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Abstract—In a typical massive MIMO system, the limited
coherence time of the wireless channels leads to interference
during the uplink training phase, since pilot sequences have to
be reused between different users. This interference ultimately
limits the achievable rate when basic linear beamforming is used.
We show how to push this limit by exploiting the statistical
properties of the channel. Specifically, we use a lower bound on
the achievable rate to formulate a rate balancing problem which
is independent of the instantaneous channel state information but
only depends on the second order information. The rate balancing
problem is then solved by methods known from classical MIMO
systems leading to beamforming vectors and power allocations
which significantly outperform the standard matched filter or
zero-forcing approaches.

I. INTRODUCTION

Massive MIMO is a promising technology for the next
generation of cellular wireless networks [1]-[3]. The idea is
basically to deploy such a large number of antennas at each
base station that the number of antennas is at least an order
of magnitude larger than the number of simultaneously served
users. The large number of antennas has several advantages.
The array gain leads to an increased energy efficiency. Even
more importantly, for a typical wireless channel, the large
number of antennas leads to approximately orthogonal channel
vectors for two different users due to the law of large numbers
(e.g. [4]). These properties enable robust spatial multiplexing
with simple signal processing methods [1].

In other words, to fully exploit the potentials of a massive
MIMO system, we want to serve serve multiple users simul-
taneously, relying on simple spatial multiplexing. As a result,
a significant number of interfering data streams is transmitted
simultaneously throughout the massive MIMO network. For
perfect channel state information (CSI), the interference is
negligible due to the afore mentioned asymptotic orthogonality
of different channel vectors [4]. However, for a block fading
channel model with limited coherence time and frequency,
the limited number of available channel accesses per channel
realization results in a dimensionality bottleneck. In fact, for a
simple channel model where all channel coefficients are i.i.d.
complex Gaussian, it can be shown that for sufficiently large
numbers of users and antennas, the coherence time poses an
upper limit on the achievable degrees of freedom [5]. In this
case, the optimal amount of channel accesses used for training
is half of the coherence block [5].

This dimensionality bottleneck gives rise to the pilot con-
tamination effect which is observed in the classical massive

MIMO setup [4]. Pilot contamination describes the interfer-
ence in the channel estimates obtained in the uplink that
is caused by the fact that the number of channel accesses
in one coherence block is too small to give every user an
orthogonal training sequence. The interference in the channel
estimates in turn leads to interference during data transmission,
which ultimately limits the performance of a massive MIMO
system even for an unlimited number of antennas at each base
station [4].

This is not the final word on massive MIMO, however,
since the upper bound for the degrees of freedom in [5]
does not take the channel structure into account. In [6], a
precoding technique is introduced that is capable of completely
suppressing the interference during data transmission for an
unlimited number of base station antennas. The precoding is
based on a linear transformation of the contaminated channel
estimates, where the transformation only depends on the
channel covariance matrices of the different users.

In a practical setting, with a large but not infinite number of
antennas, this statistical zero-forcing might lead to suboptimal
results, since inter-user interference that is not related to pilot-
contamination cannot be neglected in this case. Thus, we
propose a precoder design which is also based on a linear
transformation of the contaminated channel estimates, but
where the transformations are optimized for a finite number
of antennas with a rate balancing approach. The optimization
is performed with respect to a lower bound on the achievable
rate based on the bound introduced by Medard [7], which
only depends on the covariance matrices of the channels. In
principle, the proposed algorithm is a generalization of the
pilot-contamination precoding method introduced in [8] which
was extended to SINR balancing in [9]. Notably, our method
is also applicable in an uncoordinated setting, whereas pilot-
contamination precoding is applicable in a network MIMO
setting only.

A. Notation

Throughout this paper, (-)! denotes the conjugate transpose
of a matrix and E[-] denotes the expectation. The covariance
matrix of a vector x is denoted as

C. = E[z"x]. (1)
II. SYSTEM MODEL

For the ease of exposition and notation, we only consider
a single-cell scenario, but the extension to the multi-cell case



is straightforward (see [6]). We exploit the reciprocity of the
wireless system in time-division-duplex (TDD) operation by
using the channel estimate obtained during the uplink training
phase to design the downlink precoder. Let hj;, € CM denote
the channel vector from user k to the base station and 1/1,13 €
C'*Ti the unit-norm pilot sequence assigned to user k. The
number of channel accesses used for training 7; is assumed
to be smaller than the number of simultaneously served users
K.
The least squares estimate of hy is then given by

1
yr =hi + Y haplp + ny 2
nz;é;c vV Pt
1
= hy + hycni + ny 3)
nz;é;c V Pt

where the coefficients ¢, = ’lﬂg’,bk capture the correlations

between the pilot sequences, ny, ~ N¢(0,1I) is additive white

Gaussian noise and p, denotes the effective training SNR.
Given the decomposition

Cy, = Elyryi] = L Ly “
the beamforming vector for user k is of the form
wy, = ArLj Y 5)

for some linear transformation Aj that only depends on
the statistics of the channel. The whitening L;' is in-
troduced to make the derivations below less cumbersome.
Note that the precoder structure in (5) is a generalization
of several previously introduced approaches, such as mini-
mum mean squared error (MMSE) channel estimation [10],
[11], pilot-contamination precoding [8] or projection based
approaches (e.g. [12]). In contrast to these typically heuristic
approaches, we will derive an algorithm that leads to optimal
transformations Aj with respect to a rate balancing problem.
With the independent transmit symbols s ~ N (0,1) for
the users, the transmit signal for the downlink is given by

T = +/pa Zwksk- (6)
k
where pg denotes the maximum average transmit power.
Consequently, the beamforming vectors are constrained by

E[z!
pdl

2 Y Elwiwy] =) A A <1 (D)
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To design the transformation matrices, we use the lower bound
on the achievable rate introduced in [7], which leads to the
achievable rate

e = logo (1 + k) (3
for user k, with the equivalent SINR

vy = |E[h} wy]?
o Hvarlhilwg] + 32, Elhjlw, ]

(€))

Due to the independence of the channels belonging to different
users, when using the beamforming vector from (5), and with

Tin = L, Ch, coi (10
the equivalent SINRs can be written as
2
= | tr[Thr A |
k= 5
% + >, tr[AHChH, A, + Dtk | tr[T,mA"H
(1D

The derivation for the expectations in the denominator uses
higher order moments of the complex Gaussian distribution
and can be found in [6].

IIT. PROBLEM FORMULATION

The rate balancing problem with a simple sum power
constraint is given by

. logy (1 + %) > B VE,

> wAgA)] <1
k

12)

13)

for some given rate targets 7. For identical rate targets
T, = T Vi, the rate balancing problem degrades to the
simpler quasi-convex SINR balancing problem. Either problem
can be solved with a bisection on 8 and the solution of a
convex problem for each candidate 8 within the bisection.
This approach is prohibitive in our case due to the high
dimensionality of the problem (the Ay are M x M). Another
approach is the transformation of the given problem into the
dual uplink formulation. To this end, we first write the SINR
expression in (11) in vector form. Let a; denote the vector
containing the stacked columns of Aj; and let ty, denote
the vector containing the stacked columns of T} . With the
Kronecker product B, = I ®CY,, the vectorized reformulation
of the SINR reads as

ikl
Te = T o H, |2

The SINR in the dual uplink for user k& with filter vector gy
can be identified to be (see e.g., [13], [14])

(14)

qx [t gr|?
= e bk (15)
k

where the g,, are the uplink transmit powers. Since the uplink
performance is independent of the norm of the filters, we
define the uplink filters to have unit norm, i.e., g,?gk = 1.
The rate balancing problem for the uplink is thus given by

max A st logy(1+955) > B VE,  (16)
q9,91,--,9K
gilg, =1 Vk
qg'qg=1
qg>0



where ¢ = [q1, .. .,qx]|". For fixed uplink transmit powers g,
the optimal filter is given by

gp =L a7
gl
with
1 !
9= (o1 V0Bt Y tutha,) tue ()
Pdi n n#k

Incorporating the optimal filters into the uplink SINR yields

1 —1
:YISL(q) = thlljk ( I+ Z qn B, + Z tnktSkQ'rL) tir
Pd - ik
(19)

Given the optimal filters, the optimal uplink power alloca-
tion g can be calculated using a fixed-point iteration [15]. To
this end, we decompose the uplink SINR with optimal choice
for the filters in (19) into

~UL gk
T (q) = (20)
b (@) Ti(q)
where the effective interference
1
ZIr(q) = H (1 H -1
ek (a I+3, 0uBn + 3, 2 tartinan)  thn

2n

captures the impact of the interference and noise on the SINR
at user k. The interference in our case has an equivalent
structure to the one in [14], thus

I(q) = [T1(q), - .., T (q)]"

satisfies the properties of a standard interference function [14],
[16]. Consequently, for given feasible SINR targets

(22)

o(B) =[2°"* —1,...,20 _ )T (23)
the fixed point iteration
q « diag(o(3))Z(q) (24)

converges globally to the unique fixed point [16]. In [17], an
algorithm for the sum power constrained problem is intro-
duced. In this method, the rate factor 3 is adapted in every step
to ensure convergence to the unique optimal solution for both
B and q that fulfills the transmit power constraint g''q = 1.
In our case, the iteration of the following two steps leads to
the optimal solution from an arbitrary initial q:

BB o) I(q—1=0
q «+ diag(a(58))Z(q)

Basically, we adapt 8 such that the result of the fixed point
iteration in (24) always fulfills the transmit power constraint.
Note that the root in (25) is unique since the components
or(B) of o(pB) are strictly increasing in /3. Additionally, the
derivatives o} (/3) are strictly positive and thus the Newton-
Raphson method is globally convergent in this case.

(25)
(26)

Once we found the optimal power allocation g* and uplink
filters g; leading to the optimal uplink SINRs 4V, we find
the optimal power allocation for the downlink by setting

e = WL Vk 27)

and substituting ay = /prgi in the downlink SINRs. As a
result, we obtain K equations

1
ot > PnghBign + Y pulthngnl® = pr
n n#k

|t?k9k|2

28
Sk UL* (28)

which are linear in the downlink power allocations p,,. That
is, we need to solve the linear systems of equations

1
dp——1 (29)
Pdi
where p = [p1,...,px]T and the entries of & can be identified

from the equations in (28). Note that due to the structure
of @ we have p > 0 [14]. It can further be verified that
1T¢_11ﬁ = 1 [14]. All steps of the rate balancing algorithm
are summarized in Algorithm 1.

Algorithm 1 Statistical Rate-balancing for Massive MIMO
Tirn, <+ L;lchkcnk Vk, n
tin < vec(Tin)
B +1 ®Chk
q <+ %1
repeat L
gr +— (ﬁ I+ Zn gnBn + Zn;ék tnktEan) tr, VE
Ii  1/(t},9x)
B+ B:0(B)T-1=0
q « diag(o'(5))Z(q)
until convergence
gk < gr/ gkl vk
p+— P11

Pdl
ay < prgr vk

> Entries of @ from (28)

IV. COMPLEXITY REDUCTION

The design of the beamformers can also be done with
respect to a different basis Q@ = [qu,...,qn]. To this end,
we transform all inputs into the desired basis

Y+ Q'y. (30)

After the beamformer design, the transmit signal is trans-
formed back into the original basis

T +— Qx'. (31)

For an orthonormal basis (Q7Q = I), the transformation has
no effect on the transmit power. Thus, the beamformer design
is equivalent to the one without transformation

The idea is to use the transformation to get a more conve-
nient structure of the covariance matrices. For example, for a
uniform linear array at the base station, the transformation with
the unitary DFT matrix F' leads to approximately diagonal
covariance matrices. If most of the structural information in
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Fig. 1. Experimental cumulative distribution functions of the achievable rates

for different precoders in a single cell with M = 400 antennas, K = 40

users, and Ty, = 10 orthonormal pilot sequences. Both, the upper and lower
bounds on the achievable rates, are depicted.

the covariance matrix is captured in the diagonal entries, we
can also restrict the linear transformations A; to be diagonal
without sacrificing performance.

For diagonal A; = diag(a;), we get expressions that have
an equivalent structure as in the case of full matrices, but with
significantly reduced computational complexity. Replacing A;
with diag(a;) in the SINR expression in (11), we note that
only the diagonals cp, of Cp, and t;; of T;; are relevant
for the computation. With B; = diag(cp,), we obtain a
formulation identically to the one in (14). The dimensionality
is reduced form M? to M and the matrices B; are diagonal.

It is clear that the main complexity of Algorithm 1 is the
solution of the (now M x M) system of equations to obtain

. 1 -1
Pdi — oy

(32)

Assume that all pilot sequences are drawn from a set of
orthonormal vectors, i.e., the correlations ¢, are either 0
or 1. Thus, only those vectors t,; are non-zero for which
users k and n use the same pilot sequence. Let Iy denote
the matrix which contains the non-zero ¢, of the users n
interfering with user k, excluding ;. The vector g contains
the corresponding uplink powers. With

_ 1
B=—1I+) By (33)
Pdl =

we can simplify (32) to
- = . -1
gi = (B + I diag(@n) ") tu (34)

Due to the diagonal structure of B we can reduce the
complexity by applying the matrix inversion lemma to get

gr = B 'ty +
B~ (diag(qr) ' + L' B™'Iy) "' I B M. (35)
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Fig. 2. Achievable rates for different precoders in a single cell with K = 40
users and Ty = 10 orthonormal pilot sequences. The upper graph depicts the
average rates and the lower one the rate at the 5th percentile. Both, upper and
lower bounds, are shown.

Consequently, the order of complexity of calculating the
optimal filters for all users reduces from O(KM?) to
O(K(K/Ty)?) + O(KM(K/Ty)) for the inverses and the
matrix vector multiplications respectively.

V. RESULTS

We compare the performance of the statistical rate-balancing
with other statistical precoding methods and classical pre-
coding. To this end, we present simulations for a single-
cell scenario where the number of simultaneously served
users is larger than the number of available orthonormal pilot
sequences. We compare the proposed rate balancing approach
with the statistical zero-forcing approach from [6], simple
matched filter precoding based on MMSE estimates, and
matched filter precoding based on least squares estimation.
To analyze the performance, we use the lower bound on the
achievable rate in (8) and the case of perfect CSI at the
receivers as an upper bound. The latter is evaluated by Monte-
Carlo simulations where channel realizations are generated
based on the given covariance matrices. For both bounds,
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Fig. 3. Achievable rate for different precoders in a single cell with K = 40
users and Ty = 10 orthonormal pilot sequences averaged over several
simulations. Here the power allocation is optimized towards a balancing
solution for all methods. Both, upper and lower bounds, are shown.

several iterations are performed with different uniform user
placements in the cell. The covariance matrices for each
placement of users are generated according to the urban macro
model in [18].

Empirical cumulative distribution functions for both the up-
per and lower bounds are shown in Fig. 1. For one placement
of users, by design, all users have the same lower bound in
the rate-balancing case. Since each simulation includes several
user placements there is a small variation in the achievable
rates, but we observe that a similar rate is achievable for
all placements. Also the upper bound ends up to be almost
balanced for the proposed rate-balancing approach. We note
that the statistical rate-balancing not only leads to a huge gain
for the cell-edge users but also to a significant improvement
of the average rate. This is further illustrated in Fig. 2, where
we present the average achievable rate and the rate of the 5th
percentile with respect to the number of transmit antennas.
Note that for the approaches that are optimized with respect
to the lower bound, namely the statistical rate-balancing and
zero-forcing, there is a significant gap between upper and
lower bound, i.e., the lower bound might be too pessimistic
for these approaches.

In the simulations above, we use a uniform power allocation
for all methods except the proposed rate-balancing approach.
In Fig. 3, we additionally illustrate the performance when the
downlink power allocation is optimized for all methods to
achieve rate balanced solutions. As we can see, the proposed
rate-balancing significantly outperforms the other approaches
due to the fact that not only the power allocation, but also the
spatial direction of the statistical precoding is optimized.

VI. CONCLUSION

We showed how the idea of statistical precoding that
was introduced in [6] can be extended to a rate-balancing

formulation. To this end, an algorithm for optimal downlink
beamforming for the rate-balancing problem was derived
by exploiting the uplink-downlink duality. Simulation results
demonstrate that the proposed approach significantly outper-
forms previous methods both in terms of fairness and average
spectral efficiency.
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