
and concurrently running MPI sessions can be achieved by
sending operating system signals to and between the respec-
tive parallel processes. However, such signals, as they are
supported by all customary operating systems, are normally
only valid in the context of the local node the operating sys-
tem is running on. Hence, for supporting signal forwarding
even across node borders, the respective middleware—thus,
in our case, the local process manager—has to be capable of
such a distributed signal handling.

3.1 Signal Handling and Process Pinning
In fact, psmgmt is already capable of doing so and na-

tively takes care for the handling of process signals in a
cluster-wide manner. This being so, some kind of runtime
interactivity between the user and the started MPI sessions
is already possible in this way. So, for example, sending a
common SIGTSTP to ParaStation’s mpiexec command would
cause the whole respective MPI session to get suspended,
whereas a SIGCONT can be issued to resume it later on.

Moreover, instead of a complete job preemption, even a
temporal reduction of computing resources devoted to an
MPI application is possible. According to this approach, the
psids get signaled to perform a runtime adjustment of the
rank-to-core pinning on each of the job’s compute nodes. By
means of such a re-pinning, some processes of a given job are
moved within the respective nodes in such a manner that an
appropriate fraction of oversubscribing for a certain group
of cores is achieved.

The main advantage of this approach is that it is still
transparent to the application. However, the temporal over-
subscription will induce an operating system related schedul-
ing overhead that might disturb the application’s internal
load-balancing scheme. Therefore, this method of re-pinning
and oversubscribing should rather be a temporary measure
in order to clear space, for example, for a short-running aux-
iliary application that is to be attached to a long-running
simulation.

Based on these two approaches (suspend/resume and re-
pinning of processes), new features for realizing job mal-
leability and interactivity have been implemented recently
within ParaStation. According to these approaches, the user
can (for example, in context of an interactive SLURM ses-
sion) launch multiple MPI applications in parallel and/or
subsequently. As long as there are enough slots within the
current allocation (according to the terminology of Para-
Station, these slots are the hardware threads that can be
assigned to processes resp. software threads), the psid will
ensure via pinning that all slots are used exclusively by the
assigned processes and threads. However, if the available
slots get exhausted, allocation-internal scheduling policies
come into play.

Moreover, the same applies to the case of MPI-2 compli-
ant dynamic process spawning if a post-allocation of further
nodes gets rejected by the resource manager. Although the
initial started number of MPI ranks (this is the initial world
size) may intentionally be smaller than the number of avail-
able slots within the allocation (this is the current universe
size), hence leaving space in terms of free slots where new
MPI processes can be spawned to, if all slots become pop-
ulated, an oversubscribing or some other allocation-internal
scheduling policy has to be applied for further spawn calls.
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3.2 Allocation-internal Scheduling Policies
Currently, four of such policies for job- or allocation-in-

ternal co-scheduling are implemented in psmgmt: One that
just lets the newly started processes wait for getting free
slots, one that simply voids the previous exclusiveness of
resources and thus allows for oversubscribing of slots, one
that follows the suspend/resume approach in such manner
that each subsequently started MPI session suspends its re-
spective predecessor for getting free slots, and one that uses
re-pinning for a temporal reduction of computing resources
concerning the still running predecessor of the newly started
application. Moreover, for most of these approaches further
sub-policies are conceivable and to some extent already im-
plemented in psmgmt.

All the four policies, as they are detailed in the following
paragraphs, can currently be used by means of a wrapper
script called psmpiexec that extends the common mpiexec

command as commonly provided by psmpi. However, at
this point it should be emphasized that both commands are
more or less just user interfaces that can easily be replaced
by others—so, for example, by a more SLURM-like srun

frontend.

The Wait Policy.
According to this policy, any newly started MPI session

that can no longer be scheduled into free slots has to wait
until one or more of the previous ones gets finished so that
enough slots become available again. As this policy still
sticks to the original paradigm of preventing any oversub-
scription, mutual interferences between the sessions should
almost be avoided. However, on the other hand, if the in-
teraction between the sessions demand for a concurrent ex-
ecution, this policy cannot safely be used.

The Surpass Policy.
This policy is based on the suspend/resume mechanism of

psmgmt: Every time a new session gets launched within an
allocation with already filled slots, the prior session(s) (these
are the ones issued by preceding psmpiexec within the same
allocation) get(s) automatically suspended until the succes-
sor becomes finished. The idea behind this policy is that the
most recently started session should most probably be the
one with the highest priority from the user’s point of view.
According to this idea, the user can start further sessions
(for example for short running auxiliary applications) that
then will surpass previously started, long-running ones.

The Overbook Policy.
When this policy is enabled and all free slots are ex-

hausted, all the MPI sessions are run concurrently and in
a competitive manner on the nodes and cores of the alloca-
tion. The question whether there should still be some kind
of a pinning scheme in such an overbooked situation, or if
all the processes should then be enabled to flow freely across
the cores of their respective nodes, could be then considered
as a further sub-policy.

The Sidestep Policy.
This policy is quite similar to the overbook policy. How-

ever, the difference is that here the processes of the already
running applications are re-pinned in such a manner that
the processes of the new session run on their cores exclu-

sively. That means that, in a first instance, only those cores
are overbooked where the processes of the preceding MPI
sessions are pinned to.

The Spread Option.
Normally, ParaStation places all processes as compactly

as possible (with due regard to any threads) onto the nodes.
However, in cases where a small number of newly started
processes are overloading an allocation already filled up with
running applications, it might be beneficial to have the pro-
cesses of the new session get started on the nodes as wide-
spread as possible. This can be achieved by using an addi-
tional spread option, which is therefore meaningful together
with the overbook or the Sidestep policy. Using the spread
option, the hope is that the already running MPI sessions
will not get as much affected by the additionally started pro-
cesses as it would be the case if the latter were all started
on one (or only a few) node(s) of the allocation.

4. EVALUATION OF THE POLICIES
The Dynamic Job Scheduler Benchmark (dsjb) is a tool

developed by the Barcelona Supercomputing Center (BSC)
for evaluation different scheduling solutions. Although its
description4 as well as its source code5 are publicly avail-
able, this section initially gives a more detailed introduction
into the respective benchmarking metric since the knowl-
edge about this seems up to now not very widespread. Af-
ter this introduction, this section presents some early results
gained by applying this benchmark together with the new
allocation-internal scheduling policies of psmgmt as detailed
in Section 3.2.

4.1 Benchmark Description
The djsb has originally been written and released in the

context of the Pre-Commercial Procurement (PCP) of the
Human Brain Project (HBP). Its primary purpose is to al-
low for a performance comparison of the different resource
management solutions proposed by different tenders during
the PCP. In doing so, the benchmark focuses on interac-
tivity and the dynamicity of the proposed job scheduling
systems. The benchmark actually consists of multiple pro-
cesses and threads performing the STREAM benchmark [8]
in parallel—hence without any considerable communication.

The idea of this benchmark is to let two synthetic ap-
plications run concurrently within the same job allocation:
one longer running “simulation” application and one shorter
running “analysis” application, both to be modeled by the
STREAM executable. The benchmark basically measures
the runtime of each of both when they are started sepa-
rately, as well as the runtime when they are executed con-
currently. Based on these durations, the benchmark cal-
culates some reasonable efficiency numbers (the so-called
Simulation/Analysis/Wait Coefficients) and finally reports
a Dynamicity Ratio as a product of those three coefficients.

Although the djsb focuses on interactivity, the synthetic
applications are issued as MPI sessions automatically by a
Python-based benchmarking script that models the hypo-
thetical user of the job allocation by sporadically calling
mpiexec for the short-running analysis application. Please
note here that the document officially describing the bench-

4http://pm.bsc.es/˜vlopez/files/djsb doc.pdf
5http://pm.bsc.es/˜vlopez/files/djsb.tar.gz
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mark [7] uses a different nomenclature than we do within this
paper: In the official djsb description, the term job refers to
a single application (rather than to an allocation) and hence
to the term of an MPI session according to the terminology
used in this paper.

The actually measured parameters and performance met-
rics of the djsb are:

• Wait Time: Time that has passed between the session
request issued by the“user”(this is the call of mpiexec)
and the actual start of the respective application.

• Execution Time: Time that has passed between ses-
sion start and its completion. This is hence the effec-
tive runtime of the application.

• Response Time: Time that has passed between session
request by the “user” and its completion. This is hence
the sum of Wait and Execution Time.

• Slowdown: Performance decrease in terms of the ratio
between the actually measured times and the reference
scenario where all sessions are run consecutively.

• Expected vs. Real Slowdown: While the Expected Slow-
down is a pre-calculated value based on theoretical as-
sumptions, the Real Slowdown is the actually observed
one.

• Efficiency Coefficient: This is just the ratio of Ex-
pected and Real Slowdown. Higher values are better.

E =
Expected Slowdown

Real Slowdown

• The Wait Coefficient: This value is calculated accord-
ing to the following formula. (Please refer to the official
djsb description [7] for a more detailed explanation of
this.) Values close to or even greater than 1 are better.

W =
Wait Time in static case + Normalization Constant

Wait Time in dynamic case + Normalization Constant

• Dynamicity Ratio: This is the product of the Effi-
ciency Coefficients as measured for both synthetic ap-
plications (the long-running simulation and potentially
several short-running analysis sessions)

D = E simulation · E analysis ·W analysis

4.2 Measured Benchmark Results
The benchmark results presented in this section were all

obtained on an allocation with 4 nodes and 160 cores in total.
The process/thread configuration chosen was as follows for
all the benchmark runs:

no threads with threads
Simulation 160 procs 32 procs (8 per node,
application (40 per node) 5 threads per proc)

Analysis
32 procs (all on one 8 procs x 4 threads

application
node, or 8 per node (all on one node, no
with spread option) spread option used)

Without using the spread option, as detailed in Section 3.2,
the chosen configuration would overbook the first node of
the allocation with 32 analysis processes. In contrast, if the

spread option is enabled, the 32 processes will be distributed
across all 4 nodes of the allocation so that each node would
then be overbooked by “only” 8 processes.

The following paragraphs show and briefly discuss the
single coefficients and the overall dynamicity results that
have been measured with this configuration for the different
scheduling policies:

The Wait Policy.

no threads with threads

Simulation Efficiency: 1.04 1.03
Analysis Efficiency: 2.0 2.03
Wait Coefficient: 0.55 0.55
Dynamicity Ratio: 1.15 1.15

Since both applications are run within the allocation sep-
arately according to this policy, their efficiency (and hence
their runtime seen individually) are quite good but the over-
all Wait Coefficient is relatively bad due to the long waiting
time of the analysis application before it gets started. How-
ever, the overall measured Dynamicity Ratio is here greater
than 1, what means that this policy improves the dynamic-
ity and hence the anticipated capability for interactivity—at
least with respect to the metric of the djsb benchmark.

The Surpass Policy.

no threads with threads

Simulation Efficiency: 0.86 0.86
Analysis Efficiency: 2.0 2.0
Wait Coefficient: 1.0 1.0
Dynamicity Ratio: 1.72 1.73

The main advantage of this policy is that long pending times
of the analysis applications are avoided and that at least the
efficiency of the analysis sessions should (and is) as good as
in the case of the Wait policy. However, as the simulation
application gets completely interrupted, its duration gets
extended accordingly so that its efficiency is decreased in
comparison to the Wait policy. Moreover, since the analysis
sessions are usually not only shorter in runtime, but also
smaller in the number of processors used, both policies (Wait
and Surpass) may lead to a temporary under-utilization of
the allocation.

The Overbook Policy.

no with spread option
threads threads (no threads)

Simulation Efficiency: 0.87 0.91 1.02
Analysis Efficiency: 1.23 0.89 1.02
Wait Coefficient: 1.0 1.0 1.0
Dynamicity Ratio: 1.07 0.81 1.04

In the case of this policy, the simulation as well as the analy-
sis are run concurrently and in a competitive manner within
the allocation. This usually means that the processes of the
analysis sessions get started (and pinned) onto a subset of
those cores where the simulation processes are already run-
ning on. Although this policy guarantees that there are no
unnecessary idle times of cores during the benchmark’s run,
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the efficiencies of both the simulation application as well as
the analysis application are liable to get impaired due to the
temporary overload.

The Sidestep Policy.

no with spread option
threads threads (no threads)

Simulation Efficiency: 0.87 0.87 1.34
Analysis Efficiency: 1.61 1.5 1.13
Wait Coefficient: 1.0 1.0 1.0
Dynamicity Ratio: 1.41 1.3 1.5

These results show that this policy gains a very good Dy-
namicity Ratio, but when looking at all four policies it be-
comes clear that the Surpass policy gains the best results.
However, it has to be emphasized, that especially the Sur-
pass policy does not allow for an MPI-based interaction be-
tween both sessions via message-exchange due to the fact
that the simulation session actually gets suspended during
the runtime of the analysis application.

In fact, most of the efficiency coefficients are usually ex-
pected (at least in theory) to be in the range of [0,1] be-
cause this would represent the case when the applications
share some of their resources at some point in time. On the
other hand, the coefficients are greater than 1 when an ap-
plication runs with more resources than expected—like in a
session serialization.

However, according to the benchmark results we have
measured and presented here, all four of the new allocation-
internal scheduling policies would improve the dynamic be-
havior and thus the capability for interactivity. All in all,
this indicates two facts for us:

1st: The metric of the djsb benchmark (here especially
the calculation of the Expected Slowdown as well as the
applying of some “magic” Normalization Constants) seems
to be not very well balanced for all scenarios. However, it
has to be emphasized that for the HBP-PCP, the benchmark
scenarios are well-defined and differ from the process/thread
configuration used for our measurements—it is most likely
that the internal benchmarking parameters of the djsb are
tailored to those configurations as given by the HBP-PCP.

2nd: Since the djsb totally neglects the actually required
message-exchange between the concurrent sessions, the bench-
mark can only give a first hint for the interactive behavior of
a system, but cannot really judge about complex interactiv-
ity scenarios as they are envisaged for future supercomput-
ing systems. On the other hand, it is in the nature of things
that benchmark scenarios have to tend to simplify things in
order to make their results more conferrable.

5. CONCLUSION AND OUTLOOK
In this paper, we have presented recent advances made for

ParaStation MPI (psmpi) and its process manger (psmgmt)
with respect to co-scheduling and process malleability at
job level. While co-scheduling is frequently associated with
a means for better resource utilization, the approaches pre-
sented in this paper are primarily not so much resource-
centric but rather user -centric, as they focus on interactivity.
In doing so, four new policies for scheduling of concurrent
MPI sessions within a single interactive job allocation have
been presented and evaluated by means of the Dynamic Job

Scheduler Benchmark (djsb). It turned out that (at least
according to the metric used by the djsb) all four new poli-
cies help to improve the desired scheduling behavior towards
malleability and interactivity. However, at the same time
it became clear that the results of this benchmark are not
quite meaningful when it comes to how concurrent sessions
can actually interact between each other because the omits
any communication metrics.

All in all, we believe that interactivity will become more
and more important also in the domain of supercomputing
and that a dynamic and malleable process management, as
presented in this paper, is the first right step towards this
challenge.
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ABSTRACT
In recent years the cost for power consumption in HPC sys-
tems has become a relevant factor. One approach to im-
prove energy efficiency without changing applications is co-
scheduling, that is, more than one job is executed simul-
taneously on the same nodes of a system. If co-scheduled
applications use different resource types, improved efficiency
can be expected. However, applications may also slow-down
each other when sharing resources. With threads from dif-
ferent applications running on individual cores of the same
multi-core processors, any influence mainly is due to sharing
the memory hierarchy. In this paper, we propose a simple
approach for assessing the memory access characteristics of
an application which allows estimating the mutual influence
with other co-scheduled applications. Further, we compare
this with the stack reuse distance, another metric to char-
acterize memory access behavior.

Keywords
Co-Scheduling; Memory Hierarchy; Application Characteri-
zation

1. INTRODUCTION
Improvements of computational power of HPC systems

rely on two aspects: On the one hand, increased perfor-
mance comes from an increased number of nodes1. On the
other hand, node performance itself is expected to grow with
newer hardware. Since quite some time, the latter can only
be achieved by more sophisticated node designs. General
purpose CPUs consist of an increasing number of cores with
complex multi-level cache hierarchies. Further, the need for
better power efficiency results in increased use of accelera-
tors. Memory modules either have separate address spaces

1A node is one endpoint in the network topology of an HPC
system. It consists of general purpose processors with access
to shared memory and runs one OS instance. Optionally, a
node may be equipped with accelerators such as GPUs).
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(accelerator vs. host) or are connected in a cache-coherent
but non-uniform memory-access (NUMA) fashion. However,
the latter makes it even more difficult to come up with high-
performance codes as it hides the need for access locality in
programs. All these effects result in a productivity problem
for HPC programmers: development of efficient code needs
huge amounts of time which is often not available. In the
end, the large complex HPC systems may have a nice theo-
retical performance, but most real-world codes are only able
to make use of just a small fraction of this performance.
Co-scheduling is a concept which can help in this scenario.

We observe that different codes typically use (and are bound
by) different kinds of resources during program execution,
such as computational power, memory access speed (both
bandwidth or latency), or I/O. However, batch schedulers
for HPC systems nowadays provide dedicated nodes to jobs.
It is beneficial to run multiple applications at the same time
on the same nodes, as long as they ask for different resources.
The result is an increased efficiency of the entire HPC sys-
tem, even though individual application performance may
be reduced.

To this end, the scheduler needs to know the type of re-
source consumption of applications to be able to come up
with good co-scheduling decisions. HPC programs typically
make explicit use of execution resources by using a given
number of processes and threads, as provided by job scripts.
Thus, we assume that co-scheduling will give out dedicated
execution resources (CPU cores) to jobs. However, cores in
the same node and even on the same multi-core chip may be
given to different applications. In this context, co-scheduling
must be aware of the use of shared resources between appli-
cations.

In this paper, we look at different ways to characterize
the usage of the memory hierarchy by applications. Espe-
cially, the results should help in predicting mutual influence
of applications when running simultaneously on the same
node of an HPC system. First, we look at so-called stack
reuse histograms. These histograms provide information on
exploitation of cache levels and main memory. However,
being an architecture-independent metric without time re-
lation, they cannot include information about how much of a
hardware resource is used. However, this is crucial to under-
stand whether an execution gets slowed down when another
application shares resources. Thus, secondly, we propose the
explicit measurement of slowdown effects by running against
a micro-benchmark accessing with a given memory footprint
at highest access rate. We compare slowdown results with
the reuse histograms of two specific real-world applications.
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One is an example use-case of the numerical library LAMA
[11], consisting of a conjugate gradient (CG) solver kernel.
The other is MPIBlast [12], an application from bioinfor-
matics, used to search for gene sequences in an organism
database.

We plan to use the prediction for co-scheduling decisions.
Within this larger context, an extension of the batch schedul-
ing system2 is planned which also takes online measurement
from node agents into account (the node agent actually is
an extension of autopin [10], a tool to find best thread-core
bindings for multi-core architectures). The vision is that
the system should be able to train itself and learn from the
effects of its co-scheduling decisions. If there is no char-
acterization of an application yet, the node agent could use
the proposed micro-benchmark to gradually get more knowl-
edge about the application for better co-scheduling. Use of
the micro-benchmark with its known behavior allows us to
obtain such knowledge which depends only on the applica-
tion and node architecture. This is in contrast to observing
slowdowns of arbitrarily running applications.

To get the reuse distance histograms of applications, we
developed a tool based on Pin [13]. This tool allows the
observation of the execution of binary code with the help of
dynamic runtime instrumentation. This way, HPC codes
with complex dependencies (in our case Intel MPI, Intel
MKL, and Boost) can easily be analyzed without recom-
pilation. Thus, the main contributions of this paper is de-
tailed analysis of the relation of reuse distance histograms
and slowdown behavior of applications triggered by a co-
running micro-benchmark with one given reuse-distance.

In the next section, we present measurements about co-
scheduling scenarios for the applications analyzed, provid-
ing motivation and a reference for our discussion. Then we
shortly describe our Pin-based tool and the micro-bench-
mark. Finaly we present detailed slowdown figures for both
the applications and the micro-benchmark itself.

2. CO-SCHEDULING MEASUREMENTS
As reference for later discussion, we first present some

measurements of co-scheduling scenarios with MPIBlast and
LAMA, as already shown in [3]. The system used is equipped
with two Intel Xeon E5-2670 CPUs, which are based on In-
tel’s Sandy Bridge architecture. Each CPU has 8 cores,
resulting in a total of 16 CPU cores in the entire system.
Both L1 (32kB) and L2 (256kB) caches are private per core,
the L3 cache (20MB) is shared among all cores on a CPU
socket. The base frequency of the CPU is 2.6GHz. However,
“Turboboost” is enabled (i. e., the CPU typically changes the
frequency of its cores based on the load of the system). How-
ever, we do not use Hyperthreading. All later measurements
in this paper also were carried out on this system.

For both applications, typical input data is used which
results in roughly the same runtimes if executed exclusively.
Fig. 1 shows performance and efficiency of various co-scheduling
scenarios. From the 16 cores available, the X axis shows the
number of cores given to MPIBlast. The remaining cores
are assigned to LAMA, respectively. Threads are alternat-
ingly pinned to CPU sockets: e.g. for the scenario with 4
LAMA threads, two are running on each socket. The effi-
ciency is given relative to the best dedicated runtimes of the
applications. Note that MPIBlast must be run with at least

2Here we will look at Slurm.

3 processes3. The best co-scheduling scenario (defined as
highest combined efficiency of around 1.2) is with 11 cores
given to MPIBlast and 5 cores to LAMA. This shows that
LAMA and MPIBlast can benefit from being co-scheduled.
In the referenced paper, we also showed energy consumption
benefits are even higher. Section 5 will provide insights into
why the positive effects are possible.

3. REUSE DISTANCE HISTOGRAMS
For the effective use of caches, good temporal locality

of memory accesses is an important property of any appli-
cation. Temporal locality exists when a program accesses
memory cells multiple times during execution. If such ac-
cesses are cached, following accesses to the same location
can be served much faster, speeding up execution.

To better understand how efficiently an application can
exploit caches, a precise definition of temporal locality for
a stream of memory accesses is helpful. The Stack Reuse
Distance, introduced in [1], is the distance to the previous
access to the same memory cell, measured in the number
of distinct memory cells accessed in between4 (for the first
access to an address, the distance is infinity). For a fully
associative cache of size S with least-recently-used (LRU)
replacement, a memory access is a cache hit if and only if
its stack reuse distance is lower than or equal to S. Thus,
if we generate a histogram of distances of all memory ac-
cesses from the execution of a program, we immediately can
see from this histogram how many of these accesses will be
cache hits for any given cache size: looking at the area be-
low the histogram curve, this is the ratio of the area left
to the distance signifying the cache size in relation to the
whole area. Because the behavior of large processor caches
(such as L3) is similar to the ideal cache used in the defini-
tion above, the histogram of stack reuse distances is valuable
for understanding the usage of the memory hierarchy by a
sequential program execution.

Figures 2 and 3 show histogram examples for sequential
runs of the applications analyzed in this paper. Many ac-
cesses at a given distance means that a cache covering this
distance will make the accesses cache hits. Looking e.g. at
the three histograms in Fig. 2, where we marked the L3
cache size, it is obvious that even for a small run with 5002

unknowns, for a large portion of accesses, LAMA has to go
to main memory.

The histogram cannot directly be measured with hardware
support. In the following, we shortly describe our own tool
able to get reuse distance histograms. It maintains an exact
histogram taking each access into account. Due to that, the
runtime of applications is on average around 80 times longer
compared to native execution.

3MPIBlast uses a two level master-worker scheme with one
process being a “supermaster” and at least one other process
being a master. Both supermaster and master distribute
work to at least one worker.
4Papers from architecture research sometimes define the
term reuse distance of an access from the previous access
to the same memory cell as being the number of accesses
in-between. This gives a time-related distance different to
our definition here. A reuse distance in this paper is always
the stack reuse distance.
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Figure 1: Runtimes and efficiency of co-scheduling scenarios. The core count used by MPIBlast is given on
the X axis, other cores are used for LAMA/CG solver (from [3]).

PinDist: A Tool for Deriving Reuse Distances
With the use of Pin [13] we developed a tool that is able
to observe all memory accesses from the execution of a pro-
gram to obtain its reuse distance histogram. For this, Pin
is dynamically rewriting binary code in memory directly be-
fore execution similar to just-in-time (JIT) compilers. Our
tool maintains a stack of accesses to distinct memory blocks
of size 64 bytes according to recency of accesses. For each
access observed, the corresponding entry for the accessed
block is moved to the top of the stack, and the depth where
the block was found — this is the distance of the access —
is aggregated in the histogram (on first access, we create a
new entry using distance infinity). More precisely, we use
distance buckets, allowing for a faster algorithm as given in
[9]. As suggested in [15], we ignore stack accesses which can
be identified at instrumentation time.

PinDist is available on GitHub5.

4. DISTGEN: CONTROLLED MEMORY AC-
CESS BEHAVIOR

DistGen is a micro-benchmark written to produce exe-
cutions exposing given stack reuse distances (and combina-
tions). For this, it reads the first bytes of 64-byte memory
blocks in a given sequence as fast as possible. For example,
to create two distances, it allocates a memory block with
the size of the larger distance. The smaller distance is cre-
ated by accessing only a subset of the larger block, contain-
ing the required number of memory blocks corresponding to
the smaller distance. Depending on the required distance
access ratio, the smaller and larger blocks are alternately
accessed. The expected behavior easily can be verified with
our PinDist tool.

DistGen can run multi-threaded, replicating its behavior
in each thread. It can be asked to perform either streaming
access or pseudo-random access, prohibiting stream prefetch-
ers to kick in. The later is not used in this paper, as it re-
duces the pressure on the memory hierarchy and does not
provide any further information for our analysis. Further, it
can be configured to either do all accesses independent from
each other, or via linked-list traversal. The latter enforces
data dependencies between memory accesses, which allows
measuring worst-case latencies to memory. In regular inter-
vals, DistGen prints out the achieved bandwidth, combined
across all threads. DistGen is provided in the same GitHub

5https://github.com/lrr-tum/reuse

repository as PinDist.
In the following, we used DistGen to simulate a co-running

application with a given, simple memory access behavior:
streamed access as fast as possible using exactly one speci-
fied reuse distance. To ensure occupying available memory
bandwidth, we run DistGen on one CPU socket with four
threads.

5. RESULTS
First, we analyzed LAMA and MPIBlast by extracting

the reuse distance histogram from typical executions. In all
histograms, we marked L2 and L3 sizes. All accesses with
distances smaller than L2 size are not expected to influence
other cores as L1 and L2 are private. In the range between
L2 and L3 size, co-running applications may compete for
cache space, and due to benefiting from reuse (accesses in
this range are hits due to L3), slowdowns are expected if data
is evicted by the co-running application. All accesses with
distances larger than L3 size go to main memory, and need
bandwidth resources which also is shared by all cores on a
CPU, and thus a potentially another reason for slowdown.

Reuse Distances
The CG solver from LAMA is running sequentially in 3 con-
figurations solving a system of equations with different num-
ber of unknown. Figure 2 shows the resulting histograms
with markers for L2 and L3 cache sizes. It is interesting
to observe spikes with heavy access activity at 3 distances
which move upwards in the same fashion with higher num-
ber of unknowns. The solver does a sparse-matrix vector
operation and multiple vector operations per iteration.

1. The large distance corresponds to the total size of the
matrix in memory in CSR (compressed sparse row)
format.

2. The middle spike corresponds to the vector length (e.g.
8 million doubles for the 10002 case).

3. The lower spike comes from re-referencing parts of
the vector in the SpMV operation due to the sparsity
structure (the example uses a 2D 5-point stencil).

In all LAMA cases, stream-accessing the sparse matrix
cannot exploit caches and results in heavy memory access
needs. From measurements we observed that LAMA perfor-
mance does not improve beyond 8 threads with dedicated
hardware. The reason is that 4 LAMA threads on each
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Figure 2: Reuse Distance Histogram for LAMA with
5002 (top), 10002 (middle), and 20002 (bottom) un-
knowns.

CPU socket obviously saturate the available bandwidth to
memory. Thus, LAMA performance is memory bound at
that point.

Figure 3 shows two histograms of one MPIBlast run. The
master MPI-task only has one spike, most probably cor-
responding to buffer sizes for reading input data and dis-
tributing data to workers. The supermaster process is doing
nothing in this configuration and therefor not shown. Fur-
ther, we show the histogram of an MPI worker (we run this
with 32 MPI tasks in total, resulting in 30 worker processes).
Histogram of all workers are similar. Apart from quite some
activity below and around L2 cache size, there is a spike at
the distance of L3 size. However, from measurements, we did
not really see much traffic to main memory. The solution to
this mystery lies in the fact that we do not show the number
of accesses for the bucket with the lowest distances (from 0
to 31K). For almost all reuse histograms shown, the spike
“skyrockets” the visualized range. E.g. for each MPIBlast
workers, it is more than 15 billion accesses.

Figure 3: Reuse Distance Histogram for MPIBlast.
Master (top) is distributing chunks of workload
to workers (bottom) which all have the same his-
togram.

This shows a drawback not only of our visualization, but
for such histograms in general. Even if 100% of accesses
were represented by area in the histogram, we cannot see the
frequency of accesses. The histogram may hint at memory
boundedness, but the frequency of accesses may be so low
that the hint is misleading. For more details, we have to look
at real measurements showing the influence in co-running
applications.

Slowdown Behavior
To predict the slowdown of applications being co-scheduled,
we need to co-run it with a benchmark for which we know
the behavior. Measurements are done using one CPU socket.
DistGen is always running with 4 threads. That is, the
1 MB memory usage point in the figures actually means that
each thread is traversing over its own 256 kB. While in this
point mostly private L2 is used by DistGen, due to the strict
inclusiveness property of the L3 cache in Intel processors,
this still requires 1 MB space from L3.

Figure 4 shows the performance of the LAMA CG solver
while being co-scheduled with DistGen with different dis-
tances. The reuse distance histograms predicted that the
CG solver for both 5002 and 10002 unknowns partially use
L3 cache, whereas with 20002 unknowns there is hardly any
benefit for L3 accesses. This can be seen clearly in Fig. 4.
The performance with 20002 unknown gets severely reduced
once DistGen starts consuming main memory bandwidth,
whereas with 5002 and 10002 unknowns we already see a per-
formance degeneration when DistGen starts to consume L3
cache. Furthermore, the maximum overall performance hit
is higher with 5002 and 10002 unknowns as they benefited
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Figure 4: Slowdowns perceived by LAMA with 1
(top) and 4 threads (bottom), running against Dist-
Gen with 4 threads.

from L3 cache. The maximum overall performance hit is
higher when using 4 threads compared to 1 one thread. This
results from the fact that a single thread cannot consume
the whole bandwidth provide by a CPU socket, whereas 4
threads can. Interestingly, the maximum slowdown with
four CG solver threads is already reached with 16 MB Dist-
Gen usage. This shows the mutual influence between appli-
cations. We attribute this to the CG solver threads evicting
cache lines from DistGen such that DistGen starts to use
main memory bandwidth.

Figure 5 shows the performance of four MPIBlast pro-
cesses when being co-run with DistGen with different dis-
tances. Again, the results of this measurement closely re-
sembles the ones shown in the reuse distance histogram.
MPIBlast mostly relies on its private L2 cache and there-
fore hardly reacts to DistGen consuming L3 cache. Once
DistGen consumes main memory bandwidth we see a slow-
down of MPIBlast, as it was predicted by the reuse distance
histogram. We assume the initial 5% performance hit of
MPIBlast when being co-run with DistGen to be the result
of reduced CPU clock frequency. With four idle cores Intels
Turboboost can notably increase the CPU clock frequency.
But when DistGen is running, all 8 cores are active and the
CPU temperature is increased leaving less opportunities to
increase the CPU frequency. Overall, the maximum perfor-

Figure 5: Slowdowns perceived by MPIBlast with 4
threads, running against DistGen with 4 threads.

Figure 6: Slowdowns perceived by our micro-
benchmark DistGen when running against various
applications.

mance hit of MPIBlast (≤ 20%) is far lower than that of
the CG solver (≥ 90%). We cannot obtain this information
from the reuse distance histograms.

Figure 6 shows the performance of DistGen when being
co-run with the various applications. We can gather almost
the same information from these figures as we did from the
previous ones, but our tool reacts much more apparent (up
to 500%). All variations of the CG solver slow down Dist-
Gen when it uses main memory bandwidth, whereas MPI-
Blast hardly results in a slowdown. The single threaded CG
solver requires less resources compared to the versions using
4 threads, where the slowdown perceived by DistGen peaks
already at 16 MB. This confirms our assumption from above
that DistGen is forced to go to main memory at this point.

Overall, we observe that the performance of DistGen when
being co-run with an unknown application can provide valu-
able insights into the other application. Such information
will definitely be useful to automatically determine if appli-
cations benefit from co-scheduling.

6. RELATED WORK
The stack reuse distance histogram has shown to be very
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helpful in analysing memory usage and hinting at tuning
opportunities [2]. There are quite some papers suggesting
fast methods for its determination in software-based tools,
as exact measurement is impossible using hardware. How-
ever, authors of [6] propose a statistical approximation using
hardware measurements which is extended to multi-cores in
[16]. We note that these methods, being statistical, only
work well with regular memory usage patterns. None of the
papers use the reuse distance histogram in the context of
analyzing co-scheduling behavior.

Characterizing co-schedule behavior of applications by mea-
suring their slowdown against micro-benchmarks is proposed
by different works. MemGen [5] is focussing on memory
bandwidth usage, similar to Bandwidth Bandit [7] which is
making sure not to additionally consume L3 space. Bubble-
Up [14] is very similar to our approach in accessing memory
blocks of increasing size. However, we vary the number of
threads co-run against our benchmark.

7. CONCLUSION
In this paper, we studied various ways of a-priori analysis

of applications for suitability to improve system throughput
via co-scheduling. Reuse distance histograms combined with
slowdown measurements proved very useful in this context.
We will use these methods in a modified job scheduler.

To avoid slowdown effects of co-running applications on
the same multi-core CPU, recent hardware (some versions
of Intel Haswell-EP CPUs) allows to configure L3 cache par-
titions for use by subsets of cores on the chip [8]. Instead of
avoiding specific co-schedulings, one can dynamically con-
figure resource isolation to avoid slowdown effects. In [4]
it was shown that this can be helpful. We will extend our
research in this direction.
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ABSTRACT
Co-scheduling processes on different cores in the same server
might lead to excessive slowdowns if they use a shared re-
source, like the memory bus. If possible, processes with
a high shared resource use should be allocated to different
server nodes to avoid contention, thus avoiding slowdown.
This paper introduces the simple scheme of avoiding to co-
schedule twins, i.e., several instances of the same program.
The rational for this is that instances of the same program
use the same resources and they are more likely to be either
low or high resource users − high resource users should ob-
viously not be combined, but a bit non-intuitively, it is also
shown that low resource users should also not be combined
in order to not miss out on better scheduling opportunities.
This is verified using both a statistical argument as well as
experimentally using ten programs from the NAS parallel
benchmark suite. By using the simple rule of forbidding
twins, the average slowdown is shown to decrease from 6.6%
down to 5.9%, and the worst case slowdown is lowered from
12.7% to 9.0%, indicating a considerable improvement de-
spite having no information about any programs’ resource
usage or slowdown behavior.

Keywords
Co-scheduling; Scheduling; Allocation; Multicore; Slowdown;
Cluster; Cloud

1. INTRODUCTION
Processes executing on different cores in the same server

typically share many of the server’s resources such as, for
example, caches, buses, memory and storage devices. When
co-scheduled processes have to share a resource their exe-
cution is typically slowed down compared to if they would
have had exclusive access to that resource [11, 14]. In one
study [12] two co-scheduled programs even experienced a
super-linear slow-down due to memory traffic interference,
i.e. the execution times were more than doubled. In such
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cases it would be more efficient to run processes sequentially,
both in terms of execution time and throughput.

The contention for shared resources has implications for
job scheduling in large cluster or cloud systems where tens
or hundreds of different programs should be allocated to
thousands or tens of thousands of cluster or cloud nodes.
Ideally, job scheduling should be done in a way that avoids
combining jobs that compete for the same resources, thus
minimizing the slowdown caused by resource sharing. Cur-
rent research focuses on the obvious question of what in-
formation a scheduler needs in order to minimize the slow-
down caused by resource competition between co-scheduled
processes. Many studies are based on the idea that unless
the slowdown [3, 9] or the resource utilization [1, 6] of co-
scheduled processes can be fairly well estimated, it will not
be possible for the scheduler to make an informed decision.
Thus, the scheduling becomes pure guesswork and as a re-
sult the performance suffers. In this paper however, we show
that slowdowns might actually be avoided despite having no
knowledge of program characteristics.

It is common knowledge that co-scheduling programs with
a high degree of resource usage has a negative impact on per-
formance. However, the co-scheduling of two instances of a
purely computationally bound program might also have a
negative impact on the overall system performance; given
that there are other programs that could have benefited
from being co-scheduled with these programs. Hence, a co-
schedule consisting of two computationally bound programs,
albeit the fact that the programs do not experience any slow-
down, should be considered to be a bad co-schedule.

In this paper we propose a simple scheme based on an ob-
servation from [4] where we noticed that, among the overall
worst schedules examined, there was an over representation
of schedules where a program was co-scheduled with another
instance of itself. The scheme is based on the idea that
performance can be improved not only by selecting the best
ways, but also by avoiding the worst ways in which programs
can be co-scheduled.

In summary, we make the following contributions:

• We show that co-scheduling two computationally bound
programs has a negative effect on the overall perfor-
mance, and should be considered bad, although the
programs themselves are not slowed down.

• We prove that co-schedules consisting of twins, i.e.,
several instances of the same program, are over rep-
resented among co-schedules with low and high slow-
downs. That is, they are more likely to be considered
as bad.

25



• We show that by using the simple scheme of disallow-
ing a program to be co-scheduled with another instance
of itself, we avoid many bad co-schedules and manage
to do so without any knowledge of the programs’ re-
source usage nor slowdown behavior.

Based on an experimental evaluation using ten programs
from the NAS parallel benchmark suite, we find that our
simple scheme effectively reduces the number of bad co-
schedules. In Section 2, we first introduce the basic princi-
ples for how to co-schedule processes that have a low or high
resource usage. Then, in Section 3, we describe the simple
scheme and a statistical argument for why the simple scheme
also should be a good scheme. Section 4 presents the exper-
imental results before concluding the paper with discussions
and conclusions, in Sections 5 and 6, respectively.

2. CO-SCHEDULING CAVEATS
When processes are co-scheduled on the same node in a

cluster or cloud system they have to share the node’s re-
sources. It is obvious that a high level of resource sharing
slows processes down compared to when executing alone on
the same node, since they interfere with each other. It is not
equally obvious that a low level of resource sharing can be
a problem. This is best illustrated by an example where we
try to schedule two instances of a computationally bound
program, A, with two instances of a memory bandwidth
bound program, B, where the execution speed of program
B is limited by memory access contention. The four pro-
gram instances can be co-scheduled in two different ways
as shown in Figure 1. In the example we assume a simple
processor without frequency scaling or some other advanced
technique.

In Figure 1a, where two instances, A1 and A2, of A are
co-scheduled on node 1, the slowdown for both A1 and A2 is
0%. The program instances B1 and B2 however, will both
experience a slowdown of 100%, and require twice the time
to complete their execution compared to when executing
alone on the same hardware. Thus, the average slowdown
for all processes in Figure 1a is 50%.

In Figure 1b, where A1 is co-scheduled with B1 and A2

is co-scheduled with B2, the slowdown of A1 and A2 is still
0%. Since program A never share any resources with any
other program its slowdown will always be 0%. Turning to
B1 and B2 we can conclude that since they do not share any
resources, both B1 and B2 have exclusive access to memory
resources, and their slowdowns are 0%. Hence, the average
slowdown in Figure 1b is 0%.

From this illustration we can deduce two principles:

1. Co-scheduling programs which use the same resource
should be avoided, especially if the level of resource
usage is high.

2. Programs with no or very low resource usage should
not be co-scheduled with other programs that have no
or low resource usage. There might be much to gain by
co-scheduling these programs with other high resource
usage programs.

Conceptually, if the resource usage of all programs are
known, a scheduler could use this information to avoid co-
scheduling two programs that place a high load on any re-
source. It could also easily avoid co-scheduling two programs

Figure 1: Example showing a bad allocation (a) and
a good allocation (b) of instances of a program A
that is computationally bound and B that is memory
bandwidth bound.

with a low degree of resource usage, thus reaping the bene-
fits of co-scheduling them with programs that have a higher
degree of resource usage. However, in the next section we
present a simple scheme that manage to avoid some of the
bad co-schedules without this prior knowledge of the pro-
grams’ resource usage.

3. A SIMPLE SCHEME TO AVOID BAD CO-
SCHEDULES

The two principles presented in the last section and the
fact that we earlier have observed, in [4], that co-schedules
containing several instances of the same program are over
represented among the worst co-schedules are the foundation
for the simple scheme we propose:

• Avoid co-scheduling several instances of the same pro-
gram.

The rationale behind this is that if a program utilizes a
resource to a high degree, then, co-scheduling several in-
stances of the same program will violate Principle 1, since
we know that they all utilize the same resource. Likewise,
co-scheduling several instances of the same computationally
bound program will violate Principle 2.

One might argue that the resource usage of most pro-
grams is not extreme, that the described cases above will
only apply to a few programs and that co-schedules con-
taining several instances of the same program are indistin-
guishable from other co-schedules. This is not true as we
will now show, first statistically and then experimentally.
Co-schedules containing several instances of the same pro-
gram are more likely to violate the two principles than other
co-schedules.

To explain why instances of the same program might be
over represented among bad co-schedules, we use the fol-
lowing statistical argument. Let us assume that a program
or job Ji has a random resource utilization of Xi where
Xi is a uniformly distributed random variable between 0
and 1, i.e., between 0% and 100% resource usage. Mul-
tiple jobs J1, J2, ..., Jn will then have the resource usages
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Figure 2: The probability distribution functions of
the sum of uniform random variables: a) two jobs
and b) four jobs. When combining different jobs
(green curve) it is more probable that the combined
resource use is centered around the average. In com-
parison, combining the same jobs (red curve) will
have a greater probability of generating a lower or
higher combined resource use.

X1, X2, ..., Xn where all Xi are independent uniform ran-
dom variables.

When co-scheduling two or more jobs, the combined re-
source usage will be the sum of the resource usages of the
individual jobs. For two jobs Ji, Jj , we get the combined
resource usage Xi+j as:

Xi+j =

{
Xi + Xj if i 6= j

Xi if i = j

This means that we obtain different probability distribu-
tions when combining two jobs depending on which jobs we
combine. Combining independent jobs results in a uniform
sum distribution while combining the same type of jobs pre-
serves the original uniform distribution. This is illustrated
in Figure 2 where we see that the sum of same jobs has a
uniform distribution (red curve) and the sum of indepen-
dent jobs has the uniform sum distribution (green curve),
centered more around the average. Increasing the number
of combined jobs would give us a distribution increasingly
similar to the normal distribution due to the central limit
theorem. This can be seen in Figure 2b which shows the
distribution when combining four jobs.

In practice, the combined resource usage cannot really
exceed 100% but the derivation above is valid also for lower
ranges of resource use. Also, as long as jobs are independent,
regardless of the actual underlying distribution, the central
limit theorem will still give us a higher probability of evening
out shared resource use when combining independent jobs
compared to when combining the same dependent jobs. This
means that combining instances of the same program often
leads to a comparatively low or high resource usage and thus
should be avoided.

4. EXPERIMENTAL EVALUATION
To evaluate our proposed simple scheme, we rely on bench-

mark execution time measurements and scheduling simula-
tions. We first, in Section 4.1, co-schedule different pairs
and measure the combined slowdown (sum of the two pro-
grams’ slowdowns) to verify that co-scheduling several in-

Figure 3: The combined slowdown (i.e., the sum of
slowdowns) of the ten NPB programs pairwise co-
scheduled in all different combinations. The pairs
containing twins, i.e. two instances of the same pro-
gram, have been marked in red.

stances of the same program really tend to produce lower
and higher combined slowdowns. Then, in Section 4.2, based
on a scheduling scenario we evaluate the possible impact of
the simple scheme on the overall throughput and perfor-
mance of a system.

The workload used in all experiments is the ten serial
benchmarks of the Numerical Aerospace Simulation (NAS)
parallel benchmark suite (NPB) reference implementation [10]
designed at NASA. The NPB benchmark suite is a collection
of five kernels, three pseudo programs, and two programs ap-
plicable to the area of computational fluid dynamics (CFD).
A description of the NAS-parallel benchmarks is given in
Table 1.

The evaluation was carried out on a computer equipped
with an Intel Q9550 processor running CentOS Linux 5.10.
The Yorkfield Q9550 processor has four cores and a 2-way
split second/last-level (L2) cache architecture where two cores
share the first L2-cache and the remaining two cores share
the second. During these experiments the NPB programs
were executed in pairs of two on the two cores sharing the
L2.

4.1 Co-Scheduling Slowdowns in NPB
Using the ten NPB programs we co-scheduled all different

program pairs and measured the combined slowdown of both
programs. The combined slowdown is calculated as the sum
of each individual slowdown for each program in the pair.
This resulted in the 55 different co-scheduled pairs plotted
in Figure 3. As can be seen the combined slowdown ranges
from virtually no slowdown (0.04%) up to 80.6%. The aver-
age combined slowdown for all co-schedule pairs is 14.15%.

The pairs containing twins, i.e. two instances of the same
program, are marked in red. As can be seen in Figure 3, the
twins seem to be a bit over represented in the low and high
areas of the distribution. This is in line with the statistical
arguments made in Section 3.

4.2 Avoiding Twins: Impact on Performance
and Slowdown

To evaluate the validity of the simple scheme, we used the
benchmark data from the previous section to enumerate all
possible ways in which two instances of each benchmark can
be scheduled on a cluster of ten dual-core nodes. Thus, we
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Table 1: A summary of the ten NAS-parallel benchmarks (NPB) [10] used in the experiments.
Abbr. Type Description
BT Pseudo program Block Tri-diagonal solver
CG kernel Conjugate Gradient, irregular memory access and communication
DC Data movement Data Cube
EP kernel Embarrassingly Parallel
FT kernel Discrete 3D fast Fourier Transform
IS kernel Integer Sort, random memory access
LU Pseudo program Lower-Upper Gauss-Seidel solver
MG kernel Multi-Grid on a sequence of meshes, memory intensive
SP Pseudo program Scalar Penta-diagonal solver
UA Unstructured computation Unstructured Adaptive mesh, dynamic and irregular memory access

Figure 4: A histogram of the average slowdowns of
all 1.4 million schedules resulting from the schedul-
ing of two instances of each benchmark and the slow-
down measurements from Figure 3. The gray area
shows all schedules and the orange area is the subset
where all co-schedules containing twins have been
removed, showing that removing twins lowers both
the average as well as the maximum slowdowns. The
bin size is 0.1.

have 20 jobs to allocate to 20 cores. This results in a total
of 1,436,714 different combinations.

The simulation results show that all different combina-
tions exhibit an average slowdown ranging from 3.7% to
12.7%. The average of all combinations was 6.6%. This
means that given this job mix and a job-scheduler that ran-
domly allocates jobs to cores, the average slowdown would,
over time, converge towards 6.6%. Thus, any scheme worth
using has to improve on that percentage in order to be ben-
eficial. Figure 4 shows a histogram of the full 1.4 million
combinations of allocations, the black line marks the aver-
age slowdown of the entire population. The orange area
(noTwins) consists of all schedules that do not contain any
twins, i.e. pairs that include two instances of the same
program, while the larger grey area (Twins) consists of all
schedules that do include at least one twin.

When looking at Figure 4 it becomes quite obvious that
disallowing twins will increase the overall performance. How-
ever, removing all twins does not only lower the average
slowdown from 6.6% to 5.9% it also lowers the worst case

Figure 5: A histogram showing the same data as
in Figure 4 with the addition of the subsets: Low
twins, High twins, and Mid twins, illustrating that
each group of twins (low, mid, or high) makes the
slowdown worse compared to when all twins are re-
moved (noTwins).

slowdown from 12.7% to 9.0%. Furthermore, the execution
time of some program instances are decreased quite signif-
icantly since the three worst performing pairs with a com-
bined slowdown of ∼47%, ∼60% and ∼80% are all twins (the
High pairs in Figure 3). Despite the fact that most schedules
containing twins are bad, there are a few schedules contain-
ing twins that outperform most no-twin schedules. These
are visible as the thin grey area along the left face of the or-
ange noTwins area in Figure 4. It is unfortunate that these
schedules are removed, although without more in-depth in-
formation we cannot know in beforehand which schedules to
keep. These schedules mostly contain twins from the low
and mid areas of Figure 3.

To further validate the hypothesis that combining pro-
grams which have a low resource usage has a negative impact
on the overall performance we divided the twins into three
groups: low, middle and high according to their placement
in Figure 3. As Table 2 and Figure 5 show, all three twin
groups have an average slowdown that is higher than that
of the no-twins schedules. Furthermore, all schedules with a
slowdown between 9.0% and 12.7% contain twin schedules.

As expected, the schedules in the high twins group, which
has a high resources usage, should have much higher slow-
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Table 2: Average, minimum and maximum slowdown in percent of the total execution time for all possible
combinations as well as for the subsets containing schedules with no twins, only twins, or the low-, mid-
and high twins. The noTwin schedules have the lowest average and worst slowdowns of all groups. Hence,
removing the twins from the schedules increases the performance.

All No Twins All Twins Low Twins Mid Twins High Twins
Number of schedules 1436714 669734 766980 305062 381989 421743

Best 3.66% 3.81% 3.66% 4.47% 3.66% 5.18%
Average 6.59% 5.92% 7.18% 7.05% 6.83% 8.10%
Worst 12.66% 9.01% 12.66% 12.66% 12.66% 12.66%

down than those in the other groups, consistent with the
earlier stated principle, Principle 1, in Section 3. Princi-
ple 2 stated that also the low twins should affect the over-
all slowdown negatively because there might be much to
gain by co-scheduling them with other, high resource usage,
programs. We can see that this is the case by looking at
Figure 5, which shows that the schedules in the low twins
group have higher slowdowns than both the no-twins and
mid twins group. Hence, we can conclude that that the two
principles are valid from our results. The mid twins group,
although better than both the low and high groups, still
performs worse than the no-twins group.

In conclusion we can see that all schedules containing
twins, and not only the low and high twins, are much more
likely to affect the slowdown negatively than a schedule with-
out twins.

As an interesting side note, when all processes are co-
scheduled as twins the average slowdown is 12.3% which
is the 16(th) worst schedule out of 1.4 million. Although
the all-twins schedule is not the very worst way in which
to schedule processes it is definitely one of the worst and it
illustrates the risk of putting only twins together. Further-
more, twin pairs from all three groups are represented in the
very worst schedule, which has a slowdown of 12.7%.

5. DISCUSSION AND RELATED WORK
The scheme presented in this paper is based on simple

heuristics that will avoid some of the worst co-schedules and
thus increase the performance of cluster or cloud systems.
The benefit of the simple scheme is that its rule is easy to im-
plement in a job-scheduler and no measurements or instru-
mentations are needed. However, this has to be balanced
against the fact that it will not be possible to constantly
find the best possible ways to co-schedule programs to reach
the optimal performance.

Currently, much related research is investigating methods
to find the best co-schedules by avoiding slowdown caused
by sharing of resources such as; caches [2], memory buses [7],
network links [8, 13] and co-scheduling slowdown [5]. The
common denominator for these methods is that they all mea-
sure one or several aspect of a program’s resource usage and
the measurements are then used by the scheduler to decide
which programs to co-schedule. In [4] as well as [15] the ef-
ficiency of several different methods are compared. Some of
these methods are more accurate than our simple scheme.
On the other hand, they are more complex to implement
and most of them require that the programs are executed
and characterized before scheduling them, or require access
to hardware performance counters or both.

The evaluation done in this paper, uses two core nodes and
single process programs. However, increasing the number

of cores or processes of a program should not change the
underlying principles. Nevertheless, further studies might be
motivated to examine the scheduling of parallel processes on
a larger number of cores and maybe using other workloads
and scheduling scenarios as well.

The simple scheme can be used by itself or it can be seen
as complementary to more complex methods. By combining
different methods it might be possible to reduce the number
of combinations to evaluate, thus reducing the complexity
of the problem.

6. CONCLUSION
This paper introduces Terrible Twins, a simple scheme

aimed at avoiding bad co-schedules by not co-scheduling
twins, i.e., several instances of the same program. This
simple rule is based on the observation that the twin co-
schedules have a statistical distribution that makes them
more likely to have a lower or higher combined resource us-
age compared to other co-schedules. And as shown, both
co-schedules with low or high resource usage will hurt the
overall system performance. The experimental results show
that by using the simple heuristic of forbidding twins, the
average and worst case slowdowns were decreased when co-
scheduling 20 jobs on 10 double-core nodes.
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ABSTRACT
The exploitation of the whole computing power of current
supercomputers is only achieved by few High-Performance
Computing (HPC) applications. We do not expect this issue
to be automatically solved with future hardware. One tech-
nique to achieve excellent system utilization is co-scheduling,
where at least two applications with divers resource require-
ments share the resources of one compute node. Co-sche-
duling enabled by Virtual Machine (VM) migration is able
to improve runtime and energy consumption of HPC ap-
plications. In this paper we investigate the impact of full-
virtualization on the performance of intra-node communi-
cation between VMs for various VM counts. Our analy-
sis reveals that compute-bound applications can achieve up
to 97 % of the native performance when executed within
16 VMs while communication intensive operations such as
collectives suffer from increased latencies by a factor up
to 16. The results can be used as decision-making guide-
lines for the scheduling system to find suitable solutions for
the overall system performance.

Keywords
Virtualization, Intra-Host, Co-scheduling, MPI, HPC

1. INTRODUCTION
We notice that common HPC applications are only ca-

pable of exploiting a fraction of the compute power offered
by today’s supercomputers. Although, some highly tuned
applications are able to get close to the systems’s peak per-
formance, most applications are limited by a single resource,
e. g., I/O or memory bandwidth. This characteristic is not
expected to change with upcoming hardware, rather will
the increasing gap between computing power and I/O per-
formance [8] result in even more applications not being able
to utilize all available resources.
One of the main goals of compute centers is the maximaza-

tion of the overall system utilization as it allows more scien-
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tists to conduct their research. A way to achieve this goal
without manually tuning all applications used at a system,
is co-scheduling [6], i. e., running two or more applications
with divers resource demands in parallel on an overlapping
set of nodes. Co-scheduling may benefit from adaptations
to the schedule during the runtime as jobs come and go,
each exhibiting individual resource demands. Such a dy-
namic schedule can only be realized if it is possible to move
already running processes across nodes of the system. In
previous studies we have investigated different techniques
enabling such migrations and found full-virtualization, e. g.,
VMs based on KVM, to provide a good trade-off between
performance and flexibility in terms of a greater application
range [16].
However, identifying the correct size of a VM , i. e., the

amount of Virtual CPUs (VCPUs), is non trivial. On the
one hand, large VMs limit the flexibility of the scheduler
as it can only migrate whole VMs from one node to an-
other. Small VMs on the other hand may result in the exe-
cution of multiple VMs with the same application on the
same host system, which slows down communication be-
tween the processes of the application. This slowdown is
due to the fact that processes running natively on the host
or within the same VM can communicate via shared mem-
ory, whereas inter-VM communication is typically handled
via (virtual) network interfaces. In this paper we investi-
gate the impact of full-virtualization on the performance of
intra-host communication. Therefore, we compare the per-
formance of different benchmarks and an example HPC ap-
plication executed natively to their execution in one or more
VMs running on the same host system.
Our results show that the influence of intra-host inter-VM

communication on the applications’ performance is highly
dependent on their characteristics. Compute-intensive bench-
marks achieve up to 97 % of the native performance when
executed within multiple VMs on the same host. However,
communication bound applications are slowed down by up
to 26 % in our studies. From a microbenchmark analysis we
could conclude that especially collective operations would
benefit from a locality-aware communication layer. Here,
the latency was increased by a factor of up to 16.
This paper is structured as follows: The following three

sections give a detailed overview of the hard- and software
setup used for our experiments. Section 5 presents the per-
formance analysis results of selected benchmarks and appli-
cations. Before concluding the paper (Sect. 7), we discuss
related work in Sect. 6.
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2. HARDWARE
We ran all tests on a two-socket NUMA node equipped

with Intel IvyBridge CPUs (E5-2650 v2) clocked at 2.6 GHz.
Each CPU possesses 8 cores resulting in a total of 16 CPU
cores in the entire system. One CPU core has support for
two hardware thread contexts (HTC, often called Hyper-
threading), i. e., a total of 32 HTCs are provided by the
whole system. An HTC has its own set of registers but
shares the instruction pipeline and both L1 and L2 caches
with the second HTC of the same core. The instruction
pipeline has dedicated hardware for floating point, integer,
and SIMD instructions, which can be co-issued with various
constrains. The L3 cache is shared among all CPU cores of
a CPU.
Our platform supports Intel’s virtualization technologies

VT-x and VT-d [17, 2]. The former extends the ring concept
of the x86-architecture by the so-called non-root execution
mode. This allows for guest Operating Systems (OSs) to run
at Ring 0—the most privileged level which is typically used
for OS kernels—but with certain restrictions. As OSs are
usually written with the assumption of having full control
over the hardware, their execution at a different privilege
level might result in unexpected or faulty behavior. The
non-root execution mode gives a guest OS the impression
of owning the hardware while still allowing the host kernel
to intercept operations that should not be permitted to the
guests. This hardware assisted virtualization provides com-
puting power within VMs close to that of native execution.
However, in contrast to the processor and memory, the

virtualization of I/O devices is still a challenge. Each inter-
action of a guest system with its devices requires I/O op-
erations. For common hardware such as standard Gigabit
Ethernet Network Interface Cards (NICs) it is possible to
emulate these devices in software. However, this approach
fails for high-performance networks, e. g., InfiniBand (IB),
only reaching about 50 % of the native performance [13].
To overcome these performance penalties, Intel introduced
the VT-d extensions providing guests direct access to the
real hardware. It avoids expensive guest-to-host transitions
every time the guest accesses its devices by granting direct
access to the respective control registers. However, this tech-
nique by itself does not enable virtualized HPC clusters as
one device can only be passed to one guest at a time. Hence,
each VM communicating over IB would require an individ-
ual Host Channel Adapter (HCA).
This problem was identified by the Peripheral Component

Interconnect Special Interest Group (PCI-SIG) proposing
Single Root I/O Virtualization (SR-IOV) as an extension
to the PCIe standard [10]. SR-IOV allows for hardware
supported I/O device multiplexing by introducing two PCIe
function types: Physical Functions (PFs) and Virtual Func-
tions (VFs). The latter are a pared-down version of the PF
providing all PCIe capabilities necessary for data movement.
The compute node used for our evaluation is equipped with
a two-port Mellanox ConnectX-3 IB adapter with support
for SR-IOV. It allows for the creation of up to 16 VFs, i. e.,
the adapter can be attached to 16 VMs at a time.

3. KERNEL-BASED VIRTUAL MACHINE
We used Kernel-based Virtual Machine (KVM) as virtual-

ization solution to perform our evaluation [15]. This hyper-
visor implements full-virtualization for the x86 architecture

based on Intel’s VT-x extension described in the previous
section or AMD’s virtualization extension (AMD-V). A VM
is an ordinary processes from the hypervisor’s point of view
and can be treated like any other process running on the sys-
tem. Similar to real hardware, it can be equipped with mul-
tiple VCPUs which are mapped onto threads of the KVM
process representing the VM.
In contrast to other hypervisors, e. g., Xen [4], KVM only

implements the necessary components for the virtualization
of the CPU and the main memory. Other parts of the com-
puter system have to be emulated in software. Therefore,
KVM is usually deployed in conjunction with the user-space
emulator QEMU [5].
The virtualization of I/O devices is facilitated by means

of the Intel VT-d extensions and SR-IOV. The former allow
for the pass-through of PCIe devices to VMs both prior the
boot time and during the runtime of the VM (hot-plugging).
This is an important feature for VM migration in HPC en-
vironments, as VMs cannot be migrated with an attached
pass-through device, but pass-through devices must be un-
plugged from a VM prior migration. With SR-IOV it is pos-
sible to attach the same physical PCIe devices to multiple
VMs at a time. Support for both SR-IOV and hot-plugging
allows for near native IB performance, but also enables the
scheduler to migrate VMs for the optimization of the overall
system utilization.
Modern HPC systems are typically built by using NUMA

systems. Software running on top should be NUMA-aware
for a good exploitation of such architectures, i. e., threads
and processes should be scheduled such that remote mem-
ory access is avoided as far as possible. KVM brings NUMA-
awareness in terms of NUMA topologies that can be defined
for the guests running on top. Therefore, it is possible to
comprise one or more VCPUs in so-called cells which are
recognized as NUMA domain by the guest system. Fur-
thermore, memory policies can be imposed to these cells.
Thereby restrictions to memory placement can be defined
enabling the creation of a complete reflection of the host’s
topology to that of the guest.

4. TEST APPLICATIONS
This section briefly introduces the benchmarks and test

application that have been used for the evaluation of intra-
host inter-VM communication. They have been built with
the Intel compiler and were executed by using Intel MPI.

4.1 Microbenchmarks
For the analysis of key figures assessing the communica-

tion performance of intra-host MPI communication among
multiple VMs, we used both a self-written benchmark and
a selection of the low-level benchmarks from the Intel MPI
Benchmarks (IMB) [1]. The self-written benchmark1 deter-
mines point-to-point latency and bandwidth by exchanging
messages between two processes in a PingPong pattern [1].
From the IMB we use a set of benchmarks for the evaluation
of the performance of MPI collective operations. We select
the following five collective operations:

barrier as it is an indispensable collective operation for the
synchronization of a set of MPI processes.

1https://github.com/RWTH-OS/mpi-benchmarks
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broadcast is a common parallel building block, e. g., used
at the beginning of solver phases, when a dataset must
be send from the master process to all processes of a
job.

allreduce is an operation combining partial results spread
among different MPI processes into a final result, e. g.,
it is used at the end of a solver phase.

allgather only collects the partial results without combin-
ing them.

alltoall is an extension to allgather allowing for the distri-
bution of distinct data to the receiving processes and
typically involves the most communication.

The exact implementation these benchmarks within Intel
MPI is unknown, however these collectives are typically im-
plemented using a communication tree for a reduction of the
required messages. The mapping of the tree onto MPI pro-
cesses and there nodes or VMs (in our case) can influence
the performance of the collective operation.

4.2 NAS Parallel Benchmarks
The NAS Parallel Benchmarks (NPBs) [3] is a suite of dif-

ferent computing kernels that are commonly used by large-
scale fluid dynamics applications. It offers varying problem
classes suiting different cluster sizes. For our tests we chose
Class C, depicting a reasonable size for a small test system
like the one used for our work.
Originally, the suite contained eight different benchmarks

comprising five computing kernels and three so-called pseudo
applications. From the kernels we chose FT and CG. The
first computes a discrete 3D Fourier Transformation. This
is a communication intensive kernel exhibiting an all-to-all
communication pattern. CG computes the approximation
to the smallest eigenvalue of a large sparse matrix by using
a conjugate gradient method. This benchmark is character-
ized by irregular memory accesses and communication. Fur-
thermore, we evaluated the three pseudo applications BT,
LU, and SP which are basically solvers for equation systems.
As our work considers applications that are partly mi-

grated among nodes in a cluster as a result of co-scheduling,
we used the MPI implementation of the presented kernels.
However, the three pseudo application exist as multi-zone
version [18], as well. These solve the equation systems on
loosely coupled discretization meshes and are intended for
the evaluation of hybrid parallelization approaches. The
OpenMP+MPI implementation solves the individual zones
in parallel in accordance with the shared-memory paradigm
while the exchange of boundary values between these zones
is performed by means of message-passing. Therefore, they
are ideal application benchmarks for our test scenario as
many HPC applications exploit HPC systems by applying
different parallelization approaches at the same time.

4.3 MPIBlast
We use a slightly modified version of MPIBlast 1.6.02 as a

real world application for our analysis. Using MPI-only, it is
a parallel version of the original BLAST (Basic Local Align-
ment Search Tool) algorithm from computational biology
for the heuristical comparison of local similarities between
genome or protein sequences from different organisms.
2http://mpiblast.org/
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Figure 1: Throughput Overhead

Due to its embarrassingly parallel nature using a nested
master-slave structure, MPIBlast allows for perfect scaling
across tens of thousands of compute cores [7]. The MPI mas-
ter processes hand out new chunks of workload to their slave
processes whenever previous work gets finished. This way,
automatic load balancing is applied. MPIBlast uses a two-
level master-slave approach with one so-called super-master
responsible for the whole application and possibly multiple
masters distributing work packages to slaves. As a result,
MPIBlast must be always run with at least 3 processes of
which one is the super-master, one is the master, and one
being a slave. We used only one master for all our bench-
marks and communication mostly only happens between the
master and the slave processes. The data structures used in
the different steps of the BLAST search typically fit into
L1 cache, resulting in a low number of cache misses. The
search mostly consists of a series of indirections resolved
from L1 cache hits, allowing for a good overlapping of dif-
ferent searches on the 2 HTCs of one core. Our modified ver-
sion of MPIBlast is available at GitHub3. In contrast to the
original MPIBlast 1.6.0 we removed all sleep() functions
calls that were supposed to prevent busy waiting. On our
test-system, this resulted in underutilization of the CPU.
Removing sleeps increased performance by about a factor
of 2. Furthermore, our release of MPIBlast updated the
Makefiles for the Intel Compiler to utilize inter-procedural
optimization which also resulted in a notable increase in
performance.

5. EVALUATION
We measured the results of our self-written benchmark for

the following three scenarios to understand the performance
penalties when running MPI processes within multiple VMs:

native (SHM) shared memory communication on the host

native (IB) communication using IB on the same host

VM (IB) communication between processes residing in dif-
ferent VMs using IB with SR-IOV

For native (SHM) the latency between two MPI processes
running on the same CPU socket is 0.27 µs. This value
drastically increases to 1.37 µs for native (IB). However, for
VM (IB) the overhead of the virtualization layer and SR-IOV
3https://github.com/jbreitbart/mpifast
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Table 1: MPI Barrier (Latency in µs)
Native 1 VM 2 VMs 4 VMs 8 VMs 16 VMs

2.05 2.10 8.07 19.44 9.10 13.58

is hardly notable. The additional latency for VM (IB) of
0.02 µs is rather small. These results are similar when mea-
suring the throughput between two MPI processes (cf. Fig. 1).
The maximum bandwidth of VM (IB) is only at around 45 %
of that in native execution.
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5.1 Collectives
To assess the impact of multiple VMs on communication

intensive applications, we investigated a set of collective op-
erations, namely: barrier, allgather, alltoall, allreduce, and
broadcast (cf. Tab. 1 and Fig. 4). All benchmarks were
started with 16 MPI processes each pinned to an individual
core. The results present a scalability study over 2, 4, 8, and
16 VMs, i. e., 8, 4, 2, and 1 processes per VM respectively.
Each VM has been equipped with one of the VFs that are
available on our test system. As a result, inter-VM commu-
nication is using IB as transport, whereas ranks running on
the same VM communicate via shared-memory segments. In
all cases a compact pinning of ranks to VMs and cores has
been performed, e. g., in the scenario with 2 VMs Ranks 0
to 7 have been started on one VM while the remaining ranks
resided in the second.
Using more than one VM clearly increases the latency of

the barrier by a factor of around 4. This is due to IB commu-
nication that takes place between some processes. However,
adding more VMs has a moderate influence on the latency
with additional 5.51 µs for 16 VMs running on the same host,
i. e., instead of having a mixture of shared-memory (intra-
VM) and IB (inter-VM) communication, all processes syn-
chronize over IB. The peak of 19.44 µs in the case of 4 VMs
might arise from a suboptimal distribution of ranks to VMs.
The latency in this scenario can be improved to 10.68 µs by
using a scatter pinning which. This results in a different
communication scheme as the communication tree is most
probably distributed differently across the VMs. However,
we have to investigate that point in more detail to get a
clearer picture.
The results of the other collective operations (cf. Fig. 4)

reveal that their execution within more than one VM of-
ten results in significantly increased latencies. For example

the broadcast operation is throttled by a factor of 1.5 when
the 16 processes are distribted across two VMs compared to
native (SHM) for small messages. This factor increases to
6.3 for the 16-VM case. However, for the 2- and 4-VM case
the latencies converge at least for large messages of 4 MiB.
The Alltoall operation within 16 VMs is throttled by a factor
of 16 for small messages. However, again for larger messages
this discrepancy decreases to a factor of around 4.5.
From the presented microbenchmark analysis it can be

concluded that the execution of a communication bound
MPI job on multiple VMs running on the same host can
impose important performance degradation. This is mostly
true for applications exchanging small-size messages and
should be considered when taking any scheduling decisions.

5.2 Applications
The previously shown microbenchmarks suggest that co-

scheduling using VMs on HPC clusters result in significant
performance penalties if the MPI library does not come
along with efficient intra-host inter-VM communication. In
this section we evaluate the performance hit for the appli-
cations described in Sect. 4.
In the first test case, 32 MPIBlast processes run equally

distributed on a different number of VMs. All VMs run
on the same compute node and use InfiniBand as inter-VM
communication channels. Figure 3a shows the performance
differences between the various configurations. The usage
of 0 VMs means that all processes run natively on the host
system communicating over shared-memory segments. As
MPIBlast is a compute-bound application and the commu-
nication channel does not constitute its bottleneck, the per-
formance differences between the configurations are rather
small.
Figure 3b shows the results of a similar test scenario, in

which the MPI-versions of the NPBs were divided equally
over VMs. Overall, the usage of multiple VMs is not a
performance drawback decreasing the performance of the
pseudo applications by only 1 % to around 3 % for the 16 VM
case related to the 1-VM case. The slower communication
interface between VMs in comparison to native execution is
only clearly noticeable in the more communication intensive
kernels CG and FT.
The next test case is the multi-zone version of the NPB.

They were started on one compute node for native (SHM)
and within multiple VMs on that node for VM (IB), i. e.,
the process count equals the VM count for the latter case.
However, the relationship between processes and threads
changed between every run. Figure 2 shows that the best
performance can be achieved if the benchmark uses more
processes rather than threads. The usage of a message pass-
ing interface reduces the number of side effects such as False
Sharing and contention on synchronization primitives. Fur-
thermore, the memory allocation strategy is simplified. The
processes are bound to a single NUMA node and always al-
locate the memory on its node guaranteeing local memory
accesses. In the case of using one process and 16 threads,
applications have to use NUMA-aware allocation strategies
to achieve best performance [11].
In the case, that the benchmarks are running natively on

the host system, a shared memory region is used for inter-
process communication. If the MPI processes run within
different VMs, a shared memory interface is missing and IB
is used as communication channel for the inter-VM com-
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Figure 3: Overhead when running MPI-only applications across multiple VMs compared to the execution within one VM.

munication. Figure 2 reveals that the performance degra-
dation by using multiple VMs is small. Consequently, the
performance of the multi-zone version of NPB does not de-
pend on small messages (smaller than the cache size), which
clearly is more efficient by using a shared memory inter-
face (cf. Fig. 1).

6. RELATED WORK
Overall there has been not much research on intra-host

inter-VM communication. Typically, studies focus either on
the comparison of different virtualization solutions in gen-
eral [19], or they investigate the impacts of I/O virtualiza-
tion on inter-node communication [14, 12].
Zhang et. al proposed a design of a locality-aware MPI li-

brary [21, 20]. Their implementation extends MVAPICH2 [9]
by a locality detector enabling communication over shared-
memory segments between processes residing in different
VMs on the same host. Focusing on the performance bene-
fits of Inter-VM Shared Memory (IVShmem) over SR-IOV
communication they perform a comprehensive performance
evaluation of inter-VM communication using either of the
two mechanisms.

7. CONCLUSION
This paper explores the applicability of virtualization as

driver for co-scheduling applied to HPC. We estimate the
impact of the VM size on the performance of HPC appli-
cations by conducting scalability studies over different VM
counts but with a fixed amount of processes, i. e., the vary-
ing VM granularity has a direct influence on the ratio be-
tween shared-memory and IB communication. Depending
on the application’s characteristics, a scheduler might decide
to host multiple VMs of the same job on one node without
taking high performance losses.
However, especially the latency of collective operations

suffer from the IB communication channel between VMs.
Therefore, we plan to work on locality-awareness of the MPI
layer. This should not only comprise inter-VM communica-
tion over shared-memory but also adoptions of the commu-
nication channels to dynamic re-schedules that might occur
during runtime.
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ABSTRACT
In recent years, the number of processing units per com-
pute node has been increasing. In order to utilize all or
most of the available resources of a high-performance com-
puting cluster, at least some of its nodes will have to be
shared by several applications at the same time. Yet, even
if jobs are co-scheduled on a node, it can happen that high
performance resources remain idle, although there are jobs
that could make use of them (e. g. if the resource was tem-
porarily blocked when the job was started). Heterogeneous
schedulers, which schedule tasks for different devices, can
bind jobs to resources in a way that can significantly re-
duce the idle time. Typically, those schedulers make their
decisions based on a static strategy.

In this paper, we investigate the impact if a heterogeneous
scheduler allows modifications of the strategies at runtime.
For a set of applications, we determine the makespan and
show how it is influenced by four different scheduling strate-
gies. A well-chosen strategy can result in a speedup of more
the 2.5 in comparison to other strategies.

Keywords
Scheduling, Scheduling strategies, Heterogeneous systems

1. INTRODUCTION
For several years now, multi-core processors equipped with

powerful vector units are the standard in almost all parts of
the computing world. They are in cell phones, notebooks,
desktop computers, servers and supercomputers. Addition-
ally, GPUs and other architectures (Xeon Phi, FPGA, dig-
ital signal processors) are used in combination with nor-
mal processors to speed up suitable parts of an applica-
tion. These accelerators mostly operate on separate memory
spaces which requires time-consuming copy operations when
the architecture is changed during a program run. At the
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moment, it seems as if this will not change in the foreseeable
future. All these hardware architectures have in common
that they only offer their performance benefits if develop-
ers write code for them and if they are able to exploit their
inherent parallelism. Code for accelerators can be created
using OpenCL and domain-specific languages (DSLs).

In almost all systems, a large fraction of the accelerator
hardware will be frequently idle and not optimally used.
This happens when

1. none of the concurrently executed programs on a com-
puter can make use of a provided accelerator.

2. programs do not provide codes for the accelerators
available.

3. a program cannot use its preferred resource because
it is temporarily blocked by another application. The
application may then be started on a less favorable
resource. However, once a better resource becomes
free, the program cannot be moved to this resource.

When the first situation occurs in a cluster environment,
it can be solved by moving jobs between nodes or by al-
ready taking resource requirements into consideration dur-
ing scheduling. If a resource is oversubscribed by multiple
jobs on one node while the same resource is undersubscribed
on another node, jobs can be migrated to balance the uti-
lization. The second situation can obviously be avoided by
providing codes for all concerned resources. Typically, a sep-
arate version of the program is needed for each resource. If
multiple codes are available, the most suitable free resource
can be chosen during runtime.

To tackle the third situation, it must be possible for a pro-
gram to start its computation on one resource and move to
another one later. Also a scheduler is required which man-
ages the resources, assigns tasks to resources and migrates
tasks. This way it can prevent resource oversubscription.

However, if the scheduling strategy (the algorithm which
decides when a computation is started or migrated) is static,
it cannot exploit program-specific information about the
computations behavior which could be provided by the pro-
gram developers.

VarySched is a scheduler that allows the scheduling of
computations (denoted as tasks) on heterogeneous resources.
An application must register itself at the scheduler by im-
plementing an interface. The interface requires only the set
of codes for the different resources (denoted as kernels) and
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a ranking of these kernels. The ranking can correspond to
performance, accuracy, energy consumption etc. We denote
such a set of kernels as a kernel collection. The scheduler re-
ceives collections, chooses one of their kernels and schedules
it to an available resource. This is similar to the behavior of
the Grand Central Dispatch resource scheduler [1]. In con-
trast to the Grand Central Dispatch, VarySched allows to
change the scheduling strategy. It even allows that an ap-
plication provides its own strategy in form of a simple Lua
script.

In this work, we evaluate the impact of different schedul-
ing strategies on the makespan of programs. Four different
types of strategies are tested:

long-term scheduler: allows to estimated the finishing time
of a job by fixing the order of execution on one device.

short-term scheduler: compared to the long-term sched-
uler this scheduler provides short reaction times.

banking-based scheduler: is an extension of the short-
term scheduler with an additional resource budget.

constraint-based scheduler: similar to the banking-based
scheduler but with a different computation for the re-
source budget.

In addition, we determine the overhead caused by the dif-
ferent scheduling strategies and the costs for exchanging the
scheduling strategy.

The paper is organized as follows: In Section 2, we dis-
cuss different techniques related to our scheduler. In Sec-
tion 3, we describe the relevant parts of the scheduler and
the scheduling strategies. After that we evaluate different
aspects and components of our infrastructure in Section 4.
Section 5 concludes the paper summarizing the results and
giving an outlook on future work.

2. RELATED WORK
To leverage computer’s full potential, jobs must utilize all

available resources and the resources must be used in paral-
lel, but not necessarily parallel within a single application.

Recently, quite some work has been published on the chal-
lenges of addressing exhaustive multi-core usage and hetero-
geneous scheduling. Nevertheless, so far there seems to be
no published approach tackling the problem from all possible
angles at the same time. Some of the approaches solely focus
on the multi-threaded application support like DAGuE [4],
Elastic Computing [13], or StarPU [2]. Others address the
problem of multi-application thread scheduling like ADAPT
[8], but are limited to the CPU-side of the problem. All of
them have in common, that substantial code changes may
be necessary to exploit the hardwares’ full potential like in
StarPU [2] or are even mandatory to make the system work
(e.g. in DAGuE [4]).

However, some ideas are similar to ours. StarPU, e.g.,
deals with codelets, which are similar to what we address as
kernel tasks. For calculating an optimal schedule, DAGuE
and StarPU rely on Directed Acyclic Graphs (DAGs) to de-
termine an optimal schedule, e. g. by utilizing task-graphs.
Hence, the code developer needs to introduce the interde-
pendencies of his tasks explicitly in those approaches.

Sun et al. have shown how a task queuing extension for
OpenCL, providing a high-level, unified execution model

coupled with a resource management facility can improve
the performance within a heterogeneous environment [11].
Anyway, this approach is solely based on OpenCL and does
not allow for the use of external code generators or other
ways of utilizing its scheduling system.

The Grand Central Dispatcher (GCD) [1] solves this prob-
lem by applying a more fine-grained scheduling strategy. In-
stead of considering the program as a whole, it individually
schedules sub-tasks (like functions) which must be marked
in the program. The scheduled jobs are executed asyn-
chronously which allows for an energy-efficient and effective
utilization of all resources. The GCD’s scheduling, how-
ever, is application-centric and has no global view for which
reason the quality of the schedules is, as a matter of prin-
ciple, limited. The queue, representing the jobs’ priorities,
has to be manually defined within the application using the
dispatch_set_target_queue-function. Another drawback
of the GCD is its restricted configurability which further
restricts the decision-making process.

Beisel et al. [3] presented a resource-aware scheduler capa-
ble of distributing tasks among different hardware resources
like VarySched. In contrast to VarySched, the scheduler uses
always the same, static scheduling function.

3. SCHEDULING STRATEGIES
The VarySched scheduler is used to evaluate the impact of

different scheduling strategies on the performance. VarySched
is a newly developed task scheduler which will be published
in the near future. In this section, we shortly describe the
main features of VarySched as well as the scheduling strate-
gies and applications that we use in our tests.

3.1 VarySched
VarySched consists of two parts, a daemon and an inter-

face, which must be met by the applications that are to
be managed by the scheduler. The scheduling daemon is
not executed in the operating system’s kernel space, but as
a daemon with root privileges. Although this prevents the
immediate cooperation with the Linux scheduler and the use
of cgroups, it allows for more flexibility. Any user shall be
able to submit a scheduler strategy with his programs and
benefit from a better resource utilization.

Applications register their kernel collections at the dae-
mon which determines when the kernels are executed. For
this, the daemon requires a strategy, and VarySched even
goes one step by allowing dynamic modifications of the strat-
egy. Users can implement their own strategy as a Lua script.
The scheduler can aim for different objectives, for example
the reduction of makespan, energy consumption or heat pro-
duction. The strategy can use every information that can
be accessed from the Lua script. While the strategy can
be flexible in Lua, the daemon is written in C++11 as well
as the library used by the client. However, a C interface
of the library is also provided to allow an easy use for C
applications.

A messagebox system provides mechanisms for the com-
munication between daemon and applications. There is one
special messagebox to register kernel collections. After reg-
istration, each application gets its exclusive messagebox for
further communications.

After an application has successfully registered, it is at-
tached to one of the provided queues. There are different
queues: one queue for each resource (denoted as resource
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Figure 1: Architecture of VarySched. Applications
register their kernels in the messageboxes. The
scheduler takes the kernels, schedules them, and up-
dates the kernels with the resource information.

queue) and one global queue. There are two possibilities to
trigger scheduling decisions: 1) when a resource becomes free
or 2) periodically calling a function. Ticks can be activated
or deactivated and the time interval between two ticks can
be adjusted. The scheduling algorithm, which has been im-
plemented in the Lua script, decides which of the registered
tasks is executed next and on what resource a specific ker-
nel from the kernel collection is started. The application is
informed about this decision via the associated messagebox
(see Figure 1 for the schematic structure of VarySched).

VarySched provides mechanisms allowing dynamic mod-
ification of the strategy used. Triggered by a Unix signal,
VarySched performs several steps:

• The Lua script containing the new strategy is loaded
into a temporary buffer.

• The script is checked for being a valid Lua program.

• It is checked if the interface is implemented correctly.

• The old strategy is replaced by the new one and the
queues are updated.

Note that all modifications are done while the daemon is
running. The first three steps do not cause any runtime
overhead because the tests are performed asynchronously in
a parallel thread. The daemon is neither stopped nor paused
nor must it be restarted. Additionally, there is no need to
make a copy of the new queue as it can be passed directly
to the new strategy. However, the new strategy can modify
the queues as required.

The script can be an arbitrary Lua script that fulfills the
daemon’s scheduling strategy interface. Otherwise there are
no limitations to the Lua program and therefore all Lua
features can be used. Furthermore, arbitrary sources of in-
formation can be used in the codes if required to make a
decision. Even external information sources, as from sen-
sors or the internet, can be used. Thus, the target of the
scheduling strategy can be arbitrary, as long as there is a
path to the required information.

In our evaluation, the scheduling strategy depends on a
resource governor (a system that predefines how much re-
sources can be used) which has two levels: high and low. The

governor can be used in the strategy to enable and disable
resources. Thus, depending on the governor’s state, tasks
can either be executed on different resources in parallel or
not.

3.2 Scheduling Strategies
In our tests, we use four scheduling strategies with differ-

ent aims. We define two different governors (named low and
high) which determine the type and the amount of resources
that can be used.

3.2.1 Short-term Scheduler
The short-term scheduler aims for using all resources per-

manently. While it focuses on keeping all resources busy,
the selection of a good kernel is secondary. It does not use
the resource governor’s state for the scheduling decisions.

At first, incoming tasks are placed in the global queue
which is not associated to any resource. All resource queues
contain only a single task that is processed instantly when
it arrives. If a resource ρ becomes free, the scheduler tra-
verses the global queue and searches for the first task that
has the best performance on resource ρ (with respect to the
strategy). This task is then scheduled on ρ and the current
scheduling phase terminates. If there is no such task, the
scheduler traverses the global queue again, searching for a
task whose second preference is ρ, and so on.

3.2.2 Long-term Scheduler
The long-term scheduler aims to place all tasks on the

resources they prefer most. Additionally, it tries to fill the
queues such that the queues’ work off requires similar time.
Depending on the resource governor’s state, the long-term
scheduler masks different resources to stay unused. In our
tests, if the governor’s level is high, jobs can be scheduled
on all resources; if the level is low, only the CPU cores can
be used (e. g. for energy reasons).

The global queue contains only a single task t while the
different resource queues can contain an arbitrary amount
of task. The scheduler determines the length of the resource
queue l1 that t prefers the most. Then it determines the
length of the resource queue l2 that t prefers the second
most. If l1 ≤ δ · l2 (whereby δ is the performance factor
between the resource that t prefers the most and the re-
source that t prefers the second most) t is schedule on its
first choice. Otherwise the procedure is repeated with t’s
second and third preferences and so on until it reaches the
least preferred resource.

3.2.3 Banking-based Scheduler
The banking-based scheduler assumes that each available

resource has a limited budget of credits. Running a kernel on
a resource costs a certain amount of credits. If a resource’s
budget suffices to bear the costs of a kernel, the respective
amount of credits is removed from the budget and the task
is scheduled to that resource. The scheduler starts with the
most preferred resource and proceeds successively with the
following resources. If no resource has a sufficient budget
to take the task, the task stays in the global queue. The
budget is refilled over time. After a certain amount of time,
credits are added to the budget until the maximal budget
limit is reached.

In our tests we start with a full budget of one hundred
credits. Every five seconds 15 credits are added to the bud-
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get if the resource governor is set to high, and ten credits are
added if the governor is set to low. Running a task on the
GPU costs ten credits; five credits are needed for all CPU
cores, one credit for a single CPU core.

3.2.4 Constraint-based Scheduler
The constraint based scheduler assumes that every incom-

ing job consumes resources denoted as credits and has an
overall credit limit. The credit sum of concurrently running
jobs must not exceed this predefined limit. The aim of this
schedule is to provide a constant upper boundary for cur-
rently used resources. The resource queue of every device
can hold only a single job. Incoming jobs are scheduled until
all resources are used or the overall credit limit is reached.
If one of these conditions is met, incoming jobs will be en-
queued in the global queue until a resource has been freed
and the free credits are sufficient.

In our tests, a task on the GPU costs nine credits, on all
CPU cores six credits, and three credits on a single core.
The credit limit is set to 18 if the governor is set to high and
nine if it is set to low.

3.3 Test Environment and Applications
We tested two applications on a NVIDIA Jetson-TK1 sys-

tem. The tests have been performed with two different re-
source governor states as described in Section 3.1. In our
tests performing a matrix-matrix multiplication, we sched-
uled one hundred instances of the same application. For the
LAMA application, we scheduled 25 instances.

Matrix-Matrix Multiplication.
Our first test application performs a matrix-matrix mul-

tiplication. The matrices are quadratic and contain 1024×
1024 single-precision floating point values. The performed
algorithm consists of three nested loops iterating over the
two matrices. To generate parallel running codes automati-
cally, we used Pluto-SICA [5, 6] and PPCG [12] to produce
the resource-specific kernels of the kernel collections.

This scenario shows how VarySched can be used in com-
bination with automatic code generators. It is not neces-
sary to program the different code versions for multi-core
CPU and GPU manually because in this example the code
is sufficiently simple and, hence, manageable by the afore-
mentioned tools.

A single matrix-matrix multiplication takes about 2.74
seconds on a single CPU core, about 1.11 seconds on all
four cores, and about 3.69 seconds on the GPU.

LAMA Application.
LAMA [7] is an open source C++ library for building

efficient, extensible and flexible solvers for sparse linear sys-
tems. A LAMA solver can be executed on various compute
architectures without the need of rewriting the actual solver.
LAMA supports shared and distributed memory architec-
tures, including multi-core processors and GPUs.

For our tests, we use a conjugate gradient solver to solve
an equation system which results from discretizing Pois-
son’s equation with a 3-dimensional 27-points (and thus very
sparse) matrix. The number of unknowns is 50 · 50 · 50 =
125000. The CG algorithm is one of the best known iter-
ative techniques for solving such sparse symmetric positive
(semi-)definite linear systems [10]. It is therefore used in a
wide range of applications (e.g. Computational Fluid Dy-

namics (CFD) or oil and gas simulations). The used kernel
collection contains three kernels: one for a single CPU core,
one using OpenMP, and one for the GPU and a single core.

This scenario shows that VarySched can schedule hardware-
specific kernels whose functionality is provided by a library.

A single execution on the solver takes about 191.01 sec-
onds on a single CPU core, about 103.19 seconds on all four
cores, and about 41.78 seconds on the GPU.

Jetson-TK1.
The Jetson-TK1 is an ARM-based (Cortex-A15, four 32-

bit cores, 2.3 GHz) system equipped with a 192-core Ke-
pler GPU (GK20A). Additionally, the board provides 2 GiB
main memory, shared and accessible by CPU and GPU [9].
We use two different Linux operating systems with different
CUDA versions. For the matrix-matrix multiplications we
use Ubuntu 14.04 and CUDA-6.5 and for the LAMA tests
we use Gentoo and CUDA-6.0.

4. EVALUATION
In this section we evaluate the impact of the scheduling

strategies (Section 3.2) on execution of the applications (Sec-
tion 3.3) by running respectively 100 or 24 instances on one
node in parallel. The experiments are performed for both
governors and the quality of the schedules is measured by
the makespan which is the time necessary to process all jobs.

The experiments are conducted as follows: All instances
are started at approximately the same time in the begin-
ning. One after another, the jobs register at the VarySched
daemon and the scheduling strategy determines for each job
which of their kernels is to be executed.

4.1 Matrix-Matrix Multiplication
The total execution time is displayed in Figure 2 for all

matrix-matrix multiplications and both governors. An im-
portant observation is that the makespans of the constraint-
based and the short-term scheduling strategy are almost the
same when the governor is set to high (i.e. all resources can
be used). Additionally, the makespan increases when the
resource governor’s setting is changed from high to low. For
the short-term scheduler the makespan stays almost con-
stant independently of the governor’s state. This can be
explained by the way this scheduler works. As it always
tries to utilize all available resources, the governor’s setting
has no influence on the schedule.

The decreasing performance of the constraint-based and
the banking-based scheduler in the low governor state can be
explained by their credit-based approach. The performance
of the long-term scheduler stays almost constant.

The available budget of the constrained-based scheduler
and the banking-based scheduler depends on the governor’s
state. The constraint-based scheduler’s credit limit is 18 in
the high state and nine in the low state. The high state
allows to utilize all available resources. The low state allows
only the utilization of either three instances using a single
core or two instances, one running a multi-threaded kernel
and one a single-threaded kernel.

In this respect, the banking-based scheduler behaves dif-
ferently as its performance is significantly smaller if the re-
source governor’s state is lowered. This can be explained
by how credits are added to the budget and when a task is
scheduled. In both states, a constant number of credits is
added every five seconds; 15 credits in the high state, 10 in
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Figure 2: Makespan of one hundred instances of the
matrix-matrix multiplication application with differ-
ent governor states. The credit-based strategies are
strongly influenced by the choice of the governor
while the short-term and long-term scheduler are
almost unaffected.

the low state. This frequency of incoming credits is too low
to utilize all resources permanently because an instance of
the application can be competely executed before the new
credits arrive.

A task is scheduled when a sufficient amount of credits for
a resource is available and, if the credits are only sufficient
for the slowest resource, the kernel for this resource is chosen.
Thus, 15 credits are sufficient for a GPU and multi-threaded
kernel, ten credits are enough for one multi-threaded and one
single-threaded kernel, and five credits are still sufficient for
one multi-threaded or one single-threaded kernel. In general,
the constraint-based scheduler’s is multiple times faster than
program execution using the banker-based scheduler.

The long-term scheduler achieves almost constant results
for both resource governor settings. This can be explained
by the fact that the last jobs to run are scheduled and ex-
ecuted on the slowest resource because there are some in-
accuracies in the performance factors between the different
resources.

But the increase of the makespan alone with different gov-
ernors does not show the positive impact of co-scheduling.
Since in most scheduling strategies the number of utilizable
resources is reduced if the governor is lowered, the total exe-
cution time (the makespan) increases. However, this is even
the case if the median of the applications’ execution time de-
creases. Figure 3 shows that the runtime of a single matrix-
matrix multiplication decreases if less resources can be used.

The increase of the single application’s performance has
two reasons: 1) The size of the matrices is small so that
much of the time during the matrix-matrix multiplication is
spent on copying data in the case of executing on the GPU.
2) The GPU versions also use CPUs a little bit and thereby
influence CPU kernels. If there are no GPU kernels, then
the cores are not shared.

When the governors are set to high, all resources are used
and applications share and compete for these resources so
that applications might block each other; while in the case,
where the governors are set to low, less resources are used
and applications are executed more sequentially.

Figure 3: Runtime of matrix-matrix multiplication
for different schedulers and governors.

4.2 LAMA Application
As in the previous section we first analyze the makespan of

the LAMA application. When scheduling this application,
the results for the short-term scheduler are similar to the
ones of the matrix-matrix multiplication (see Figure 4). The
short-term scheduler does not consider the governor’s state
and the application’s preferences, thus all test runs have
similar makespans.

Figure 4: Makespan of one hundred instances of the
LAMA application with different governor states.

The applications suffer the most if the constraint-based
scheduler is applied and the governor is lowered. The total
execution times more than double if the usage of the GPU
is prohibited.

The banking-based scheduler behaves differently. While
the makespan for the matrix-matrix multiplication increases
when setting the governor’s state to low, it is almost con-
stant in case of the LAMA application. This can be ex-
plained by the required runtime for one application which
is significantly higher than for the matrix-matrix multipli-
cation. Due to the high runtime, the scheduler’s budget can
be refilled sufficiently fast, for which reason all resources can
be used.

In case of the long-term scheduler, there is the same issues
as for the matrix-matrix multiplication. The performance
factors between the different resources are not well-adjusted
and, thus, this scheduler achieves the worst results.

The median of the runtimes varies for three of the sched-
ulers when changing the governors state (see Figure 5). While
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Figure 5: The runtime of the LAMA applications
with different governors.

for the matrix-matrix multiplication the median only stays
constant for the short-term scheduler, for the LAMA ap-
plication it stays constant for the banking-based scheduler,
too. This was expected from the previous results of the
makespan. At maximum, using the banking-based scheduler
is 2.5 times faster than using the constraint-based scheduler.

The median of the application runtime increases if the
long-term scheduler is used. In comparison to the previous
tests, the time required to copy the necessary data to the
GPU can be compensated by the accelerated computation.

Findings: Co-scheduling can reduce the makespan
of parallel executed applications. It has a positive
impact on the systems performance, even in the
case when the median runtime of a single applica-
tion slightly decreases if number of used resources
is increased.

5. CONCLUSION
In this paper we have shown that the scheduling strat-

egy has a high impact on the makespan of co-scheduled ap-
plications when they are run on nodes with heterogeneous
resources. In our experiments, we used VarySched, a re-
source scheduler that is specialized for such heterogeneous
environments and that allows dynamic modifications of the
scheduling strategy. We evaluated four different strategies
using two applications and two resource governor settings.
The results show that the application can be accelerated by
a factor of up to 2.5 if the scheduler is chosen wisely.

Acknowledgments
This work was supported by the German Ministry for Educa-
tion and Research (BMBF) under project grant 01|H13004A
(FAST).

6. REFERENCES
[1] Apple. Grand Central Dispatch - A better way to do

multicore. Technology Brief, 2009.
http://opensource.mlba-
team.de/xdispatch/GrandCentral TB brief 20090608.pdf.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A.
Wacrenier. StarPU: a unified platform for task sche-
duling on heterogeneous multicore architectures.
Concurrency and Computation: Practice & Experience
- Euro-Par 2009, 23:187–198, 2011.

[3] T. Beisel, T. Wiersema, C. Plessl, and A. Brinkmann.
Cooperative multitasking for heterogeneous
accelerators in the Linux Completely Fair Scheduler.
In Proceedings of the International Conference on
Application-Specific Systems, Architectures, and
Processors, pages 223–226, Piscataway, NJ, USA,
2011.

[4] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault,
P. Lemarinier, and J. Dongarra. DAGuE: A generic
distributed DAG engine for High Performance Com-
puting. Parallel Computing, 38(1-2, SI):37–51, 2012.

[5] D. Feld, T. Soddemann, M. Jünger, and S. Mallach.
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formation. In A. Größliger and L.-N. Pouchet, editors,
Proceedings of the 3rd International Workshop on
Polyhedral Compilation Techniques, pages 45–54, 2013.

[6] D. Feld, T. Soddemann, M. Jünger, and S. Mallach.
Hardware-Aware Automatic Code-Transformation to
Support Compilers in Exploiting the Multi-Level
Parallel Potential of Modern CPUs. In Proceedings of
the 2015 International Workshop on Code
Optimisation for Multi and Many Cores, COSMIC
’15, pages 2:1–2:10, 2015.

[7] J. Kraus, M. Förster, T. Brandes, and T. Soddemann.
Using LAMA for efficient AMG on hybrid clusters.
Computer Science - R&D, 28(2-3):211–220, 2013.

[8] K. Kumar Pusukuri, R. Gupta, and L. N. Bhuyan.
ADAPT: A Framework for Coscheduling
Multithreaded Programs. ACM Transactions on
Architecture and Code Optimization, 9(4):45:1–45:24,
2013.

[9] NVidia Corporation. Jetson TK1 Development Kit
Specification - Version 01, 2014. http://developer
.download.nvidia.com/embedded/jetson/TK1/docs
/3 HWDesignDev/JTK1 DevKit Specification.pdf.

[10] Y. Saad. Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2nd edition, 2003.

[11] E. Sun, D. Schaa, R. Bagley, N. Rubin, and D. R.
Kaeli. Enabling task-level scheduling on heterogeneous
platforms. In GPGPU@ASPLOS, pages 84–93, 2012.

[12] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez,
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