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Abstract

The flow field around delta wings is characterized by a variety of interesting phenomena,

which are not fully understood yet, most notably the primary vortex and its possible

breakdown. Along with the multitude of applications in industry, delta wings have thus

been a focus of intensive research for several decades.

This work numerically investigates the generic vortex flow experiment-2 (VFE-2) delta

wing configuration in a subsonic regime using wall modeled implicit large eddy simula-

tion. First, leading edge bluntness effects on the primary vortex separation behavior are

considered by simulating sharp and round leading edge geometries for different angles

of attack. The numerical results are compared with experimental measurements con-

ducted at the Institute of Aerodynamics and Fluid Mechanics of Technische Universität

München. Overall, the agreement is very good for the sharp leading edge geometry, for

which the primary vortex separation is geometrically fixed at the leading edge, and good

for the round leading edge, which is more challenging due to the fact that the primary

vortex separation occurs from a smooth curved surface. The investigations show that

the employed grid resolution in combination with a wall model based on the simplified

turbulent boundary layer equations (TBLE) is not sufficient to accurately predict the

separation behavior and the pressure coefficient distribution on the wing surface, but

simulations with a better resolved wall region clearly improve the predictions. A well

resolved wall region could not be achieved, however, due to the limited computational

resources. Nonetheless, the numerical results are qualitatively consistent in all respects

with the experimental measurements and show quantitatively reasonable to good agree-

ment, notably regarding quantities away from the wall.

Second, two mechanisms to control vortex breakdown are examined. One, oscillating

control surfaces at the leading edges, which have also been investigated experimentally.

The numerical simulations show that this approach has only a minor effect on the vortex

breakdown position in the pre-stall regime considered, which confirms the experimental

observations. Two, a novel approach based on a geometric modification leading to the

injection of fluid from the pressure side is presented. The numerical simulations show

that such an approach can have a significant effect on the vortex breakdown location

and thus appears to be a promising direction for further investigations.
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Chapter 1

Introduction

This introductory chapter contains three sections. Section one gives the motivation for

the investigation of delta wings, section two discusses possible methods of investigation,

and section three specifies the objectives of this work.

1.1 Motivation for the investigation of delta wings

Delta wing configurations have many applications in industry, e.g. high-agility aircraft,

vortex generators, or more exotic devices such as snow fences [1, 2]. In each of these

cases, the development of large leading edge vortices, see Fig. 1.1, is utilized. Applied

in high-agility aircraft, the additional lift originating from the primary vortices leads to

advantageous properties regarding the maneuverability of the aircraft. However, at high

angles of attack, a sudden breakdown of the leading edge vortex may occur, see Fig. 1.1.

Vortex breakdown entails a significant change in the aerodynamic quantities bringing

forth disadvantageous effects, such as worsened maneuverability and higher structural

loads due to increased turbulence levels. Hence, a thorough understanding of the flow

field is of considerable importance and inevitable for the development and investigation

of flow control mechanisms, which are aimed at controlling the complex flow structures.

In view of the many interesting and unsolved problems regarding the flow around delta

wings, it has been studied for decades [3–8], and more recently, significant collabora-

tive efforts have been undertaken in the framework of the international vortex flow

1
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PV

VB

Figure 1.1: Characteristic vortex structure of the flow field around a delta wing.
PV - primary vortex; VB - vortex breakdown. Figure shows isosurfaces of streamwise
vorticity colored by streamwise velocity, extracted from a numerical simulation of the

flow field around the VFE-2 delta wing with round leading edge.

experiments VFE-1 and VFE-2 [9–16], providing a large data base of experimental and

computational investigations.

1.2 Possible methods of investigation

Commonly, there are three investigation approaches, namely analytical, experimental,

and numerical investigation.

1.2.1 Analytical investigation

Regarding the flow around delta wings, the scope of analytical results is very limited. It

is presumed that the motion of Newtonian fluids is accurately described by the Navier-

Stokes equations. However, for a general three-dimensional problem, some mathematical

properties of these equations are not fully understood yet, notably existence and, for the

incompressible form only, smoothness of solutions [17–19]. Hence, there is only a small

number of problems, usually problems for which a number of simplifying assumptions can

be made, for which analytical solutions have been found, and one is far from analytically

solving the Navier-Stokes equations for complex problems such as the turbulent flow

around delta wings.
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Nonetheless, some important aspects regarding the flow around delta wings, e.g. the

nonlinear increase of lift and the shape of the pressure distribution on the wing, can

be derived analytically using potential flow theory and further assumptions, such as

conical flow, see [3, 20, 21]. Further analytical approaches can be found in [22–24], and

analytical results obtained within VFE-2 are reported by Nangia in [25, 26]. Moreover,

some of the phenomena appearing in the flow field around a delta wing have been studied

analytically as isolated phenomena, e.g. vortex breakdown in [27].

1.2.2 Experimental investigation

Experimental investigations of the flow field around a delta wing have been a primary

contributor to advancing the understanding of the diverse flow features and have been

carried out at various institutions for decades. In the framework of VFE-2, measurements

were conducted, amongst others [28–37], at the Institute of Aerodynamics and Fluid Me-

chanics of Technische Universität München [38–41]. Overall, experimental investigations

can still be considered as the most reliable and most accurate way to investigate com-

plex, industrially relevant flows, such as the flow around a delta wing, which is why

they are prevalently used to validate analytical and numerical investigations. However,

experiments have several drawbacks, notably the necessity of complex apparatus and

equipment and the limited number of measurement points, see table 1.1.

1.2.3 Numerical investigation

Some of the shortcomings of experimental investigations can be easily dealt with in

numerical investigations, see table 1.1 for a comparison, which motivated extensive re-

search efforts in the last decades. Even though an analytical solution of the Navier-Stokes

equations for the turbulent flow around obstacles is not within reach, it is possible to

numerically approximate the governing or modified equations and thereby compute ap-

proximate solutions using the increasing capabilities of compute systems. The most

common approaches for turbulent flows are direct numerical simulation (DNS), simula-

tions based on the Reynolds-averaged Navier-Stokes equations (RANS), and large eddy

simulation (LES). These approaches differ in and can be evaluated according to level of

description, completeness, cost and ease of use, range of applicability, and accuracy [42].
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Table 1.1: Comparison of experimental and numerical investigations. The mentioned
aspects should be considered as general but can of course differ depending on the

particular problem at hand.

Experimental investigations Numerical investigations

expensive cheap

slow fast

little data due to few measurement
points in space and time

lots of data due to high resolution in
space and time

accessible problems limited by equip-
ment and apparatus

virtually any problem accessible

actual physics modeled physics

Hereafter, a short description of DNS, RANS, and LES is given, and their possible

application to the study of the flow field around a delta wing is discussed.

1.2.3.1 DNS

From a conceptual point of view, DNS is the most straightforward numerical approach:

the Navier-Stokes equations are discretized in such a way that all scales of fluid motion

are resolved. DNS therefore provides the highest level of description possible and is

complete in the sense that no flow dependent specifications are present in the model’s

equations [42]. However, DNS becomes prohibitive in consideration of cost and ease of

use when applied to practical problems, such as the turbulent flow around a delta wing,

given the large range of time and length scales. Chapman [43] estimated that the number

of grid points required to perform a DNS scales as NDNS ∼ Re9/4
L , where ReL = U ·L

ν de-

notes the Reynolds number, determined by free stream velocity U , characteristic length

L, and kinematic viscosity ν. However, this estimate has recently been revised by Choi

and Moin [44] to an even larger number, NDNS ∼ Re
37/14
L . Furthermore, Piomelli and

Balaras [45] state that the number of time steps required for a simulation is proportional

to N1/3, where N denotes the number of grid points. Therefore, assuming that one needs

1000 floating point operations per grid point and time step [42], the time required to
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perform a DNS of a wall-bounded flow at a Reynolds number of ReL = 2.0 · 106, which

will be considered in this work, on a supercomputer providing a computing rate of 13

petaflops is

TDNS ∼
103 · (Re37/14

L )4/3

13 · 1015 · 60 · 60 · 24
days ≈ 14229 days ≈ 39 years . (1.1)

This estimate is still optimistic since it is derived for canonical geometries. The compu-

tational cost for complex geometries cannot be derived a priori [45] but can be orders

of magnitude higher [46]. DNS has thus a very limited range of applicability and has

mainly been used to study geometrically simple, academic test cases, e.g. turbulent

channel flow [47] or the flow over a backward facing step [48]. DNS can therefore be

considered as primarily a research tool [49].

1.2.3.2 RANS

The idea of RANS is to decompose the velocity field u into a mean part 〈u〉 and a

fluctuating part uf via an averaging operation [42], i.e.

u = 〈u〉 + uf . (1.2)

Applying this averaging operation to the Navier-Stokes equations yields the Reynolds

equations for the mean part of the velocity field, which are unclosed due to the appear-

ance of the so-called Reynolds stress term arising from the fluctuating part. For closure,

the Reynolds equations must therefore be solved along with turbulence model equations

for the Reynolds stress term. Evidently, this approach gives a significantly lower level

of description than DNS [42]. However, regarding cost, ease of use, and range of appli-

cability, RANS approaches can be viewed as the most convenient and thus are the most

commonly used in industry [50]. A detailed description of various RANS approaches is

given in [42, 51, 52].

RANS simulations of the flow field around a delta wing have been conducted with varying

success in numerous studies, i.a. for the VFE-2 delta wing by Fritz [53–55], Le Roy et

al. [56], Le Roy and Riou [57], Boelens [58], Gurdamar et al. [59, 60], Crippa [61], Crippa
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and Rizzi [62, 63], and Crivellini et al. [64]. However, given that the fluctuating part

is not represented, RANS approaches seem by their very nature unsuitable for flows in

which large-scale three-dimensional unsteady motions are crucial, such as the flow around

delta wings or bluff bodies [42]. It is thus not surprising that various authors, e.g. [65–

69], report problems in accurately predicting massively separated flows using RANS

approaches. Moreover, in many cases, an assumption regarding transition is needed,

which can have a substantial effect on the results [64, 69]. Therefore, RANS approaches

usually necessitate additional corrections and parameter-twiddling to accurately predict

the flow around a delta wing.

1.2.3.3 LES

Conceptionally, the idea of LES is to decompose the velocity field u into a represented

part u and an unrepresented part u′ via a filtering operation [42], i.e.

u = u + u′ . (1.3)

The represented part is also called resolved or filtered part, and the unrepresented part

is also called unresolved, residual, or subgrid scale (SGS) part. Applying this filtering

operation to the Navier-Stokes equations yields equations for the represented part of the

velocity field, which are unclosed due to the appearance of the so-called subgrid scale

(SGS) stress term. For closure, the equations for the represented part therefore require

a model for the subgrid stress term. Even though the decompositions used in LES and

RANS seem similar, there are two important differences [42]. First, the represented part

in LES, u, is a random field, whereas the mean part in RANS, 〈u〉, is an averaged field.

Second, the filtered unrepresented part in LES is generally not zero, i.e. u′ 6= 0, whereas

the averaged fluctuating part in RANS is zero, i.e. 〈uf 〉 = 0. Detailed information

regarding the underlying ideas of LES including derivations and descriptions of various

SGS models can be found in [42, 70, 71].

Given that in LES, the large energy-containing unsteady scales are represented, it pro-

vides a higher level of description than RANS approaches and seems more suitable for

vortical flows. Regarding cost and ease of use, LES lies between RANS and DNS. The

former, however, is the main drawback of LES in wall-bounded flows. In the near wall
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region, the size of the relevant turbulent eddies scales approximately linearly with the

wall distance [72]. Resolving these eddies yields a Reynolds number dependent grid point

requirement that is almost as severe as that of DNS [72]. Using such a grid resolution

yields a well resolved LES [73]. In many cases, however, only the wall normal direction

is resolved with a grid spacing approaching that of DNS, and the horizontal grid spacing

is coarser. Such a LES is called wall resolved [73]. Chapman [43] originally estimated

that the number of grid points required for a wall resolved LES scales with the Reynolds

number ReL as NLES,wr ∼ Re9/5
L . This estimate has recently been revised by Choi and

Moin and the new estimate is NLES,wr ∼ Re
13/7
L [44]. Assuming one wants to perform

a wall resolved LES of a wall-bounded flow at ReL = 2 · 106, the number of grid points

required becomes

NLES,wr ∼ Re13/7
L ≈ 5 · 1011 , (1.4)

which is still prohibitively expensive. Wall resolved LES of industrially relevant high-

Reynolds number flows is therefore not feasible at this point. This problem can be cir-

cumvented by wall modeled LES, in which the near wall region is not resolved but approx-

imated by a wall model, which yields a grid point requirement of NLES,wm ∼ ReL [44].

Again, this estimate is optimistic since it is derived for canonical geometries. Nonethe-

less, one can expect that wall modeled LES can be used to investigate flows of practical

interest, such as the flow around a delta wing.

Wall modeled LES has been used with moderate success by Mary [74] to investigate the

flow around a delta wing with sharp leading edge, but apart from this investigation, to

the author’s knowledge, there are no other results reported in the literature, in particular

regarding a delta wing with round leading edge.

It should be noted that there are other approaches trying to circumvent the prohibitive

grid resolution requirements of wall resolved LES, notably various forms of hybrid RANS

/ LES or DES, see e.g. [68, 75, 76], which have been used to investigate the flow field

around a delta wing, e.g. for the VFE-2 delta wing by Le Roy and Riou [57], Crippa

and Rizzi [62], Crippa [61], Cummings and Schütte [77–79], Tangermann et al. [80], and

Jirasek [81]. So far, no single method has proven superior to the others, including wall
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modeled LES [82], and such approaches are not investigated within the scope of this

work.

1.3 Objectives of this work

The Institute of Aerodynamics and Fluid Mechanics of Technische Universität München

participated in VFE-2 and contributed comprehensive data from wind tunnel measure-

ments. The present work numerically investigates the very same configurations and thus

constitutes a complement to the past and current experimental efforts. Among the fea-

sible ways to numerically investigate the flow around a delta wing, wall modeled LES

is expected to provide the highest level of description. Therefore, the capability of wall

modeled LES for the flow around the VFE-2 delta wing is assessed in this work. Two

aspects of the flow field are of particular interest: (A) the leading edge bluntness effects

on the primary vortex separation [35], and (B), vortex breakdown above the wing and

its control [83]. Addressing these two aspects are thus the two main objectives of this

work.

Regarding objective (A), simulations are first conducted for the VFE-2 delta wing with

medium radius round leading edge (MRLE) at three different angles of attack α, namely

13◦, 18◦, and 23◦, resulting in different overall flow characteristics: partly attached flow

for α = 13◦, fully developed leading edge vortex for α = 18◦, and fully developed leading

edge vortex with vortex breakdown for α = 23◦. The same angles of attack are then

investigated for the sharp leading edge (SLE).

Regarding objective (B), simulations with active flow control via oscillating control sur-

faces at the leading edges are carried out for the SLE and α = 28◦. Furthermore, a novel

approach based on a geometric modification, leading to the injection of fluid from the

pressure side, is presented.

This work consists of seven chapters. Following this introductory chapter, chapter 2

describes the flow physics of the flow around delta wings and briefly introduces some as-

pects concerning flow control, which will be relevant in the subsequent chapters. Chapter

3 provides details regarding the numerical methods used throughout the investigations,

and chapter 4 delineates some aspects as to the realization of the simulations. In chapter

5, the numerical results with respect to objective (A), leading edge bluntness effects on
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primary vortex separation, are discussed in detail. Chapter 6 presents the results of

the investigations regarding objective (B), control of vortex breakdown via flow control

mechanisms. Finally, chapter 7 summarizes the results obtained, discusses their sig-

nificance and implications in a wider context, and provides a brief outlook to possible

further investigations.





Chapter 2

Delta wing flow physics

This chapter illustrates characteristic features of the flow field around a delta wing.

It contains five sections. Section one describes the primary vortex, section two the

secondary vortex, and section three the trailing edge vortex. Section four provides

information regarding the phenomenon of vortex breakdown, and section five discusses

flow control mechanisms targeting vortex breakdown.

2.1 Primary vortex

The most prominent feature of the flow over delta wings is the development of two large

vortices above the wing, originating from the flow separation at the leading edges. These

vortices are called primary vortices. Their existence depends notably on sweep angle (ϕ),

leading edge radius (r), angle of attack (α), and free stream velocity (U∞). Stanbrook

and Squire [84] derived a criterion indicating their existence, based on quantities normal

to the leading edge, see Fig. 2.1, with angle of attack αN and Mach number Ma∞,N

given by the equations below. The Mach number Ma∞ is defined by the ratio of free

stream velocity and speed of sound.

αN = arctan

(
tan α

cos ϕ

)
(2.1)

Ma∞,N = Ma∞ · cos ϕ ·
√

1 + sin2 α · tan2 ϕ (2.2)

11
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1.5
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attached
flow

attached flow

primary vortex

primary vortex

sharp leading edge, thin wing
round leading edge, thick wing

Figure 2.1: Stanbrook-Squire criterion indicating the existence of primary vortices:
Solid line for thin wings with sharp leading edge,

Ma∞,N = 0.75 + 0.000940α1.63
N ;

Dashed line for thick wings with round leading edge,
Ma∞,N = 0.20 + 0.000375(|αN |+ 23.2)2.

Illustration following Stanbrook and Squire [84].

In case of separation, the flow rolls up into two stable conical vortex sheets and some

fluid is drawn over the vortex sheets and accelerated downward, resulting in an attaching

flow, indicated by an attachment line inboard of the primary vortex [5], see Fig. 2.2.

The fluid then moves towards the leading edge which leads to high velocities in spanwise

direction resulting in suction peaks below the axes of the primary vortices on the upper

part of the wing. These suction peaks give rise to an additional, vortex induced lift and

yield a nonlinear increase of lift, see Fig. 2.3.

The precise location of the flow separation and the vortex structure depend on several

aspects, i.a. sweep angle, angle of attack, Reynolds number Re, Mach number Ma,

and notably leading edge geometry [35]. The dependance on leading edge geometry

is succinctly summarized in the sketch by Luckring [86], see Fig. 2.4. As opposed to

a sharp leading edge, where separation is geometrically fixed at the apex, separation

for a round leading edge initially occurs at a location close to the trailing edge and

then moves up the leading edge with increasing angle of attack [35]. This results from
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Spiral-shaped
vortex sheets

Primary vortex
attachment lines

Figure 2.2: Illustration of primary vortex, following Polhamus [5].

vortex induced
nonlinear lift

vortex
breakdown

Figure 2.3: Lift coefficient CL of delta wings depending on angle of attack α. Sketch
following Polhamus [5] and Breitsamter [85].
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Round leading edge

 

Sharp leading edge

Vortex origin fixed
at apex

Vortex origin displaced
from apex

Separation fixed
at leading edge

Separation near
leading edge

Figure 2.4: Influence of leading edge geometry on primary vortex onset, following
Luckring [86].

two facts [35]: (1) the local angle of attack is higher near the trailing edge, and (2),

the crossflow bluntness rle/bloc, where rle denotes leading edge radius and bloc denotes

local span width, increases from blunter to sharper as the trailing edge is approached.

Another important difference is that separation for a round leading edge occurs slightly

inboard of the leading edge and is not fixed precisely at the leading edge, as for a sharp

leading edge, see Fig. 2.4.

A detailed sketch of the primary vortex structure is shown in Fig. 2.5. Three aspects

are particularly noteworthy:
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Free shear
layer

Discrete 
vortices

Rotational
core

Subcore

Figure 2.5: Primary vortex structure, following Breitsamter [85].

(1) Free shear layer

The free shear layer originating from the leading edges thickens while rolling up

and contains discrete vortices (Kelvin-Helmholtz instabilities) [87].

(2) Rotational core

The rotational core is formed by the rolled-up shear layer and has a diameter of

up to 30% of the local half span width [87].

(3) Subcore

The subcore, dominated by viscous effects, is embedded in the rotational core and

marked by high streamwise velocities and low static pressures [87].

2.2 Secondary vortex

As mentioned in the previous section, the primary vortex induces a reattached flow in

spanwise direction on the upper side of the wing. This flow may separate due to the

adverse pressure gradient and form a vortex which is counter-rotating to the primary

vortex, called secondary vortex. It lies outboard of the primary vortex [35], see Fig. 2.6,

and leads to a second suction peak in the pressure distribution. The presence and size

of the secondary vortex depends strongly on whether the reattached spanwise flow is

laminar or turbulent [88], see Fig. 2.7.

2.3 Trailing edge vortex

The most prominent phenomenon in the wake region is the so-called trailing edge vortex,

first investigated and explained by Hummel and Redeker [89], who also introduced the
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Primary vortices

Primary vortex
attachment lines

Secondary vortices

Secondary vortex
attachment lines

Figure 2.6: Illustration of secondary vortex, following Hummel [88].

Laminar

Turbulent
Primary vortex

Secondary vortex

Figure 2.7: Shape of primary and secondary vortex depending on whether the flow is
laminar or turbulent, following Hummel [88].
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Primary vortex
core

Trailing edge
vortex

Figure 2.8: Illustration of trailing edge vortex, following Breitsamter [87].

term. As a result of the velocity distribution on the upper and lower part of the wing, a

vortex sheet, whose vorticity has opposite sign of the primary vortex’s, originates from

the trailing edge, rolls up, and moves toward the trailing edge tip, where it forms the

trailing edge vortex. This counter-rotating vortex then rolls up around the primary

vortex and finally dissipates. Even though secondary and trailing edge vortex rotate in

the same direction, the two are distinct phenomena [89]. A sketch of the phenomenon

is shown in Fig. 2.8.
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Bubble-like vortex breakdown Spiral-like vortex breakdown

Stagnation pointStagnation point

Figure 2.9: Vortex breakdown types, illustration following Breitsamter [87].

2.4 Vortex breakdown

Certain circumstances, which are not fully understood yet [7, 83], can lead to a sig-

nificant structural change of the primary vortices known as vortex breakdown. Vortex

breakdown is characterized by a significant expansion of the vortex, zero or negative

streamwise velocities in the vortex core, and a strong increase in turbulence intensity.

One distinguishes two forms of vortex breakdown: bubble-like and spiral-like [90]. The

designations stem from the characteristic shapes of the respective forms, see Fig. 2.9.

Four common approaches to explaining vortex breakdown theoretically are [7]: (1) a

quasi-cylindrical approach with an analogy to boundary layer separation, (2) a solu-

tion of the axisymmetric Navier-Stokes equations, (3) a concept of a critical state, and

(4) an approach via hydrodynamic instabilities. Given that the approaches are of minor

relevance for this work, they are not elaborated on here. A detailed description of the

respective concepts and reviews of vortex breakdown can be found in [7] and [91].

2.5 Flow control

Vortex breakdown can be advantageous, e.g. as a means to destroy hazardous vortices

or to improve mixing in combustion chambers, or disadvantageous, e.g. for aircraft,

when it negatively impacts the aerodynamics and stability, and thus maneuverability,

and leads to increased structural loads [83]. Research into vortex breakdown control is

thus of high importance. Gursul et al. [92] and Mitchell and Délery [83] reviewed com-

mon approaches. They emphasize notably two aspects: First, the two main parameters

that can be targeted to control vortex breakdown: (a) the swirl level, which is a measure
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Figure 2.10: Characteristic frequencies in the flow field around a delta wing, following
Gursul et al. [92]. Vortex shedding refers to the shedding of vortices in the post stall

regime, which is not considered in this work. VB - vortex breakdown.

determined by the ratio of azimuthal to axial velocity, and (b) the pressure gradient.

And second, the distinction between steady approaches and unsteady approaches, which

typically employ frequencies in the range of one of the characteristic frequencies appear-

ing in the flow field around a delta wing, see Fig. 2.10. A detailed description of the

various approaches can be found in the reviews by Gursul et al. [92] and Mitchell and

Délery [83].

Here, only the four mechanisms relevant for the investigations in this work are mentioned

and briefly illustrated hereafter:

(1) Placing an obstacle downstream of the wing’s trailing edge

An obstacle located downstream of the trailing edge increases the adverse pressure

gradient and moves the vortex breakdown location upstream, as first demonstrated

by Werlé [93]. A sketch of this approach is shown in Fig. 2.11.

(2) Blowing along the vortex core

Blowing along the core decreases the adverse pressure gradient and thus moves

the vortex breakdown location downstream. As the previous mechanism, this was

first shown by Werlé [93]. A sketch of this approach is shown in Fig. 2.12.

(3) Trailing edge jet

Wang et al. [94] showed that thrust-vectoring jets at the trailing edges can move
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U�Vortex
axisVortex

breakdown

Obstacle

Figure 2.11: Flow control via obstacle downstream of trailing edge. Vortex breakdown
position moves upstream.

the vortex breakdown position upstream or downstream, depending on whether

the jet is oriented upward or downward of the wing surface, see Figs. 2.13 and

2.14.

(4) Leading edge devices

Leading edge devices such as flaps or other control surfaces can affect structure

and strength of the vortices [95], and, when employed in unsteady mode, e.g.

oscillating, introduce unsteady momentum into the flow and thereby control the

flow separation [96]. A sketch of this approach is shown in Fig. 2.15.
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U�Vortex
axisVortex

breakdown

Jet along
the vortex
axis

Figure 2.12: Flow control via blowing along the core. Vortex breakdown position
moves downstream.

U�Vortex
axisVortex

breakdown

Trailing edge jet
oriented upwards

Figure 2.13: Flow control via blowing at the trailing edge, jet oriented upward. Vortex
breakdown position moves upstream. Sketch following Wang et al. [94].
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U�Vortex
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breakdown

Trailing edge jet
oriented downwards

Figure 2.14: Flow control via blowing at the trailing edge, jet oriented downward.
Vortex breakdown position moves downstream. Sketch following Wang et al. [94].

U�Vortex
axisVortex
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Figure 2.15: Flow control via leading edge devices. Vortex breakdown position can
move upstream or downstream, depending on factors such as geometry, size, and move-

ment of devices.



Chapter 3

Theory of numerical methods

This chapter outlines the numerical methods used in the investigations. It contains four

sections. Section one explains the concept of implicit LES based on the adaptive local

deconvolution method (ALDM). Section two provides an overview of the conservative

immersed interface method (CIIM). Section three sketches adaptive mesh refinement

(AMR) techniques, and section four describes the employed wall modeling (WM) ap-

proach.

3.1 Implicit LES

As described in section 1.2.3.3, only the large-scale part of the turbulent flow structures is

resolved in LES. The unresolved small-scale part must be modeled in order to account for

the nonlinear interactions of the unresolved small scales with the resolved large scales.

Models accomplishing this are called subgrid scale (SGS) models. One distinguishes

explicit and implicit SGS models. Whereas the use of explicit models necessitates the

modification of the equations describing the underlying conservation law, the approach

of implicit models is to use the numerical truncation error as SGS model and thus

requires no explicit computation of any model terms. The idea for implicit SGS modeling

originated from the observation that the numerical truncation error and the explicit SGS

modeling terms are of similar magnitude [97, 98].

23
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3.1.1 General approach of implicit LES

The general approach of implicit SGS modeling is briefly outlined hereafter, following

Hickel et al. [99], including the notation used therein. One considers the generic nonlinear

transport equation

∂tφ+ ∂xF (φ) = 0 . (3.1)

Applying a homogeneous filter G yields

∂tφ+G ∗ ∂xF (φ) = 0 , (3.2)

and subsequently discretizing the equation results in

∂tφN +G ∗ ∂xFN (φN ) = −G ∗ ∂xGSGS . (3.3)

In the former equations, filtered quantities are indicated by an overbar,

φ(x) =

+∞∫
−∞

G(x− x′)φ(x′)dx′ = G ∗ φ , (3.4)

and the subscript N denotes grid functions, which result from projecting continuous

functions onto the numerical grid xn = {xj}, j ∈ Z,

φN =
{
φ(xj)

}
. (3.5)

This projection removes all scales above the Nyquist wavenumber ξN = π/h, where h

designates a constant grid spacing. The nonlinear term in equation 3.3 requires the

computation of φN which is the represented part of the unfiltered field. This can be

achieved by an inverse filter operation φN = G−1 ∗ φN on the represented part of the

field, called soft deconvolution problem. Note that φN 6= φ due to the impossibility of

recovering non-represented scales. This irreversible projection of the nonlinear terms on

the numerical grid leads to the subgrid stress term
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GSGS = F (φ)− FN (φN ) . (3.6)

Modeling this term is called hard deconvolution problem. A variety of attempts has

been made to approximate the subgrid stress term GSGS by explicit models MSGS , i.e.

MSGS ≈ GSGS . However, every discretization scheme has a truncation error and thus

the numerically computed φN does not solve equation 3.3 but a modified differential

equation (MDE). The MDE of a general LES discretization scheme can be written as

∂tφN +G ∗ ∂xFN (φN ) = GN + GM −G ∗ ∂xGSGS , (3.7)

where

GM = G ∗ ∂xGSGS −G ∗ ∂xMSGS (3.8)

denotes the modeling error, and

GN = G ∗ ∂xFN (φN )− Ǧ ∗ ∂̌xF̌N (φ̌N ) +G ∗ ∂xMSGS − Ǧ ∗ ∂̌xM̌SGS (3.9)

denotes the truncation error. Here and in the following, numerical operators and ap-

proximate numerical solutions are denoted by a check.

As previously stated, it has been observed that ‖GN‖ ≈ ‖G ∗ ∂xGSGS‖ [97, 98]. The dis-

cretization of the convective fluxes can therefore negatively impact or even override the

effect of subgrid scale models. In view of this observation and by considering equations

3.3 and 3.7, one notices that the truncation error GN can act as SGS model, without

having to explicitly compute any model terms MSGS , if it satisfies

GN ≈ −G ∗ ∂xGSGS (3.10)

for a finite grid spacing h, which is the idea of implicit LES.
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3.1.2 Adaptive local deconvolution method (ALDM)

A systematic framework for a physically motivated implicit LES scheme was developed

by Adams et al. [100] and Hickel et al. [99, 101]. It relies on a discretization scheme whose

free parameters are optimized such that its numerical viscosity matches the predictions

of eddy-damped quasi-normal Markovian (EDQNM) theory. A brief summary of ALDM

is given hereafter, following Hickel et al. [99], including the notation used therein.

3.1.2.1 Governing equations

The compressible three-dimensional Navier-Stokes equations in integral form can be

written as

∂tU = − 1

VN

∮
∂ΩN

(
C(U) + P (U) +D(U)

)
· dA+

1

VN

∮
ΩN

S(U)dV , (3.11)

with suitable initial and boundary conditions. U denotes the solution vector of the

volume-averaged conserved variables

U =
1

VN

∫
ΩN

UdV , (3.12)

whereat U =
[
ρ, ρu1, ρu2, ρu3, ρE

]T
contains mass density ρ, momentum in the three

coordinate directions ρui, and total energy ρE. ΩN designates a control volume with

volume VN and boundary ∂ΩN . C(U), P (U), and D(U) denote the convective part of

the fluxes across ∂ΩN , the surface stresses due to pressure, and the surface stresses due

to viscosity, respectively:

Ci =
[
uiρ, uiρu1, uiρu2, uiρu3, uiρE

]T
, (3.13)

P i =
[
0, δi1p, δi2p, δi3p, ukδikp

]T
, (3.14)
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Di = −
[
0, τi1, τi2, τi3, ukτik + qi

]T
. (3.15)

ui denotes the velocity in i-direction, τij is the viscous stress tensor for a Newtonian

fluid

τij = µ(T )
(
∂jui + ∂iuj −

2

3
δij∂kuk

)
, (3.16)

and qi denotes the heat flux in the energy equation

qi = κ(T )∂iT . (3.17)

Considering an ideal gas with a Prandtl number of Pr = ν/κ = 0.72, a ratio of specific

heats of γ = cp/cv = 1.4, Reynolds number Re, and Mach numberMa as nondimensional

flow parameters, a closure of the Navier-Stokes equations can be achieved via relations

for the pressure p, temperature T , dynamic viscosity µ, and thermal diffusivity κ, notably

the equation of state (EOS) of an ideal gas,

p = RρT , (3.18)

with the gas constant R = 1
γMa2

, which, along with the definition of the internal energy,

ρe = ρE − 1

2
ρu2 =

1

γ − 1
p , (3.19)

allows for the determination of pressure and temperature. Speed of sound c, dynamic

viscosity µ, and thermal conductivity κ are computed via

c =

√
γ
p

ρ
, (3.20)

µ =
1

Re
T 0.75 , (3.21)
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and

κ =
1

(γ − 1)Ma2Pr
µ(T ) , (3.22)

respectively. ALDM is designed based on a finite volume discretization, which can be

expressed as a top-hat filter

G(x, Vj) =


1/Vj , for x ∈ Ωj

0, else

, (3.23)

where Vj denotes the cell volume of cell Ωj , and it can be directly applied to equation

3.11. Note that employing this filter in equation 3.4 for φ = U results in equation 3.12.

Finite volume methods require (1) a numerical reconstruction of the unfiltered solution

at the cell faces, (2) a numerical flux function utilizing the numerically reconstructed

solution, and (3) a numerical discretization scheme computing face-averaged fluxes. In

the following, reconstruction and flux function are briefly explained, again following

Hickel et al. [99], including the notation therein.

3.1.2.2 Reconstruction

Quantities at the cell faces are reconstructed using

φ̌∓(xj±1/2) =

K∑
k=1

αkφ̌
∓
k (xj±1/2) , (3.24)

where K is an integer whose value (K = 3) is explained below, αk are currently unused

free modeling parameters set to 1/K, and the functions φ̌∓k (xj±1/2) are defined as

φ̌∓1 (xj±1/2) = ǧ∓1,0(xj±1/2) , (3.25)

φ̌∓2 (xj±1/2) =

1∑
r=0

ω∓2,r(γ2,r, uN )ǧ∓2,r(xj±1/2) , (3.26)
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φ̌∓3 (xj±1/2) =
2∑
r=0

ω∓3,r(γ3,r, uN )ǧ∓3,r(xj±1/2) . (3.27)

The deconvolution polynomials ǧ∓k,r(xj±1/2) are defined as

ǧ∓k,r(xj±1/2) =
k−1∑
l=0

c∓k,r,l(xN )φ(xj−r+l) , (3.28)

and ωk,r(γk,r, φN ) are dynamic, solution-adaptive weight coefficients given by

ωk,r(γk,r, φN ) =
γk,rβk,r(φN )

k−1∑
s=0

γk,sβk,s(φN )

. (3.29)

γk,r are free modeling parameters, and βk,r is a smoothness measure defined by

βk,r(φN , xi) =
(
εβ +

k−r−2∑
l=−r

(φ(xi+m+1)− φ(xi+m))2
)−2

, (3.30)

with εβ = 10−99 to avoid division by zero. The coefficients c∓k,r,l are grid-dependent and

chosen in a way that ensures

ǧ∓k,r = φ(xj±1/2) +O(hk) . (3.31)

The deconvolved solution is regularized by choosing k ≤ K = 3, i.e. only polynomials

of degree 1 ≤ k ≤ K contribute to it.

In order to limit the computational cost, a simplified adaptive local deconvolution

method (SALD) was developed [102] and is employed for all computations in this work.

The reconstruction scheme is applied to the cell-averaged density ρ, velocity ui, pressure

p, and internal energy ρe, and the LES solution vector is constituted by the cell-averaged

density, the resolved momentum, and the resolved total energy:

U =
[
ρ, ρ u1, ρ u2, ρ u3, ρe+

1

2
ρ ukuk

]T
. (3.32)
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The average pressure,

p := p(ρ, ρe) , (3.33)

is obtained from equation 3.18.

3.1.2.3 Numerical flux function

The numerical flux function used in ALDM has the following form:

F̌j±1/2 = F

(
φ̌+ + φ̌−

2

)
−R ·

(
φ̌+ − φ̌−

)
. (3.34)

Only the hyperbolic flux C +P is considered for the implicit SGS modeling. Gradients

appearing in the viscous flux D are approximated by linear second-order schemes. The

first term in equation 3.34 represents the physical flux arising from the Navier-Stokes

equations and is computed using both reconstructed values at the specified cell face. The

second term signifies a regularization term where the dissipation matrix R is specifically

defined for the differential equation considered, see below.

Using this approach, the numerical mass density flux at any cell face is determined via

Čρi = ǔ∗
ρ̌+ + ρ̌−

2
−Rρi (ρ̌

+ − ρ̌−) , (3.35)

where transport velocity ǔ∗ and dissipation coefficient Rρi are defined further below, and

the numerical momentum flux at any cell face is

Čρuki = Čρi
ǔ+
k + ǔ−k

2
−Rρui

ρ̌+ + ρ̌−

2

(
ǔ+
k − ǔ

−
k

)
. (3.36)

The regularization terms in equations 3.35 and 3.36 dissipate turbulent kinetic energy

from the represented scales and thereby model unresolved surface stresses. The total

energy flux at any cell face is
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Čρei = ǔ∗
ρ̌e+ + ρ̌e−

2
+
ǔ+
k + ǔ−k

2

(
Čρuki −

ǔ+
k + ǔ−k

4
Čρuki

)
−Rρei

(
ρ̌e+ − ρ̌e−

)
. (3.37)

The pressure flux is

P̌ i =
[
0, δi1p̌

∗, δi2p̌
∗, δi3p̌

∗, ǔ∗i p̌
∗
]T
, (3.38)

with the interface pressure

p̌∗ =
p̌+ + p̌−

2
. (3.39)

The transport velocity introduced in equation 3.35 is defined as

ǔ∗i =
ǔ+
i + ǔ−i

2
− 1

č

p̌+
3 − p̌

−
3

ρ̌+ + ρ̌−
, (3.40)

where č denotes the maximum speed of sound in adjacent cells, and p̌±3 are the third-

order pressure reconstruction polynomials.

The dissipation matrix is given by

Ri =
[
σρ|ǔ+

i − ǔ
−
i |, σ

ρu|ǔ+
1 − ǔ

−
1 |, σ

ρu|ǔ+
2 − ǔ

−
2 |, σ

ρu|ǔ+
3 − ǔ

−
3 |, σ

ρe|ǔ+
i − ǔ

−
i |
]T
, (3.41)

with the case-independent model parameters σρ, σρu, and σρe.

Taken together, reconstruction scheme and numerical flux function provide a set of free

parameters {α, γ, σ}, which is chosen in such a way that the truncation error consti-

tutes a physically motivated SGS model. The set of parameters is determined via an

optimization problem described in [101] and [99], and its values are given in table 3.1.

ALDM can also deal with shock waves, which is accomplished by detecting discontinuities

via the sensor functional
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Table 3.1: Model parameters of ALDM for compressible flows, taken from [99].

Parameter Value

α1 (1− fs)/3
α2 (1− fs)/3
α3 1− α1 − α2

γ+
2,0 1

γ+
2,1 1

γ+
3,0 0.01902 + fs(0.3− 0.01902)

γ+
3,1 0.08550 + fs(0.6− 0.08550)

γ+
3,2 1− γ+

3,0 − γ
+
3,1

γ−2,1 γ+
3,0

γ−2,0 γ+
3,1

γ−3,2 γ+
3,0

γ−3,1 γ+
3,1

γ−3,0 γ+
3,2

σρ 0.615
σρu 0.125
σρe 0.615

fs =


1, |∇·u|

|∇·u|+‖∇×u‖+ε ≥ 0.95

0, else

, (3.42)

and adding the term

fs
|ǔ∗i |+ |ǔ

+
i − ǔ

−
i |

2
[1, 1, 1, 1, 1]T (3.43)

to the dissipation matrix Ri given in equation 3.41. The treatment of shock waves is of

no relevance for this work, however, since shock waves do not appear for the considered

free stream conditions (Re = 2 · 106, Ma = 0.14).

3.2 Immersed boundary technique

The previously described implicit LES approach is based on Cartesian grids. There-

fore, an immersed boundary (IB) technique is required to represent complex geometries,

such as a delta wing. Generally, IB techniques have two main advantages [103]: First,
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the process of generating proper body-fitted grids is avoided, which can be very time-

consuming and thus is particularly undesirable when grid regeneration is needed, e.g.

in case of moving or deforming boundaries. Second, the accuracy of the discretization

scheme is not affected by limited grid regularity, i.e. smoothness and orthogonality,

which is particularly important when employing implicit LES, where the spatial trunca-

tion error models the subgrid scales. IB techniques can be considered as well developed,

reviews are given in [104] and [103]. In this study, the conservative immersed interface

method (CIIM) for compressible flows developed by Grilli et al. [105] is used. It is briefly

described hereafter, following Grilli et al. [105], including the notation used therein.

3.2.1 Conservative immersed interface method (CIIM)

3.2.1.1 Mathematical basis

One considers an interface Γ(t), representing the geometry of interest, which is described

by a level set field Φ. Γ(t) divides the computational domain Ω into two domains: Ω1,

denoting the domain occupied by the fluid, and Ω2, denoting the domain occupied by

the solid. The computational domain is discretized using a Carstesian grid with grid

spacings ∆x, ∆y, and ∆z leading to computational cells (i, j, k) whose fluid volume

Vi,j,k ∩ Ω1(t) can be computed by αi,j,k(t)∆x∆y∆z. αi,j,k denotes the fluid volume

fraction. Approximating time integration by a forward Euler scheme, one can express

equation 3.11 for a cut cell as

∆x∆y∆z
(
αn+1
i,j,kU

n+1
i,j,k − αni,j,kU

n
i,j,k

)
= ∆t∆y∆z

[
A12
i,j,kF

12
i,j,k −A11

i,j,kF
11
i,j,k

]
+ ∆t∆x∆z

[
A22
i,j,kF

22
i,j,k −A21

i,j,kF
21
i,j,k

]
+ ∆t∆x∆z

[
A32
i,j,kF

32
i,j,k −A31

i,j,kF
31
i,j,k

]
+ ∆tXi,j,k(∆Γi,j,k(t)) ,

(3.44)

where Almi,j,k represent the cell face apertures, see Fig. 3.1, ∆Γi,j,k(t) = Γ(t) ∩ Vi,j,k

denotes the interface segment, F lm
i,j,k represent the average fluxes across a cell face, and

Xi,j,k denotes the integral momentum and energy exchange across the interface. For cells
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TERFA
CE

Figure 3.1: Two dimensional illustration of the conservative discretization of a cut
cell, following Grilli et al. [105]. The volume fraction αi,j,k is determined by dividing

the shaded area by the total area of cell i, j, k.

that are not cut by the interface one has αi,j,k = Almi,j,k = 1, and ∆Γi,j,k(t) = Γ(t) ∩ Vi,j,k = 0,

and thus obtains

∆x∆y∆z
(
U
n+1
i,j,k −U

n
i,j,k

)
= ∆t∆y∆z

[
F 12
i,j,k − F 11

i,j,k

]
+ ∆t∆x∆z

[
F 22
i,j,k − F 21

i,j,k

]
+ ∆t∆x∆z

[
F 32
i,j,k − F 31

i,j,k

]
.

(3.45)

3.2.1.2 Interface exchange term

The interface interaction term Xi,j,k can be decomposed into three contributions

Xi,j,k(∆Γi,j,k) = Xp +Xv +Xht , (3.46)

i.e. a contribution from pressure Xp, a contribution from viscous effects Xv, and a

contribution from heat transfer Xht.
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Pressure term Xp

The term Xp can be expressed as

Xp =
[
0, pΓ∆Γ(t)nΓ

1 , pΓ∆Γ(t)nΓ
2 , pΓ∆Γ(t)nΓ

3 , pΓ∆Γ(t)(nΓ · vΓ)
]T
, (3.47)

where pΓ is the interface pressure obtained by solving a Riemann problem

R(U ,vΓ
n) = 0 (3.48)

for the pressure on the interface segment, as described in [106]. Here, vΓ
n = vΓnΓ

denotes the component of the interface velocity in the direction of the local interface

normal vector nΓ =
[
nΓ

1 , n
Γ
2 , n

Γ
3

]
.

Viscous term Xv

The viscous term arises from the friction force D which can be computed via

D =

∫
∆Γ(t)

τ · nΓdS . (3.49)

The components of the viscous stress tensor τ are given by equation 3.16. Using sim-

plifying assumptions, see Grilli et al. [105], the viscous force can be approximated by

D =

∫
∆Γ(t)

τ · nΓdS ≈
[4

3
µ
∂un
∂n

,
∂ut
∂n

,
∂up
∂n

]T
∆Γ(t) , (3.50)

where (n, t, p) signifies a local reference system depicted in Fig. 3.2, or

D =

∫
∆Γ(t)

τ · nΓdS ≈ µ

(
4

3

∂u‖

∂n
+
∂u⊥

∂n

)
∆Γ(t) , (3.51)

when using normal (u⊥) and tangential part (u‖) of the local volume averaged velocity

u:
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Figure 3.2: Illustration of local reference system of a cut cell, following Grilli et
al. [105].

u = u‖ + u⊥ , (3.52)

u⊥ =
(
u · nΓ

)
· nΓ , (3.53)

u‖ = u = u⊥ . (3.54)

The velocity gradient in equation 3.51 can be approximated by a wall model, see section

3.4, or by a simple linear approximation. For the linear approximation, one computes

the velocity and viscosity at point P ′′ via an interpolation scheme and obtains

D = µ

(
4

3

u
‖
P ′′ − vΓ

∆h
+
u⊥P ′′ − vΓ

∆h

)
∆Γ(t) . (3.55)

P ′′ is specified by the foot point P ′, the normal vector nΓ, and the length scale

∆h =
√

(∆xnΓ
1 )2 + (∆ynΓ

2 )2 + (∆znΓ
3 )2 , (3.56)

see Fig. 3.3.

Introducing the term C
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Figure 3.3: Two dimensional illustration of interpolation procedure for immersed
boundary, following Grilli et al. [105]. Shaded area indicates solid, white area indicates

fluid.

C =

∫
∆Γ(t)

(
τ · vΓ

)
· dS ≈D · vΓ , (3.57)

effective only in case of moving boundaries, the viscous term Xv can be expressed as

Xv =
[
0, D1, D2, D3, C

]T
. (3.58)

Heat transfer term Xht

The heat transfer term Xht can be expressed by

Xht =
[
0, 0, 0, 0, q

]T
, (3.59)

where q denotes the heat transfer across the interface segment and is computed by

q =

∫
∆Γ(t)

k∇T · dS . (3.60)
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Using simplifying assumptions (see [105]) it can be written as

q =

∫
∆Γ(t)

k∇T · dS ≈ k∂T
∂n

∆Γ(t) ≈ kT
P ′′ − TΓ

∆h
∆Γ(t) , (3.61)

where k is the thermal conductivity evaluated in point P ′′, TP
′′

is the temperature

in point P ′′, and TΓ denotes the fixed wall temperature. Note that Xht is nonzero

only in case of an isothermal wall boundary condition. For an adiabatic wall, which is

assumed in the investigations in this work, one has ∇T · n = 0 and thus q = 0 and

Xht =
[
0, 0, 0, 0, 0

]T
.

3.2.1.3 Mixing procedure

An arbitrary geometry can lead to cut cells containing only a very small fluid fraction.

Such cells may cause the following problem: a time step determined based on a general

non-cut cell may be too large to ensure a correct computation of the quantities in

the considered cell, and a time step determined based on the actual cell dimensions of

such cells may be extremely small, thereby making simulations prohibitively expensive

in view of the available computational resources. In order to remedy this problem,

conserved quantities of such small cells are mixed with the respective quantities in larger

neighboring cells. This procedure is called conservative mixing. The implementation

described hereafter, following Grilli et al. [105], is based on work by Hu et al. [106].

Only cells with a volume fraction smaller than a certain threshold, in this work αth = 0.6,

are mixed with neighboring cells. A smaller threshold leads to a higher accuracy in the

interface region but lowers the numerical stability. The quantities of a cut cell (i, j, k)

with αi,j,k < αth are computed using seven neighboring cells, which are called target cells

(hereafter denoted by trg) and determined based on the local interface normal vector,

via

U i,j,k =
(
U i,j,k

)∗
+

M trg
i,j,k

αni,j,kVi,j,k
. (3.62)

In the above equation,
(
U i,j,k

)∗
denotes quantities of the cut cell (i, j, k) before applying

the mixing procedure, and M trg
i,j,k denotes the mixing flux determined by
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M trg
i,j,k =

βtrgi,j,k
[
(VtrgαtrgU trg)Vi,j,kαi,j,k − (Vi,j,kαi,j,kU i,j,k)Vtrgαtrg

]
αi,j,kVi,j,kβ

trg
i,j,k + αtrgVtrg

. (3.63)

The weights βtrgi,j,k for each target cell are determined via

βxi,j,k = |nΓ
1 |2αmixi,j,k ,

βyi,j,k = |nΓ
2 |2αi,mixj ,k ,

βzi,j,k = |nΓ
3 |2αi,j,mixk ,

βxyi,j,k = |nΓ
1n

Γ
2 |αmixi,mixj ,k ,

βxzi,j,k = |nΓ
1n

Γ
3 |αmixi,j,mixk ,

βyzi,j,k = |nΓ
2n

Γ
3 |αi,mixj ,mixk ,

βxyzi,j,k = |nΓ
1n

Γ
2n

Γ
3 |2/3αmixi,mixj ,mixk ,

(3.64)

and subsequent normalization

βxi,j,k + βyi,j,k + βzi,j,k + βxyi,j,k + βxzi,j,k + βyzi,j,k + βxyzi,j,k = 1 . (3.65)

Quantities of target cells are computed via

U trg =
(
U trg

)∗ − M trg
i,j,k

αntrgVtrg
, (3.66)

so that conservativity is ensured. As before,
(
U trg

)∗
denotes quantities of the target

cells before mixing. The described procedure is employed before each time step and

Runge-Kutta substep.

3.2.1.4 Extending procedure

Conserved quantities are extrapolated across the interface into a ghost-cell by determin-

ing a steady-state solution to

∂U

∂tf
− n · ∇U = 0 (3.67)
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Figure 3.4: Two dimensional illustration of mixing procedure for immersed boundary,
following Grilli et al. [105]. Shaded area indicates solid, white area indicates fluid.

to ensure that unmodified stencils can be used for the reconstruction scheme near the

interface and to ensure physically reasonable conditions for newly formed cells. tf in

equation 3.67 denotes a pseudo-time. In case of an adiabatic wall boundary condition,

as given in the investigations of this work, all thermodynamic quantities are extended

across the interface using the decribed procedure. Further details, notably regarding

isothermal wall boundary conditions, can be found in the work of Grilli et al. [105].

3.2.2 Implementation

Below, the general approach for one time step (or Runge-Kutta substep) is outlined, as

given by Grilli et al. [105]:

Step 0 The level-set field is computed given the geometrical input data.

Step 1 Cut cells and their face apertures and volume fractions are determined.

Step 2 The mixing procedure is employed for all cut cells having a volume fraction

below the threshold value.

Step 3 The extending procedure is applied in the interface region.
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Step 4 The convective and diffusive fluxes are computed for all cells disregarding the

interface.

Step 5 The fluxes of cut cells are modified by accounting for the cell face apertures and

the interface interaction term.

Step 6 The flux divergence is computed.

Step 7 Level-set field and solution are advanced in time.

Note that step 0 has to be performed only once, at the beginning of the simulation,

and in case of stationary boundaries, step 1 also has to be performed only once, at the

beginning of the simulation.

3.3 Adaptive mesh refinement (AMR)

In many simulations of wall-bounded flows the required grid resolution in the near

wall region is very high, particularly when considering Reynolds numbers typical for

engineering flows. By contrast, a coarse grid may suffice to accurately predict the

relevant flow features in other regions of the computational domain, e.g. the far field. In

view of the limited computational resources available, a common approach is to generate

grids that are sufficiently fine in the near wall region and other regions of particular

interest, but coarse and thus computationally beneficial in areas such as the far field.

To this end, an adaptive mesh refinement technique is adopted in this work.

For the code used in this investigation, the computational domain is initially composed

of one or more cuboid blocks, each defined by the locations of its vertices, the number

of cells in each coordinate direction, Nx, Ny, and Nz, and possibly a non uniform dis-

tribution of the cells. However, only uniform grid spacings in each coordinate direction

have been employed throughout the investigations in this work. Blocks are then refined,

coarsened, or split, which is determined by a chosen refinement criterion. The code

provides a variety of possible refinement criteria, i.a. a criterion based on the size of

cut cells and a criterion based on the size of cells within a specified distance from the

wall, which are the criteria primarily employed in this study. Other parameters of the

refinement procedure are refinement ratio, which was set to 2 for all simulations carried
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out in this work, maximum refinement level, and minimum cell size. The refinement

algorithm ensures that the refinement level of neighboring blocks differs by one or less,

thereby limiting the inhomogeneity of the generated grids. Flow quantities of neighbor-

ing blocks are exchanged by means of buffer cells. In case of differing refinement levels,

this process necessitates conservative interpolation or restriction procedures.

Details regarding the grid generation process for the simulations carried out in this work

are given in section 4.3.

3.4 Wall modeling

The idea behind wall modeling is to circumvent the prohibitive grid resolution require-

ment of wall resolved LES by modeling the wall layer with simplified equations. Gen-

erally, some information from the exterior LES is used by the wall model, e.g. as a

boundary condition, and the wall model then feeds back some information to the exte-

rior flow. Imposing the wall shear stress as a boundary condition on the exterior flow

has proven effective [45]. Reviews of wall models are given by Piomelli and Balaras [45]

and Piomelli [82]. Following Chen [107], a general wall stress model can be expressed as

τw = f(u0, p0, ν,x0) . (3.68)

In the above equation, f designates any kind of mapping relating the wall stresses in

wall-tangential directions τw to the velocity u0 and the pressure p0 at the coupling

position x0 = (x1,0, x2,0, x3,0).

3.4.1 Simplified turbulent boundary layer equations (TBLE)

In this work, wall modeling based on the simplified turbulent boundary layer equations

(TBLE) as suggested by Chen [107] is used, and thus f represents a set of differen-

tial equations. Hereafter, the TBLE based wall model is briefly described, following

Chen [107]. The TBLE are given by

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

2

, (3.69)
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with i = 1, 3 denoting the wall-tangential directions and i = 2 the wall-normal direction,

respectively. In this work, in addition to neglecting the convective terms as done by

Chen [107], the pressure gradient term is omitted, too. The latter simplification is

adopted in view of the findings of Hickel et al. [108], who showed that the convective

terms and the pressure gradient term must be kept or omitted with each other, and

not independently, for consistency reasons. Employing a damped mixing-length eddy-

viscosity model to account for near wall turbulence, the resulting simplified TBLE are

∂ui
∂t

=
∂

∂x2
(ν + νt)

∂ui
∂x2

, (3.70)

with i = 1, 3 and

νt = κx2uτ (1− e(−x+2 /A))2 , (3.71)

with κ = 0.4, A = 19.0, and x+
2 = x2uτ/ν. As described in [107], equation 3.71 is

solved numerically on an embedded grid between the wall and the interpolation point

x0. At the wall, a no-slip boundary condition is imposed. At the interpolation point,

boundary conditions for the velocity are imposed using the interpolated values from

the exterior LES. A second-order centered discretization scheme leads to a tridiagonal

system of linear equations which is solved by a tridiagonal matrix algorithm at every

Runge-Kutta substep.

3.4.2 Wall modeling in conjunction with CIIM

Considering complex geometries represented by CIIM, the boundaries are in general not

aligned with the background Cartesian grid, and thus further manipulations are needed

in order to be able to compute the wall shear stresses by a wall model in conjunction

with CIIM. Notably, a coupling position x0 and flow quantities at this coupling position

have to be determined, and two wall tangential directions, denoted by t1 and t3, must

be defined. The coupling point’s coordinate can be expressed by

x0 = xw + nd , (3.72)
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Figure 3.5: Illustration of wall modeling in conjunction with immersed boundary.

where xw signifies the projection of the cut cell center on the interface, n denotes the

interface normal vector, and d is a distance defined by

d = 1.5 ·min
(

∆x,∆y,∆z
)
. (3.73)

t1 is defined by the intersection of one axis of the Cartesian coordinate system and the

wall-tangential plane defined by the interface normal vector. t3 can then be determined

via

t3 = t1 × n . (3.74)

Flow quantities at x0 are computed based on surrounding grid points via an interpolation

scheme, see [107]. The velocity gradients can then be determined by the wall model and

used directly as an improved approximation of the velocity gradient in equation 3.50. A

sketch of the wall modeling approach in conjunction with CIIM is shown in Fig. 3.5.
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Realization of simulations

This chapter gives details regarding the realization of the simulations. It contains five

sections. Section one provides information concerning the implementation of the numeri-

cal methods described in the previous chapter. Section two describes the wing geometry,

and section three provides a general description of the process of grid generation and

the grids used. Section four specifies the chosen boundary and initial conditions, and

section five describes the compute system used to carry out the simulations.

4.1 Code

The methods described in chapter 3 are implemented in the flow solver INCA, which is

a continuously developed and extended research code written in Fortran. INCA is paral-

lelized (MPI and OpenMP) allowing simulations with several thousand processors [109].

The code has been successfully validated and applied to a variety of problems, i.a.

turbulent channel flow with and without periodic constrictions [110], flow around a

cylinder [111], flows involving shock waves [112–114], cavitating flows [115], stratified

flows [116], and aerodynamic configurations [117–119]. INCA provides a large number

of solvers for linear problems, time integration schemes, and discretization methods. All

simulations presented in this work have been conducted using a three-step Runge-Kutta

scheme for time integration and the simplified adaptive local deconvolution method

(SALD) for the discretization of the advective terms. An ideal gas with a ratio of spe-

cific heats of γ = 1.4 and a Prandtl number of Pr = 0.72 is assumed, and all simulations

45
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have been carried out for a Reynolds number based on the mean aerodynamic chord

(2/3 cr) of Re = 2.0 · 106 and a Mach number of Ma = 0.14.

4.2 Wing geometry

The VFE-2 delta wing has a leading edge sweep of 65◦, a flat plate main part, and

four types of interchangeable leading edges, see Figs. 4.1 and 4.2. The whole wing

geometry is described by analytical formulas. Further details regarding the geometry

are given in [120]. In this work, only sharp leading edge (SLE) and medium radius round

leading edge (MRLE) have been considered. The delta wing’s geometry is mapped onto

the Cartesian grid by the immersed boundary technique described in 3.2 and, for this

reason, has to be represented by an STL (Stereolithography) file. The STL files, see

Fig. 4.3, have been generated using the 3D CAD design software CATIA. Rear part and

length of the sting are slightly different for the two geometries, the discrepancies have

no relevant effect on the results, however.

4.3 Computational grids

The computational domain is cubic and has a side length of ten root chords (cr). The

center of the cube is located at (xg/cr, yg/cr, zg/cr) = (1, 0, 0), the wing tip is located

at (xg/cr, yg/cr, zg/cr) = (x/cr, y/cr, z/cr) = (0, 0, 0). Subscript g denotes the global

coordinate system, no subscript denotes the wing-fixed coordinate system, which is

obtained by rotating the global coordinate system around the yg-axis by the angle of

attack α. A sketch of the setup is shown in Fig. 4.5. Simulations with coarse grids and

experiences with other simulations showed that the chosen domain size is sufficiently

large to exclude boundary effects.

For each configuration, i.e. angle of attack and leading edge geometry, a separate grid

was generated using the AMR techniques outlined in 3.3. At first, one block covering the

entire simulation domain with eight cells in each coordinate direction is used. It is refined

using a cut-cell criterion, a refinement ratio of two, and a maximum refinement level of

six, leading to a grid hereafter denoted by Grid 1. Then, the grid is further refined in

the region close to the wall using a wall distance criterion, i.e. the cell size within a
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Figure 4.1: Basic geometry of VFE-2 delta wing model, illustration following [120].
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Figure 4.2: Basic geometry of VFE-2 delta wing leading edge types [120]. The four
types are, with increasing leading edge radius: sharp leading edge (SLE), small radius
leading edge (SRLE), medium radius leading edge (MRLE), and large radius leading

edge (LRLE).

Figure 4.3: STL file of wing geometry with SLE. Left picture shows top view, right
picture shows zoomed front view.

certain distance of the wall is limited, and a progressively increasing maximum number

of refinement levels, leading to Grid 2, Grid 3, and Grid 4. Lastly, the grid is further

refined in the region close to the apex and possibly in the region of the primary vortices,

performed by means of custom criteria, such as magnitude of streamwise vorticity. Wall-

adjacent cells of Grid 4, which will be primarily considered in the results chapters, have

an estimated y+ value of 120, and thus yield a wall model coupling position within the

log layer. Grids used for simulations with the half-span model have been obtained by
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Figure 4.4: IB representation of leading edge (dashed line) compared with analytical
description (solid line) for both SLE and MRLE, using Grid 4.

0

0

0

2

2

2

-2
-2

-2

4

4

4

-4
-4

-4

6

delta wing

Figure 4.5: Sketch of computational domain and delta wing position therein (cr = 1).
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Table 4.1: Summary of applied computational grids for MRLE.

MRLE 13◦ 18◦ 23◦ 28◦

no. of cells 1.2 · 106 1.2 · 106 1.2 · 106

Grid 1 no. of blocks 9.0 · 102 9.4 · 102 9.6 · 102

min. cell size [cr] 9.8 · 10−3 9.8 · 10−3 9.8 · 10−3

no. of cells 2.5 · 106 2.4 · 106 2.7 · 106

Grid 2 no. of blocks 1.7 · 103 1.7 · 103 1.8 · 103

min. cell size [cr] 4.9 · 10−3 4.9 · 10−3 4.9 · 10−3

no. of cells 6.9 · 106 7.0 · 106 7.4 · 106 7.6 · 106

Grid 3 no. of blocks 4.0 · 103 4.0 · 103 4.3 · 103 4.5 · 103

min. cell size [cr] 2.4 · 10−3 2.4 · 10−3 2.4 · 10−3 2.4 · 10−3

no. of cells 2.5 · 107 2.7 · 107 2.8 · 107

Grid 4 no. of blocks 1.2 · 104 1.3 · 104 1.3 · 104

min. cell size [cr] 1.2 · 10−3 1.2 · 10−3 1.2 · 10−3

no. of cells 7.4 · 107

Grid 4567 no. of blocks 3.3 · 104

min. cell size [cr] 1.5 · 10−4

taking the grid for the full-span model and splitting it into two parts. Tables 4.1 and

4.2 summarize the computational grids employed.

4.4 Boundary and initial conditions

At the inflow, a uniform velocity is prescribed. At the outflow, a static pressure of

pstat = 1
γ·Ma2

is imposed. All other domain boundaries have a slip condition, see

Fig. 4.7. Contrary to the wind tunnel experiments, where a non-zero turbulence level of

Tu ≤ 0.08% in the approaching flow was observed, the simulations are conducted with a

turbulence level of Tu = 0%, i.e. there are no random fluctuations at the inflow. How-

ever, one can assume that this deviation from the experimental conditions has overall

only a minor effect. The wing walls are assumed to be adiabatic in the simulations.

The initial solution for all simulations is a uniform velocity distribution in streamwise

direction. To satisfy the no-slip boundary condition at the geometry, the velocity profile

close to the wall is chosen as

u(yw) = (yw −
sin(2πyw)

2π
) · U∞ , (4.1)
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Table 4.2: Summary of applied computational grids for SLE.

SLE 13◦ 18◦ 23◦ 28◦

no. of cells 1.2 · 106 1.2 · 106 1.2 · 106

Grid 1 no. of blocks 9.0 · 102 9.4 · 102 9.6 · 102

min. cell size [cr] 9.8 · 10−3 9.8 · 10−3 9.8 · 10−3

no. of cells
Grid 2 no. of blocks

min. cell size [cr]

no. of cells 6.7 · 106 6.8 · 106 7.3 · 106 6.0 · 106

Grid 3 no. of blocks 3.9 · 103 3.9 · 103 4.3 · 103 3.7 · 103

min. cell size [cr] 2.4 · 10−3 2.4 · 10−3 2.4 · 10−3 2.4 · 10−3

no. of cells 2.4 · 107 2.6 · 107 2.2 · 107

Grid 4 no. of blocks 1.2 · 104 1.2 · 104 1.1 · 104

min. cell size [cr] 1.2 · 10−3 1.2 · 10−3 1.2 · 10−3

no. of cells 1.5 · 107

Grid 45 no. of blocks 7.5 · 103

min. cell size [cr] 6.1 · 10−4

Figure 4.6: Exemplary picture of Grid 3, MRLE, angle of attack of 23◦.
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Figure 4.7: Boundary conditions of setup (cr = 1).

where yw is defined as yw = min(max(walldistance, 0), cr)/cr, and U∞ is the free stream

velocity. For Grid 4 and upwards, i.e. Grid 45, . . . , the initial condition is obtained by

interpolating the results of a simulation with the next coarser grid onto the finer grid,

e.g. the initial condition for Grid 4 was obtained by interpolating the results of Grid 3

on the finer Grid 4.

4.5 Compute system

The simulations have been carried out on the high performance compute system Su-

perMUC of the Leibniz-Rechenzentrum (LRZ) in Garching. SuperMUC consists of 18

thin node islands and one fat node island, which differ regarding several aspects, i.a.

the number of nodes per island, the number of processors per node, and the number

of cores per processor. The simulations have been primarily run on the fat node island

as it provides more available memory per core when all cores per node are used. A

detailed description of the compute system can be found in [121]. The simulations were

carried out with up to 2080 cores, the maximum number of cores per standard job on

the fat node island. However, considering the queuing time of the jobs, jobs with a lower

number of cores, e.g. 1040, were overall faster.
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Results of investigations without

flow control

This chapter presents results of the simulations without flow control, partly published

in [122–124]. It focuses on the leading edge bluntness effects on primary vortex sep-

aration. To this end, medium radius round leading edge (MRLE) and sharp leading

edge (SLE) at angles of attack of 13◦, 18◦, and 23◦ are considered in section one and

two, respectively. The numerical results are compared with experimental measurements

regarding main flow characteristics, velocity and velocity fluctuation intensity distribu-

tions, pressure and pressure fluctuation intensity distributions, and vortex breakdown

position and frequency.

5.1 Medium Radius Leading Edge (MRLE) - angles of at-

tack of 13◦, 18◦, and 23◦

As discussed in chapter 2, the MRLE configuration is computationally more challenging

than the SLE configuration since the primary vortex separation is not geometrically

fixed at the leading edge but slightly displaced from it. Considering the main flow

characteristics, the numerical investigations show overall good agreement with the ex-

perimental results but discrepancies regarding the separation line, notably in the front

part of the wing, where the leading edge crossflow bluntness is highest. Moreover, there

is no secondary vortex for any of the three angles of attack. As a result, the velocity and

53
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pressure distributions also deviate from the experimental measurements at the upstream

cross sections. The agreement at the downstream cross sections is good, however. Vor-

tex breakdown position and frequency are predicted well. A detailed discussion of the

results is given in the following subsections.

5.1.1 Main flow characteristics

The main flow characteristics are predicted correctly for all angles of attack considered,

apart from the secondary vortex, which is not present in any of the simulations. For

α = 13◦, one observes a partly developed leading edge vortex, an apex vortex, and a

counter rotating trailing edge vortex, see left column of Figure 5.1. For α = 18◦, one

observes a fully developed leading edge vortex, an apex vortex, and a counter rotating

trailing edge vortex, see center column of Fig. 5.1. For α = 23◦, one observes a fully

developed leading edge vortex with vortex breakdown above the wing, and a counter

rotating trailing edge vortex, see right column of Fig. 5.1. A secondary vortex has not

been observed for any of the three angles of attack. For the configurations considered, the

secondary vortex is expected to be small [88], which is corroborated by the experimental

measurements, where the secondary vortex is only observable on the oil flow pictures but

not in the velocity and pressure measurements. In this study, the grid resolution on the

upper wing surface in conjunction with the TBLE wall model is insufficient to represent

this small-scale flow feature, which confirms observations made in [125] and [110]. The

vortex system leads to the characteristic pressure coefficient distribution on the upper

surface of the wing with a suction peak below the axis of the primary vortex, see bottom

row of Fig. 5.1. The main flow features depicted in Fig. 5.1 are predicted correctly

regardless of the use of the wall model, indicating that the wall model does not have a

major impact for this type of flow, an observation already made in a previous study [74].

A comparison of streamlines close to the wing surface with experimental oil flow visual-

izations, shown in Fig. 5.2, indicates that the primary vortex separation line is predicted

further away from the leading edge in the front part of the wing for all three angles of

attack.

For α = 13◦, the partly developed primary vortex leads to a primary vortex separation

line originating at approximately one third chord length close to the leading edge. Given

that the separation line is very close to the leading edge, it is hardly discernible in the
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Figure 5.1: MRLE: Main flow characteristics at angles of attack of 13◦ (left), 18◦

(center), and 23◦ (right), obtained with Grid 4. AV - apex vortex, PV - primary
vortex, TEV - trailing edge vortex, VB - vortex breakdown. Top row shows isosurfaces
of streamwise vorticity (ωx = ±20) colored by streamwise velocity. Bottom row shows

pressure coefficient distribution on upper wing surface.

experimental oil flow visualization. In the simulation, it is clearly observable but not as

close to the leading edge. The primary vortex attachment line observed in the simulation

lies further inboard in the front part and approximately at the same position close to the

trailing edge. The secondary vortex separation and attachment lines are not observed

in the simulation.

For α = 18◦, the fully developed leading edge vortex leads to a primary vortex sepa-

ration line originating close to the apex. Again, as for α = 13◦, the primary vortex

separation line lies not as close to the leading edge as in the experiment. In comparison

with α = 13◦, the primary vortex attachment line is located further inboard in both

experiment and simulation. Comparing simulation with experiment, one again observes

that the attachment line lies further inboard in the front part and approximately at the

same position at the trailing edge. For α = 18◦, the secondary vortex separation and

attachment lines are again only visible in the experiment.

For α = 23◦, the fully developed leading edge vortex leads to a primary vortex sepa-

ration line originating close to the apex, which, as for the other two angles of attack,

again lies closer to the leading edge in the experiment. The primary vortex attachment
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Figure 5.2: MRLE: Comparison of vortex footprint on upper surface: experimental
oil flow visualization (top row) [38, 40, 41] and surface streamlines from simulations
with Grid 1 and wall model (bottom row). AVSL - apex vortex separation line, AVAL
- apex vortex attachment line, PVSL - primary vortex separation line, PVAL - primary
vortex attachment line, SVSL - secondary vortex separation line, SVAL - secondary

vortex attachment line.

line lies close to the center of the wing in both experiment and simulation. Again, sec-

ondary vortex separation and attachment line are only observed in the experiment. As

mentioned at the beginning of this paragraph, the primary vortex separation line lies

farther from the leading edge for all three angles of attack considered, notably in the

front part. Using the refined Grid 4567, which still does not resolve the wall region,

the position of the separation line moves closer to the leading edge, which is in better

agreement with the experiment, suggesting that the TBLE wall model employed in this

study is not able to accurately predict the separation line for the considered complex

flow around a curved surface. Also, simulations with a simple no-slip condition yield a

very similar streamline topology on Grid 4. One can thus conclude that the wall model

has only a minor influence on the flow topology.
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5.1.2 Velocity distribution and velocity fluctuation intensities

A comparison of the velocity distribution at different cross sections, shown in Figs. 5.3

& 5.4, 5.5 & 5.6, and 5.7 & 5.8 for α = 13◦, α = 18◦, and α = 23◦, respectively, shows

overall good agreement and is in line with the previously observed discrepancy regarding

the separation line position in the front part of the wing.

For α = 13◦, at cross section x/cr = 0.2, the velocity distribution obtained with Grid 4 is

in reasonable agreement with the experimental data with slight differences in the region

close to the leading edge. At x/cr = 0.4, the experimental velocity distribution shows

a higher maximum streamwise velocity and the vortex core lies closer to the leading

edge than in the simulation. At x/cr = 0.6 and x/cr = 0.8, the velocity distribution

obtained in the simulation is in good agreement with the experimental data, with a minor

discrepancy regarding the maximum streamwise velocity which is predicted higher by

the simulation. This observation can still be made at the most downstream location,

x/cr = 0.95, where the vortex core lies further inboard in the experiment.

For α = 18◦, at cross section x/cr = 0.2, the velocity distribution obtained by the

simulation is in rather good agreement with the experimental data, showing again, as

for α = 13◦, slight differences in the region close the leading edge. The experimental

data show a region of negative or low streamwise velocity away from the leading edge,

which is counterintuitive and might be a measurement inaccuracy. At x/cr = 0.4,

the predicted velocity distribution is overall in good agreement with the experimental

data with a minor discrepancy regarding the vortex core which lies further inboard. The

agreement between simulation and experiment is very good at x/cr = 0.6. At x/cr = 0.8,

the overall shape is in good agreement but the vortex core is predicted closer to the

leading edge by the simulation. At the most downstream location, x/cr = 0.95, the

vortex core is again predicted closer to the leading edge and a region of high streamwise

velocity in the vortex core is observed, whereas the experiment shows a small region of

negative streamwise velocity indicating vortex breakdown. Vortex breakdown is sensitive

to minor disturbances, e.g. slight changes in the surrounding conditions. Therefore, for

α = 18◦, vortex breakdown above the wing sometimes occurs and sometimes not. Note,

for instance, that vortex breakdown was observed in the experiments for the MRLE but

not for the SLE, even though vortex breakdown generally occurs earlier for the SLE. In

view of the fixed boundary conditions with no disturbances in the simulations, it is thus

not surprising that vortex breakdown is not observed for α = 18◦.
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Figure 5.3: MRLE, α = 13◦: Velocity distribution at cross sections x/cr = 0.2, 0.4,
and 0.6 (from left to right). Top row shows experimental measurements [38, 40, 41],

bottom row shows results of simulation with Grid 4 and simple no-slip condition.

For α = 23◦, at cross section x/cr = 0.2, the velocity distribution obtained with Grid

4567 is in good agreement with the experimental data. For Grid 4, the position of

the vortex core is further inboard and further away from the wall. At x/cr = 0.4 and

x/cr = 0.6, the velocity distributions are in good agreement with the experimental data

for both Grid 4 and Grid 4567. At x/cr = 0.8, the simulation with Grid 4 predicts

a higher streamwise velocity in the vortex core and for x/cr = 0.95 a larger region of

negative streamwise velocity. Vortex breakdown occurred at approximately the same

position as in the experiment, namely x/cr ≈ 0.89 (vs. x/cr ≈ 0.85 in the experiment).

For Grid 4567, the simulations predict larger regions of higher negative velocities in

streamwise direction at x/cr = 0.8 and x/cr = 0.95, which stems from the slightly

earlier vortex breakdown, observed at x/cr ≈ 0.77 for this simulation.

Distributions of streamwise velocity fluctuation intensities at different cross sections

for α = 13◦, α = 18◦, and α = 23◦ are shown in Figs. 5.9 - 5.14. Compared with

the experimental measurements conducted at Re = 1 · 106 and Ma = 0.07 [38, 40,

41], the simulations predict lower levels of velocity fluctuation intensities for all three

angles of attack, see Figs. 5.9 - 5.11. However, the results for α = 23◦ are in good

agreement with experimental results reported in [87]: Upstream of the vortex breakdown
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Figure 5.4: MRLE, α = 13◦: Velocity distribution at cross sections x/cr = 0.8 and
0.95 (from left to right). Top row shows experimental measurements [38, 40, 41], bottom

row shows results of simulation with Grid 4 and simple no-slip condition.

Figure 5.5: MRLE, α = 18◦: Velocity distribution at cross sections x/cr = 0.2, 0.4,
and 0.6 (from left to right). Top row shows experimental measurements [38, 40, 41],

bottom row shows results of simulation with Grid 4 and simple no-slip condition.
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Figure 5.6: MRLE, α = 18◦: Velocity distribution at cross sections x/cr = 0.8 and
0.95 (from left to right). Top row shows experimental measurements [38, 40, 41], bottom

row shows results of simulation with Grid 4 and simple no-slip condition.

location, i.e. x/cr = 0.2, x/cr = 0.4, and x/cr = 0.6, uRMS ≈ 20% in the region

of the primary vortex and uRMS ≈ 0% outside of the vortex. At x/cr = 0.8 and

x/cr = 0.85, i.e. at or close to the vortex breakdown location, the velocity fluctuation

intensity significantly increases and reaches values up to uRMS ≈ 50% in the vortex core.

This region of maximum turbulence intensity rapidly expands and annular regions of

maximum turbulence intensity uRMS ≈ 30%−40% are formed downstream of the vortex

breakdown location, see Fig. 5.12. Lateral velocity fluctuations, vRMS , and vertical

velocity fluctuations, wRMS , also show qualitatively good agreement, see Figs. 5.13 and

5.14, but are predicted slightly higher than observed in the experiments [87].

5.1.3 Surface pressure distribution and surface pressure fluctuation

intensities

A quantitative comparison of the pressure coefficient (Cp) distribution at different cross

sections of the wing, shown in Figs. 5.15 - 5.17, shows reasonable to good agreement

in the rear part of the wing and discrepancies in the front part, which is in accordance

with the previous observations, notably the deviating separation line position in the

front part.
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Figure 5.7: MRLE, α = 23◦: Velocity distribution at cross sections x/cr = 0.2, 0.4,
and 0.6 (from left to right). Top row shows experimental measurements [38, 40, 41],
center row shows results of simulation with Grid 4 and TBLE wall model, bottom row

shows results of simulation with Grid 4567 and simple no-slip condition.

For α = 13◦, the simulations fail to predict the suction peak close to the leading edge

at x/cr = 0.2 and x/cr = 0.4. For the latter cross section, a suction peak of lower

magnitude appears but is located further inboard. At x/cr = 0.6, the magnitude of the

suction peak is predicted equally high as in the experiment but it is still located further

inboard. At x/cr = 0.8, the location of the suction peak is in good agreement with the

experimental data but its magnitude is predicted higher. For the most downstream cross

section at x/cr = 0.95, the suction peak is predicted higher and closer to the leading

edge. For α = 13◦, the TBLE wall model had almost no effect on the Cp distribution

at cross sections x/cr = 0.2, x/cr = 0.4 and x/cr = 0.6. At the two most downstream

cross sections, the results obtained with the TBLE wall model are slightly closer to the

experimental data than the results obtained with a simple no-slip condition.
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Figure 5.8: MRLE, α = 23◦: Velocity distribution at cross sections x/cr = 0.8 and
0.95 (from left to right). Top row shows experimental measurements [38, 40, 41], center
row shows results of simulation with Grid 4 and TBLE wall model, bottom row shows

results of simulation with Grid 4567 and simple no-slip condition.

For α = 18◦, the simulations again fail to predict the suction peak close to the leading

edge at x/cr = 0.2. At x/cr = 0.4, the magnitude of the suction peak is predicted

as measured in the experiment but its location is further inboard. At x/cr = 0.6 and

x/cr = 0.8, the location of the suction peak is in good agreement with the experiment

but its magnitude is predicted higher. At the most downstream cross section, the suction

peak is predicted higher and closer to the leading edge. For α = 18◦, the TBLE wall

model again had only little effect on the Cp distribution at cross sections x/cr = 0.2 and

x/cr = 0.4. At the following cross sections, it shows a slight improvement compared to

the results obtained with the simple no-slip condition.

For α = 23◦, the simulations with Grid 4 show a suction peak which is located further

inboard and significantly lower in magnitude at cross section x/cr = 0.2. Using Grid
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Figure 5.9: MRLE, α = 13◦: Velocity fluctuation intensities uRMS at cross sections
x/cr = 0.4, 0.6, and 0.8 (from left to right). Top row shows experimental data for
Re = 1 · 106 and Ma = 0.07 [38, 40, 41], bottom row shows results of simulation with

Grid 4 and TBLE wall model.

Figure 5.10: MRLE, α = 18◦: Velocity fluctuation intensities uRMS at cross sections
x/cr = 0.4, 0.6, and 0.8 (from left to right). Top row shows experimental data for
Re = 1 · 106 and Ma = 0.07 [38, 40, 41], bottom row shows results of simulation with

Grid 4 and TBLE wall model.
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Figure 5.11: MRLE, α = 23◦: Velocity fluctuation intensities uRMS at cross sections
x/cr = 0.4, 0.6, and 0.8 (from left to right). Top row shows experimental data for
Re = 1 · 106 and Ma = 0.07 [38, 40, 41], bottom row shows results of simulation with

Grid 4 and TBLE wall model.

Figure 5.12: MRLE, α = 23◦: Velocity fluctuation intensities uRMS at cross sections
xg/cr = 0.2, 0.4, 0.6, and 0.8 (top row from left to right) and xg/cr = 0.85, 0.9, 0.95,
and 1.0 (bottom row from left to right). Simulation with Grid 4 and TBLE wall model.
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Figure 5.13: MRLE, α = 23◦: Velocity fluctuation intensities vRMS at cross sections
xg/cr = 0.2, 0.4, 0.6, and 0.8 (top row from left to right) and xg/cr = 0.85, 0.9, 0.95,
and 1.0 (bottom row from left to right). Simulation with Grid 4 and TBLE wall model.

Figure 5.14: MRLE, α = 23◦: Velocity fluctuation intensities wRMS at cross sections
xg/cr = 0.2, 0.4, 0.6, and 0.8 (top row from left to right) and xg/cr = 0.85, 0.9, 0.95,
and 1.0 (bottom row from left to right). Simulation with Grid 4 and TBLE wall model.

4567, which is refined in the region close to the apex, the suction peak is predicted

significantly better but is still located further inboard and lower in magnitude. Studies

with successively refined grids in the apex region showed that the prediction of both

magnitude and location of the suction peak at x/cr = 0.2 converges to the experimental

data, indicating that a fully resolved apex region, which could not be realized in this

work due to limited computational resources, might remedy the discrepancy at this cross

section. At x/cr = 0.4, the Cp distribution obtained with Grid 4 shows a suction peak

of equal magnitude as in the experiment but located slightly inboard of the experiment.
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Figure 5.15: MRLE, α = 13◦: Surface pressure distribution Cp at cross sections
x/cr = 0.2, 0.4, 0.6, 0.8 and 0.95 (from left to right and from top to bottom). Grid 4 with
TBLE wall model - blue; Grid 4 with simple no-slip condition - red; Experiments [38,

40, 41] - black. η denotes normalized local half span width.

For Grid 4567, the suction peak’s location is in good agreement with the experiment but

its magnitude is predicted slightly higher. At x/cr = 0.6 and x/cr = 0.8, the simulations

with Grid 4 correctly predict the suction peak location but a higher magnitude. For Grid

4567, the agreement with the experimental data is very good. At the most downstream

cross section x/cr = 0.95, the suction peak is predicted slightly outboard and slightly

higher for Grid 4 and Grid 4567 with overall better agreement for Grid 4567. For

α = 23◦, the TBLE wall model slightly improved the predicted Cp distribution at all

cross sections, apart from x/cr = 0.2. However, the improvement due to the TBLE

wall model is significantly less than the improvement obtained by refining the grid,

corroborating again that the effect of the wall model is marginal.

A quantitative comparison of the pressure coefficient fluctuations (Cp,RMS), see Figs. 5.18

- 5.20 for simulations with Grid 4 and TBLE wall model, shows reasonable agreement.

For α = 13◦, the overall shape of the Cp,RMS distribution at x/cr = 0.4 and x/cr = 0.6

is in good agreement with the experimental data, showing two peaks. However, their

location is further inboard and the magnitude is predicted lower which is in agreement

with the computed Cp distribution for this configuration. At x/cr = 0.8, overall shape

and location of the peaks are in good agreement with the experimental data, however
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Figure 5.16: MRLE, α = 18◦: Surface pressure distribution Cp at cross sections
x/cr = 0.2, 0.4, 0.6, 0.8 and 0.95 (from left to right and from top to bottom). Grid 4 with
TBLE wall model - blue; Grid 4 with simple no-slip condition - red; Experiments [38,

40, 41] - black. η denotes normalized local half span width.
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Figure 5.17: MRLE, α = 23◦: Surface pressure distribution Cp at cross sections
x/cr = 0.2, 0.4, 0.6, 0.8 and 0.95 (from left to right and from top to bottom). Grid 4
with TBLE wall model - blue; Grid 4 with simple no-slip condition - red; Grid 4567 -
Grid 4567 with simple no-slip condition; Experiments [38, 40, 41] - black. η denotes

normalized local half span width.
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the fluctuations are predicted slightly higher. At x/cr = 0.95, the magnitude of the fluc-

tuations is predicted as measured in the experiments but the peak is slightly outboard.

For α = 18◦, the Cp,RMS distribution at x/cr = 0.4 shows two peaks of approximately

the same magnitude as in the experiment, but located slightly inboard, which is in line

with the predicted Cp distribution. At the other three cross sections, the Cp,RMS distri-

butions show very poor agreement with the experimental measurements. In particular,

inboard of the primary vortex, the predicted level of pressure fluctuations is significantly

higher, which is surprising given that these regions are predicted fairly well for the other

two angles of attack.

For α = 23◦, the computed Cp,RMS distribution x/cr = 0.4 shows two peaks, whereas

only one peak was observed in the experiment. The magnitude is predicted slightly

higher, the location is slightly inboard, which is in agreement with the computed Cp dis-

tribution. At x/cr = 0.6, the simulation again shows two peaks whereas only one peak

was observed in the experiment. The location of the main peak is predicted as measured

in the experiment, but the magnitude is slightly higher. At x/cr = 0.8, the overall shape

is in good agreement with the experiment but the fluctuations are predicted higher. At

x/cr = 0.95, neither shape nor magnitude of the distribution are in agreement with the

experimental data. However, the significantly increased fluctuation level predicted is in

agreement with the increased turbulence level that one generally expects in the vortex

breakdown region. The experimental data at x/cr = 0.95, which show almost the same

fluctuation level as for the other three cross sections, are thus surprising.

5.1.4 Vortex breakdown position and frequency

Vortex breakdown, indicated by zero or negative streamwise velocities in the vortex

core, was observed at x/cr ≈ 0.89 for Grid 4 with TBLE wall model, and at x/cr ≈ 0.77

for Grid 4567. These results are in good agreement with the experimental result,

x/cr ≈ 0.85 [38]. The vortex breakdown is of helical type, see Fig. 5.21, and the vortex

axis’s rotation is opposite to the primary vortex’s rotation, as described in [13].

In order to determine the frequency of the vortex breakdown occurring in the simula-

tion, a pressure signal has been extracted from a point in the vortex breakdown region

(xg = 0.87, yg = 0.23, zg = −0.24) and analyzed by a Fourier transform. As one can see
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Figure 5.18: MRLE, α = 13◦: Surface pressure fluctuation intensities Cp,RMS at cross
sections x/cr = 0.4, 0.6, 0.8 and 0.95 (from left to right and from top to bottom). Grid
4 with TBLE wall model - blue; Experiments [38, 40, 41] - black. η denotes normalized

local half span width.
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Figure 5.19: MRLE, α = 18◦: Surface pressure fluctuation intensities Cp,RMS at cross
sections x/cr = 0.4, 0.6, 0.8 and 0.95 (from left to right and from top to bottom). Grid
4 with TBLE wall model - blue; Experiments [38, 40, 41] - black. η denotes normalized

local half span width.
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Figure 5.20: MRLE, α = 23◦: Surface pressure fluctuation intensities Cp,RMS at cross
sections x/cr = 0.4, 0.6, 0.8 and 0.95 (from left to right and from top to bottom). Grid
4 with TBLE wall model - blue; Experiments [38, 40, 41] - black. η denotes normalized

local half span width.

Figure 5.21: MRLE, α = 23◦: Helical form of vortex breakdown. Figure shows
isosurface of pressure coefficient (Cp = −2) colored by streamwise velocity.
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Figure 5.22: MRLE, α = 23◦: Frequency analysis of pressure signal extracted from
vortex breakdown region. The amplitude values on the ordinate are determined by
multiplying the respective Fourier coefficient with its complex conjugate and dividing

by the signal length.

in Fig. 5.22, the dominant nondimensional frequency appearing is fdom,SIM ≈ 2.4. An

empirically derived formula estimating the vortex breakdown frequency is given in [85]:

fdom,EST =
1

x/cr · cr cot ϕW
U∞
sin α

(0.28± 0.025) , (5.1)

where U∞ and ϕ denote free stream velocity and sweep angle, respectively. For the

configuration and free stream conditions considered, this leads to an expected nondi-

mensional frequency fdom,EST at the point of extraction of fdom,EST ≈ 1.6 − 1.9. The

observed frequency range in the experiment was slightly higher, fdom,EXP ≈ 1.8−2.2 [38],

so the dominant frequency in the simulation confirms this observation and is overall in

good agreement.

5.2 Sharp Leading Edge (SLE) - angles of attack of 13◦,

18◦, and 23◦

As previously stated, the SLE configuration is computationally easier than the MRLE

configuration since the primary vortex separation is geometrically fixed at the leading

edge. Considering the main flow characteristics, the numerical investigations show over-

all very good agreement with the experimental results with only minor discrepancies
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regarding the separation line. Again, there is no secondary vortex for any of the three

angles of attack. The velocity and pressure distributions deviate slightly from the ex-

perimental measurements at the upstream cross sections, significantly less than for the

MRLE, though. The agreement at the downstream cross sections is good, and vortex

breakdown position and frequency are predicted well. A detailed discussion of the results

is given in the following subsections.

5.2.1 Main flow characteristics

As for the MRLE, the expected vortex topologies are predicted correctly for all angles of

attack considered, apart from the secondary vortex, which is not observed for any of the

three angles of attack. For α = 13◦ and α = 18◦, one observes a fully developed leading

edge vortex and a counter rotating trailing edge vortex, see left and center column of

Fig. 5.23, respectively. For α = 23◦, one observes a fully developed leading edge vortex

with vortex breakdown above the wing, and a counter rotating trailing edge vortex, see

right column of Fig. 5.23. Contrary to the simulations with the MRLE, vortex breakdown

had to be triggered by a small disturbance, e.g. by inserting small spheres downstream

of the wing’s trailing edge, see Fig. 5.24. As previously mentioned, vortex breakdown

is sensitive to small disturbances in the surrounding conditions, and the fixed boundary

conditions with no disturbances used in the simulations thus do not perfectly represent

the wind tunnel conditions. Note that other forms of disturbances, e.g. marginally

moving or rescaling the geometry also provoked vortex breakdown, indicating that very

small disturbances may suffice. As for the MRLE, the secondary vortex is expected to

be small [88] for this configuration, which is again corroborated by the experimental

measurements, where the secondary vortex is mainly observable on the oil flow pictures

but not in the velocity and pressure measurements. As argued in the case of the MRLE,

the grid resolution on the upper wing surface in conjunction with the TBLE wall model

is insufficient to represent this small-scale flow feature, confirming observations made

in [125] and [110]. The vortex system leads to the characteristic pressure coefficient

distribution on the upper surface of the wing with a suction peak below the axis of the

primary vortex, see bottom row of Fig. 5.23. The main flow features depicted in Fig. 5.1

are predicted correctly regardless of the use of the wall model, indicating that the wall

model does not have a major impact for this type of flow, an observation already made

in a previous study [74] and confirming the results of the simulations with the MRLE.
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Figure 5.23: SLE: Main flow characteristics for angles of attack of 13◦ (left), 18◦

(center), and 23◦ (right), obtained with Grid 4. AV - apex vortex, PV - primary
vortex, TEV - trailing edge vortex, VB - vortex breakdown. Top row shows isosurfaces
of streamwise vorticity (ωx = ±20) colored by streamwise velocity. Bottom row shows

pressure coefficient distribution on upper wing surface.

Figure 5.24: SLE, α = 23◦. Small spheres downstream of the wing’s trailing edge to
trigger vortex breakdown.
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A comparison of streamlines close to the wing surface with experimental oil flow visu-

alizations, see Fig. 5.25, shows a significantly better prediction of the separation line

position than for the MRLE, marginally away from the leading edge, however, and not

precisely at the leading edge, as expected for the SLE. The latter observation can be

explained by the fact that the employed immersed boundary technique represents the

SLE as slightly rounded, see Fig. 4.4.

Therefore, for α = 13◦, the primary vortex leads to a primary vortex separation line

originating slightly away from the leading edge and a little displaced from the apex.

In comparison with the MRLE, however, it lies significantly closer to the leading edge

and not as much displaced from the apex, see Fig. 5.2. The primary vortex attachment

line observed in the simulation lies further inboard in the front part and approximately

at the same position close to the trailing edge. The secondary vortex separation and

attachment lines are not observed in the simulation.

For α = 18◦, the fully developed leading edge vortex leads to a primary vortex separation

line originating close to the apex. Again, as for α = 13◦, the primary vortex separation

line does not lie exactly at the leading edge as in the experiment, but slightly inboard.

In comparison with α = 13◦, the primary vortex attachment line is located further in-

board in both experiment and simulation, and comparing simulation with experiment,

one again observes that the attachment line lies further inboard in the front part and

approximately at the same position at the trailing edge. For α = 18◦, the secondary

vortex separation and attachment lines are again only visible in the experiment.

For α = 23◦, the fully developed leading edge vortex leads to a primary vortex separa-

tion line originating close to the apex, which, as for the other two angles of attack, again

lies slightly away from the leading edge. The primary vortex attachment line lies close

to the center of the wing in both experiment and simulation. Again, secondary vortex

separation and attachment lines have only been observed in the experiment.

As mentioned at the beginning of this paragraph, the primary vortex separation line

does not lie exactly at the leading edge for all three angles of attack considered, notably

in the front part, which is caused by the fact that the immersed boundary method em-

ployed does not accurately represent the sharp leading edge. However, comparing SLE

with MRLE, the overall trend is correct, that is, for the SLE the separation line is -

almost - at the leading edge, whereas for the MRLE, it is significantly displaced from

the leading edge. Moreover, grid refinement improves both separation line position and

geometry representation.
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Figure 5.25: SLE: Comparison of vortex footprint on upper surface: experimental oil
flow visualization (top row) [38, 40, 41] and surface streamlines from simulations with
Grid 4 (bottom row). PVSL - primary vortex separation line, PVAL - primary vortex
attachment line, SVSL - secondary vortex separation line, SVAL - secondary vortex

attachment line.

5.2.2 Velocity distribution and velocity fluctuation intensities

A comparison of the velocity distribution at different cross sections, shown in Figs. 5.26

& 5.27, 5.28 & 5.29, and 5.30 & 5.31 for α = 13◦, α = 18◦, and α = 23◦, respectively,

is overall in good accordance with the experimental data and in line with the previous

observations.

For α = 13◦, at cross sections x/cr = 0.2 and x/cr = 0.4, the velocity distribution

obtained with Grid 4 is overall in reasonable agreement with the experimental data with

only minor differences. At x/cr = 0.6, the velocity distribution shows a higher maximum

streamwise velocity and the vortex core lies slightly closer to the wing surface than in

the simulation but laterally at the same position, similar to what has been observed for

the MRLE. At x/cr = 0.8 and x/cr = 0.95, the velocity distribution obtained in the

simulation again shows a higher maximum streamwise velocity and the vortex core lies

closer to the leading edge than in the simulation but vertically at approximately the
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same position, which is again similar to the observation made for the MRLE.

For α = 18◦, at cross section x/cr = 0.2, the velocity distribution obtained in the

simulation shows a significantly smaller region of high streamwise velocity and the overall

shape shows some discrepancies. At x/cr = 0.4 and x/cr = 0.6, the velocity distribution

is in good agreement with the experimental measurements. At x/cr = 0.8, the overall

shape of the velocity distribution is in good agreement, but the vortex core is located

closer to the leading edge than in the experiment. At x/cr = 0.95, the simulation shows

a large region of high streamwise velocity, whereas the region is significantly smaller in

the experiment. Furthermore, the vortex core lies again closer to the leading edge in the

simulation. Overall, the observations are very similar to the observations made for the

MRLE.

For α = 23◦, at cross section x/cr = 0.2, the velocity distributions obtained with Grid 4

and Grid 45 are in reasonable agreement with the experimental data but show a slightly

different shape. For Grid 4, the discrepancies regarding the shape are more pronounced.

At x/cr = 0.4 and x/cr = 0.6, the velocity distributions are in good agreement with

the experimental data for both Grid 4 and Grid 45. However, the vortex core lies closer

to the leading edge than in the experiment for the latter cross section and the shape

still shows minor discrepancies. At x/cr = 0.8 and x/cr = 0.95, experiment and both

simulations (Grid 4 and Grid 45) show a region of negative streamwise velocity indicating

that vortex breakdown has already occurred. Both shape and magnitude of the velocity

distribution show some discrepancies, however, notably regarding the size of the region

of negative streamwise velocity, which is predicted significantly larger in the simulations.

This is particularly surprising for the simulation with Grid 4, in which vortex breakdown

occurred more downstream than in the experiment (x/cr ≈ 0.77 vs. x/cr ≈ 0.68), and

thus one would rather expect a smaller region of negative streamwise velocity.

Distributions of streamwise velocity fluctuation intensities at different cross sections for

α = 23◦, see Figs. 5.32 - 5.34, exhibit the characteristic shape expected from the exper-

iments [87], but show minor differences regarding magnitude: Upstream of the vortex

breakdown location, i.e. x/cr = 0.2, x/cr = 0.4, and x/cr = 0.6, uRMS ≈ 20−30% in the

region of the primary vortex and uRMS ≈ 0% outside of the vortex. Between x/cr = 0.65

and x/cr = 0.75, i.e. at or close to the vortex breakdown location, the velocity fluctua-

tion intensity significantly increases and reaches uRMS ≈ 50− 60% with peak values up

to uRMS ≈ 90% in the vortex core. This region of maximum turbulence intensity rapidly
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Figure 5.26: SLE, α = 13◦: Velocity distribution at cross sections x/cr = 0.2, 0.4,
and 0.6 (from left to right). Top row shows experimental measurements [38, 40, 41],

bottom row shows results of simulation with Grid 4 and simple no-slip condition.

Figure 5.27: SLE, α = 13◦: Velocity distribution at cross sections x/cr = 0.8 and 0.95
(from left to right). Top row shows experimental measurements [38, 40, 41], bottom

row shows results of simulation with Grid 4 and simple no-slip condition.
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Figure 5.28: SLE, α = 18◦: Velocity distribution at cross sections x/cr = 0.2, 0.4,
and 0.6 (from left to right). Top row shows experimental measurements [38, 40, 41],

bottom row shows results of simulation with Grid 4 and simple no-slip condition.

Figure 5.29: SLE, α = 18◦: Velocity distribution at cross sections x/cr = 0.8 and 0.95
(from left to right). Top row shows experimental measurements [38, 40, 41], bottom

row shows results of simulation with Grid 4 and simple no-slip condition.
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Figure 5.30: SLE, α = 23◦: Velocity distribution at cross sections x/cr = 0.2, 0.4,
and 0.6 (from left to right). Top row shows experimental measurements [38, 40, 41],
center row shows results of simulation with Grid 4 and TBLE wall model, bottom row

shows results of simulation with Grid 45 and simple no-slip condition.

expands and annular regions of maximum turbulence intensity uRMS ≈ 30%− 40% are

formed downstream of the vortex breakdown location, see Fig. 5.32. Lateral velocity

fluctuations, vRMS , and vertical velocity fluctuations, wRMS , also show qualitatively

good agreement, see Figs. 5.33 and 5.34, but are again, as for the MRLE, predicted

slightly higher than observed in the experiments [87].

5.2.3 Surface pressure distribution and surface pressure fluctuation

intensities

A quantitative comparison of the pressure coefficient (Cp) distribution at different cross

sections of the wing, see Figs. 5.35 - 5.37, confirms the previous observations, showing
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Figure 5.31: SLE, α = 23◦: Velocity distribution at cross sections x/cr = 0.8 and
0.95 (from left to right). Top row shows experimental measurements [38, 40, 41], center
row shows results of simulation with Grid 4 and TBLE wall model, bottom row shows

results of simulation with Grid 45 and simple no-slip condition.

overall better agreement than for the MRLE, but still some discrepancies in the apex

region.

For α = 13◦, the simulations fail to predict the suction peak close to the leading edge

at x/cr = 0.2, as for the MRLE. At x/cr = 0.4, the suction peak is of slightly lower

magnitude and located slightly inboard. At x/cr = 0.6, the magnitude of the suction

peak is predicted slightly higher but its location coincides with the experiment’s. At

x/cr = 0.8 and x/cr = 0.95, the suction peak’s magnitude is again predicted higher and

the location is slightly closer to the leading edge, confirming the observation made in

the preceding sections.

For α = 18◦, the simulations again fail to predict the suction peak close to the leading

edge at x/cr = 0.2. At x/cr = 0.4, the magnitude of the suction peak is predicted
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Figure 5.32: SLE, α = 23◦: Velocity fluctuation intensities uRMS at cross sections
xg/cr = 0.4, 0.6, 0.65, and 0.7 (top row from left to right) and xg/cr = 0.75, 0.8, 0.9,
and 1.0 (bottom row from left to right). Simulation with Grid 4 and TBLE wall model.

Figure 5.33: SLE, α = 23◦: Velocity fluctuation intensities vRMS at cross sections
xg/cr = 0.4, 0.6, 0.65, and 0.7 (top row from left to right) and xg/cr = 0.75, 0.8, 0.9,
and 1.0 (bottom row from left to right). Simulation with Grid 4 and TBLE wall model.

equally high as measured in the experiments but its location is slightly inboard. At

x/cr = 0.6 and x/cr = 0.8, the location of the suction peak is predicted slightly closer to

the leading edge and the magnitude is predicted higher than in the experiment. At the

most downstream cross section, the suction peak is predicted slightly higher and closer

to the leading edge than observed in the experiments, which is in line with previous

observations.

For α = 23◦, the simulations with Grid 4 show a suction peak which is located slightly

inboard and lower in magnitude at cross section x/cr = 0.2. Using Grid 45, which is
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Figure 5.34: SLE, α = 23◦: Velocity fluctuation intensities wRMS at cross sections
xg/cr = 0.4, 0.6, 0.65, and 0.7 (top row from left to right) and xg/cr = 0.75, 0.8, 0.9,
and 1.0 (bottom row from left to right). Simulation with Grid 4 and TBLE wall model.

refined in the region close to the apex, the suction peak is predicted significantly better

and shows good agreement with the experimental measurements. At x/cr = 0.4, the

Cp distribution obtained with Grid 4 shows a suction peak of same magnitude located

slightly inboard of the experiment. For Grid 45, both suction peak’s location and mag-

nitude are in very good agreement with the experiment. At x/cr = 0.6 and x/cr = 0.8,

the simulations with both grids predict a suction peak with approximately same magni-

tude and location as measured in the experiments. For Grid 45, the agreement with the

experimental data is overall better for these two cross sections. At the most downstream

cross section x/cr = 0.95, the suction peak is predicted slightly outboard and slightly

higher for Grid 4 and Grid 45 with overall better agreement for Grid 45. For α = 23◦,

the TBLE wall model slightly improved the predicted Cp distribution at all cross sec-

tions. However, the improvement due to the TBLE wall model is significantly less than

the improvement obtained by refining the grid, confirming the observations made for

the MRLE and corroborating again that the effect of the wall model is marginal.

A quantitative comparison of the pressure coefficient fluctuations (Cp,RMS), shown in

Figs. 5.38 - 5.40 for simulations with Grid 4, shows good agreement regarding the peak

values in the region of the primary vortex, with minor discrepancies in line with the

computed Cp distributions, but partly significantly higher fluctuation levels inboard of

the primary vortex.

For α = 13◦, the overall shape of the Cp,RMS distribution is similar to the experimental
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Figure 5.35: SLE, α = 13◦: Surface pressure distribution Cp at cross sections
x/cr = 0.2, 0.4, 0.6, 0.8 and 0.95 (from left to right and from top to bottom). Grid
4 with simple no-slip condition - red; Experiments [38, 40, 41] - black. η denotes

normalized local half span width.
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Figure 5.36: SLE, α = 18◦: Surface pressure distribution Cp at cross sections
x/cr = 0.2, 0.4, 0.6, 0.8 and 0.95 (from left to right and from top to bottom). Grid
4 with simple no-slip condition - red; Experiments [38, 40, 41] - black. η denotes

normalized local half span width.
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Figure 5.37: SLE, α = 23◦: Surface pressure distribution Cp at cross sections
x/cr = 0.2, 0.4, 0.6, 0.8 and 0.95 (from left to right and from top to bottom). Grid 4
with TBLE wall model - blue; Grid 4 with simple no-slip condition - red; Grid 45 with
simple no-slip condition - green; Experiments [38, 40, 41] - black. η denotes normalized

local half span width.

data at all four cross sections, x/cr = 0.4, x/cr = 0.6, x/cr = 0.8, and x/cr = 0.95, but

the fluctuation level is predicted significantly higher in the inner part of the wing.

For α = 18◦, the overall shape of the Cp,RMS distribution shows again similar behavior

as the experimental data. The maximum levels of fluctuation intensity are predicted

quite well for all four cross sections and the locations of the peak levels show only minor

discrepancies, which is in agreement with the previous observations. However, as for

α = 13◦, the level of fluctuation intensity inboard of the primary vortex is predicted

significantly higher, particularly at the upstream cross sections.

For α = 23◦, the predictions show good agreement at cross section x/cr = 0.4 and

reasonable agreement at x/cr = 0.6. At x/cr = 0.8 and x/cr = 0.95, the fluctuation

level is predicted quite well in the region inboard of the primary vortex, contrary to the

other two angles of attack, but the peak values in the region of the primary vortex are

predicted significantly higher, an observation already made for the MRLE. As stated

beforehand, this is in accordance with the general expectation of significantly increased

fluctuation levels in the vortex breakdown region, and the experimental results at these

cross sections are thus surprising.



Chapter 5. Results of investigations without flow control 85

C
p R

M
S

0 0.2 0.4 0.6 0.8 10

0.1

0.2

C
p R

M
S

0 0.2 0.4 0.6 0.8 10

0.1

0.2

C
p R

M
S

0 0.2 0.4 0.6 0.8 10

0.1

0.2

C
p R

M
S

0 0.2 0.4 0.6 0.8 10

0.1

0.2

Figure 5.38: SLE, α = 13◦: Surface pressure fluctuation intensities Cp,RMS at cross
sections x/cr = 0.4, 0.6, 0.8 and 0.95 (from left to right and from top to bottom).
Grid 4 with simple no-slip condition - red; Experiments [38, 40, 41] - black. η denotes

normalized local half span width.
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Figure 5.39: SLE, α = 18◦: Surface pressure fluctuation intensities Cp,RMS at cross
sections x/cr = 0.4, 0.6, 0.8 and 0.95 (from left to right and from top to bottom).
Grid 4 with simple no-slip condition - red; Experiments [38, 40, 41] - black. η denotes

normalized local half span width.
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Figure 5.40: SLE, α = 23◦: Surface pressure fluctuation intensities Cp,RMS at cross
sections x/cr = 0.4, 0.6, 0.8 and 0.95 (from left to right and from top to bottom). Grid
4 with TBLE wall model - blue; Experiments [38, 40, 41] - black. η denotes normalized

local half span width.

5.2.4 Vortex breakdown position and frequency

Vortex breakdown, indicated by zero or negative streamwise velocities in the vortex

core, was observed at x/cr ≈ 0.77 for Grid 4 and at x/cr ≈ 0.69 for Grid 45. These

results are in good agreement with the experimental result, x/cr ≈ 0.68 [38]. The vortex

breakdown is of helical type, see Fig. 5.41, and the vortex axis’s rotation is opposite to

the primary vortex’s rotation, as described in [13] and as observed for the MRLE, see

Fig. 5.21.

In order to determine the frequency of the vortex breakdown occurring in the simula-

tion, a pressure signal has been extracted from a point in the vortex breakdown region

(xg = 0.77, yg = 0.24, zg = −0.23) and analyzed by a Fourier transform. As one can see

in Fig. 5.42, the dominant nondimensional frequency appearing is fdom,SIM ≈ 3.0. As

mentioned previously, the vortex breakdown frequency can be estimated via [85]

fdom,EST =
1

x/cr · cr cot ϕW
U∞
sin α

(0.28± 0.025) , (5.2)
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Figure 5.41: SLE, α = 23◦: Helical form of vortex breakdown. Figure shows isosur-
face of pressure coefficient (Cp = −2) colored by streamwise velocity.
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Figure 5.42: SLE, α = 23◦: Frequency analysis of pressure signal extracted from
vortex breakdown region. The amplitude values on the ordinate are determined by
multiplying the respective Fourier coefficient with its complex conjugate and dividing

by the signal length.

which leads to an expected nondimensional frequency fdom,EST at the point of extraction

of fdom,EST ≈ 1.7 − 2.1. The observed frequency range in the experiment by Furman

and Breitsamter [38] was slightly higher than this expected frequency, but not as much

higher as the dominant frequency observed in the simulation. However, the frequency

observed in the simulation is in very good agreement with the results of the more recent

experiment by Kölzsch and Breitsamter [126].





Chapter 6

Results of investigations with flow

control

This chapter presents results of the simulations with flow control mechanisms, partly

published in [123, 124]. It contains two sections. Section one discusses results of the

investigations with active flow control through oscillating control surfaces, and, as an

outlook, section two briefly presents a flow control approach where fluid from the pres-

sure side is injected on the suction side via a geometric modification of the wing. All

simulations in this chapter have been carried out with Grid 3 for the SLE at an angle

of attack of α = 28◦. For this configuration, vortex breakdown occurs - without intro-

ducing any disturbances - at x/cr ≈ 0.7, and it thus constitutes an expedient case since

the vortex breakdown location - the phenomenon of interest in this chapter - is clearly

above the wing and the relatively coarse grid allows for saving computational resources.

6.1 Sharp Leading Edge (SLE) - angle of attack of 28◦,

oscillating control surfaces

This section describes the investigations of flow control through oscillating control sur-

faces. The results indicate that oscillating control surfaces have only an insignificant

effect on the vortex breakdown location for the configuration considered, which confirms

experimental observations.

89
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6.1.1 Description of approach

The control surfaces investigated are the same as the ones used in the experiments con-

ducted at the Institute of Aerodynamics and Fluid Mechanics of Technische Universität

München, apart from a larger gap between flap and wing, which was necessary due to

the coarse grid. One can expect that the larger gap does not affect the overall effective-

ness of the control surface, however [127], and a preliminary simulation showed that the

chosen control surface, when not moving, does not affect the flow. The experimental

investigations showed that control surfaces in the front part of the wing have a higher

impact on the flow than control surfaces in the rear part [128]. Therefore, only con-

trol surfaces in the front part have been investigated, see Fig. 6.1. The control surface

position in a wing fixed coordinate system is given by

xcontrol surface = 0 ,

ycontrol surface = 0 ,

zcontrol surface = −C · 1

2πf
sin(2πft) ,

(6.1)

i.e. the flap moves periodically up and down. f and t denote frequency and time,

respectively, and the constant C can be modified to allow for different oscillation am-

plitudes. In the following, a maximum oscillation amplitude of approximately 0.01 · cr

has been chosen. In the simulations, the non-dimensional frequencies f = 2 =: f2 and

f = 4 =: f4 have been investigated. These frequencies lie in the range of frequencies

investigated experimentally.

6.1.2 Main flow characteristics

Figure 6.2 indicates that the main flow characteristics are only slightly altered by the

oscillating control surfaces. In the figure, the results of a simulation without flow control

(top row left), a simulation with oscillating flaps and frequency f2 (top row center),

and a simulation with oscillating flaps and frequency f4 (top row right) are shown.

One observes that the overall flow looks almost identical, which is also confirmed by

the almost coinciding pressure coefficient distributions for the three cases, see bottom

row of Fig. 6.2. These results are in agreement with the experimental studies, where
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Control surfaces

Figure 6.1: Control surfaces in the front part of the wing.

w/o FC

VB

PV

w/ FC, f2

VB

PV

w/ FC, f4

VB

PV

w/o FC w/ FC, f2 w/ FC, f4

Figure 6.2: SLE, α = 28◦: Main flow characteristics without flow control (FC, left),
with flow control and non-dimensional frequency f = 2 (f2, center), and with flow
control and non-dimensional frequency f = 4 (f4, right). PV - primary vortex, VB
- vortex breakdown. Top row shows isosurfaces of streamwise vorticity (ωx = ±15)
colored by streamwise velocity. Bottom row shows pressure coefficient distribution on

upper wing surface.

oscillating flaps also showed only an insignificant effect for angles of attack between 23◦

and 40◦ [128] .
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6.1.3 Velocity distribution and velocity fluctuation intensities

A quantitative comparison of the velocity distributions at different cross sections, see

Figs. 6.3 - 6.5, confirms the observation made in the previous subsection. There are

only very minor differences at the two most downstream cross sections, x/cr = 0.8 and

x/cr = 0.95, originating from a slightly different vortex breakdown location, see below.

A comparison of velocity intensity fluctuations, see Figs. 6.6 - 6.8, also shows only minor

differences for the three cases, thus confirming the former observations.

6.1.4 Vortex breakdown position

A comparison of the vortex breakdown location, determined by negative streamwise

velocity, see Fig. 6.9, shows that oscillating control surfaces delay vortex breakdown by

approximately 4 percentage points. For the case without moving flap, vortex breakdown

occurs at x/cr ≈ 0.71, for the case with moving flap and frequency f2 = 2, vortex

breakdown occurs at x/cr ≈ 0.75, and for the case with moving flap and frequency

f4 = 4, vortex breakdown also occurs at x/cr ≈ 0.75, i.e. the vortex breakdown location

moves slightly downstream, but overall, it is only slightly altered by the oscillating flaps,

and there is no significant change when modifying the oscillation frequency.

6.2 Sharp Leading Edge (SLE) - angle of attack of 28◦,

injecting fluid from the pressure side

This last section is intended as an outlook to other possible flow control mechanisms

and describes an approach based on geometric modifications leading to an injection of

fluid from the pressure side. The numerical results indicate that this approach can have

a significant effect on the vortex breakdown location.

6.2.1 Description of approach

As discussed in section 2.5, flow control via along-the-core blowing or trailing edge jets

has been employed successfully to move the vortex breakdown position either down-

stream or upstream. Contrary to the aforementioned active flow control mechanisms,
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Figure 6.3: SLE, α = 28◦: Streamwise velocity distribution at cross sections
x/cr = 0.2, 0.4, 0.6, 0.8, and 0.95 (from top to bottom). Left column shows results
without flow control, center column shows results for oscillating control surfaces with

f2 = 2, right column shows results for oscillating control surfaces with f4 = 4.
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Figure 6.4: SLE, α = 28◦: Spanwise velocity distribution at cross sections
x/cr = 0.2, 0.4, 0.6, 0.8, and 0.95 (from top to bottom). Left column shows results
without flow control, center column shows results for oscillating control surfaces with

f2 = 2, right column shows results for oscillating control surfaces with f4 = 4.
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Figure 6.5: SLE, α = 28◦: Vertical velocity distribution at cross sections
x/cr = 0.2, 0.4, 0.6, 0.8, and 0.95 (from top to bottom). Left column shows results
without flow control, center column shows results for oscillating control surfaces with

f2 = 2, right column shows results for oscillating control surfaces with f4 = 4.



96 Chapter 6. Results of investigations with flow control

Figure 6.6: SLE, α = 28◦: Velocity intensity fluctuations uRMS at cross sections
xg/cr = 0.2, 0.4, 0.6, 0.75, and 0.9 (from top to bottom). Left column shows results
without flow control, center column shows results for oscillating control surfaces with

f2 = 2, right column shows results for oscillating control surfaces with f4 = 4.
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Figure 6.7: SLE, α = 28◦: Velocity intensity fluctuations vRMS at cross sections
xg/cr = 0.2, 0.4, 0.6, 0.75, and 0.9 (from top to bottom). Left column shows results
without flow control, center column shows results for oscillating control surfaces with

f2 = 2, right column shows results for oscillating control surfaces with f4 = 4.
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Figure 6.8: SLE, α = 28◦: Velocity intensity fluctuations wRMS at cross sections
xg/cr = 0.2, 0.4, 0.6, 0.75, and 0.9 (from top to bottom). Left column shows results
without flow control, center column shows results for oscillating control surfaces with

f2 = 2, right column shows results for oscillating control surfaces with f4 = 4.
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Figure 6.9: SLE, α = 28◦: Figures show isosurface of streamwise vorticity (ωx = ±15)
colored by streamwise velocity. Vortex breakdown (VB) position indicated by black line.
Left figure shows result with no flow control, center figure shows result with oscillating

flap and f2 = 2, and right figure shows result with oscillating flap and f4 = 4.

the approach presented hereafter relies on geometric modifications leading to an injec-

tion of fluid from the pressure side and can thus be considered as a passive mechanism.

Two geometric modifications are investigated: (1) Slots in the front part of the wing

below the axes of the primary vortices, and (2), slots near the trailing edge, again lo-

cated approximately below the primary vortices. A sketch of the geometries is shown in

Fig. 6.10.

6.2.2 Main flow characteristics

The main flow characteristics are significantly altered in the case with slots in the front

part, and slightly altered in the case with slots near the trailing edge, see Fig. 6.10. For

the former configuration, one observes that the primary vortex is developed - almost -

along the entire leading edge due to the significantly delayed vortex breakdown position,

see below. Furthermore, the primary vortex structure near the slot position is affected

for the considered slot geometry. This effect is probably less pronounced for an optimized

slot shape, however. For the latter configuration, one observes minor changes regarding

the flow characteristics, notably downstream of the trailing edge, where the injected

fluid seems to stabilize the vortex core.

6.2.3 Vortex breakdown position

The numerical results show that the geometric modifications can significantly affect the

vortex breakdown location, see Fig. 6.10. Slots in the front part of the wing, allowing for

an injection of fluid from the pressure side into the vortex core, delay vortex breakdown,
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Figure 6.10: SLE, α = 28◦: Top row figures show wing geometries - no geometric
modification (left), slots in the front part of the wing (center), and slots near the trailing
edge (right). Bottom row figures show isosurface of streamwise vorticity (ωx = ±15)
colored by streamwise velocity. Vortex breakdown (VB) position indicated by black
line. Left figure shows result with no flow control, center figure shows result with slots
in the front part of the wing, and right figure shows result with slots near the trailing

edge.

similar to the concept of along-the-core blowing. Slots near the trailing edge, allowing

for an injection of fluid from the pressure side in an upward direction with regard to the

wing surface, move the vortex breakdown position upstream, similar to the concept of

an upward deflected trailing edge jet. In the former case, vortex breakdown is delayed

by 15 percentage points, in the latter, vortex breakdown is moved slightly upstream by

3 percentage points. Note that the two suggested geometric modifications have not been

optimized regarding positioning, size, shape, or any other aspect. One can thus expect

that a thorough investigation of the concept, including an optimization regarding the

aforementioned aspects, will yield even better results.
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Conclusion

This final chapter consists of three parts. First, the main results and conclusions of

the investigations without flow control are presented. Second, the main results and

conclusions of the investigations regarding flow control mechanisms are summarized.

Third, a short outlook on possible further investigations is given.

7.1 Conclusions regarding investigations without flow con-

trol

Regarding the investigations without flow control, the four main conclusions are:

(1) Qualitatively, wall modeled LES correctly predicts main flow characteristics, apart

from secondary vortex : Using LES in conjunction with a TBLE based wall model,

the main flow characteristics are predicted qualitatively correctly for both SLE

and MRLE at all angles of attack considered, namely α = 13◦, 18◦, and 23◦, with

overall better results for the SLE. The only feature that is not predicted correctly

is the secondary vortex, which is due to the insufficient grid resolution in the near

wall region used in the present simulations. This observation confirms the findings

of previous studies using similar wall models [110, 125], which also failed to predict

such small scale secondary flow structures.

(2) Quantitatively, results show overall good agreement with experiments: Comparing

the results of the simulations with experimental data, one observes, as expected,
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overall better agreement for the SLE, given the geometrically fixed separation at

the leading edge. For this case, the agreement can be considered as good. For the

MRLE, which is computationally more challenging, the overall agreement with the

experimental measurements is reasonable to good, showing discrepancies notably

in the apex region, where the leading edge crossflow bluntness is highest and the

primary vortex separation is predicted too far from the leading edge. Generally,

the investigations show that a better resolved wall region leads to a significant

improvement of the results, which indicates that the simplified TBLE based wall

model used contains too many approximations - see below - for the complex flow

considered. Moreover, the results confirm the conclusion of Cabot and Moin [73],

who state that, regarding prediction accuracy and grid resolution, one gets what

one pays for.

(3) Simplified TBLE based wall model leads only to a minor improvement compared

with a simple no-slip condition: The simulations show that the simplified TBLE

based wall model leads only to a minor improvement of the results compared

with a simple no-slip condition, which may be explained by three aspects. First,

for separating and reattaching flows, the boundary layer equations used to derive

the TBLE based wall model are invalid. Second, in the wall model employed in

this study, the pressure gradient and advective terms are neglected, and previous

studies [73, 125, 129] have shown that both are important in TBLE based wall

models for the aforementioned flows. Third, the wall model is not able to deal with

transition, which can have a significant impact for the considered configuration [54,

64]. All three reasons may at least partly explain the wall model’s rather poor

performance.

(4) Neural networks seem to be unsuitable to enhance wall modeling : The use of neural

networks to improve wall models is overall not promising due to the need of a priori

data, see appendix A. Some specific applications may exist, though, e.g. using a

neural network to speed up simulations.

In comparison to numerical investigations with RANS, see e.g. [69], the present wall

modeled LESs predict vortex breakdown more accurately but fail to predict a secondary

vortex. The latter is usually present in RANS investigations, oftentimes quantitatively

incorrect, however [69]. In comparison to numerical investigations with DES, e.g. by



Chapter 7. Conclusion 103

Jirasek [81] and by Tangermann et al.[80], the present wall modeled LESs achieve overall

similar accuracy.

7.2 Conclusions regarding investigations with flow control

Regarding the investigations with flow control, the two main conclusions are:

(1) Flow control via oscillating control surfaces seems to have an insignificant impact :

For the angle of attack considered, namely α = 28◦, flow control via oscillating

control surfaces seems to have only a minor effect, which is in agreement with

experimental observations, where perceptible improvements were only detected in

the post-stall regime, i.e. angles of attack α > 35◦, notably for α = 45◦.

(2) Injecting fluid from the pressure side can have a significant effect on vortex break-

down position: Investigations with geometric modifications (slots) leading to an

injection of fluid from the pressure side showed that, depending on the position of

the slot, the vortex breakdown position can be moved either upstream or down-

stream quite effectively.

7.3 Outlook

Regarding future numerical investigations of the flow around delta wings - or other

complex three-dimensional geometries - with the in-house flow solver INCA, the present

results suggest three possible extensions:

(1) Computational grids: The adaptive mesh refinement techniques for the Cartesian

grids used in the investigations do not allow for different refinement levels within

a block. Refining the grid in the near wall region of complex geometries thus

leads to either very many blocks, and consequently many buffer cells and lots of

communication overhead, or prohibitively many grid cells. The investigations in

this study showed that a better resolved wall region generally improves the results,

and thus more elaborate grids allowing for refining the grid close to the wall in

wall normal direction without generating prohibitively many blocks or cells will

very likely yield more accurate predictions.
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(2) Immersed boundary method: The immersed boundary method used in the present

investigations does not accurately represent sharp edges on coarse grids. There-

fore, an improved version, such as the one suggested by Örley et al. [130], will

presumably yield better results on coarse grids.

(3) Wall model: The TBLE based wall model used in the investigations contains many

approximations, e.g. the advective terms and the pressure gradient term are ne-

glected, and it is not able to deal with transition. In addition, the boundary layer

assumptions used to derive the TBLE are invalid in separation and reattachment

regions, which the flow around delta wings exhibits. Therefore, a more sophisti-

cated wall model based on the full three dimensional RANS equations and able to

deal with transition, such as the one suggested by Park and Moin [131], is expected

to yield better results. Moreover, improvements may be achieved by modifying the

coupling position such that there are several LES cells below the coupling posi-

tion, as suggested by Kawai and Larsson [132], who, for their particular numerical

method, determined a minimum of four LES cells.

Regarding flow control, the suggested geometric modifications allowing for an injec-

tion of fluid from the pressure side provide many opportunities for further research,

e.g. optimizing position, size, and shape of the slots, which has not been investigated

yet. Both main parameters significantly influencing vortex breakdown - adverse pressure

gradient and swirl level - can be targeted. For instance, by positioning the slots very

close to the leading edge one might achieve an effect similar to active blowing through

slots at the leading edges, which has been successfully employed in wind tunnel experi-

ments at the Institute of Aerodynamics and Fluid Mechanics of Technische Universität

München [126]. Therefore, geometric modifications allowing for an injection of fluid

provide ample scope for further investigations.



Appendix A

Investigation of neural networks

for wall modeling

The following appendix summarizes the investigation of neural networks (NN) for wall

modeling, which has been part of the DFG project partly providing funding for this work.

It contains five sections. Section one provides some examples of NN approaches used

in computational fluid dynamics (CFD) and introduces the overall idea pursued in the

following sections. Section two describes a general NN model, and section three details

the specific implementation of the NN used in this investigation. Section four presents

results of simulations of turbulent channel flow (TCF), and section five summarizes the

findings of this investigation.

A.1 Introduction

In CFD, neural networks have been applied in several contexts, i.a. to describe eddy

patterns in the near wall region [133], to represent chemistry data [134–136], to model

the eddy viscosity [137], to model near wall turbulent flow [138], or to predict unsteady

surface pressures [139]. In this work, a possible application of neural networks for wall

modeling is investigated. In the following, it is described how such a model can be

built, notably how to choose the architecture and how to train the network, and it is

shown that the results obtained with the chosen model are comparable to the chosen
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benchmark approach at significantly lower computational cost. However, the approach

has several limitations.

As seen in section 3.4, wall models that estimate the wall shear stress and then impose

it as a boundary condition on the exterior flow have proven to be effective and can be

expressed as

τw = f(u0, p0, ν,x0) , (A.1)

where f is an unknown function, mapping the velocity u0 and pressure p0 of the exterior

flow at the coupling position x0 = (x1,0, x2,0, x3,0) to the wall shear stress τw. ν denotes

the kinematic viscosity. It has been proven that NNs can approximate any continuous

mapping on a compact interval [140], and thus a straightforward idea is to use a neural

network (NN) to approximate the unknown mapping f , which is investigated hereafter.

A.2 Neural network model

Neural networks can be used in two ways: (1) classification, such as image recognition,

and (2) regression [141]. Here, as in other cases in which NNs have been applied in

simulations of turbulent flows, e.g. [133, 137, 139], the NN model is used in the latter

way.

A NN consists of interconnected layers of neurons, see Fig. A.1. Each neuron consists

of weighted inputs, an activation function, a bias term, and an output, see Fig. A.2. In

a feedforward NN, there are only connections from the current layer to the following

layer and no connections to the same or previous layers. Layers between the input and

the output layer are called hidden layers. It has been shown that one hidden layer

with bounded, increasing nonlinear activation functions suffices to approximate any

continuous mapping [140], which is why a NN with only one hidden layer is considered

in the following.

Having chosen the architecture of a NN, it must be trained using training samples.

Assuming one wants to approximate the function
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Input
layer

Hidden layers Output
layer

Figure A.1: General architecture of a feedforward neural network.

Neuron

Input from
previous layer

Output to
next layer

Bias

Figure A.2: Neuron in a neural network.

y = f(x) , (A.2)

one needs training sample pairs (y(i),x(i)), generated by equation A.2, and the train-

ing process consists in minimizing a suitable objective function, oftentimes the sum of

squared errors between the desired outputs y(i) = f(x(i)) and the outputs given by the

NN, here denoted by ỹ(i)(w,x(i)). The minimization is typically done using a back prop-

agation algorithm. To avoid overfitting, a regularization term can be added. Without

regularization term, the minimization problem becomes

min
w

F (w) =
1

2N

N∑
i=1

(y(i) − ỹ(i)(w,x(i)))2 , (A.3)
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where F is the sum of squared errors function, w is a vector containing all NN weights,

N denotes the number of training samples, y(i) denotes the desired function value for

the input x(i), and ỹ(i) denotes the NN prediction for y(i) given x and w. Once the NN

is trained, one has an analytical expression for the approximation, given by

ỹ(x) = w1ϕ(W0x + b0) + b1 , (A.4)

where ỹ is the NN approximation of y, w1 is a row vector containing the NN weights

between the hidden layer and the output layer, ϕ is a vector valued activation function,

W0 is a matrix containing the NN weights between the input layer and the hidden

layer, b0 is the bias of the hidden layer, b1 is the bias of the output layer, and x are the

inputs. Note that equation A.4 assumes the previously mentioned NN with one hidden

layer, nonlinear activation functions ϕ, and linear input and output layers, which can

be viewed as a standard model for NN based function approximation [140].

A.3 Implementation

The presented concept is applied to approximate the generic model given in equation

A.1 and tested on turbulent channel flow. Turbulent channel flow can be considered as

a benchmark problem and thus has frequently been used to test novel wall modeling

approaches, e.g. [110, 131, 142–146]. The simulations are conducted using the implicit

LES approach ALDM for incompressible flows [101], which is briefly described in the

following subsection.

A.3.1 Implicit LES framework

For incompressible flows with uniform density and ν = 1/Re, the Navier-Stokes equa-

tions and the continuity equation can be written in non-dimensional form as

∂u

∂t
+∇ · F(u) +∇p− ν∇2u = 0 , (A.5)

∇ · u = 0 , (A.6)
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with suitable boundary and initial conditions. Applying the filter G(x) to the previous

two equations, one obtains the differential equations for the resolved scales.

∂u

∂t
+ G ∗ ∇ · F(u) +∇p− ν∇2u = 0 , (A.7)

∇ · u = 0 . (A.8)

Using ALDM, the aforementioned equations become

∂uN

∂t
+ G̃ ∗ ∇̃ · F̃N(ũN) + ∇̃pN − ν∇̃2uN = 0 , (A.9)

∇̃ · uN = 0 , (A.10)

in which the subscript N indicates the discrete approximation, ũN denotes the approx-

imate deconvolution of uN, ∇̃ denotes the discrete approximation of the continuous

operators, and F̃N is a consistent numerical flux function.

The equations are solved on a staggered Cartesian grid, and a pressure projection method

is used. For time advancement, an explicit third-order Runge-Kutta scheme is used,

in which the time step is dynamically adapted to satisfy the Courant-Friedrichs-Lewy

(CFL) condition with CFL = 1.0. The pressure Poisson equation and diffusive terms

are discretized by second-order central differences. The convective terms are discretized

by the simplified version of ALDM (SALD) [102] for better computational efficiency.

A.3.2 NN wall model

A.3.2.1 Architecture

The neural network used to approximate the wall shear stress has 50 neurons in the hid-

den layer, 2 neurons in the input layer, and 1 neuron in the output layer. Its architecture

is shown in Fig. A.3.
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Input
layer

Hidden
layer

Output
layer

Figure A.3: Architecture of the feedforward NN with one hidden layer employed to
predict the wall shear stress.

The number of neurons in the input layer is determined by the number of features

selected (see following subsection), and the number of neurons in the output layer is

one, since the neural network shall predict one component of the wall shear stress. In

the code, a separate NN is used for each of the two components of the wall shear stress,

τw,x and τw,z. The two NNs have the same architecture and are built using the same

methodology. Hereafter, the approach is described for τw,x only, given that the approach

works analogously for τw,z, and τw,x is abbreviated to τw. The number of neurons chosen

for the hidden layer depends on the complexity of the function to be approximated and

should ensure that the number of points to fit is at least four to five times larger than

the number of degrees of freedom [138]. The latter is affected by the number of neurons

in the hidden layer.

Analogous to equation A.4, the resulting approximation by the NN can be written as

τ̃w = w1ϕ(W0x + b0) + b1 , (A.11)

where τ̃w denotes the approximation for the wall shear stress, and w1, W0, x, b0, and

b1 are used in the same way as in equation A.4. For the activation function ϕ in the

hidden layer, a hyperbolic tangent function

ϕ(x) = tanh(x) (A.12)
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is employed, since it fulfills the requirements (bounded, increasing, and nonlinear), and

has been successfully employed in other studies, e.g. [133, 134, 138].

As argued by Nicoud et al. [144], reference data to derive new wall models should be

obtained from wall-resolved LES or LES on coarse grids with an adequate model near the

wall. Therefore, the data used to train the network in this work is taken from a turbulent

channel flow LES with TBLE based wall model [110] at Reτ = 2000, which has proven

successful in previous studies [107, 110]. The data is extracted from only one point of the

channel’s bottom wall and covers only a short span of time of the simulation. In total,

8000 training samples are used, which is a comparably low number. The aforementioned

rule of thumb [138] holds, since there are Ndof = 2 · 50 + 50 + 2 + 50 + 1 = 203 degrees

of freedom, and 8000/203 ≈ 40 > 5.

A.3.2.2 Feature selection

An important aspect of every NN is the choice of inputs, also called feature selection.

Ideally, as many inputs as possible are considered. However, given that there is often-

times a small subset of possible inputs providing significantly more information about

the desired output than the rest of the inputs, it is reasonable to take as few inputs as

possible to reduce the overall complexity. Here, filter feature selection is used to accom-

plish this task, since it is computationally less expensive than other algorithms, such as

forward or backward search [141].

In short, the idea of filter feature selection is to compute a score S(i) for each possible

input feature xi that quantifies how much information about the desired output y is

contained in feature xi. Then, only features having scores above a certain threshold, or

the ones with the largest scores, are selected. For the score S(i), the absolute value of

Pearson’s correlation coefficient between the input feature and the desired output can

be computed, yielding SPearson(i) given by

SPearson(i) =
∣∣∣ ∑

j(x
(j)
i − x̄i)(y(j) − ȳ)

(
∑

j(x
(j)
i − x̄i)2(y(j) − ȳ)2)1/2

∣∣∣ . (A.13)

Given that Pearson’s correlation coefficient only provides a measure for the strength of

the linear dependence between two variables, one can resort to a generalized correlation
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Table A.1: Scores for feature selection for the approximation of the streamwise com-
ponent of τw.

Feature Description SPearson SSpearman

τ
(t−1)
w wall shear stress from previous time step 0.994 0.993
∂p/∂x|1stcell pressure gradient in streamwise direction 0.382 0.355

at first cell
∂p/∂z|1stcell pressure gradient in lateral direction 0.196 0.190

at first cell
u|1stcell velocity in streamwise direction at first cell 0.150 0.135
u|2ndcell velocity in streamwise direction at second cell 0.084 0.069
w|1stcell velocity in lateral direction at first cell 0.050 0.034
v|1stcell velocity in vertical direction at first cell 0.038 0.043
u|3rdcell velocity in streamwise direction at third cell 0.033 0.035
v|3rdcell velocity in vertical direction at third cell 0.032 0.033
v|2ndcell velocity in vertical direction at second cell 0.023 0.025
w|2ndcell velocity in streamwise direction at second cell 0.023 0.022
w|3rdcell velocity in lateral direction at third cell 0.015 0.009

coefficient, such as Spearman’s rank correlation coefficient, yielding SSpearman(i) given

by equation A.14. Note that Spearman’s correlation coefficient is simply Pearson’s

correlation between the ranked variables xri and yr:

SSpearman(i) =
∣∣∣ ∑

j(xr
(j)
i − xri)(yr(j) − yr)

(
∑

j(xr
(j)
i − xri)2(yr(j) − yr)2)1/2

∣∣∣ . (A.14)

The results for the possible set of inputs considered here is shown in table A.1.

Two aspects are apparent from table A.1. First, the scores computed using Pearson’s co-

efficient do not differ considerably from the scores computed using Spearman’s coefficient

and, second, the ordering of the scores does not change, with one rather insignificant

exception. Setting the threshold to 0.3, also used by Nicoud et al. [144] to signify high

correlation, only the wall shear stress from the previous time step and the pressure

gradient in streamwise direction are chosen as the two inputs for the NN. Note that

numerically approximated derivatives have also been considered as possible inputs but

did not yield scores higher than 0.3. Given that the coupling position x0 (see equation

A.1) should be considered as well, the quantity ∂p/∂x|1stcell · ∆y is chosen, where ∆y

denotes the distance of the first LES grid cell from the wall in wall normal direction.

Note that this quantity has the same dimension as the desired output.
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Figure A.4: Comparison of NN based wall model with TBLE based wall model for
two different grid resolutions. DNS data from [147, 148].

A.3.2.3 Training

Having chosen an architecture and a set of features, the NN is trained using a Levenberg-

Marquardt back propagation algorithm. The training of the network is stopped using a

cross-validation criterion and is completed within several minutes on a standard desktop

computer. Scaling of the inputs and different regularization approaches, e.g. Bayesian

regularization, have been investigated but did not lead to significantly different results.

A.4 Results

The NN based wall function is tested in simulations of turbulent channel flow atReτ = 2000

for different grid resolutions, namely 16, 32, and 48 cells in each of the three coordinate

directions. The results are shown in Fig. A.4.

The results are compared with regard to two aspects: (1) accuracy and (2) computational

efficiency.

Concerning aspect (1), accuracy, the results obtained using the NN based wall model

are in good agreement with the results obtained with the TBLE model, which has to be
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Table A.2: Comparison of computational efficiency of NN wall model and TBLE wall
model. Time in seconds.

Setup Wall model Total time of simulation Time spent in wall model routine

TCF 16 NN 2.6 · 103 4.7 · 102

TCF 16 TBLE 5.4 · 103 3.1 · 103

TCF 32 NN 1.7 · 104 1.5 · 103

TCF 32 TBLE 2.8 · 104 1.1 · 104

TCF 48 NN 6.2 · 104 2.7 · 103

TCF 48 TBLE 8.6 · 104 2.3 · 104

used as benchmark since the NN has been trained on data stemming from a simulation

with the TBLE model. One observes that the wall shear stress predicted by the NN

model is lower than the wall shear stress computed by the TBLE model. An a posteriori

comparison of the wall shear stress values actually appearing in the LES simulation and

the wall shear stress values of the training data, which were extracted from a simulation

over a short period of time and at just one point of the domain, shows that the mean of

the values in the training data is slightly lower than the mean of the wall shear stress

values considering the entire simulation, which indicates that the approach is sensitive

to the chosen training data. However, this problem could be remedied by using training

data extracted from more locations and covering a longer span of time.

Regarding aspect (2), computational efficiency, in the simulations considered, the NN

based wall model is approximately 6.6−8.4 times faster than the TBLE based wall model.

As a result, the total time for the simulation of turbulent channel flow at Reτ = 2000

is reduced by 28 − 52%, see table A.2 and Fig. A.5. Of course, the one-time overhead

of training the NN has to be considered, too. However, as mentioned in section A.3.2.3,

this overhead is insignificant, especially if the simulations run for a long time or if one

conducts multiple simulations. Moreover, the NN could be trained online, and switched

on once the training is completed.

A.5 Conclusion

It is shown that the NN based wall model described achieves results of roughly the

same accuracy as a TBLE based wall model at significantly lower computational cost,

which indicates that it may be suitable as an approach to speed up certain simulations.
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Figure A.5: Illustration of speed-up of NN based wall model in comparison with
TBLE based wall model for turbulent channel flow. Total bar height represents total
time of simulation. Colored part of bar represents time spent in wall model routine

(green - NN, blue - TBLE).

The presented approach should not be considered as a new generally applicable wall

model, however, but rather as a simple example demonstrating the general concept

and procedure, and a possible use. Extensions to the model, e.g. modeling only the

fluctuating part of the wall stresses and fixing the mean, as suggested by Nicoud et

al. [144] for wall models based on linear stochastic estimation, or including more input

variables, certainly provide scope for enlarging its range of applicability.

However, the suggested model has two main limitations: (1) The a priori needed training

data, i.e. one needs samples to train the network and the samples have to cover the range

on which the network will be applied later. (2) The wall shear stress is predicted relying

only on data at the coupling position, i.e. partial information. Therefore, it will only

work well if the information at the coupling position suffices to determine an approximate

wall shear stress, which may not be the case in all types of flows.

In the context of wall modeling, neural networks could of course be applied differently.

However, the former of the two limitations - the need of a priori training data - is a

general and quite severe limitation of neural networks, which is why their overall suit-

ability for wall modeling seems to be very limited. For instance, wall models based

on optimal control theory [144, 149], which also necessitate a priori knowledge, have

been investigated for more than a decade with rather moderate success, and, so far,

their application did not go beyond the simulation of turbulent channel flow [145, 150].

Moreover, in comparison to other regression approaches, neural networks usually contain

many free parameters and lack physical interpretability.
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[77] R.M. Cummings and A. Schütte. Detached-Eddy Simulation of the Vortical Flow-

field about the VFE-2 Delta Wing. In 46th AIAA Aerospace Sciences Meeting

and Exhibit, Aerospace Sciences Meetings. American Institute of Aeronautics and

Astronautics, 2008.
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