
Fakultät für Maschinenwesen
Lehrstuhl für Aerodynamik und Strömungsmechanik

Large-Eddy Simulation of Turbulent Cavitating
Flows

Christian Peter Egerer

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Oskar J. Haidn
Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Nikolaus A. Adams

2. Prof. Dr.-Ing. Stefan Hickel,
Technische Universität Delft, Niederlande

Die Dissertation wurde am 10.12.2015 bei der Technischen Universität München
eingereicht und durch die Fakultät fürMaschinenwesen am09.11.2016 angenom-
men.



Christian Peter Egerer: Large-Eddy Simulation of Turbulent Cavitating Flows,
Dissertation, Technische Universität München

Copyright © December 2016 by Christian Peter Egerer.

All rights reserved. No part of this thesis may be reproduced or transmit-
ted in any form, by any means (electronic, photocopying, recording, or
otherwise) without the prior written permission of the publisher.

address:
Prälatenweg 6a, 82398 Polling, Germany

e-mail:
christian.egerer@tum.de

The images on the cover (print-version only) visualize the flow of a cavitat-
ing mixing layer. The top image shows instantaneous vortical structures
colored by the streamwise velocity. Blue and red colors indicate slow and
fast flowing fluid, respectively. The bottom image shows corresponding
instantaneous vapor structures.

mailto:christian.egerer@tum.de


A B S T R A C T

The process of local evaporation of liquids due to a drop in static pressure
below saturation conditions and its subsequent sudden re-condensation
is called cavitation. Caviation affects the performance of components and
devices in many engineering applications, e.g., liquid fuel injection, hy-
drodynamic power generation, or ship propulsion. Thus, it is desirable
to understand, predict and control cavitation since it can have favorable
as well as detrimental consequences. On the one hand, forces resulting
from the collapse of vapor structures can be used to clean surfaces. On the
other hand, these forces can lead to the destruction of material surfaces
(cavitation erosion) and ultimately can lead to the failure of components
and devices.

Computational Fluid Dynamics can evolve as a design tool for engi-
neering devices involving cavitation if all effects relevant to cavitation dy-
namics and cavitation erosion are included in the flow model. Previous
research projects showed that it is possible to predict cavitation erosion re-
lated data by a compressible formulation of the liquid and homogeneous
liquid-vapor mixture coupled to a local thermodynamic equilibrium phase
change model.

The focus of the present thesis is the inclusion and evaluation of viscous
effects like secondary mean flows and the mutual interaction of cavita-
tion and resolved turbulence. The existing inviscid framework is therefore
extended to Large-Eddy Simulation of turbulent cavitating flow.

In a first step, we adapt the Adaptive Local Deconvolution Method for
cavitating flows and perform validation by comparing numerical and ex-
perimental data for the canonical flow of a turbulent mixing layer. The
Large-Eddy Simulation results for non-cavitating and cavitating condi-
tions, e.g., velocity statistics and vapor volume fraction data, are in good
agreement with experimental data. The prediction capability of the Adap-
tive Local Deconvolution Method for cavitating flows is demonstrated for
a generic throttle flow.

In a second step, a novel discretization scheme for Large-Eddy Simula-
tion of turbulent cavitating flows with a smaller stencil than the Adaptive
Local Deconvolution Method is developed and validated. The inviscid
framework of the Computational Fluid Dynamics tool CAvitation Tech-
nische Universität München is extended by adopting established concepts
from numerical methods for high-speed gasdynamic flows as well as from
the Adaptive Local Deconvolution Method regarding the implicit model-
ing strategy of subgrid scale stresses.
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Z U S A M M E N FA S S U N G

Der Prozess der lokalen Verdampfung einer Flüssigkeit in Folge des Ab-
falls des statischen Drucks unterhalb der Sättigungsbedingungen und das
darauffolgende schlagartige Rekondensieren wird als Kavitation bezeich-
net. Für viele Anwendungen im Maschinenbau, wie z.B. die Kraftstoffe-
inspritzung, die Wasserkraft oder Schiffsantriebe, ist es von Vorteil, den
Kavitationsprozess zu verstehen, vorherzusagen und zu kontrollieren, um
seine negativen als auch positiven Auswirkungen zu beherrschen. Einer-
seits können die aus dem Kollaps von Dampfgebieten entstehenden Kräf-
te zum Reinigen von Oberflächen oder zum Zerstören von Nierensteinen
verwendet werden. Andererseits können diese Kräfte Materialoberflächen
schädigen (Kavitationserosion) und zum Versagen des betroffenen Bauteils
führen.

Die numerische Strömungsmechanik kann zu einem Auslegungswerk-
zeug für Bauteile werden, falls alle Effekte, die für die Kavitationsdyna-
mik und -erosion von Bedeutung sind, im strömungsmechanischen Mo-
dell berücksichtigt sind. Vorangegange Forschungsvorhaben zeigten, dass
es möglich ist, Kavitationserosion mit Hilfe einer kompressiblen Beschrei-
bung der Flüssigkeit und des homogenen Dampf-Flüssigkeitsgemisches in
Verbindung mit einem Gleichgewichtsphasenmodell vorherzusagen.

Der Schwerpunkt der vorliegenden Arbeit ist die Einbeziehung und Be-
urteilung von Reibungseinflüssen wie Sekundärströmungen und die ge-
genseitige Beeinflussung von Kavitation und aufgelöster Turbulenz. Die
bisher reibungsfreie Behandlung wird deshalb um die Grobstruktursimu-
lation von turbulenten kavitierenden Strömungen erweitert.

Im ersten Schritt wird die Adaptive Local Deconvolution Method für
die Berechnung von kavitierenden Strömungen angepasst und anhand der
kanonischen Strömung einer turbulenten Mischungsschicht validiert. Die
Ergbenisse für nicht-kavitierende und kavitierende Bedingungen, z.B. Ge-
schwindigkeitsstatistiken und Dampfvolumenwerte, zeigen gute Überein-
stimmung mit experimentellen Daten. Die Vorhersageeigenschaften der
Adaptive Local Deconvolution Method wird anhand einer generischen
Drosselströmung gezeigt.

In einem zweiten Schritt wird ein neues Diskretisierungsschema, das
für die Grobstruktursimulation von turbulenten kavitierenden Strömun-
gen geeignet ist, mit einem kleineren Diskretisierungsstern als die Adapti-
ve Local Deconvolution Method entwickelt. Die reibungsfreie Umgebung
CAvitation Technische Universität München dient dabei als Grundlage
und wird erweitert, indem bewährte Konzepte von numerischen Metho-
den für Überschallströmungen und von der impliziten Modellierung von
Feinstrukturspannungen der Adaptive Local Deconvolution Method über-
nommen werden.
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1I N T R O D U C T I O N

1.1 background

Cavitation plays an important role in many engineering applications, e.g.,
liquid fuel injection, hydrodynamic power generation, or ship propulsion.
But also medical treatments utilize cavitation, e.g., for removing kidney
stones by extracorporeal shock wave lithotripsy. For predicting cavitation
dynamics in these kind of applications wave and turbulence dynamics
need to be incorporated into numerical solution strategies: on the one
hand, shock waves are emitted during sudden re-condensation (collapse)
of vapor structures and propagate subsequently through the liquid and
liquid-vapor mixture; on the other hand, cavitation and turbulence dy-
namics can occur on the same range of time and length scales. Thus, nu-
merical methods capable of capturing discontinuities in the flow field and
simultaneously being able to resolve broad-band turbulence are required.

The investigations in the present work are related to liquid fuel injection
systems. Modern direct Diesel Injection Systems (DISs) exceed injection
pressures of 2000 bar in order to meet current and future emission stan-
dards set by legislators. For higher injection pressures the primary break-
up of a liquid jet is enhanced and thus mixing of fuel and air is faster
which in turn increases combustion efficiency. Since typical compression
ratios in the combustion chamber are between 15:1 and 22:1, higher injec-
tion pressures generally lead to larger pressure differences across injection
nozzles and throttle valves. The static pressure in the liquid fuel decreases
when the liquid is accelerated within an injection nozzle or throttle valve.
When the static pressure in the liquid fuel drops below vapor pressure,
evaporation can occur. Even for conditions where the mean static pressure
is above vapor pressure, cavitation can still occur due to low pressures in
vortex cores, such as corner vortices in channels or turbulent eddies, see
the review on vortex cavitation by Arndt [11] for details.

Closing of valves or the advection of a vapor cavity in regions where
the static pressure of the surrounding liquid is above the vapor pressure
results in the sudden re-condensation or collapse of vapor cavities accom-
panied by a high acceleration of the surrounding liquid towards the center
of the cavities and the formation of strong shock waves [17]. The vigor-
ous collapse of vapor cavities can be beneficial or detrimental. Cavitation,
e.g., cleans the injection nozzle from deposits thus preventing performance
degradations of the injection system. Since the early experimental work
by Reitz and Bracco [82] it is known that cavitation promotes the primary
break-up during the atomization process of a liquid jet. While cavitation
can have a favorable effect in injection nozzles, it can damage material sur-
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2 introduction

faces (cavitation erosion) of injection and control valves, eventually leading
even to the failure of components [12]. For efficient, reliable and safe op-
eration an accurate prediction of the flow and cavitation dynamics during
the design process of modern DISs is a prerequisite.

Early experimental investigations of cavitation in DISs date back to the
study by Bergwerk [15], who examined geometric as well as hydrody-
namic effects on the cavitating flow in spray holes. More recently, the
introduction of X-ray attenuation measurements [107] allows a quantita-
tive evaluation of the vapor content in a cavitating flow. Other experi-
mental techniques include high-speed motion pictures, laser-pulsed light
transmission measurements, interferometry, and schlieren imaging [51, 70].
Thereby, it is possible to visualize the instantaneous location of cavitation
structures and shock waves due to vapor bubble or cloud collapses and to
reconstruct two-dimensional (2-D) density fields. Nevertheless, the extrac-
tion of quantitative data for often highly unsteady and three-dimensional
(3-D) flow fields from experiments is difficult. Since typical dimensions of
real-size geometries are on the order of 10−3 m and less standard experi-
mental techniques are not applicable. Many experimental studies thus use
enlarged geometries [36].

Consequently, advanced numerical simulation approaches, such as well-
resolved Large-Eddy Simulation (LES), where time-dependent 3-D data of
the flow field is readily available, can contribute to the understanding of
the internal flow in real-size DISs. Ideally, underlying flow dynamics can
be identified and controlled in order to design engineering devices free of
cavitation erosion issues.

Many numerical studies [9, 39, 41] did not resolve turbulence but em-
ployed turbulence models based on Reynolds- or Favre-averaging of the
Navier-Stokes equations (RANS). An experimental and RANS study for mi-
cro channels was performed by Medrano et al. [71, 72], for example.

Since cavitation and turbulence dynamics can occur on similar time and
length scales, the resolution of the most energetic turbulent motion is nec-
essary for accurate numerical predictions. The feasibility of incompress-
ible LES, employing a homogeneous mixture model with finite-rate mass
transfer between liquid and vapor and an implicit treatment of subgrid
scale (SGS) stresses, has been demonstrated for ship propeller applications
by Bensow and Bark [14]. Incompressible LES of the liquid phase, coupled
to a Lagrangian bubbly-flow model, employing a dynamic Smagorinsky
model have been performed by Shams [99] to study cavitation inception
over a cavity. A homogeneous mixture model was also used by Duke et
al. [24] and Salvador et al. [88] to perform incompressible LES of generic
or real geometries of injection systems. Compressible LES of turbulent
cavitating flow in a Venturi nozzle, employing a homogeneous mixture
model with an additional transport equation for the vapor mass fraction,
was performed by Dittakavi et al. [21]. SGS stresses were approximated
by the dynamic Smagorinsky model. The speed of sound of liquid water
was, however, artificially decreased in order to reduce the stiffness of the



1.2 scope of this thesis 3

system of equations thus altering the wave dynamics of the system. Sou
et al. [104] perfomed incompressible LES coupled with a one-way bub-
ble tracking method and Rayleigh-Plesset bubble dynamics to reproduce
the experimentally investigated flow through a rectangular nozzle and the
subsequent liquid jet break-up [105]. Lu et al. [69] use incompressible LES

and a Volume-of-Fluid (VOF) approach to predict the cavitating flow on a
ship propeller.

The aforementioned numerical methods allow for the prediction of steady
and unsteady flow characteristics on the time scale of the convective veloc-
ity, but do not incorporate wave-dynamics effects. Pressure loads originat-
ing from collapse-induced shock waves are, however, essential for predict-
ing cavitation erosion. The good prediction capabilities of hydrodynamic
and wave dynamic effects were demonstrated by density-based, low-Mach-
number-consistent numerical methods with explicit time-stepping, solving
the inviscid Euler equations coupled with a thermodynamic equilibrium
cavitation model [97].

1.2 scope of this thesis

Since the resolution of all time and length-scales of turbulence and cavita-
tion is not feasable with today’s computational resources, it is unavoidable
to resort to reduced order models like compressible LES for the numerical
simulation of realistic flow devices. Thus, we adopt the two-phase mod-
eling and numerical solution strategy for the time-resolved simulation of
hydrodynamics and wave dynamics by Schnerr et al. [97], extended by an
SGS model for turbulence, for the simulation of turbulent cavitating flow.
In compressible LES of cavitating flows, numerical schemes must be robust
against local underresolution. Yet the prediction of turbulent motions re-
quires that the proper SGS energy transfer is provided by the LES method.

The Adaptive Local Deconvolution Method (ALDM) [46, 47] provides a
physically motivated, solution-adaptive implicit treatment of SGS stresses.
Applying ALDM to cavitating flows requires changes [29, 48] in order to ad-
dress both issues (numerical robustness and proper SGS energy transfer).
Thus, one major goal of this thesis is

o the validation of ALDM adapted for cavitating flows [29, 48], and

o the application of ALDM to a generic, yet application-relevant, flow
device [29] in order to establish ALDM as a reference Computational
Fluid Dynamics (CFD) tool for compressible LES of cavitating flows
in the design phase of engineering devices.

The second major goal of this thesis is the extension of the CFD tool CAvitation
Technische Universität München (CATUM) [97] for compressible LES of cavi-
tating flows. CATUM was designed as a CFD tool focusing on inertia-driven
and compressiblity effects in cavitating flows. For studying such effects it



4 introduction

was shown that an inviscid framework is sufficient [4, 92–95, 97]. Yet, espe-
cially in wall-bounded flows, secondary mean flow or turbulence can alter
cavitation dynamics or vice versa. By adopting concepts from numerical
methods designed for high-speed gasdynamic flows and from physically
consistent implicit LES, this thesis

o proposes a modification of the original reconstruction and flux func-
tion of CATUM, and

o subsequently validates the novel discretization scheme for turbulent
cavitating flows.

1.3 outline

The first part of this thesis briefly introduces cavitation, see Chapter 2, and
numerical modeling methodologies for cavitating flows, see Chapter 3.

The second part summarizes ALDM adapted for cavitating flows, see
Chapter 4, and validates ALDM by comparing numerical and experimental
results of the canonical problem of a turbulent cavitating mixing layer, see
Chapter 5. Afterwards, ALDM is applied to predict the turbulent cavitating
flow in a generic throttle, see Chapter 6.

The extension of CATUM for compressible LES, see Chapter 7, is covered
in the third part of this thesis. Validation of the novel discretizatin scheme
and its application to cavitating flows is presented in Chapters 8 and 9,
respectively.

Overall conclusions and an outlook will be given in Chapters 10 to 12.
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S O M E F U N D A M E N TA L S





2I N T R O D U C T I O N T O C AV I TAT I O N

This chapter briefly summarizes essential aspects of cavitation without
claiming to be comprehensive. For a more detailed introduction on the
physics of cavitation the interested reader is refered to the textbooks by
Brennen [17] and Franc & Michel [33], or the review paper by Plesset &
Prosperetti [80].

The term cavitation is associated with a locally confined sudden evapo-
ration if the static pressure in a resting or moving and initially homoge-
neous liquid drops below a certain pressure threshold. The drop in static
pressure can either be caused by a local flow acceleration (hydrodynamic
cavitation) or, for example, by applying an acoustic field where cavitation
can occur at pressure minima of sound waves (acoustic cavitation).

Cavitation can be descriminated from boiling by looking at a phase di-
agram for a one-component fluid, see Fig. 1. The vapor pressure curve
psat(T) separates the liquid from the vapor region and is a function of
temperature T only. The boiling process is characterized by a tempera-
ture increase at constant pressure, i.e., a horizontal line as indicated in
the phase diagram in Fig. 1. Cavitation is associated with the process
where the static pressure decreases below vapor pressure, i.e., a vertical
path in the phase diagram. The temperature of the surrounding liquid de-
creases slightly (thermal delay) during the evaporation process since the
surrounding liquid needs to provide the latent heat of evaporation.

Note that the vapor pressure curve psat(T) is only a sharp boundary
between the liquid and vapor phase under the assumption of local ther-
modynamic euqilibrium. Non-equilibrium or meta-stable states may be
observed depending on the nuclei content (for example the number and
size of small air bubbles) and the time-scale of the flow. For meta-stable
states the liquid may sustain even large negative pressures (tensile stresses)
and cavitation inception is observed for p < psat (static delay). If liquid wa-
ter, for example, is free of any impurities theoretical tensile stresses on
the order of 109 Pa are possible until homogeneous nucleation is possible
[34]. In experiments maximum tensile stresses on the order of 107 Pa were
observed [22]. On the other hand, if nuclei like small air bubbles, parti-
cles or rough walls are present one speaks of heterogeneous nucleation and
cavitation occurs at p ≈ psat. Cavitation inception is, however, a research
field on its own and is not considered in this work. Instead, we assume
local thermodynamic equilibrium. Thus, cavitation occurs once the static
pressure decreases to the local vapor pressure pstat, see Section 3.4 for
details.

7
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Figure 1: Phase diagram for a one-component fluid.

For cavitating flows the main non-dimensional parameter is the cavita-
tion number

σc =
pref −psat(T)

∆p
. (1)

It is defined by the ratio of the difference in static pressure at a reference
location pref and the vapor pressure psat to a characteristic pressure differ-
ence ∆p of the considered flow or device. Examples for ∆p are the pressure
difference across a throttle or the dynamic pressure ∆pdyn = ρrefU

2
ref/2,

where ρref and Uref are reference density and reference velocity of the
flow.

Numerical modeling of cavitating flows is especially challenging since
many forms of cavitation exist and can occur simultaneously. Cavitation
types are:

o bubble cavitation: cavitation is observed in the regions of low pres-
sures as a result of the rapid growth of initially present air nuclei.
The bubbles are advected by the flow until they collapse in regions
of high pressure. Fluid quality, i.e., the concentration of dissolved
gas, controls the size and number of vapor bubbles.

o sheet cavities are found on hydrofoils of, e.g., ship propellers. In many
cases sheet cavities are created periodically, a re-entrant jet forms and
large vapor structures detach (shedding process).

o cloud cavities comprise many small vapor bubbles originating from
the detachment of vapor structures from sheet cavities.

o super-cavitation denotes the state when, e.g., the suction side of a
hydrofoil is completely covered by vapor.
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o vortex cavitation occurs in the low pressure cores of vortices. A com-
mon type of vortex cavitation is associated with the tip vortex of
ship propellers. Furthermore, turbulent eddies can lead to vortex
cavitation.

The cavitation process not only includes the evaporation process but
also a second step where a sudden re-condensation occurs. The surround-
ing liquid is accelerated towards the center of vapor cavities where shock
waves are emitted in the final stages of vapor bubble collapses. If a vapor
bubble collapses close to a solid wall the collapse becomes asymmetric and
a liquid micro-jet which is directed towards the wall is generated. Both
phenomena have negative and positive effects in cavitating flows. Posi-
tive effects include surface cleaning, the removal of kidney stones (extra-
corporeal shock wave lithotripsy), or the enhancement of liquid jet break-
up. Negative effects include degradation of performance of hydraulic ma-
chines, noise and vibrations, and cavitation erosion.





3N U M E R I C A L M O D E L I N G O F C AV I TAT I O N A N D
T U R B U L E N C E

For discussing some concepts in the following, it is convenient to consider
an initial-value problem for a generic transport equation with non-linear
flux F(ϕ) and body forces fB,

∂tϕ(x, t)+∇ ⋅ F(ϕ,x, t) = fB(x, t), (2)

instead of the full system describing the evolution of a fluid flow. The
weak or integral form of Eq. (2) is

∂t∫
Ω

ϕ(x, t)dV + ∫
∂Ω

F(ϕ,x, t) ⋅dA = ∫

Ω

fB(x, t)dV , (3)

and describes the evolution of a solution quantity ϕ(x, t) in a control vol-
ume Ω with surface ∂Ω.

3.1 finite volume method

For solving the mathematical model governing the evolution of a fluid
flow, we consider finite volume methods only. Spatial discretization of the
computational domain leads to N disjoint grid cells i. Associating each
grid cell i with a control volume Ωi with volume

Vi = ∫
Ωi

1dV (4)

and surface ∂Ωi, allows us to describe the evolution of the volume-averaged
solution of grid cell i,

ϕi(t) =
1

Vi
∫

Ωi

ϕ(x, t)dV , (5)

by the semi-discretized form of Eq. (3)

∂tϕi(t) ≈ −
1

Vi
∑
j

(F̆j ⋅nj)Aj + f̆B,i, (6)

where

∑
j

(F̆j ⋅nj)Aj = ∫
∂Ωi

F(ϕ,x, t) ⋅dA (7)

approximates the flux across all cell faces j with unit normals nj of grid
cell i. f̆B,i are the effective body forces, averaged similar to Eq. (5), acting

11
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Table 1: Coefficients for Runge-Kutta methods.

m
RK2S4 RK3S3

c
(m)

3 c
(m)

1 c
(m)

2 c
(m)

2

1 0.11 1 0 1

2 0.2766 3/4 1/4 1/4

3 0.5 1/3 2/3 2/3

4 1.0 – – –

on cell i. Note that we already assume in Eq. (6) that the surface integral on
the right-hand side of Eq. (7) is approximated by one Gauss point per cell
face j only. The task of a spatial discretization scheme is to find a suitable
numerical approximation F̆j to the physical flux F(ϕ,x, t), see Chapter 4

and Chapter 7.
For advancing the volume-averaged solution (5) from time tn to time

tn+1 we use explicit Runge-Kutta methods. All computations presented
in the following are performed either by a second-order low-storage 4-
stage Runge-Kutta method (RK2S4) with enhanced stability region [93], or
by a Total Variation Diminishing (TVD) third-order 3-stage Runge-Kutta
method (RK3S3) [42]. Lumping the right-hand side of Eq. (6) into the op-
erator Li(ϕ) for the spatial discretization, the low-storage RK2S4 method
reads

ϕ
(m)

i = ϕni + c
(m)

3 ∆tLi(ϕ
(m−1)
i ),

m = 1 . . . 4,

with ϕ
(0)
i = ϕni , and ϕ

(4)
i = ϕn+1i .

(8)

The time integration procedure for the RK3S3 method is [42]

ϕ
(m)

i = c
(m)

1 ϕni + c
(m)

2 ϕ
(m−1)
i + c

(m)

3 ∆tL̃i(ϕ
(m−1)
i ),

m = 1 . . . 3,

with ϕ
(0)
i = ϕni , and ϕ

(3)
i = ϕn+1i .

(9)

For each grid cell i we can define a local timestep ∆ti subject to the
Courant-Friedrichs-Lewy (CFL) criterium [18]

∆ti ≤ CFL
∆xi

∣ui ± ci∣
, (10)

where ∆xi is a characteristic lenght, ui is a characteristic velocity, and ci
is the speed of sound. For a stable and time accurate advancement of the
solution the global time step size is ∆t = min(∆ti). Coefficients for the
Runge-Kutta methods are provided in Table 1.
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3.2 two-phase models

Considering again a control volume Ω, each phase k = l,v (l = liquid, v =
vapor) of a one-component flow with phase-change can be identified by
a phase indicator function χk(x, t), which is unity if phase k is present at
location x at time t, and is zero otherwise. Thus, we can define a volume
average

ϕk =
1

V
∫

Ω

ϕkχk(x, t)dV , (11)

and a density-weighted, or Favre, average

ϕ̃k =
ρkϕk

ρk
=
∫Ω ρkϕkχk(x, t)dV

∫Ω ρkχk(x, t)dV
, (12)

of quantity ϕk of phase k. Setting ϕk ≡ 1, we obtain the volume fraction
of phase k

αk =
1

V
∫

V

χk(x, t)dV , (13)

with properties 0 ≤ αk ≤ 1, ∑kαk = 1. A phase-weighted average ϕ̂k is
thus defined as

αkϕ̂k = ϕk. (14)

Modeling turbulent cavitating flows is challenging due to spatial and
temporal scales covering several orders of magnitude, e.g., length scales
ranging from cavitation nuclei with radii in the micrometer range to sheet
cavities with millimeter or larger extents. If we again associate the control
volume Ω with a cell i of the computational grid as in the previous Sec-
tion 3.1, the volume average in Eq. (11) introduces a length scale lnum that
is characteristic for the underlying computational grid, e.g., lnum = V

1/3
i .

Turbulence and phase interfaces introduce another characteristic length
scale lphys. The ratio ψ = lphys/lnum, allows for classification of different
modeling approaches [4].

3.2.1 Two-Fluid Model

The two-fluid model is the most general way to describe a two-phase flow
subject to the continuum hypothesis. Each phase k is governed by an in-
dividual set of transport equations for mass, momentum and total energy,
weighted by the respective volume fraction αk

∂t(αkρ̂k)+∇ ⋅ (αkρ̂kuk) = Γ̂
ρ
k , (15a)

∂t(αkρ̂kuk)+∇ ⋅ (αk ̂ρkukuk + p̂kI− τ̂k) = Γ̂
ρu

k , (15b)

∂t(αkρ̂kEk)+∇ ⋅ [αk( ̂ρkEkuk + p̂kuk − τ̂k ⋅uk + q̂k)] = Γ̂
ρE
k . (15c)
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Density ρk, momentum ρkuk, and total energy ρkEk = ρk(ek +u2k/2) com-
prise the conservative variables, where uk, pk and ek denote velocity, pres-
sure and specific internal energy, respectively. I is the identity tensor, and
τk = µk[∇uk + (∇uk)

T − 2(∇ ⋅uk)/3] is the viscous stress tensor of a New-
tonian fluid, where µk is the dynamic viscosity. Heat conduction is mod-
eled by Fourier’s law, qk = −λk∇Tk, where λk is the thermal conductivity,
and Tk is the temperature. The individual transport equations (15) for the
two phases are coupled at the liquid-vapor phase interface by exchange
terms Γ̂ρk , Γ̂

ρu

k , and Γ̂ρEk for mass, momentum and energy, respectively.
The Dirac function δlv defining the liquid-vapor phase interface can be
utilized to define the volume-averaged exchange terms

Γ̂ρϕk =
1

Vi
∫

Ωi

Γρϕk δlvdV , ϕ = [1,uk,Ek]. (16)

Eq. (15) is closed by suitable equations of state for each phase k

êk = êk(ŝk, ρ̂k), (17)

where ŝk is the entropy of phase k. For a complete mathematical descrip-
tion of the thermo-fluid dynamics of two-phase flows, we refer the reader,
e.g., to the textbook of Ishii & Hibiki [52].

If we can ensure that ψ ≫ 1 based on a characteristic scale of phase in-
terfaces, e.g., a bubble radius, and that ψ = O(1) for the smallest turbulent
scales, where lphys is set equal to the Kolmogorov scale, Direct Numerical
Simulation (DNS) of phase interfaces and turbulent flow is possible. In
this case, details of mass, momentum and energy transfer between both
phases, including thermal, mechanical, and phase non-equilibrium effects,
are represented by the exchange terms on the right-hand side of Eq. (15).
For resolving the phase interface of a single bubble, the computational cell
size typically needs to be one or two orders of magnitude smaller than the
bubble diameter. Consequently, sharp interface methods [65], even with
modern high-performance computing environments, are limited to inves-
tigations that involve a rather small number of individual bubbles [64].

3.2.2 Bubbly Flow Model

When the vapor phase is fully dispersed, i.e., ψ ≪ 1, one can resort to
Eulerian-Lagrangian or bubbly-flow models. The liquid phase is treated
as a continuum while bubbles are treated as dispersed particles in a La-
grangian frame of reference [99]. Newton’s second law governs the motion
of such bubble particles, and the Rayleigh-Plesset equation, or simplified
versions thereof, can be used to evolve the bubble geometry according
to the surrounding flow-field properties. Bubbly-flow models are espe-
cially well suited for predicting incipient cavitation with inhomogeneous
nuclei distributions. Problems are encountered once the local bubble vol-
ume fraction in a cell approaches unity, or when the radius of an indi-
vidual bubble is of the same order as the cell size, i.e., if ψ ≳ 1. In this
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case a special numerical treatment is necessary, e.g., distributing excess
bubble volume across multiple cells [39]. To reduce the computational
cost associated with tracking a large number of individual bubbles, it is
also possible to track bubble clusters, each representing many identical
but non-interacting bubbles, resulting in an Eulerian-Lagrangian stochas-
tic cavitation model [9, 39]. Dumond et al. [26] proposed a stochastic-field
cavitation model in a fully Eulerian framework, thus avoiding the cost
and complexity of Eulerian-Lagrangian techniques while still being able
to represent nuclei and bubble size distributions.

3.2.3 Single-Fluid Model

By defining a mixture variable as

ϕ =∑
k

1

Vi
∫

Ωi

ϕkχkdV =∑
k

αkϕ̂k, (18)

we can sum Eq. (15) over both phases and obtain a set of transport equa-
tions for a single-fluid representation of a mixture of liquid and vapor

∂tρ+∇ ⋅ ρu =∑
k

Γ̂ρk , (19a)

∂tρu+∇ ⋅ (ρuu+pI−τ) =∑
k

Γ̂
ρu

k , (19b)

∂tρE+∇ ⋅ (ρEu+pu−τ ⋅u+q) =∑
k

Γ̂ρEk . (19c)

For a massless interface, i.e., a sharp discontinuity, and a continuous tan-
gential velocity at the phase interface (no-slip condition), the following
conditions for mass, momentum and energy hold at the interface [19]

∑
k

Γ̂ρk = 0, (20a)

∑
k

Γ̂ρuk = −∇sσ+ (∇s ⋅ns)σns, (20b)

∑
k

Γ̂ρEk = −∇s ⋅ (σut), (20c)

where ns is the unit normal vector of the phase interface, ∇s is the sur-
face derivative operator, σ is the surface tension, and ut is the tangential
velocity at the interface. In Eq. (20b) the first term accounts for Marangoni
forces while the second term accounts for capillary forces. Note that due
to entropy considerations a possible surface heat flux must vanish if the
interface is assumed to be massless [19], and work due to surface tension
is the only term remaining in jump condition (20c) for the total energy.

For employing a one-fluid model it is generally necessary to capture
or track the phase interface. VOF methods [49] solve an additional trans-
port equation for a phase indicator or a volume fraction. Front-tracking
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methods [59, 110] track the phase interface in a Lagrangian fashion. Sur-
face tension effects due to the right-hand sides of Eqs. (20b) and (20c) can
be included in these methods. With VOF methods, it is possible to re-
construct the phase interface unit normal ns from the volume fraction in
order to include surface tension effects, see for example Brackbill et al. [16]
Alternatively, suitable material properties can be advected [57, 58], and op-
timized software running on millions of compute cores allows to study
vapor cloud collapses with up to 15000 individual bubbles [86].

3.3 two-phase and turbulence modeling for les

The discussion on modeling two-phase flows so far implied – with the
exception of the bubbly flow model, see Section 3.2.2 – that the smallest
scales (phase interfaces and turbulent eddies) are resolved, i.e., ψ ≫ 1 is
satisfied in all cases.

In LES, however, we reduce the degrees of freedom by deliberately choos-
ing a grid that is too coarse to resolve small scales. It is then assumed that
small scales are of universal nature and that their effect on the resolved
scales can be modeled. This scale-separation can be formally achieved by
introducing a linear low-pass filter operation which leads to SGS residuals.
Projection of the filtered flow field onto the numerical grid introduces an-
other filter step. The numerical grid of a finite volume method and the
associated volume averages defined by Eq. (11), for example, correspond
to a top-hat filter step. The filter step associated with the grid projection
can be partially reversed by reconstruction or deconvolution of the flow
field from cell averages (soft deconvolution problem). Non-represented scales
cannot be recovered which constitutes the so-called hard deconvolution prob-
lem. For a comprehensive introduction to filtering and the mathematics of
incompressible and compressible LES we refer the interested reader to the
textbooks of Sagaut [87] and Garnier et al. [35], respectively.

One approach for modeling the effect of unresolved scales on resolved
scales is to approximate the unclosed SGS residuals by the resolved ones
(explicit SGS models). Explicit SGS models rely on the assumption that
truncation errors introduced by discretization schemes are small. Even
centered schemes, which are formally non-dissipative for linear transport
equations, can have truncation errors on the order of the contribution from
subgrid scales and can thus outweigh the effect of the explicit SGS model
[61].

Alternatively, one can scrutinize the truncation error of a discretization
scheme in order to model the effect of unresolved scales (implicit LES).
The textbook edited by Grinstein et al. [44] contains different approaches
to implicit LES. An advantage of implicit LES is that no additional terms
need to be computed and the unaltered equations governing the fluid flow
are solved with the possibility of better computational performance. One
common approach for implicit SGS are so-called Monotonically Integrated
Large Eddy Simulations (MILESs) where existing discretization schemes
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are used. Since only mathematical constraints are often considered in the
design of discretization schemes it is not guaranteed that the truncation er-
ror provides the correct energy transfer between resolved and unresolved
scales. The approaches followed in this work, see Chapter 4 and Chap-
ter 7, set themselves apart from classical MILES approaches in the sense
that physical reasoning is put into the design of the truncation error. Suit-
able numerical flux functions which contain free parameters are then used
to design the truncation error so that it is physically consistent with turbu-
lence theory.

For isothermal multiphase flow without phase change and with VOF

methods in mind, Labourasse et al. [62] discuss various aspects related
to volume-averaging or filtering the single-fluid representation of multi-
phase flow (19) and the resulting subgrid terms. For example, subgrid
capillary forces result from filtering the surface-tension-related terms in
the momentum jump condition (20b). Nevertheless, they show in a-priori-
studies that the subgrid term resulting from filtering the non-linear term
ρuu in the momentum equation still provides the dominant SGS contri-
bution. A priori tests demonstrate that conventional eddy-viscosity SGS

models, e.g., the Smagorinsky model, cannot predict the correct behavior
of subgrid scales in two-phase flows, especially in the vicinity of phase
interfaces. Vincent et al. [111] performed an a priori analysis of the rel-
ative importance of subgrid terms for a phase separation problem of oil
in water. They conclude that an increase of surface tension subgrid con-
tributions and the decrease of interfacial area are the dominant effects of
filtering. Recently, Aniszewski et al. [10] proposed a closure of the sub-
grid surface tension term by means of approximate deconvolution [106].
Note, however, that all these studies were performed with VOF methods
for isothermal flows without phase change in mind. For cavitating flow,
such studies are unknown to the author.

In addition to heavily distorted phase interfaces that cannot be resolved
on the underlying grid cavitating flows comprise a wide range of cavita-
tion structures or topologies, such as isolated vapor bubbles, sheet cavi-
ties, cavitation clouds with several thousand individual vapor bubbles, or
cavitating vortices [33]. With today’s computational resources and with
industrial applications in mind, it is infeasible to resolve such cavitation
structures. Thus, it is desirable that the employed cavitation model is
valid across the entire range of ψ. As a consequence, we consider a fully
homogenized fluid in Section 3.4 and do not attempt to reconstruct phase
interfaces.

3.4 thermodynamic equilibrium cavitation model

For the considered cases in this work we solve the governing equations (19)
for the homogeneous mixture of liquid and vapor in local thermodynamic
equilibrium, see Section 3.4, by a finite volume method, see Section 3.1.



18 numerical modeling of cavitation and turbulence

Neglecting forces due to variable surface tension and due to curvature
of phase interfaces, the right-hand sides of Eqs. (20b) and (20c) vanish and
we obtain mechanical equilibrium at phase interfaces, i.e., p = p̂v = p̂l.

Thus, the governing equations (19) reduce to the common Navier-Stokes
equations that read in integral form

∂t∫
Ω

UdV + ∫
∂Ω

[C(U)+D(U)]dA = 0, (21)

where U = [ρ,ρu,ρE] is the vector of conserved variables. For later conve-
nience the total physical flux is split into its inviscid part

C(U) = (n ⋅u)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ

ρu

ρE+p

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+p

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

n

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (22)

and its viscous part

D(U) = −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

n ⋅τ

n ⋅ (u ⋅τ−q)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (23)

Phase change due to evaporation and condensation can be considered by
an additional transport equation for one of the volume fractions αk. E.g.,
for vapor volume fraction αv we obtain the following transport equation

∂t(αvρ̂v)+∇ ⋅ (αvρ̂vũ) = Γ̂
ρ
v . (24)

The mass jump condition (20a) ensures conservation of mass since Γ̂ρv =

−Γ̂ρl . The mass exchange term Γ̂ρl needs to be modeled, for example by
means of finite-rate mass transfer models, which are often derived from
bubble dynamics according to the Rayleigh-Plesset equation [96, 103]. A
common feature of all mass transfer models are empirical parameters that
need to be calibrated. Tseng & Wang [109] find, for example, that evapora-
tion and condensation coefficients are strongly case dependent and addi-
tionally depend on the turbulence closure.

A straightforward approach to model Γ̂ρv and to close Eq. (24) is to intro-
duce a relaxation time τ

Γ̂ρv = −
ρ̂v(αv −αv,eq)

τ
, (25)

where αv,eq denotes the local equilibrium vapor volume fraction. τ is
generally unknown and cannot be easily derived. However, the limits τ→
∞ and τ→ 0 can be considered without any further modeling assumptions.
For τ → ∞, the flow is called frozen and the initial composition of the
flow remains unchanged for all times. On the other hand, if τ → 0, the
flow is assumed to be in local thermodynamic and phase equilibrium, i.e.,
T = T̂v = T̂l and g = ĝv = ĝl, where gk denotes the Gibbs free energy.
Therefore, we obtain αv = αv,eq at each point in space and time.
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Adopting the local thermodynamic and phase equilibrium assumption
leads to a parameter-free thermodynamic equilibrium cavitation model. In
this case, we can compute the vapor volume fraction immediately from the
mixture density ρ and saturation densities of liquid and vapor, ρl,sat and
ρv,sat at the equilibrium temperature T without solving Eq. (24) explicitly

αv = αv,eq =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 , if ρ ≥ ρl,sat(T)
ρl,sat(T)− ρ

ρl,sat(T)− ρv,sat(T)
, else

. (26)

T is computed from the definition of the mixture internal energy ẽ

ẽ =
1

ρ
∑
k

αkρ̂kêk (27)

and the constitutive equations for the liquid and vapor phase, which can
be represented either by closed-form equations of state [90] or by tabulated
data [25]. For thermodynamic closures used in this work see Section 3.5.

For viscous calculations, we need to define material properties of the
mixture. We follow Beattie and Whalley [13] and assume that the effective
dynamic viscosity of the liquid-vapor mixture satisfies a quadratic law
with a maximum in the two-phase region

µ(ρ, T) = αl (1+
5

2
αv)µl(ρl, T)+αvµv(ρv, T). (28)

The factor (1 + 5αv/2) in the first term on the right-hand side of Eq. (28)
accounts for fully immersed small vapor bubbles which are assumed to
behave like a large number of small rigid particles in a liquid, as derived
by Einstein [31] for a suspension. Strictly speaking, Einstein’s derivation is
only valid for small αv. Due to blending with the liquid volume fraction,
αl = 1 − αv, the effect decreases with increasing vapor volume fraction
αv. The maximum mixture viscosity is at αv ≈ 0.3 since µv ≪ µl. The
employed mixture dynamic viscosity can also be considered as an heuristic
approach to include subgrid effects of non-resolved vapor bubbles. The
thermal conductivity of the liquid-vapor mixture is approximated by

k(ρ, T) = αlkl(ρl, T)+αvkv(ρv, T). (29)

Cavitation originates from local expansion waves which are isentropic
processes. From thermodynamic considerations, we cannot obtain pure
vapor, i.e., α = 1, if cavitation is considered only and boiling processes
are excluded. Besides a temperature decrease due to expansion, cavitation
additionally leads to a local sub-cooling of the fluid since the surround-
ing liquid needs to provide the latent heat of evaporation. If expansion
waves are sufficiently strong, sub-cooling could lead to temperatures be-
low the triple line and icing. The thermodynamic closures which we will
employ in the following, are, however, not valid for temperatures below
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the triple line. Furthermore, the thermodynamic closures for water do
not include the anomalous behavior of water density at a temperature of
approximately 277 K. Therefore, we limit density to values above a cer-
tain threshold ρmin. This limit is chosen as ρmin = 5 kg/m3 for ALDM

and ρmin = 1 kg/m3 for CATUM which corresponds to maximum vapor
volume fractions of αmax ≈ 99.5 % and αmax ≈ 99.9 %, respectively.

3.5 thermodynamic closures

3.5.1 Water

We adopt the thermodynamic closure of Saurel et al. [90], who use a mod-
ified Tait equation of state in pure liquid regions

p(ρ, T) = (psat(T)+B)(
ρ

ρl,sat(T)
)

N

−B (30)

where psat(T) and ρl,sat(T) are the temperature-dependent saturation pres-
sure and saturation density of liquid water. B = 3.06 × 108 Pa and N = 7.1
are fitted constants. An efficient equation for the specific internal energy
of pure liquid is given by [90]

el(T) = cv,l(T − T0)+ el,0 (31)

with constant specific heat at constant volume cv,l and reference energy
el,0 at reference temperature T0. For water cv,l = 4.18 kJ/kg K and el,0 =
0.617 kJ/kg K at T0 = 273.15 K.

Within the thermodynamic equilibrium cavitation model, Section 3.4, a
unique (p, T) state defines the saturated liquid-vapor mixture with p =

psat(T) = pv = pl and T = Tsat = Tv = Tl. The temperature-dependent satura-
tion pressure, and saturated liquid and vapor densities are approximated
by [91]

psat(T) = pc exp [(
Tc

T
)
6

∑
i=1

aiθ
mi] , (32a)

ρl,sat(T) = ρc (1+
6

∑
i=1

biθ
ni) , (32b)

ρv,sat(T) = ρc exp(
6

∑
i=1

ciθ
oi) . (32c)

with θ = 1 − T/Tc. The subscript “c” denotes temperature, pressure and
density at the critical point. For water ρc = 332 kg/m3, pc = 22.64× 105 Pa
and Tc = 647.14 K. Coefficients ai, bi, and ci and exponents mi, ni, and oi
for water are given in Table 2. The saturation temperature is determined
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Table 2: Coefficients and exponents for equations (32) defining the saturation pres-
sure and densities of water [91].

i ai mi bi ni ci oi

1 −7.85823 1. 1.99206 1/3 −2.02957 2/6

2 1.83991 1.5 1.10123 2/3 −2.68781 4/6

3 −11.7811 3. −0.512506 5/3 −5.38107 8/6

4 22.6705 3.5 −1.75263 16/3 −17.3151 18/6

5 −15.9393 4. −45.4485 43/3 −44.6384 37/6

6 1.77516 7.5 −6.75615×105 110/3 −64.3486 71/6

from the following equation for the specific internal energy of the liquid-
vapor mixture [90]

e(T) =
1

ρ
{[αρv,sat(T)cv,v + (1−α)ρl,sat(T)cv,l] (T − T0)+

αρv,sat(T)Lv,0} + el,0. (33)

By solving Eq. (32) in conjunction with Eq. (33) we obtain the mixture
temperature, T .

The density and temperature dependency of the dynamic viscosities and
heat conductivities for pure liquid and vapor needed for Eqs. (28) and (29)
are computed from polynomials defined by the International Association
for the Properties of Water and Steam (IAPWS) neglecting critical enhance-
ment [2, 3].

3.5.2 Barotropic Model for Water

A simplified model for water can be derived if we assume that pressure
is a function of density only (barotropic assumption). The modified Tait
equation (30) reduces to an isentropic constitutive equation for a reference
temperature Tref

p(ρ)∣s=const. = (psat(Tref)+B)(
ρ

ρl,sat(Tref)
)

N

−B, (34)

where B = 3.06 × 108 Pa, and N = 7.1 are fitted constants. In two-phase
regions, the equilibrium pressure is deduced by following an isentropic
path in the phase diagram, i.e., for ρ < ρl,sat(Tref)

p(ρ)∣s=const. = psat(Tref)+C(
1

ρl,sat(Tref)
−
1

ρ
) . (35)

For a reference temperature Tref = 293.15 K we use C = 1468.54 Pa kg/m3

and psat(Tref) = 2340 Pa, ρl,sat(Tref) = 998.1618 kg/m3, and ρv,sat(Tref) =
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Figure 2: Isentropic relationship between pressure and density for the Diesel-like
test fluid Shell V-oil 1404 (ISO 4113) at Tref = 293.15 K. Reprinted with
permission from Egerer et al. [29]. Copyright 2014, AIP Publishing LLC.

0.01731 kg/m3 for the saturation pressure and densities of water. The
speed of sound for liquid water and the liquid-vapor mixture is the equi-
librium speed of sound.

The dynamic viscosities for liquid water and water vapor are assumed
to be constant and equal to their saturation values at the reference temper-
ature Tref. For Tref = 293.15 K we use µl,sat(Tref) = 1.002× 10−3 Pa s and
µv,sat(Tref) = 9.727× 10−6 Pa s.

Since pressure is a function of density only, the solution of the energy
equation (19c) is not necessary in this case.

3.5.3 Barotropic Model for a Diesel-like Test Fluid

The isentropic equation of state, p = p(ρ)∣s=const., for a barotropic model
of a typical Diesel-like test fluid (Shell V-oil 1404, ISO 4113) at reference
temperature Tref = 293.15 K is used in tabulated form and plotted in Fig. 2.
The table also contains values of the vapor volume fraction α = αv at a
given density. The speed of sound in the liquid and in the mixture is the
equilibrium speed of sound, ceq =

√
∂p/∂ρ∣s=const.. Linear interpolation

is used between two subsequent table values. For thermodynamic states
outside of the table, linear extrapolation is employed. Characteristic prop-
erties of the test fluid are given in Table 3. Since pressure is a function of
density only, the solution of the energy equation (19c) is also not necessary
in this case.

3.6 model summary

We employ a single-fluid approach for modeling turbulent cavitating flows
with the following underlying assumptions:
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Table 3: Characteristic properties of the Diesel-like test fluid Shell V-oil 1404 (ISO
4113) at Tref = 293.15 K. Reprinted with permission from Egerer et al. [29].
Copyright 2014, AIP Publishing LLC.

Property psat ρl,sat ρv,sat cl µl,sat µv,sat

Unit Pa kg/m3 kg/m3 m/s mPa s µPa s

Value 2218 820 0.12 1363 3.1 0.1

o phase change, i.e., evaporation and condensation, is in thermody-
namic and phase equilibrium resulting in single-valued temperature
and Gibbs free energy for the liquid-vapor mixture, i.e., T = T̂v = T̂l
and g = ĝv = ĝl;

o mechanical equilibrium, i.e., p = p̂v = p̂l is assumed at phase inter-
faces; surface tension effects are neglected;

o fluid quality (i.e., nuclei content) is not explicitly modeled, it is as-
sumed that a sufficient amount of nucleation sites are present;

o effects of non-condensable gas are not considered.

These assumptions are well justified for the types of application in mind,
as discussed in Section 3.4. They result in a parameter-free thermody-
namic equilibrium cavitation model which is mathematically consistent
for any length-scale ratio ψ. The mixture evolution equations are formally
the same as for single-phase flow facilitating the use of standard LES meth-
ods. Modeling of two-phase flows using the thermodynamic equilibrium
cavitation model presented in Section 3.4 has proven to be able to accu-
rately describe cavitating flows. The model has been successfully applied
for the prediction of inertia driven sheet and cloud cavitation of twisted
and non-twisted hydrofoils [95, 97], and the prediction of cavitation includ-
ing shock-wave dynamics in bore holes of injection nozzles [98]. The fully
compressible treatment of the liquid and liquid-vapor mixture reproduces
the formation and propagation of shock waves due to the collapse of vapor
structures, which is essential for the prediction and quantitative analysis
of surface erosion [74]. Conceptual extension from an inviscid framework
to compressible LES has been demonstrated by Hickel et al. [48] Further
validation for applying this modeling methodology for LES of turbulent
cavitating flows will be presented in Chapter 5.





Part ii

R E F E R E N C E L A R G E - E D D Y S I M U L AT I O N M E T H O D
F O R F L O W S W I T H C AV I TAT I O N

Major parts are based on the author’s journal article [29] and
are reprinted with permission from Egerer et al. (2014) "Large-
eddy simulation of turbulent cavitating flow in a micro chan-
nel", Physics of Fluids 26(8): 085102. Copyright 2014, AIP Pub-
lishing LLC.





4T H E A D A P T I V E L O C A L D E C O N V O L U T I O N M E T H O D
F O R C AV I TAT I N G F L O W S

A framework for implicitly modeling SGS stresses that is consistent with
turbulence theory is provided by the Adaptive Local Deconvolution Method
(ALDM). It was first developed for incompressible flows [46] and later ex-
tended to compressible flows [47]. Further modifications to compressible
ALDM [47] are necessary to obtain a robust scheme with respect to large
density gradients and large variations of the speed of sound [48] in cavi-
tating flows.

ALDM is designed for Cartesian grids and operates on the inviscid part
of the governing equations (19), which, e.g., read for the j-th coordinate
direction

∇ ⋅C = ∇ ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C
ρ

C
ρuj
j

C
ρE

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ∇ ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρu

ρuju+pδij

ρEu+pu

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ∫

∂Ω

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρu

ρuju+pδij

(ρE+p)u

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅ndS, (36)

where n is the unit normal of the cell-surface increment dS and δij is the
Kronecker delta.

In general, ALDM reconstructs the primitive variables ϕ = [ρ,ui,ρe,p] at
cell faces from their cell averages by combining Harten-type deconvolution
polynomials,

ğ∓k,r(xj±1/2) =
k−1

∑
l=0

c∓k,r,l(xj)ϕ(xj−r+l), (37)

up to order three non-linearly and solution-adaptively

ϕ̆± =
3

∑
k=1

k−1

∑
r=0

ω±
k,r(γk,r,ϕ)ğ±k,r. (38)

The coefficients c∓k,r,l(xj) are grid-dependent [46]. Note that “+” and “−”
superscripts are used to distinguish between values associated with the
right or left side of the considered cell face. By dynamically weighting
different orders of accuracy ğ∓k,r(xj±1/2) in the reconstruction procedure
(38) solution-adaptivity is obtained. Free parameters γkr in the weights

ω∓
k,r(γk,r,ϕ) =

γλk,rβk,r(ϕj)

k−1

∑
s=0

γλk,sβk,s(ϕj)

, (39)

where

βk,r(ϕ,xi) = (εβ +
k−r−2

∑
l=−r

(ϕi+m+1 −ϕi+m)
2
)

−2

(40)

27
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with εβ = 10−99, are used to control the truncation error of ALDM.
A suitable numerical flux function comprising the physical inviscid flux

and a secondary regularization term R is used. The generic form of the
ALDM numerical flux function is

C̆ = C(
ϕ̆+ + ϕ̆−

2
)−R (ε, ϕ̆±,ϕ) . (41)

The free parameters {γk,r, ε} are adopted from the single-phase version
of ALDM since SGS effects in isothermal two-phase turbulence are domi-
nated by momentum fluctuations as discussed in section 3.4. For single-
phase turbulence, a physically consistent implicit SGS model is obtained
by optimizing {γk,r, ε} so that the effective spectral numerical viscosity
matches the eddy viscosity from the Eddy-Damped Quasi-Normal Marko-
vian (EDQNM) theory in the low Mach number limit [46].

Following the methodology described above, we define the numerical
approximation of the mass density, the j-th component of the momentum,
and the total energy flux for the i-th coordinate direction of the Cartesian
grid as

C̆ρi = ŭ
∗
i ρ̆− ε

ρ
∣ŭ+i − ŭ

−
i ∣ (ρ̆

+
− ρ̆−) , (42a)

C̆
ρuj
i = C̆ρi

ŭ+j + ŭ
−
j

2
− ερuρ̆ ∣ŭ+j − ŭ

−
j ∣ (ŭ

+
j − ŭ

−
j )+ δijp̆

∗, (42b)

and

C̆ρEi = ŭ∗i [ρ̆e+ p̆
∗
]+
ŭ+j + ŭ

−
j

2
⋅ (C̆

ρuj
i −

ŭ+j + ŭ
−
j

4
C̆ρi )

− ερE ∣ŭ+i − ŭ
−
i ∣ (ρ̆e

+
− ρ̆e−).

(42c)

Reconstruction of the transport-velocity, ŭ∗i , in Eq. (42) follows the argu-
ment of Harten et al. [45] leading to

ŭ∗i =
ŭ−i + ŭ

+
i

2
−
p̆+ − p̆−

2ρ̆c
, (43)

where c̆ is the maximum speed of sound of the cells adjacent to the con-
sidered cell face.

Low-Mach-number consistency is achieved by computing the cell face
pressure in Eq. (42), p̆∗, from the arithmetic mean of the right- and left-side
reconstructed values

p̆∗ =
p̆+ + p̆−

2
. (44)

The free parameters take the values ερu = 0.125 and ερ = ερE = 0.615,
and are directly adopted from the compressible single-phase version of
ALDM.

The contribution to the flux from viscous stresses and heat conduction
is discretized by a linear second-order centered scheme. For ALDM time



aldm for cavitating flows 29

700

750

800

850

900

950

1000

0 0.2 0.4 0.6 0.8 1

(a)

ρ
[k

g/
m
3
]

x [m]

103

104

105

106

0 0.2 0.4 0.6 0.8 1

(b)

p
[P

a]

x [m]

-10.0

-5.0

0.0

5.0

10.0

0 0.2 0.4 0.6 0.8 1

(c)

u
[m

/s
]

x [m]

0.0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

(d)

α
[−

]

x [m]

Figure 3: Comparison between compressible ALDM (●) and ALDM adapted for
cavitating flows (◾) for a 1-D double expansion in water at time t = 0.15×
10−3 s. - - - - initial condition.

integration is performed by the TVD explicit RK3S3 method [42], see Sec-
tion 3.1.

A simple 1-D test shows, however, that the original compressible formu-
lation of ALDM [47] is numerically not stable and produces large pressure
oscillations at phase interfaces as can be seen in the results for a double
expansion in water, see Fig. 3b. For the initial conditions and set-up we
refer the reader to Section 8.1.3. Results are shown at time t = 0.15× 10−3 s.
Furthermore, we observe spurious velocities at the positions where the
pressure drops to vapor pressure due to the expansion, see Fig. 3c.

A robust version of ALDM suitable for cavitating flows is obtained by em-
ploying an upwind reconstruction of the transported density and internal
energy density at cell faces

ϕU = [ρU, (ρe)U] =
1

2
[(1+ sgn(ŭ∗i ))ϕ

−
+ (1− sgn(ŭ∗i ))ϕ

+
] (45)

instead of using the solution-adaptive deconvolution (38). The ALDM flux
for cavitating flows then reads

C̆ρi = ŭ
∗
iρ
U
− ερ ∣ŭ+i − ŭ

−
i ∣ (ρ̆

+
− ρ̆−) , (46a)

C̆
ρuj
i = C̆ρi

ŭ+j + ŭ
−
j

2
− ερuρU ∣ŭ+j − ŭ

−
j ∣ (ŭ

+
j − ŭ

−
j )+ δijp̆

∗, (46b)
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and

C̆ρEi = ŭ∗i [(ρe)
U
+ p̆∗]+

ŭ+j + ŭ
−
j

2
⋅ (C̆

ρuj
i −

ŭ+j + ŭ
−
j

4
C̆ρi )

− ερE ∣ŭ+i − ŭ
−
i ∣ (ρ̆e

+
− ρ̆e−).

(46c)

The transport velocity (43) is slightly modified as

ŭ∗i =
ŭ−i + ŭ

+
i

2
−

p̆+ − p̆−

ρ̆+ (SR − ŭ
+
i
)− ρ̆− (SL − ŭ

−
i
)

, (47)

where SR = max(ŭ+i , ŭ−i ) + cl, and SL = min(ŭ+i , ŭ−i ) + cl denote estimates
of the fastest right and left going wave speeds and cl is the speed of sound
of the liquid phase. The interface pressure p̆∗ remains unchanged.

The results for the 1-D double expansion in water show that ALDM adapted
for cavitating flows is free of spurious oscillations, see Fig. 3.
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M I X I N G L AY E R

For validation of ALDM adopted for cavitating flows, see Chapter 4, we
consider the canonical problem of a turbulent cavitating mixing layer.

O’Hern studied cavitation inception experimentally in a mixing layer
created by a sharp-edged plate [75] and finds that cavitation inception
strongly depends on the air content of the liquid water and that cavita-
tion first occurs in the streamwise secondary vortices. While O’Hern [75]
only investigated the mixing layer by flash photographies and high-speed
motion pictures, Iyer & Ceccio [53] additionally performed Particle Image
Velocimetry (PIV) on a similar setup to measure the influence of cavitation
on the flow field downstream of the cavitating mixing layer. They find
that the mean flow is not altered by cavitation. Streamwise fluctuations
are enhanced whereas cross-stream fluctuations decrease.

We use the more recent experiment by Aeschlimann et al. [6–8] for
validation. For this case the cavitation number (1) is defined as

σc =
2(p∞ −psat)

ρ∞(∆U)2
. (48)

Aeschlimann et al. [6–8] create the mixing layer by a splitter plate, sepa-
rating a high speed and a low speed flow. The velocity difference ∆U =

U2 −U1, U2 > U1 > 0, of the two separated flows and the convective veloc-
ity Uc = (U1 +U2)/2 were kept constant while the pressure p∞ in the inlet
section was controlled by a vacuum pump in order to define different cavi-
tation numbers. The turbulent boundary layers of the splitter plate are not
further specified. Aeschlimann et al. provide velocity statistics by means
of PIV [6] and quantitative data of the vapor volume fraction by means
of X-ray attenuation measurements [7]. They find that the self-similar be-
havior of the mixing layer is preserved and confirm the findings of Iyer
& Ceccio [53] that the mean velocity field and the Reynolds shear stress
is not altered by cavitation. Their finding of enhanced streamwise veloc-
ity fluctuations is also in agreement with the study of Iyer & Ceccio [53]
but they find that the cross-stream velocity fluctuations are also enhanced
contrary to the study of Iyer & Ceccio [53].

Incompressible DNS of cavitating mixing layers at very small Reynolds
numbers were performed by Okabayashi & Kajishima [76]. Their findings
are in agreement with Iyer & Ceccio [53] in terms of the modulation of the
Reynolds stresses by cavitation.

31
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Table 4: Simulation parameters of the spatially evolving cavitating mixing layer
matching the cavitation and Reynolds number of the experiment by
Aeschlimann et al. [6, 7]. Reprinted with permission from Egerer et al. [29].
Copyright 2014, AIP Publishing LLC.

σc [–] 1 =̂ ∞ 0.167 0.1

∆U [m/s] 100.0

Uc [m/s] 75.0

ρ∞ [kg/m3] 1000.44 998.54 998.39

p∞ [×105 Pa] 50.046 8.362 5.015

T∞ [K] 293.15

δθ,0 [×10−4 m] 0.5

δω,0 [×10−4 m] 2.0

Reδω,0 [–] 20000.

5.1 computational setup

We investigate three cases of the experiment by Aeschlimann et al. [6–
8], see Table 4. The cavitation number in the numerical simulations is
controlled by adjusting the ambient pressure, p∞, according to Table 4

while keeping the velocity difference ∆U and the convective velocity Uc
constant to resemble the experimental setup. The Reynolds number

Reδω =
ρ∞∆Uδω

µ∞
, (49)

based on the vorticity thickness

δω(x) =
∆U

∂⟨u⟩/∂y∣max
(50)

at the beginning of the self-similar region is approximately Reδω,ss0 =

1.5 × 105 in the experiment. We choose the initial mixing layer vorticity
thickness δω,0 in the LES so that Reδω of the LES and the experiment are
approximately equal at the beginning of the self-similar region.

The computational domain, see Fig. 4, comprises an analysis region of
size Lx = 300δω,0, Ly = 120δω,0, and Lz = 75δω,0 in streamwise, cross-
stream, and spanwise direction, respectively. The analysis region is em-
bedded in a larger domain of size Lx,o = 450δω,0 and Ly,o = 240δω,0, that
is utilized to reduce the influence of the cross-stream and outlet boundary
conditions. Since the domain is periodic in spanwise direction, Lz,o = Lz.

Results presented below have been computed on a coarse, medium, and
fine Cartesian grid. The coarse grid is shown in Fig. 5. The streamwise and
spanwise grid spacing ∆x and ∆z are equidistant in the analysis region for
all grid resolutions, see Figs. 5a and 5b. The medium grid was obtained
from the coarse grid by halfing the grid spacing in these directions, while
the fine grid was obtained by taking 2/3 of the medium grid spacing.
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Figure 4: Sketch of the computational domain for the cavitating mixing layer.
Reprinted with permission from Egerer et al. [29]. Copyright 2014, AIP Pub-
lishing LLC.

Table 5: Grid parameters for the cavitating mixing layer.

grid coarse medium fine

∆x/δω,0 2.344 1.172 0.586

∆y/δω,0 2.5 1.250 0.625

∆z/δω,0 2.344 1.172 0.586

Ncells [× 10
6] 1.92 14.97 50.51

For the cross-stream direction the grid was refined towards the mixing
layer interface in a zone of size Lx,i = 75δω,0, Ly,i = 30δω,0, and Lz,i = Lz
at the inlet of the computational domain, see Fig. 4 and Figs. 5a and 5c.
On the coarse grid, two refinement steps exist with ∆y/2 and ∆y/4 with
respect to the equidistant ∆y in the remainder of the analysis region. For
the medium and fine grid only one refinement step with ∆y/2 was used.

The grid spacings in the analysis region in terms of the initial vortic-
ity thickness δω,0 and the total number of cells, Ncells, are provided in
Table 5.

The inlet boundary condition for the mean streamwise velocity compo-
nent is a hyberbolic tangent profile, and zero mean velocity in cross-stream
and spanwise direction

u(x = 0,y, z) = (Uc +
∆U

2
tanh(−

2y

δω,0
))

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (51)
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(a) xy-plane

(b) xz-plane (c) yz-plane

Figure 5: Computational grid for the spatially evolving cavitating mixing layer
LES. Every 4th grid line in stream- and spanwise directions, and every
3rd grid line in cross-stream direction is shown for the coarse grid.

The cell-averaged velocity components at the inlet boundary are applied
by integrating profile (51) over the cross-stream cell height ∆y, i.e.,

u(x = 0) =
1

∆y

+∆y/2

∫

−∆y/2

u(y)dy. (52)

We superimpose 3-D time-dependent random velocity fluctuations with
maximum amplitudes of 0.1∆U to trigger transition. The velocity fluctua-
tions are restricted to the initial mixing layer thickness by an exponential
function, i.e.,

u′(x = 0,y, z, t) = 0.1∆U

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ur(y, z, t)

vr(y, z, t)

wr(y, z, t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

exp(−
y2

2δω,0
) , (53)

where ur, vr, wr ∈ [−1,1] are space- and time-dependent random numbers.
The pressure is extrapolated linearly from the exterior. For simulations
with the full thermodynamic model we addionally prescribe the density
at the inlet according to the values given in Table 4. For barotropic simula-
tions the density at the inlet is computed from the extrapolated pressure.

At the cross-stream and outlet boundaries, we impose the static pressure
p∞ according to Table 4. If α > 0 at the cross-stream or outlet boundary, we
employ an outflow boundary condition where all quantities are extrapo-
lated; otherwise, vapor structures would collapse immediately and would
cause artificial pressure waves travelling upstream.
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Figure 6: Grid convergence of (a) the vorticity thickness, and (b) the momentum
thickness for the cavitating mixing layer with σc = 0.167.

The computational domain on the coarse grid is initialized with the
mean velocity profile and random fluctuations according to Eqs. (51) and (53)
and a constant pressure and density according to the values specified in
Table 4. For the medium and fine grids the flow field is initialized by
interpolating the solution from the next coarser grid.

Results of the mixing layer LES presented in the following have been
averaged in time and spanwise direction. Time-averaging has been per-
formed for each grid level over 20 flow-through times of the analysis re-
gion, tft = Lx/Uc, after letting the flow field develop for 10tft. Reynolds-
averages are denoted by angled brackets, ⟨○⟩, while Favre-averages are
defined according to Eq. (12) and denoted by a tilde, ○̃.

5.2 grid convergence

We demonstrate grid convergence for the cavitating mixing layer with
σc = 0.167 by comparing first and second order statistics for the three grid
resolutions specified in Table 5. In Fig. 6 we show the spatial evolution of
the vorticity thickness δω(x), see Eq. (50), and the momentum thickness

δθ(x) =
1

ρ∞(∆U)2

∞

∫
−∞

⟨ρ⟩ (
1

2
∆U− ũ+Uc)(

1

2
∆U+ ũ−Uc)dy. (54)

Both quantities converge clearly for the medium and fine grids. Note the
influence of the approximation error of the velocity gradient due to finite
grid resolution used to compute the vorticity thickness at the inlet (x = 0).
Since the momentum thickness is an integral quantity, all grids match the
specified momentum thickness δθ,0 of the mean inflow velocity profile (51).

The same conclusion can be drawn for the maximum values of the cross-
stream mean vapor volume fraction profiles, see Fig. 7a, and the integrated
vapor volume fraction, see Fig. 7b, along the streamwise axis. Note that
the discontinuities, e.g., at x/δω,0 ≈ 220, are due to the change in grid
resolution, cf. Fig. 5.
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Figure 7: Grid convergence of the vapor volume fraction for the mixing layer with
σc = 0.167: (a) maximum vapor volume fraction, and (b) normalized
integrated vapor volume fraction.

For the streamwise evolution of extremal values of the non-zero Reynolds
stress tensor components we observe negligible differences between the
medium and fine grids, see Fig. 8. Note that discontinuities are due to the
grid refinement steps and are especially observable on the coarse grid.

For completeness, we show cross-stream profiles of the mean stream-
wise velocity and the mean vapor volume fraction in the self-similar region
at x/δω,0 ≈ 230 in Fig. 9. The most notable difference can be seen in the
mean vapor volume profiles. Here, the vapor content reduces by a factor
of two between the coarse and medium grids. For the cross-stream pro-
files of the Reynolds stresses we observe only small differences between
the three grids, see Fig. 10.

To sum up, the results presented for a cavitating mixing layer at σc =

0.167 show that statistical quantities are converged on the medium and
fine grids. Further analysis will thus be conducted with results obtained
on the fine grid.

5.3 temperature effects

Fig. 11 shows instantaneous contours and iso-surfaces of the temperature
difference, ∆T = T − T∞, in the cavitating mixing layer with σc = 0.167.
Viscous heating leads to a small temperature increase up to ∆T ≈ +0.3 K.
Since the latent heat of evaporation needs to be provided by the surround-
ing liquid, we also observe small areas with an instantaneous temperature
decrease below T∞ although the effect of viscous heating is dominant. We
conclude from Fig. 11 that effects due to heat conduction are negligible
as a consequence of the small temperature differences. Changes of trans-
port properties, e.g., dynamic viscosities, are thus also small. This finding
justifies the application of a barotropic Equation of State (EOS) as well as
constant dynamic viscosities for the pure vapor and liquid phases.
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Figure 8: Grid convergence of Reynolds stresses for the mixing layer with
σc = 0.167: (a) streamwise Reynolds stress, (b) Reynolds shear stress,
(c) cross-stream Reynolds stress, and (d) spanwise Reynolds stress.

5.4 effect of cavitation number

5.4.1 Flow Field

Fig. 12 shows instantaneous 3-D visualizations of the three mixing layer
cases. We observe the classical break-up mechanism for the non-cavitating
mixing layer case with σc = 1. First, spanwise Kelvin-Helmholtz-type
instabilities develop followed by secondary streamwise instabilities. After
this transition process the mixing layer reaches a fully turbulent state for
x/δω,0 ≳ 50, cf. Fig. 12a. For σc = 1 no vapor structures are present
since this is the non-cavitating case, cf. Fig. 12d. The topology of the
break-up process and the evolution of the velocity field do not change for
the cavitating cases, see Figs. 12b and 12c. Further confirmation of this
finding will be provided in the next Section 5.4.2.

Evaporation primarily occurs in the cores of the spanwise Kelvin-Helm-
holtz-type vortices but also in the streamwise secondary vortices, see
Figs. 12e and 12f. For decreasing cavitation number areas with α > 0.1
increase.

We compare predicted instantaneous cavitation structures between ex-
periment [8] and LES in Fig. 13. Note, however, that the experimental
images do not contain a scale, so that a qualitative comparison in terms
of extent and spacing of cavitation structures is possible only. For σc =

0.167 similarities in cavitation structures can be observed between x/δω,0 =



38 validation of aldm : turbulent cavitating mixing layer

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−1 −0.5 0 0.5 1

(a)

(
⟨
u
⟩
−
U
c
)
/
∆
U

y/δω

coarse
medium
fine

0

0.01

0.02

0.03

−1 −0.5 0 0.5 1

(b)

⟨
α
⟩

y/δω

Figure 9: Grid convergence of cross-stream mean profiles for the mixing layer
with σc = 0.167: (a) mean streamwise velocity, and (b) mean vapor vol-
ume fraction.

[100,250] and its experimental counterpart. For further downstream posi-
tions vapor structures disintegrate and more slender vapor structures are
observed at x/δω,0 ≈ 250. By decreasing the cavitation number, see re-
sults for σc = 0.1 in Fig. 13, the large rollers related to pairing processes
in the mixing layer become more occupied by vapor structures which is
reproduced by the LES.

5.4.2 Comparison of Statistical Quantities

Fig. 14a compares the normalized streamwise evolution of the vorticity
thickness between experiment [6] and LES. Normalization is performed
with the vorticity thickness, δω,ss, at the beginning of the self-similar re-
gion, xss, and the ratio of velocity difference to convective velocity, ∆U/Uc.
The shaded area in this and all subsequent plots marks the transition re-
gion which will not be considered in the following. The transition region
cannot be expected to match since precisely defined inflow data are not
provided by the experiment. The experimental data show that the growth
of a mixing layer is nearly independent of the cavitation number which
is reproduced by the LES. Slight differences between LES and experiment
may be related to experimental difficulties in obtaining δω and xss pre-
cisely. A quantitative comparison of normalized growth rates, Ucδ̇ω/∆U,
is provided in Table 6.

Aeschlimann et al. [7] also provide data for the vapor volume fraction,
α = αv, by means of X-ray measurements, so that a quantitative compar-
ison with LES results is possible despite uncertainties about the experi-
mental calibration. For σc = 0.167, the LES reproduces clearly the max-
imum mean vapor volume fraction, Fig. 14b, and the cross-stream inte-
grated mean vapor volume fraction normalized by the vorticity thickness,
Fig. 14c. For σc = 0.1 the experimental data show a decrease in the max-
imum mean vapor volume fraction. The LES reproduces this trend for
the evolution of the maximum mean vapor volume fraction. However,
the LES predicts values that are about 30 % larger than in the experiment.



5.4 effect of cavitation number 39

0

0.01

0.02

0.03

0.04

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

(a)

⟨
u
′ u

′ ⟩
/
(
∆
U
)
2

y/δω

coarse
medium
fine

−0.04

−0.03

−0.02

−0.01

0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

(b)

⟨
u
′ v
′ ⟩
/
(
∆
U
)
2

y/δω

0

0.01

0.02

0.03

0.04

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

(c)

⟨
v
′ v
′ ⟩
/
(
∆
U
)
2

y/δω

0

0.01

0.02

0.03

0.04

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

(d)

⟨
w
′ w

′ ⟩
/
(
∆
U
)
2

y/δω

Figure 10: Grid convergence of cross-stream Reynolds stress profiles for the
mixing layer with σc = 0.167: (a) streamwise Reynolds stress, (b)
Reynolds shear stress, (c) cross-stream Reynolds stress, and (d) span-
wise Reynolds stress.

Furthermore, a plateau is predicted in the LES for downstream positions
(x − xss)∆U/(δω,ssUc) > 15. The normalized integrated vapor volume
fraction decreases significantly in the self-similar region for σc = 0.1 in the
experiment, whereas it is approximately constant in the LES. Aeschlimann
et al. [6, 7] did not provide pressure measurements along the test section
but provide only the cavitation number at the end of the splitter plate.
According to our experience with comparing simulation data for cavitat-
ing flows with experiments, it is well possible that the discrepancies for
σc = 0.1 are caused by a streamwise increase of the local cavitation number
leading to recondensation, e.g., due to adverse pressure gradients in the
experiment. In the LES the streamwise cavitation number is constant due
to the applied pressure boundary condition. For small cavitation numbers,
spatial variations in the cavitation number are expected to have a larger
influence since p∞ −psat is smaller.

Figs. 14d to 14f compare the streamwise evolution of Reynolds stresses
with the experiment. The LES reproduces the overall trend of the experi-
ment for the streamwise Reynolds stress, Fig. 14d, and for the Reynolds
shear stress, Fig. 14e. An increase of the cross-stream Reynolds stress com-
ponent for decreasing cavitation number as measured in the experiment is
not reproduced by the LES, Fig. 14f. Quantitative comparison of Reynolds
stresses in the self-similar region is provided in Table 6. We would like
to note, however, that a quantitative comparison is difficult since measure-



40 validation of aldm : turbulent cavitating mixing layer

∆T [K] −0.3 0 0.3

x

y

z

Figure 11: Instantaneous temperature difference ∆T = T − T∞ in the mixing layer
with σc = 0.167. The figure shows contours of ∆T on xy- and xz-planes
and iso-surfaces with ∆T = ±0.1 K (blue/red).

Table 6: Quantitative comparison of mixing layer properties between LES and
experiment by Aeschlimann et al. [6, 7]. Reynolds stresses are compared
at the normalized streamwise coordinate (x− xss)∆U/(δω,ssUc) ≈ 10.

σc

Ucδ̇ω

∆U

√
⟨u′u′⟩

∆U

√
⟨v′v′⟩

∆U

√
∣⟨u′v′⟩∣

∆U

LES exp. LES exp. LES exp. LES exp.

∞ 0.08 0.09 0.171 0.162 0.133 0.121 0.105 0.092

0.167 0.08 0.11 0.174 0.168 0.132 0.136 0.106 0.088

0.1 0.08 0.11 0.179 0.187 0.124 0.148 0.109 0.085

ments by PIV of fluctuating quantities in two-phase regions are subject to
large uncertainties.

The normalized mean streamwise velocity profiles collapse in the self-
similar region for different cavitation numbers, see Fig. 15a, and LES and
experiment are in excellent agreement. Cross-stream profiles of the vapor
volume fraction normalized with their respective maximum vapor volume
fraction also are in good agreement with the experiment, Fig. 15b.

Overall, the comparison of our numerical approach for turbulent cavi-
tating flows shows reasonable quantitative agreement with experimental
data for the cavitating mixing layer. They also indicate that more compre-
hensive comparisons require much more detailed experimental informa-
tion then is currently available.
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Figure 15: Comparison between LES (lines) and experiment [6, 7] (symbols) of (a)
normalized velocity profiles and (b) normalized vapor volume fraction
profiles in the self-similar region.

5.4.3 Turbulence Kinetic Energy Transport Equation

The transport equation for the resolved Turbulence Kinetic Energy (TKE),
k = ũ′′iu

′′
i /2, reads

∂t(ρk)+
∂

∂xk
(ρũkk) =

ρ (PTKE − εTKE − ε
SGS
TKE)−

∂Tk,TKE

∂xk
+ΦTKE +ΠTKE,

(55)

where

PTKE = −ũ
′′
iu

′′
k

∂ũi

∂xk
(56a)

is the turbulent production,

Tk,TKE = T
t
k,TKE + T

p
k,TKE + T

τ
k,TKE

=
1

2
ρu′′iu

′′
iu

′′
k +u

′
kp

′ −u′iτ
′
ik

(56b)

is the turbulent, pressure, and viscous transport,

ΦTKE = −u
′′
i (
∂p

∂xi
−
∂τik

∂xk
) (56c)

is the exchange due to variable inertia,

ΠTKE = p′
∂u′k
∂xk

(56d)

is the pressure dilatation, and

εTKE =
1

ρ
τ′ij
∂u′i
∂xj

(56e)
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is the resolved dissipation. Contributions from SGSs are lumped together
in εSGSTKE.

For validation purposes we first compare TKE budgets of the single-
phase, i.e., non-cavitaing case with the incompressible DNS data by Rogers
& Moser [85] and the quasi-incompressible DNS data by Pantano & Sarkar
[78], see Fig. 16. We generally find that extremal values in the spatially
evolving mixing layer LES are larger in the high-speed stream (y/δθ > 0)
than in the low-speed stream. Peak production, PTKE∣max, is in good
agreement with the DNS data of Rogers & Moser[85], while Pantano &
Sarkar [78] find approx. 10 % larger values in their DNS. The values
for the turbulent and pressure transport agree well between LES and DNS.
While the turbulent transport, −∂kTtk,TKE, redistributes TKE from the center
towards the outside of the mixing layer, the pressure transport, −∂kT

p
TKE,

acts reversely but at a smaller rate. Exchange due to variable inertia,ΦTKE,
and the pressure-strain correlation, ΠTKE, are zero and are thus not shown
in Fig. 16. The LES-grid is too coarse to resolve viscous dissipation, εTKE,
so that the SGS model needs to provide the correct energy transfer. Since
the mixing layer is statistically stationary, we can evaluate the contribution
of the SGS model by summing all terms of the TKE transport equation. The
result for εSGSTKE is in excellent agreement with the viscous dissipation of
the DNS, εTKE∣DNS, towards the center of the mixing layer. This shows
that ALDM provides a physically correct energy transfer for this flow. We
also note that some TKE is injected by the SGS model at the boundaries of
the mixing layer (backscatter), say y/δθ ≈ ±3.

Finally, note that for a statistically stationary and spatially evolving mix-
ing layer, the time (local) derivative of TKE in Eq. (55) vanishes. On the
other hand, for temporally evolving mixing layers, as in case of the DNS,
mean convection is zero, i.e., the second term on the right-hand side of
Eq. (55). Mean convection in the spatially evolving case actually corre-
sponds to the time derivative in the temporally evolving case. As can be
seen in Fig. 16b mean convection of the present non-cavitating LES is in ex-
cellent agreement with the time derivative of the incompressible DNS [85].
Pantano & Sarkar [78] do not provide data for the time derivative. The
fact that mean convection is close to zero at the center of the mixing layer
(x/δθ = 0) is another indicator for a self-similar state of the mixing layer.

Differences in TKE budgets between the non-cavitating and cavitating
cases are negligible, see Fig. 17, with the exception of the pressure-dilatation
correlation (56d), see Fig. 17a. For the non-cavitating case ΠTKE is close to
zero and takes larger negative values for decreasing cavitation number. In
general, ΠTKE may take either sign. Since it is negative for the considered
cases, ΠTKE provides an additional path for transferring TKE to mean in-
ternal energy. Note, however, that it does not change mean entropy and is
thus a reversible transfer mechanism between TKE and mean internal en-
ergy [67]. The relative importance of ΠTKE compared to production PTKE
is a natural measure of compressibility. Thus higher rates of ΠTKE for
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decreasing cavitation numbers are not surprising since two-phase regions
increase the compressibility of the fluid.
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Figure 16: TKE budgets in single-phase mixing layers: comparison between non-
cavitating LES (lines), incompressible DNS [85] (open symbols), and
quasi-incompressible DNS [78] (filled symbols). Profiles are normalized
by (∆U)3/δθ. –––– , ◽, ◾ PTKE; - - - - , ○, ● −∂kTtk,TKE/ρ; – ⋅ ⋅ – , ▵, ▴
−∂kT

p
k,TKE/ρ; - - - - - - , ◇, ◆ −εTKE; - - - - −εSGSTKE. – ⋅ – ∂k(ρũkk)/ρ;

▿ ∂tk. Note that ΦTKE and ΠTKE are zero and not shown.
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Figure 17: TKE budgets in cavitating mixing layers: comparison between mixing
layer LES at different cavitation numbers. Profiles are normalized by
(∆U)3/δθ. Symbols indicate different cavitation numbers: ◽ σc = ∞;
○ σc = 0.167; ▵ σc = 0.1. Line styles/colors indicate the various terms
of the TKE transport equation (55): –––– PTKE; - - - - −∂kT

t
k,TKE/ρ; –

⋅ ⋅ – −∂kT
p
k,TKE/ρ; - - - - −εSGSTKE. – ⋅ – ∂k(ρũkk)/ρ; - - - - - - ΠTKE/ρ.

Note that ΦTKE and εTKE are zero and not shown.



6A P P L I C AT I O N : G E N E R I C M I C R O C H A N N E L F L O W

6.1 computational setup

We consider a planar throttle geometry as sketched in Fig. 18. It was
designed and investigated within the European Union Research Project
Experimental and CFD technology for PREVentive reduction of Diesel en-
gine emissions caused by cavitation EROsion (PREVERO) [1]. The throttle
length is l = 1×10−3 m, constant height and width are h =W = 0.3×10−3 m.
It has an inlet lip with radius R1 = 0.04 × 10−3 m and a sharp outlet edge.
The height of the pre- and post-chamber of the throttle is H = 3 × 10−3 m
resulting in a geometric contraction of H/h = 10. All dimensions speci-
fying the computational domain are summarized in Table 7. The origin
of the reference coordinate system is placed at the center of the throttle
inflow plane, Fig. 18b. In the following, x denotes the streamwise, y the
transverse, and z the spanwise directions.

We consider the continuous and quasi-stationary flow through the pla-
nar throttle geometry at two different operating conditions, which can be
discriminated by their back pressure pout as given in Table 8. Start-up pro-
cesses are not considered. At operating point A (OPA), the flow is close
to choking conditions; at operating point B (OPB), the flow is choked. The
Reynolds number in the throttle is approximately 15 − 20 × 103 based on
the height h and mean bulk velocities in the throttle.

Since the exact velocity profile in the throttle pre-chamber is unknown
from the experiment, we prescribe a doubly parabolic laminar velocity
profile in x-direction with bulk velocity UB according to the operating
point as inflow boundary condition at x = −8.5× 10−3 m:

u(y, z) =
9

4
UB [1− (

y

H
)
2

] [1− (
z

h
)
2

] . (57)

The y- and z-velocity components are both set to zero. Since the inflow
boundary is far enough upstream of the throttle, we believe that the ex-
act shape of the inflow velocity profile has a small influence on the flow
field in the throttle. The static pressure is linearly extrapolated at the
inlet boundary and the density is set accordingly. At the outlet at x =

Table 7: Geometric dimensions of the generic throttle. Reprinted with permission
from Egerer et al. [29]. Copyright 2014, AIP Publishing LLC.

Geometric dimension L l H h,W,R2 R1

Value [×10−3 m] 18.0 1.0 3.0 0.3 0.04

49
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Figure 18: Geometry of the generic throttle: (a) 3-D view of the whole compu-
tational domain, (b) planar view of the throttle region with center of
origin. Reprinted with permission from Egerer et al. [29]. Copyright 2014,
AIP Publishing LLC.

Table 8: Specification of operating points A & B for the generic throttle. Reprinted
with permission from Egerer et al. [29]. Copyright 2014, AIP Publishing LLC.

OP ṁ [kg/s] UB [m/s] pin,exp [Pa] pout [Pa] Tref [K]

A 0.01450 19.310

300× 105
115× 105 293.15

B 0.01508 20.078 55× 105 293.15
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9.5×10−3 m, we set the static pressure equal to p(y, z) = (pout+pcd(y, z))/2,
where pcd denotes the static pressure in the last cell layer of the compu-
tational domain, in order to impose the static pressure pout according to
the operating point in the mean. Imposing the aforementioned arithmetic
mean of static pressures reduces reflections at the outlet boundary, but still
imposes pout according to the operating point asymptotically. All other
quantities are extrapolated linearly from the interior at the outlet bound-
ary. A no-slip boundary condition for the velocity is employed at all walls.
Initially, the velocity is set to zero in the entire computational domain. The
density is initialized with ρ = ρ(pout).

We solve the governing equations (21) on Cartesian grids. In order to
account for complex geometries, we employ a second-order conservative
immersed interface method [73], which has been extended to compress-
ible flows [43, 48]. The grid is refined towards the throttle walls with a
refinement ratio of 2:1 between grid blocks of different resolution. Quan-
tities at grid block interfaces with different resolution are exchanged by a
conservative interpolation procedure.

Overall computational cost is reduced by employing grid sequencing.
Initially, we let the flow field develop on a coarse grid, which is sequen-
tially refined afterwards. On intermediate grids, we advance the solution
in time until a steady or periodic signal is observed for the global vapor
volume fraction and the integrated mass flow across the inlet and outlet of
the computational domain is equal. Fig. 19 shows the fine grid comprising
roughly 30 million cells. The cell height in wall-normal direction is approx.
0.73× 10−6 m at the lower and upper throttle walls (y = ±0.5h) and approx.
1.17 × 10−6 m at the side walls (z = ±0.5W) of the throttle. The grid is ad-
ditionally refined at the intake lip of the throttle in order to account for
large flow gradients in this region, cf. Figs. 19b and 19c. At walls, a maxi-
mum edge ratio of 4:1 is allowed between wall-tangential and wall-normal
directions. Note that the second-order immersed interface method leads
to a smooth (piecewise linear) boundary representation in cells cut by the
throttle geometry unlike the zeroth-order representation used for plotting
Fig. 19, where cells with negative wall distance are simply blanked.

Fig. 20 shows the wall-normal resolution in terms of wall units h+⊥ =

h⊥/δµ for the first cell layer at the wall for both operating points. Angled
brackets, ⟨⋅⟩, denote Reynolds-averaged quantities. ⟨ρW⟩, ⟨µW⟩, and h⊥
denote the average density, the average dynamic viscosity, and the wall-
normal cell height of the first cell at the wall, respectively. The friction
velocity is uτ =

√
⟨τW⟩/⟨ρW⟩ with ⟨τW⟩ being the time-averaged wall shear

stress. The viscous lengthscale is δµ = ⟨µW⟩/⟨ρW⟩uτ. Values of h+⊥ <

5 within the entire throttle indicate that the first off-wall grid points lie
well within the viscous sublayer and justify the use of no-slip boundary
conditions without employing wall-modeling. Values of h+

∥
≈ 12 based on

cell sizes in the respective wall-tangential coordinate directions result from
the maximum cell aspect ratio of 4 at the wall.
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(a) Grid of the entire computational domain on a xy plane at z = 0.

(b) Detail of the grid inside the throttle on a xy plane at z = 0.

(c) Grid on a yz cross-section at x/l = 0.1. (d) Grid on a yz cross-section at x/l = 0.5.

Figure 19: Computational grid. Every fourth grid line of the fine grid is shown
only. Cells at the immersed boundary with a negative wall distance
(i.e. within the structure) are blanked. Reprinted with permission from
Egerer et al. [29]. Copyright 2014, AIP Publishing LLC.
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Figure 20: LES wall resolution of the first cell layer in terms of wall units h+⊥ :
(a) OPA, (b) OPB of the generic throttle. Reprinted with permission from
Egerer et al. [29]. Copyright 2014, AIP Publishing LLC.

The large speed of sound of the liquid phase and the small cell sizes
necessary to resolve the boundary layer lead to time-step sizes of τ ≈ 0.14×
10−9 s with CFL= 0.75. On the fine grid, statistics such as mean values and
Reynolds stresses are computed by sampling the flow field every ten time
steps. About 4.3 million time steps are necessary to cover the analysis time
interval of 0.6× 10−3 s, which corresponds to more than 100 flow-through
times of the throttle.

6.2 results and discussion

6.2.1 Comparison with experimental data

Experimental set-up and measurement procedures are described in detail
by Iben et al. [51]. A heat exchanger maintains the fuel at a constant
temperature T ≈ Tref during the experiments. In the experiment the pump
provides a static pressure of pin,exp = 300×10

5 Pa upstream of the throttle,
see Table 8. The operating point is set by adjusting the outlet pressure pout.
In the LES, however, we specify a volume flow rate with a bulk velocity UB
calculated from the measured mass flow rate and pressure. Consequently,
the upstream pressure in the LES is not fixed a priori but part of the result.
We find that the mean upstream pressure is approx. 6.5 % larger than
the experimental value for both operating points, see Fig. 21a. Thus, the
numerical simulations predict that pressure losses across the throttle due
to cavitation and friction are slightly larger than in the experiment.



54 application : generic micro channel flow

0

0.2

0.4

0.6

0.8

1

1.2

−10 −8 −6 −4 −2 0 2 4 6 8 10

(a)

pOPA
out

pOPB
out

p
/
p
in

,e
x
p

x/l

0

2

4

6

8

10

12

14

−10 −8 −6 −4 −2 0 2 4 6 8 10

(b)

⟨
u
⟩
/
U
B

x/l

Figure 21: Comparison of (a) mean static pressure and (b) mean streamwise ve-
locity along symmetry line, (y, z) = (0,0), of the generic micro channel:
–––– OPA, - - - - OPB. The gray-shaded area marks the throttle region.
The upstream pressure and the downstream pressures of the experi-
ment are marked by horizontal dotted lines.

For OPA the static pressure decreases and reaches a minimum shortly
after the throttle inlet. For OPB the fluid expands further until the end of
the throttle. The expansion is terminated in both cases by a sharp jump to
the outlet pressure level. For OPB the jump is attached to the exit plane of
the throttle being characteristic for the chocked-flow conditions. A slight
subsequent expansion is obverved for both cases followed by a gradual
adjustment of the pressure to outlet conditions.

The mean streamwise velocity on the symmetry line shows a similar
evolution for both operating points up to the throttle inlet, see Fig. 21b. At
the inlet of the computational domain ⟨u⟩/UB = 2.25 due to the parabolic
inflow profile (57). The geometrical contraction ratio is 10 but the actual
acceleration is larger due to the additional restriction of the cross-sectional
area in the throttle as a result of cavitation. Differences between the op-
erating points are restricted to the throttle itself and one throttle length
downstream of the throttle, i.e., 0 < x < 2 in Fig. 21b.
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Experimental cavitation visualizations by means of light transmission
measurements of the investigated planar throttle for comparison with our
LES are provided by Robert Bosch GmbH [54]. The employed Nd:YAG
laser allows for an exposure time of 5 ns. This short exposure time gives al-
most instantaneous depth-averaged visualizations of cavitation structures
and corresponds to averaging about 36 time steps in the LES. Cavitation
structures and throttle geometry are visible as black areas in the light trans-
mission images. However, no quantitative information about the vapor
volume fraction can be drawn from the experiments, as the dependence of
the transmitted light on the cavitation density is not known, and also no
experimental calibration was attempted. Other flow features, such as tur-
bulent structures, shear layers, or shock waves, can also be seen from the
light transmission measurements due to the vignetting of their refracted
light. Higher light intensities associated with these flow features allow for
their discrimination from cavitation structures. A total of 100 experimen-
tal light transmission images, one taken every second, have been recorded
for each operating point.

For comparison of our numerical results with the experimental images,
the instantaneous vapor volume fraction field and the magnitude of the
density gradient have been depth-averaged, i.e., integrated in z-direction.
Since the measured intensity of the transmitted light drops to zero upon
passing through a vapor region, a logarithmic scale is chosen in the numer-
ical pictures for a better comparison of the depth-averaged vapor volume
fraction ⟨α⟩z.

Although the continuous flow through the planar throttle is considered
and is statistically stationary, the observed cavitation process inside of the
throttle is highly instationary. Therefore, Fig. 22 sets three instantaneous
samples of cavitation patterns observed experimentally, Figs. 22a to 22c,
and three best-match time instants of cavitation structures predicted nu-
merically, Figs. 22d to 22f(d-f), side by side for OPA. Additionally, Figs. 22g
to 22i show the corresponding distribution of the depth-averaged density-
gradient magnitude, ⟨∣∇ρ∣⟩z. It is important to note that the state depicted
in Figs. 22a and 22d is prevalent. The majority of the total of 100 exper-
imental light transmission images shows cavitation regions at the lower
and upper walls limited to approximately 20-30 % of the throttle length.
Some light transmission images, such as Fig. 22b, show cavitation pat-
terns, where a vapor cavity in a spanwise vortex has detached from the
main cavitation region close to the throttle intake on the lower and/or up-
per throttle wall. The state observed in Fig. 22c, where a sheet-like cavity
at the lower and upper throttle wall, and a vortex-like streamwise cavity
above the lower sheet is visible, is found in four experimental images; less
than 20 % show sheet-like cavities on the lower and upper throttle wall
only.

Good agreement between experimentally observed and numerically pre-
dicted cavitation structures is found for the first state observed in the ex-
periment, Fig. 22a, where Fig. 22d shows the numerical counterpart. The
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streamwise extent of the cavity is especially well predicted in the LES. The
same applies to the topology of the interface region between vapor and
liquid. Detached spanwise cavitating vortices can also be seen in the sim-
ulations, Figs. 22b and 22e. It appears, though, that these vapor structures
collapse somewhat earlier than in the experiments. The rarely observed
third state in the experiment does, however, not occur during the analy-
sis interval of the present LES. Best match is observed for a time instant
when the simulation shows thin streamwise-oriented cavitation patterns
above the cavity at the intake close to the wall, compare Figs. 22c and 22f.
Moreover, the experiment shows intermittently a pronounced antisymme-
try which is not captured by the LES. We believe that pressure pulses
associated to the hydraulic environment of the experiment, or experimen-
tal variations from the nominal mass flux may cause these rare events in
the experiment.

Aside from vapor structures experimental light transmission images vi-
sualize projected density fluctuations. Information about the spanwise dis-
tribution cannot be recovered. Fig. 23 shows an instantaneous snapshot of
the computed magnitude of the density gradient, ∣∇ρ∣, in two planes, one
1 % above the side wall with respect to the throttle width W, Fig. 23a,
and one in the center plane at 50 % W, Fig. 23b. By comparing the two
planes, one can conclude that the experimentally observed density fluctu-
ations, Figs. 22a to 22c, in fact originate from side-wall turbulence since
small-scale density fluctuations are only observed in the plane close to
the side wall in the simulations, Fig. 23a. Shock waves arising from the
collapse of vapor cavities propagate through the liquid and are visible in
the central plane, Fig. 23b. Additionally, shear layer instabilities are ob-
served in the central plane near the intake of the throttle. Experimental
evidence of propagating shock waves and shear layer instabilities for such
type of flows are given by Mauger et al. [70]. Furthermore, the comparison
between the experimental images of Fig. 22 with Fig. 23a shows that the
transition process is well captured by the LES. Both, experiment and LES,
exhibit a wedge-like region starting at the intake lip of the throttle and
attached to the lower and upper wall where small-scale density fluctua-
tions are present. The two wedge-like regions grow towards the center of
the throttle and merge at roughly 75 % of the throttle length in agreement
with the experiment.

A comparison between experiment and LES for OPB is presented in
Fig. 24. For this case it is sufficient to compare two experimental light
transmission images with the numerical result as OPB exhibits less intense
large-scale time variations than OPA. The experiment, Figs. 24a and 24b,
is characterized by sheet-like cavities at the lower and upper wall of the
throttle and by vortex cavitation occurring within the shear layer of the
jet exiting the throttle. Intermittently, streamwise aligned vortical vapor
cavities are visible in the experiment, as can be seen in Fig. 24a. The
sheet-like vapor cavity as well as the vortex cavitation in the shear layer is
also observed from the depth-averaged vapor volume fraction of the LES,
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Figure 23: Instantaneous field of the LES result for the magnitude of the den-
sity gradient, ∣∇ρ∣, in two different xy-planes for OPA of the generic
throttle: (a) plane 1 % above the sidewall with respect to the throttle
width W, (b) center plane between the two sidewalls. Reprinted with
permission from Egerer et al. [29]. Copyright 2014, AIP Publishing LLC.

see Fig. 24c. The streamwise aligned vortical vapor cavities are, however,
stationary in the LES and essentially symmetric to the central xz-plane.
The LES reproduces the change of cavitation-structure topology of the ex-
periment when the back pressure is reduced. Internal structures of the
vapor cavities are revealed in Fig. 25, which depicts the depth-averaged
magnitude of the density gradient for a single time instant at OPB. In the
region between the lower and upper sheet cavity no small-scale density
fluctuations are present in the experiment, which agrees with the LES.

By averaging the experimental light transmission images, a cavitation
probability can be estimated, see Figs. 26a and 26b. We compare the cav-
itation probability qualitatively with the time- and depth-averaged vapor
volume fraction, ⟨⟨α⟩⟩z, of the LES, Figs. 26c and 26d. Although the quan-
titative relation between transmitted light intensity and vapor volume frac-
tion is unknown in the experiment, it is assumed that the transmitted light
intensity drops to zero as soon as 3 % vapor is in the line of sight [54].
Therefore we marked this area with a white line in the numerical images.
The comparison for OPA, Figs. 26a and 26c, confirms that the LES recov-
ers important experimental observations: the time-averaged cavitation re-
gion is limited to the first half of the throttle with the core region being
restricted to the first 20-30 % of the throttle length. The cavitation proba-
bility corroborates that the first state depicted in Fig. 22a is prevalent for
OPA. Differences in the vapor-region length stem from the intermittently
observed third state, cf. Fig. 22c. For OPB, Figs. 26b and 26d, differences
between experiment and LES arise from the cavitating vortices in the cen-
ter of the throttle, as discussed before. The agreement between experimen-



6.2 results and discussion 59

(a
)

(b
)

(c
)

Fi
gu

re
2

4
:

C
om

pa
ri

so
n

be
tw

ee
n

ex
pe

ri
m

en
t

an
d

LE
S

fo
r

O
PB

of
th

e
ge

ne
ri

c
th

ro
tt

le
:

(a
,b

)
in

st
an

ta
ne

ou
s

ex
pe

ri
m

en
ta

l
lig

ht
tr

an
sm

is
si

on
im

ag
es

;(
c)

co
nt

ou
rs

of
de

pt
h-

av
er

ag
ed

va
po

r
vo

lu
m

e
fr

ac
ti

on
⟨α

⟩ z
pr

ed
ic

te
d

nu
m

er
ic

al
ly

(l
og

ar
it

hm
ic

sc
al

e)
.R

ep
ri

nt
ed

w
ith

pe
rm

is
si

on
fr

om
Eg

er
er

et
al

.
[2

9]
.C

op
yr

ig
ht

20
14

,A
IP

Pu
bl

is
hi

ng
LL

C
.



60 application : generic micro channel flow

⟨∣∇ρ∣⟩z

[×107 kg/m4]

0

0.5

1

1.5

2

Figure 25: Instantaneous magnitude of the depth-averaged density gradient,
⟨∣∇ρ∣⟩z, for OPB of the generic throttle. Reprinted with permission from
Egerer et al. [29]. Copyright 2014, AIP Publishing LLC.

(a) (b)

(c) (d)

Figure 26: Experimentally derived cavitation probability by averaging all light
transmission images for (a) OPA and (b) OPB. Time- and depth-
averaged vapor volume fraction resulting from the LES for OPA (c)
and OPB (d) of the generic throttle. White regions (green/yellow) de-
limit dark (blue) areas with an assumed vapor volume content larger
than 3 % from liquid regions (red) in the experiment. Gray scale of
numerical images is logarithmic with ⟨⟨α⟩⟩z = {10−4,10−3,10−2,10−1};
white lines delimit regions with ⟨⟨α⟩⟩z > 0.03. Reprinted with permission
from Egerer et al. [29]. Copyright 2014, AIP Publishing LLC.



6.2 results and discussion 61

tally and numerically observed cavitation in the shear layer of the throttle
jet is very well.

Despite experimental uncertainties, we have demonstrated that the LES
reproduces essential features of the experiment. Thus, the LES data field
will be analyzed in more detail with respect to cavitation and flow dynam-
ics at both operating points in the following.

6.2.2 Coherent vortical and vapor structures

Generally speaking, the flow topology inside of the throttle is character-
ized by an interaction between coherent vortical structures and different
cavitation mechanisms (e.g. vortex cavitation, or inertia dominated sheet
cavitation). The relative significance of the two mechanisms discriminates
the two investigated operating points.

Fig. 27 shows coherent vortical structures identified by the λ2 crite-
rion [56] colored by the instantaneous streamwise velocity. For both op-
erating points corner vortices originating from the boundary layer in the
pre-chamber of the throttle as well as additionally created Görtler-type vor-
tices due to the convex bend [89] are pulled into the throttle, see Fig. 27a.
Due to the acceleration of the flow, the resulting streamwise velocity gra-
dient stretches these vortices and the streamwise vorticity increases. The
generation of these vortices can be explained by considering two stream-
lines at different wall-normal positions. Due to the boundary layer the
average streamwise velocity of the streamline closer to the wall is smaller
compared to the streamline further away from the wall. Thus, the centrifu-
gal force on the streamline further away from the wall due to the convex
bend is larger and forces this streamline closer to the wall. As a result of
continuity, fluid closer to the wall needs to be pushed away from the wall.
This effect results in the observed streamwise vortices.

At OPA the flow separates at the rounded intake lip of the throttle and
creates an unsteady recirculation zone downstream, cf. Fig. 27b. The de-
tached shear layer between the incoming downstream-directed flow and
the recirculating upstream-directed flow develops Kelvin-Helmholtz insta-
bilities and produces spanwise vortices. These vortices become unsta-
ble and streamwise oriented secondary vortices develop. Further down-
stream of the throttle intake, small-scale coherent structures, predomi-
nantly aligned in streamwise direction, are visible near the throttle walls.
OPB, Fig. 27c, exhibits no such coherent structures in the first half of the
throttle and near its walls.

Fig. 28 shows the mean streamwise vorticity, ⟨ωx⟩, in a cross-section
at x/l = 0.6: we find two pairs of counter-rotating primary vortices, ΓA,
residing near the center and occupying large parts of the throttle cross-
section for both operating points. Two secondary vortex pairs, ΓB, are
positioned closer to the sidewalls. The primary and secondary vortex pairs,
ΓA and ΓB, exhibit larger diameters for OPB than for OPA. Both, ΓA and
ΓB, originate from the boundary layer of the throttle pre-chamber as was
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(c)

(b)

(a)

Figure 27: Coherent vortical structures in the generic throttle identified by the λ2
criterion and colored by the instantaneous streamwise velocity (identi-
cal color scale as in Fig. 30): (a) 3-D view of the throttle pre-chamber
and the throttle with λ2/(UB/l)

2 = −12.5. 3-D view of the throttle
only with λ2/(UB/l)2 = −187.5: (b) OPA, and (c) OPB. Reprinted with
permission from Egerer et al. [29]. Copyright 2014, AIP Publishing LLC.
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Figure 28: Comparison of streamwise mean vorticity ⟨ωx⟩ in a cross-section
at x/l = 0.6 between (a) OPA and (b) OPB for the generic throttle.
Reprinted with permission from Egerer et al. [29]. Copyright 2014, AIP
Publishing LLC.

already discussed in Fig. 27. For OPA, Fig. 28a, we additionally observe
the classical pair of counter-rotating corner vortices, ΓC, in each quadrant
of the cross-section. Their extent is reduced significantly by the existence
of the primary vortices ΓA. For OPB, Fig. 28b, only one dominant vortex,
denoted with ΓD, is located in each corner of the throttle cross-section.
The vortices ΓD break up at about 50 % of the throttle length developing
secondary hairpin-like coherent structures as can be seen in Fig. 27c.

The global mean vapor volume fraction based on the full computational
domain is 2.31 × 10−5 with a standard deviation of 1.02 × 10−5. The time
signal of the global vapor volume fraction at OPA exhibits a periodic sig-
nal, cf. Fig. 29a. We provide a frequency analysis of the global vapor
volume fraction time signal in Fig. 29b. We compute the PSD by means
of Fast Fourier Transforms (FFTs) of sub-intervals of length ∆tFFT with
an overlap of 0.1∆tFFT between sub-intervals. The sampling frequency
was approx. 694 MHz. The PSD is then obtained by averaging over all
sub-intervals. The sub-intervals are windowed by means of the Hanning
function. Fig. 29b shows the frequency content for three different interval
sizes, i.e., ∆tFFT = {0.1,0.05,0.025} ms. For all interval sizes the first dom-
inant frequency is approx f1 ≈ 300 kHz, Fig. 29b. For the largest ∆tFFT
another dominant frequency f′1 ≈ 250 kHz but with a smaller amplitude is
identified. A plateau in the PSD is found at frequencies close to the first
harmonic of the dominant shedding frequency f2 ≈ 600 kHz. The recur-
ring cavitation process at the intake of the throttle is closely related to the
unsteady recirculation zone at the throttle intake.
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Figure 29: Global vapor volume fraction α for OPA of the generic throttle: (a)
detail of time evolution and (b) frequency spectrum. PSD based on sub-
intervals with –––– ∆tFFT = 0.1× 10−3 s, - - - - ∆tFFT = 0.05× 10−3 s and
– ⋅ – ∆tFFT = 0.025 × 10−3 s. Reprinted with permission from Egerer et al.
[29]. Copyright 2014, AIP Publishing LLC.

One representative vapor shedding cycle is visualized in Fig. 30 by set-
ting coherent vortical and vapor structures side by side: at the first time
instant, Fig. 30a, at vapor-volume-fraction minimum the vortex sheet at
the throttle intake starts to develop spanwise vortices. In the low pres-
sure cores of these vortices evaporation occurs, increasing the global vapor
volume fraction, Fig. 30b. Additionally, cavitation occurs in the cores of
streamwise vortices originating from the secondary instability of the span-
wise vortices. At the time instant with maximum global vapor volume
fraction, Fig. 30c, the vapor regions inside of the spanwise and streamwise
vortices have coalesced forming a sheet-like cavitation region. In agree-
ment with the light transmission images, cf. Section 6.2.1, a spanwise
oriented vortex cavity detaches. Subsequently, re-condensation of vapor
occurs and the streamwise extent of the cavity decreases, Fig. 30d. This
process is accompanied by a strong back flow at the throttle walls result-
ing in the reformation of the vortex sheet at the intake lip, thus initiating
another shedding cycle, Fig. 30e.

Compared to OPA, the global vapor volume fraction is two orders of
magnitude larger for OPB, see Fig. 31. The global mean vapor volume
fraction is 1.39 × 10−3 with a standard deviation of 0.25 × 10−3. For OPB,
the time variation of the global vapor volume fraction has a smaller am-
plitude and frequency than at OPA. This variation is primarily related to
the periodic formation of vapor in the shear layers of the jet exiting the
throttle. Due to the larger pressure gradient across the throttle and the
accompanied acceleration of the liquid at the throttle intake, the inertia of
the liquid is large enough so that the liquid ruptures and a stable sheet
cavity is created at the lower and upper throttle wall, see Fig. 32. These
inertia-driven sheet cavities range from the intake to approx 50 % of the
throttle length. Streamwise oriented cavitation regions in the cores of vor-
tices ΓD emerge out of the sheet cavities. Evaporation also occurs in their
hairpin-like secondary instabilities. The pressure in the cores of the pri-
mary and secondary vortex pairs, ΓA and ΓB, drops below vapor pressure
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Figure 30: 3-D visualization of a representative vapor shedding cycle of OPA
of the generic throttle. Time instants as marked in the global vapor
volume fraction in Fig. 29a. Snapshots at same time instants of iso-
contours with λ2/(UB/l)2 = −187.5 colored by instantaneous stream-
wise velocity u (left column) and iso-contours with α = 0.1 (right col-
umn). Reprinted with permission from Egerer et al. [29]. Copyright 2014,
AIP Publishing LLC.
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Figure 31: Time evolution of global vapor volume fraction α for OPB of the
generic throttle. Reprinted with permission from Egerer et al. [29]. Copy-
right 2014, AIP Publishing LLC.

Figure 32: 3-D visualization of instantaneous iso-contours with vapor volume frac-
tion α = 0.1 at OPB of the generic throttle. Reprinted with permission from
Egerer et al. [29]. Copyright 2014, AIP Publishing LLC.

leading to cavitation. Due to cavitation ΓA and ΓB have larger diameters
for OPB than for OPA as already stated in the discussion of Fig. 28.

From visualizations of the vapor shedding cycle, Fig. 30, we conclude
that the involved cavitation processes are dominated by boundary-layer
flow separation and vortex dynamics for OPA. Inertia-driven cavitation
processes govern the first half of the throttle flow, while vortex dynamics
are important in the second half in case of OPB, see Figs. 27c and 32. The
impact on boundary layer dynamics in the generic throttle is discussed in
the next Section 6.2.3.

6.2.3 Characterization of the Duct Flow

Fig. 33 shows the spatial evolution of the skin friction coefficient cf =

2⟨τW⟩/⟨ρW⟩U20 and the friction Reynolds number Reτ = ⟨ρW⟩uτh/2⟨µW⟩

in streamwise direction at the lower and upper throttle walls, (y, z) =

(±h/2,0), for both operating points. We find that the average recircula-
tion zone for OPA extends to x/l = 0.23 based on the sign of the skin
friction coefficient. Further downstream, skin friction coefficient as well as
friction Reynolds number increase and form a plateau with cf ≈ 0.009 and
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Figure 33: Comparison of streamwise evolution of (a) friction coefficient and (b)
friction Reynolds number along the lower and upper wall (y = ±h/2) at
z = 0 of the generic throttle. OPA: –––– y = −h/2, - - - - y = +h/2; OPB:
– ⋅ – y = −h/2, – ⋅ ⋅ – y = +h/2.

Reτ ≈ 600. OPB exhibits a skin friction coefficient close to zero within the
sheet cavity. At the trailing edge of the sheet cavity, x/l ≈ 0.4, we find a
small recirculation zone with a slight asymmetry between upper and lower
wall. Compared to OPA, cf and Reτ begin to rise further downstream for
OPB. The skin friction coefficient remains smaller and decreases again to-
wards the throttle exit indicating a still laminar state of the boundary layer
compared to OPA.

Single-phase, fully-developed turbulent flow in square ducts differs from
fully-developed turbulent plane channel flow due to secondary mean cross-
flow, which interacts with the streamwise mean flow and turbulence [20,
37, 38, 50, 66]. Although typical secondary-flow velocities are of the order
of a few percent of the maximum streamwise mean-flow velocity only,
the secondary or mean cross-flow strongly affects average flow properties
such as mean streamwise velocity and Reynolds stresses.

Fig. 34 shows wall-normal profiles of mean density and mean velocities
at different streamwise and spanwise stations for OPA. The profiles have
been additionally averaged across the half channel. Classical Reynolds
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Figure 34: Streamwise variation of wall-normal profiles of (a) mean density, (b)
mean streamwise velocity and (c) mean transverse velocity at z = 0

for OPA of the generic throttle. Mean velocities and wall distance are
scaled by the local friction velocity uτ and the local viscous lengthscale
δµ, respectively; for the logarithmic law of the wall. The mean density
is normalized by the mean density ρ0 at the considered streamwise
position on the throttle centerline. Streamwise positions are –––– x/l =
0.2, - - - - x/l = 0.3, – ⋅ – x/l = 0.5, – ⋅ ⋅ – x/l = 0.7, and - - - - - -
x/l = 0.9. ⋯⋯⋯ viscous sublayer, u+ = y+, and logarithmic law of the
wall with von Kármán constant κ = 0.41 and B = 5.2, u+ = ln(y+)/κ+B.
Reprinted with permission from Egerer et al. [29]. Copyright 2014, AIP
Publishing LLC.
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Figure 35: Spanwise variation of (a) mean streamwise velocity, (b) mean trans-
verse velocity, and (c) mean spanwise velocity at x/l = 0.8 for OPA of
the generic throttle. Mean velocities and wall distance are scaled by the
local friction velocity uτ and the local viscous lengthscale δµ, respec-
tively; von Kármán constant κ = 0.41, B = 5.2 for the logarithmic law of
the wall. Spanwise positions are –––– 2z/W = 0, - - - - 2z/W = 0.25, –
⋅ – 2z/W = 0.5, – ⋅ ⋅ – 2z/W = 0.75, and - - - - - - 2z/W = 0.9. ⋯⋯⋯
viscous sublayer, u+ = y+, and logarithmic law of the wall with von
Kármán constant κ = 0.41 and B = 5.2, u+ = ln(y+)/κ+B. Reprinted with
permission from Egerer et al. [29]. Copyright 2014, AIP Publishing LLC.
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averages have been chosen instead of Favre averages as the mean density
variation is small. Even in the recirculation zone at x/l ≲ 0.3 where the
mean density is reduced due to cavitation it is larger than 80 % of the
initial liquid density. The mean streamwise velocity deficit for x/l ≲ 0.3 is
caused by the recirculation zone at the throttle intake, see Fig. 34a. Fur-
ther downstream, x/l = 0.3 . . . 0.5, this deficit vanishes and a logarithmic
layer develops but with a different slope than for an equilibrium turbulent
boundary layer. Fig. 34b shows that mean cross-flow velocities have mag-
nitudes of 10 to 30 % of the maximum mean streamwise velocity, and thus
are one order of magnitude larger than observed for developed incom-
pressible turbulent flow through square ducts [50]. The origin of mean
cross-flow in developed turbulent flow through square ducts is due to dif-
ferent transverse and spanwise normal Reynolds stresses, ⟨v′2⟩ and ⟨w′2⟩,
and the shear stress ⟨v′w′⟩ [20]. Mean cross-flow in the present configura-
tion, however, is caused by vortices ΓA and ΓB, which have their origin in
the boundary layer of the throttle pre-chamber. Moreover, mean transverse
flow at the wall bisector is directed towards the lower (and upper) wall,
contrary to developed turbulent flow in square ducts, and transports fluid
with high streamwise momentum towards the wall. This mechanism is
responsible for the lack of a logarithmic layer and for streamwise mean ve-
locities larger than the centerline values at y+ ≈ 60 for sections x/l > 0.7, cf.
Fig. 34b. This observation is similar to developed turbulent flow in square
ducts [37] with the difference that the spanwise impact of the induced
mean cross-flow by vortices ΓA is reversed due to their opposite sense of
rotation. This is detailed in Fig. 35a which shows mean streamwise veloc-
ity profiles at different spanwise locations at x/l = 0.8. A logarithmic layer,
with parameters deviating from an equilibrium boundary layer, develops
when moving closer to the sidewall. Mean streamwise velocity deficits
in the outer layer are caused by mean cross-flow due to vortices ΓB, see
Figs. 35b and 35c.

In case of OPB, the mean density in the vapor sheet, x/l < 0.5, is re-
duced by about one order of magnitude with respect to the liquid core
flow, Fig. 36c. Cavitation occurring in the vortex pair ΓA leads to the vari-
ation in the mean density profiles for x/l ≳ 0.7. The mean streamwise
velocity is close to zero with a zero wall-normal gradient in the vapor
sheet, Fig. 36a, thus reducing the effective cross-section of the throttle re-
sulting in overshoots with respect to the centerline value. Downstream of
the vapor sheet, the boundary layer has to redevelop. The mean stream-
wise velocity shows block-shaped wall-normal profiles. The mean trans-
verse velocity, Fig. 36b, exhibits maximum magnitudes of 10 to 20 % of
the mean streamwise velocity at the centerline. We expect a similar im-
pact on the mean streamwise velocity. Inspecting wall-normal profiles of
the streamwise mean velocity for x/l > 0.5, we observe that the center-
line value is reached close to the wall and that the overshoot disappears.
Fig. 37a shows the spanwise variation of the mean streamwise velocity at
x/l = 0.8. The cavitating vortices ΓD transport fluid with low streamwise
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Figure 36: Wall-normal profiles of (a) mean density, (b) mean streamwise velocity
and (c) mean transverse velocity at different streamwise stations at
z = 0 for OPB of the generic throttle. Mean velocities and mean density
normalized by mean streamwise velocity U0 and mean density ρ0 at
the considered streamwise position on the throttle centerline. Wall
distance normalized by throttle height h. Streamwise positions are
–––– x/l = 0.2, - - - - x/l = 0.3, – ⋅ – x/l = 0.5, – ⋅ ⋅ – x/l = 0.7, and - -
- - - - x/l = 0.9. Reprinted with permission from Egerer et al. [29]. Copyright
2014, AIP Publishing LLC.
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Figure 37: Spanwise variation of (a) mean streamwise velocity, (b) mean trans-
verse velocity and (c) mean spanwise velocity profiles at x/l = 0.8 for
OPB of the generic throttle. Mean velocities and mean density nor-
malized by mean streamwise velocity U0 at the considered spanwise
position. Wall distance normalized by throttle height h. Spanwise po-
sitions are –––– 2z/W = 0, - - - - 2z/W = 0.25, – ⋅ – 2z/W = 0.5, – ⋅ ⋅

– 2z/W = 0.75, and - - - - - - 2z/W = 0.9. Reprinted with permission from
Egerer et al. [29]. Copyright 2014, AIP Publishing LLC.
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Figure 38: Prediction of cavitation erosion. Spatial distribution of isolated col-
lapses detected during the analysis interval for (a) OPA and (b) OPB for
the generic throttle. Each sphere represents a single collapse. The size
and gray scale of the sphere indicates the strength of the collapse based
on the normalized collapse pressure pc. Collapses with pc < 60 MPa
are not shown. Maximum wall pressures pW recorded at the throttle
walls for (c) OPA and (d) OPB. Reprinted with permission from Egerer et
al. [29]. Copyright 2014, AIP Publishing LLC.

momentum from the walls towards the center of the throttle leading to
larger velocity deficits at spanwise stations closer to the sidewalls. The
impact of vortex ΓD in the cross-stream and spanwise mean velocities lead
to a different behavior for OPB than for OPA close to the sidewalls at
2z/W = 0.75 and 2z/W = 0.9, see Figs. 37b and 37c.

6.2.4 Cavitation Erosion

The identification of erosion sensitive areas during the design process of
fuel injectors is a key factor for optimization and safe operation. For this
purpose we employ an algorithm developed by Mihatsch et al. [74], which
detects isolated vapor-structure collapses (collapse detector). The collapse-
detector algorithm is derived from the physics associated with the collapse
of a vapor pattern: first, we mark finite-volume cells as candidates where
the vapor volume content condenses completely during the last computed
time step; second, we compute the velocity divergence for each candidate
cell; during a collapse phase the divergence is negative; once it changes
sign, maximum pressure of this particular collapse event is reached; third,
time, location, and maximum pressure of the collapse event is recorded.
Figs. 38a and 38b show the results of the collapse detector for OPA and
OPB, respectively. Each sphere represents an isolated vapor collapse. Size
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and gray scale of the sphere describe the strength of the detected collapse.
Schmidt et al. [92] have shown that the maximum pressure of the collapse
of a vapor bubble cloud depends on the grid resolution, wherefore we
scale the recorded collapse pressure pr by

pc = pr
V
1/3
Ω

lref
, (58)

where lref is a reference length scale chosen as lref = 3.75× 10−6 m.
We find that the majority of collapses occur in the first half of the throttle

at OPA. Strongest events are located near the intake lip and at the end of
the cavitating shear layer. This observation coincides with the maximum
pressures max(pW) recorded at the throttle walls, see Fig. 38d. At OPB
collapses occur only at the tails of the cavitating corner vortices close to
the exit of the throttle, since other vapor structures (sheet cavity, cavitat-
ing center vortices) are stationary. Moreover, no impact of the detected
collapses is measurable on the throttle walls, see Fig. 38d. Thus, based on
the combined information of the collapse detector and the distribution of
maximum wall pressures, we predict a significantly higher risk of cavita-
tion erosion for OPA than for OPB.



Part iii

E X T E N S I O N O F C AT U M F O R L A R G E - E D D Y
S I M U L AT I O N O F C AV I TAT I N G F L O W S

Major parts are based on the author’s journal article [30] and
are reprinted with permission from Egerer et al. (2016) "Effi-
cient implicit LES method for the simulation of turbulent cavi-
tating flows", Journal of Computational Phyiscs 316: 453-469. Copy-
right 2016. Elsevier.





7E X T E N S I O N O F C AT U M F O R L A R G E - E D D Y
S I M U L AT I O N

7.1 conceptual considerations

ALDM relies on a six-cell stencil on Cartesian meshes, whereas CATUM oper-
ates on a four-cell stencil on structured grids, and thus is computationally
cheaper. In Section 7.2.4 we will demonstrate that the spectral numerical
viscosity of CATUM [97] is by one order of magnitude larger than turbu-
lence theory requires. CATUM thus is ill-suited for LES and shares this
property with nearly all classical shock-capturing schemes which are typ-
ically applied to cavitating turbulent flows. It is desirable to design a
method which combines the following three favorable properties:

(1) computational efficiency,

(2) robustness for the simulation of cavitating flows, and

(3) physically consistent implicit SGS modeling properties for LES.

For this purpose, we will propose a new discretization on a four-cell
stencil (property (1)). We follow the general concept of hybrid schemes [5,
63, 79], employing a switch between low-dissipation/-dispersion schemes
and shock-capturing schemes based on flow sensors that detect disconti-
nuities, e.g., shock waves, in the flow field. Thus, we confine numerical
dissipation to such regions and exclude smooth parts of the flow field from
excessive numerical dissipation (property (2)). Property (3) is achieved
by invoking a regularization term of similar structure as proposed by
ALDM [47].

7.2 design of the extended catum discretization scheme

In the following, we develop a narrow-stencil finite-volume scheme suit-
able for LES of compressible cavitating liquid flows. A sensor functional,
see Section 7.2.3, will be introduced to switch between an upwind-biased
reconstruction, which is capable of capturing discontinuities such as shock
waves or pseudo phase-boundaries due to cavitation, and a formally non-
dissipative central reconstruction suitable for LES of turbulent flows. A
regularization term is added to the inviscid flux in order to account for the
effect of unresolved SGS dynamics on the resolved scales, see Section 7.2.4.

77
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Figure 39: Nomenclature for reconstruction of cell-face values ϕ̆ from cell-
average values ϕ. Reprinted with permission from Egerer et al. [30]. Copy-
right 2016, Elsevier.

7.2.1 Baseline finite-volume scheme

The baseline finite volume method (CATUM) solves the inviscid Euler equa-
tions, i.e., Eq. (21) withD = 0. Considering cell face i+1/2 in x-direction of
an equidistant Cartesian grid, see Fig. 39, the inviscid flux of CATUM reads

C̆i+ 1
2
= ŭ∗

i+ 1
2

Q̆
U
i+ 1
2
+ p̆∗

i+ 1
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

n

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦i+ 1

2

, (59)

where the vector of transported variables Q

Q̆
U
i+ 1
2
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ̆

ρ̆ŭ

ρ̆e+ 1
2
ρ̆ŭ2 + p̆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

U

i+ 1
2

(60)

is assembled by upwind-biased reconstructions of variables ρ, u, ρe, and
p as indicated by the superscript “U”. In Eq. (59), ŭ∗ denotes the transport
velocity, and p̆∗ the interface pressure.

For each quantity ϕ = [ρ,u,ρe,p] we compute a left-, “−”, and right-
hand, “+”, reconstructed cell-face value

ϕ̆−
i+ 1
2

= ϕi +
1

2
φ(r−

i+ 1
2

) (ϕi −ϕi−1) (61a)

and

ϕ̆+
i+ 1
2

= ϕi+1 −
1

2
φ(r+

i+ 1
2

) (ϕi+2 −ϕi+1) , (61b)

where φ(r) denotes a slope limiter function that operates on the ratio of
upwind to central differences

r−
i+ 1
2

=
ϕi −ϕi−1

ϕi+1 −ϕi
, and r+

i+ 1
2

=
ϕi+2 −ϕi+1

ϕi+1 −ϕi
. (62)
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We employ Roe’s minmod [84] slope limiter for density, internal energy
and pressure

φ(r) = max [0, min (1, r)] . (63)

The TVD slope limiter of Koren [60], which is third-order accurate for suf-
ficiently smooth data,

φ(r) = max{0, min [2r, min(
1

3
+
2

3
r,2)]} , (64)

is applied to the velocities. Based on the sign of the transport velocity, we
use the left- or right-sided reconstruction, i.e.,

ϕ̆U
i+ 1
2

=
1

2
[1+ sgn(ŭ∗

i+ 1
2

)] ϕ̆−
i+ 1
2

+
1

2
[1− sgn(ŭ∗

i+ 1
2

)] ϕ̆+
i+ 1
2

, (65)

in order to obtain an upwind-biased discretization.
A centered approximation of the interface pressure

p̆∗
i+ 1
2

=
1

2
(p̆−
i+ 1
2

+ p̆+
i+ 1
2

) (66)

ensures low-Mach-number-consistency [94].
The transport velocity is defined according to the locally linearized com-

patibility relations [108] and reads

ŭ∗
i+ 1
2

=

I−ŭ−
i+ 1
2

+ I+ŭ+
i+ 1
2

+ p̆−
i+ 1
2

− p̆+
i+ 1
2

I− + I+
, (67)

where the acoustic impedances I± are defined as

I− =
1

4
(3ρi + ρi+1) cl,max, and I+ =

1

4
(ρi + 3ρi+1) cl,max, (68)

with cl,max = max(cl,i, cl,i+1) being the maximum liquid speed of sound at
the considered cell face.

7.2.2 Modification of the Baseline Scheme

Due to the intrinsic numerical dissipation of the baseline upwind-biased
scheme, it is not suitable for LES, see Section 7.2.4. Therefore, we modify
the reconstruction procedure for quantities ϕ = [ρ,u,ρe,p] at the consid-
ered cell face

ϕ̆i+ 1
2
= [1− f(β)]ϕ̆C

i+ 1
2

+ f(β)ϕ̆U
i+ 1
2

, (69)

where f(β) ∈ [0;1] is a sensor functional, see Section 7.2.3, and the super-
script “C” indicates a central reconstruction. For assembling the vector of
transported quantities Q we reconstruct the velocities and static pressure
by a linear fourth-order central scheme

ϕ̆C
i+ 1
2

= [ŭ, v̆, w̆, p̆]C
i+ 1
2

=
1

12
[7(ϕi +ϕi+1)−ϕi−1 −ϕi+2] . (70)
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In case of density and internal energy density we choose the arithmetic
mean

ϕ̆C
i+ 1
2

= [ρ̆, ρ̆e]C
i+ 1
2

=
1

2
(ϕ̆−
i+ 1
2

+ ϕ̆+
i+ 1
2

) (71)

of the left- and right-hand limited reconstructed values according to Eq. (61).
We also use the sensor functional to redefine the transport velocity

ŭ∗
i+ 1
2

= [1− f(β)]
⎛
⎜
⎝
ŭC
i+ 1
2

−

˘∆3pi+ 1
2

I− + I+

⎞
⎟
⎠

+ f(β)
⎛
⎜
⎝

I−ŭ−
i+ 1
2

+ I+ŭ+
i+ 1
2

+ p̆−
i+ 1
2

− p̆+
i+ 1
2

I− + I+

⎞
⎟
⎠

,

(72)

where ∆̃3p is a third-order accurate approximation of the pressure gradi-
ent [47], and the interface pressure

p̆∗
i+ 1
2

= [1− f(β)] p̆C
i+ 1
2

+ f(β)
1

2
(p̆−
i+ 1
2

+ p̆+
i+ 1
2

) . (73)

Implicit SGS modeling capability is integrated into the numerical approx-
imation of the inviscid flux by adding a regularization term resulting in
the final formulation of the inviscid flux as

C̆i+ 1
2
= ũ∗

i+ 1
2

Q̆i+ 1
2
+ p̆∗

i+ 1
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

n

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦i+ 1

2

− [1− f(β)] R̆i+ 1
2
, (74)

where the vector of transported variables, Q̆i+1/2, is now assembled with
quantities obtained through Eqs. (69) to (71). The regularization term R̆

will be defined in Section 7.2.4.

7.2.3 Sensor Functional

Switching between an upwind-biased and a centered reconstruction pro-
cedure as presented in the previous section is based on a suitable sensor
functional f(β). For high-speed gas flows, Ducros’ vorticity-dilatation sen-
sor [23]

βDucros
=

(∇ ⋅u)2

(∇ ⋅u)2 + (∇×u)2 + ε
(75)

has proven to be a simple and generally applicable way to detect shock
(and expansion) waves. For cavitating flows, large density gradients at
phase boundaries (material interfaces) need to be identified additionally.
For predictor-corrector schemes, e.g., a sensor based on the difference
of the vapor volume fraction α between grid cells was used to control
characteristics-based filtering stabilization [40]. Stability for central-upwind
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schemes in cavitating flows is achieved by switching to a first-order scheme
as soon as α > 0 [112]. We relax this condition and restrict the upwind-
biased reconstruction to pseudo phase-boundaries by introducing a sensor
based on the 3-D variation of the vapor volume fraction

βα = vari(α)+ varj(α)+ vark(α), (76)

where the variation in i-direction, e.g., is

varx =
1

∑
r=0

∥αi+r −αi−1+r∥. (77)

We do not blend continuously between reconstruction procedures, but
switch from central to upwind-biased reconstruction if the Ducros shock
sensor (75) or the vapor volume sensor (76) exceed a certain threshold βth
for at least one cell that contributes to the considered stencil, i.e.,

f(βDucros,βα) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if βDucros > βDucros
th ∣∣ βα > βαth

0, otherwise
. (78)

Note that for f = 1 the baseline scheme as described in Section 7.2.1 is
recovered. In the following, we choose βDucros

th = 0.95 for the Ducros shock
sensor and βαth = 0.25 for the vapor volume sensor.

7.2.4 Subgrid-scale Model

We adopt the structure of the ALDM regularization term [47] for modelling
the effect of SGS turbulence:

R̆ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R̆ρ

R̆
u

R̆ρe

⎤
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⎥
⎥
⎥
⎥
⎦
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⎢
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ωρ∥ ˘∆(n ⋅u)∥∆̆ρ

ωuρ̆C∥∆̆u∥∆̆u

ωvρ̆C∥∆̆v∥∆̆v

ωwρ̆C∥∆̆w∥∆̆w

ωρe∥ ˘∆(n ⋅u)∥ ˘∆(ρe)

⎤
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⎥
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⎥
⎥
⎥
⎥
⎥
⎥
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⎦

+

⎡
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⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

R̆ρŭC

R̆
u
⋅ ŭC − R̆ρ(ŭC ⋅ ŭC)/2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (79)

where ω[ρ,u,ρe] are free parameters. ∆̆ϕ = ω∆ ˘∆1ϕ + (1 −ω∆) ˘∆3ϕ is a
blend between a first- and a third-order approximation of the gradient of
quantity ϕ at the cell face. Calibration of the free parameters ω[ρ,u,ρe]

and ω∆ is performed by targeting the spectral eddy viscosity for isotropic
turbulence, obtained by the EDQNM [68], similarly as in [46].

Fig. 40 compares the spectral eddy viscosity of EDQNM theory with the
measured spectral numerical viscosity of the original CATUM scheme, see
Section 7.2.1, and the new scheme with f(β) = 0, see Section 7.2.2. Cali-
brated values for the free parameters of the regularization term (79) are
given in Table 9. While the new scheme matches the shape and values of
the spectral viscosity of EDQNM theory, see Fig. 40a, the baseline scheme
exhibits a numerical dissipation which is approximately one order of mag-
nitude larger, see Fig. 40b, rendering it unsuitable for LES.
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Figure 40: Comparison between measured spectral numerical viscosity of (a) the
present scheme with f(β) = 0 and (b) the baseline scheme with EDQNM

theory. - - - - EDQNM theory, –––– present scheme, – ⋅ – baseline
scheme. Reprinted with permission from Egerer et al. [30]. Copyright 2016,
Elsevier.

Table 9: Parameters for the regularization term R̆ of the proposed extension to
CATUM. Reprinted with permission from Egerer et al. [30]. Copyright 2016,
Elsevier.

ωρ, ωρe ωu, ωv, ωw ω∆

0.615 0.125 0.3
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8.1 shock tube problems (ideal gas)

8.1.1 Test 1 of Toro

As first validation test case, we consider a 1-D shock tube problem with
ideal gas thermodynamics equal to Test 1 from Toro’s textbook [108]. The
non-dimensional initial left and right states are

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρL

uL

pL

⎤
⎥
⎥
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⎥
⎦
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, and
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ρR

uR

pR
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⎥
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⎦
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⎢
⎢
⎣

0.125

0

0.1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (80)

The grid has N = 200 equidistantly spaced cells and the initial interface is
located at x = 0.3 in the domain [0, 1]. We use the RK2S4 scheme with CFL =
0.6 for time integration. Fig. 41 compares the solution for density, velocity,
pressure, and internal energy at t = 0.2 obtained with the proposed scheme
with the solution of a fifth-order Weighted Essentially Non-Oscillatory
(WENO5) scheme [102], applied to primitive variables with Harten-Lax-van
Leer-Contact (HLLC) flux function [108] (WENO5-HLLC), and with the exact
solution obtained with an iterative Riemann solver. Note that WENO5-HLLC

operates on a less compact six-cell stencil. The new method performs
equally well as WENO5-HLLC. Numerical diffusion of the new method is
slightly larger at the contact and left-going rarefaction. However, WENO5-
HLLC exhibits spurious oscillations in the internal energy at the contact
wave, whereas the proposed scheme is free of such oscillations. For the
1-D problem vorticity is always zero and the Ducros shock sensor marks
most parts of the domain so that essentially the baseline scheme is recov-
ered.

8.1.2 Test 3 of Toro

Next, we consider the more severe test case 3 of Toro’s textbook [108],
where the initial non-dimensional left and right states with initial interface
at x = 0.5 in the domain [0, 1] are
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⎥
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⎥
⎥
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⎥
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⎥
⎦

. (81)

We compare solutions of the proposed scheme and WENO5-HLLC on a grid
with N = 200 equidistantly spaced cells at t = 0.012 to the exact solution

83
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Figure 41: 1-D shock tube problem: test 1 of Toro’s textbook with N = 200 cells at
t = 0.2. - - - - initial condition, –––– exact solution, ◾ WENO5-HLLC, ▴

present scheme. Reprinted with permission from Egerer et al. [30]. Copy-
right 2016, Elsevier.

in Fig. 42. Time integration is again performed by the RK2S4 scheme with
CFL = 0.6. The right-going shock wave and the left-going expansion is pre-
dicted equally well by the proposed scheme compared to WENO5-HLLC. At
the beginning of the rarefaction, x ≈ 0.3, both methods exhibit an overshoot
in the velocity. As already observed for shock tube problem 1, WENO5-
HLLC produces an overshoot in density at the contact wave, whereas the
proposed scheme is free of spurious oscillations in this region.

8.1.3 Double expansion in water

A 1-D symmetric double expansion in water with initial left and right states
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, (82)

and initial interface location at x = 0.5 m in the domain [0, 1m] is consid-
ered as a first test case involving cavitation. The grid consists of N = 200

equidistantly spaced cells and the solution is advanced in time with the
RK2S4 method and CFL = 0.6. Fig. 43 shows density, velocity, pressure, and
vapor volume fraction at t = 0.15×10−3 s. At this time instant, the left- and
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Figure 42: 1-D shock tube problem: test 3 of Toro’s textbook with N = 200 cells
at t = 0.012. - - - - initial condition, –––– exact solution, ◾ WENO5-
HLLC, ▴ present scheme. Reprinted with permission from Egerer et al.
[30]. Copyright 2016, Elsevier.

right-going expansion waves are located at x ≈ 0.25 m and x ≈ 0.75 m. At
x ≈ 0.5 m the pressure drops to vapor pressure psat initiating evaporation
of liquid water and leading to a decrease of the mixture density. Latent
heat of evaporation results in sub-cooling of the fluid at x = 0.5 m, see
Fig. 43f. The proposed scheme reproduces the correct physical process,
unlike WENO5-HLLC which exhibits a physically incorrect strong heating,
see Figs. 43e and 43f.

8.2 taylor-green vortex (ideal gas)

The non-dimensional initial conditions for the 3-D compressible Taylor-
Green vortex are

ρ(x, t = 0) = 1,

u(x, t = 0) = 0,

v(x, t = 0) = − cos(x) sin(y) cos(z),

w(x, t = 0) = cos(x) cos(y) sin(z),

p(x, t = 0) =
1

γMa2
+
1

16
((cos(2x)+ 2) (cos(2y)+ cos(2z))− 2) ,

(83)

where Ma = 0.1 is chosen for all cases. The cubic, 2π-periodic domain is
discretized by N3 equally sized cells. Time integration is performed with
the RK3S3 method and CFL = 0.5.
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Figure 43: Cavitating double expansion test problem in water with N = 200 cells
at t = 0.15 × 10−3 s. (f) is a zoom of (e) showing the sub-cooling of
the fluid due to cavitation. - - - - initial condition, ◾ WENO5-HLLC, ▴

present scheme. Reprinted with permission from Egerer et al. [30]. Copy-
right 2016, Elsevier.
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Figure 44: Comparison of energy decay rates between implicit LES with the pro-
posed scheme and reference DNS of the compressible Taylor-Green
vortex at different Reynolds numbers: (a) Re = 200, (b) Re = 400, (c)
Re = 800, and (d) Re = 1600. For Re = 1600 a comparison with ALDM

is provided additionally. –––– reference DNS, ◾ proposed scheme with
N = 32, ● proposed scheme with N = 64, ◽ ALDM with N = 32, ○

ALDM with N = 64. Reprinted with permission from Egerer et al. [30].
Copyright 2016, Elsevier.

Fig. 44 compares the energy decay rates of implicit LES with the present
scheme at two resolutions (N = 32 and N = 64) to a reference DNS of the
compressible Taylor-Green vortex at different Reynolds numbers for 10

large-eddy turnover times. We note that with increasing resolution the
solution of the proposed scheme approaches the DNS result. For Re =

1600, Fig. 44(d), we additionally compare our results with a state-of-the-
art implicit LES method ALDM [47]. We observe a similar evolution for
both schemes. The energy decay rate is slightly larger at times 4 < t < 7
for the proposed scheme than for ALDM. Overall the proposed scheme is
similarly effective as ALDM, which has been shown to be clearly superior
to the dynamic Smagorinsky model [46].

8.3 decaying compressible isotropic turbulence (ideal gas)

Suitability of the present method for turbulent flows is validated with
canonical decaying compressible isotropic turbulence in a 2π-periodic box.
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Figure 45: Global statistics over ten large-eddy turnover times for decaying com-
pressible isotropic turbulence with Reλ = 100 and Mat = 0.3. Compari-
son between LESs (lines) on a grid withN3 = 323 cells and DNS data [47]
(symbols): (a) proposed method, (b) baseline scheme, (c) ALDM, and (d)
WENO5-HLLC without explicit SGS model. Quantities: –––– , ○ ⟨u′2i ⟩/2, -
- - - ◽ ⟨ρ′2⟩, – ⋅ – ▵ ⟨p′2⟩, and – ⋅ – ◇ ⟨p′2⟩. Reprinted with permission
from Egerer et al. [30]. Copyright 2016, Elsevier.

The initial random velocity field is characterized by the following pre-
scribed spectrum for turbulence kinetic energy

k̂(ξ) = ξ4 exp(−2ξ2/ξ20) (84)

with peak-energy wavenumber ξ0 = 4. The initial Taylor length-scale
is λ = 2/ξ0 resulting in an initial Reynolds number based on the Tay-
lor length-scale of Reλ = ⟨ρ⟩urefλ/⟨µ⟩ = 100. The reference velocity is
uref =

√
⟨u′2⟩/3 based on initial velocity fluctuations. The initial turbulent

Mach number is Mat =
√

⟨u′2⟩/⟨c⟩ = 0.3. Note that angled brackets mark
Reynolds averages in the following. Consistent initial data for density,
velocity dilatation, and total energy are obtained by the method of Ris-
torcelli and Blaisdell [83]. The cubic computational domain is discretized
with N3 = 323 cells. The time step is controlled by choosing CFL = 0.5 for
the RK3S3 time integration scheme.

Fig. 45 shows the time evolution of turbulence kinetic energy and ther-
modynamic variances over ten large-eddy turnover times τeddy = 2/(ξ0u2ref).
The decay rates for the baseline scheme, Fig. 45b, are too large compared
to DNS data [47] especially at early times. The new method shows signifi-
cantly better results for all quantities, Fig. 45a. Comparison of spectra at
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Figure 46: Decaying compressible isotropic turbulence with Reλ = 100 andMat =
0.3 on a grid with N3 = 323 cells. Comparison of spectra at different
time instants between implicit LES with the proposed scheme (–––– ) and
DNS data [47] (- - - - ). Reprinted with permission from Egerer et al. [30].
Copyright 2016, Elsevier.

different time instants between implicit LES with the new method and DNS

is presented in Fig. 46. We observe an accurate evolution of turbulence
kinetic energy spectra, Fig. 46a, and spectra of thermodynamic quantities,
Figs. 46b to 46d. Aliasing errors are small for large wave numbers and
only significant for the temperature variance at early times. Additional
means of stabilization, such as explicit filters, are not needed.
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9.1 single bubble collapse

Neglecting viscous effects, non-condensable gas, and surface tension, the
evolution of a spherical vapor bubble is described by a simplified form of
the Rayleigh-Plesset equation [33]

RR̈+
3

2
Ṙ2 =

pv −p∞

ρl
, (85)

where R denotes the radius of the vapor bubble, Ṙ the velocity of the
bubble surface, R̈ its acceleration, ρl the liquid density, p∞ the ambient
pressure in the liquid, and pv the pressure of the liquid at the bubble sur-
face. For analysis one assumes that the pressure at the surface is constant
and equal to the saturation pressure of vapor, i.e., pv = psat. Rayleigh [81]
was the first to integrate Eq. (85) in order to obtain a characteristic collapse
time

tRayleigh ≈ 0.915R0

√
ρl

p∞ −psat
. (86)

For comparison with Rayleigh’s analytical solution, we consider the col-
lapse of a 3-D spherical saturated water vapor bubble surrounded by liquid
water at a reference temperature Tref = 293.15 K.

Fig. 47a shows a sketch of the setup. A vapor bubble with an initial
radius of R0 = 0.4 × 10−3 m and a vapor-volume fraction of α = 0.99 is
placed within a cubic domain with an edge length of 0.1 m. Since the
problem is symmetric, we consider only one-eighth of the vapor bubble.
An equidistant grid is employed within a cubic subdomain with an edge
length of 0.5× 10−3 m, which encloses the vapor bubble. Grid stretching is
applied in the far-field. We have performed simulations on three different
grids with 22, 44 and 88 computational cells spanning the initial bubble
radius, which we will denote as coarse, medium and fine in the following.
The ambient pressure is p∞ = 1 × 105 bar and the initial velocity is zero
everywhere. Time integration is performed by the RK2S4 scheme with CFL

= 1.0.
Fig. 47b shows a comparison between the analytical and numerical evo-

lution of the normalized bubble radius R/R0 over normalized time t/tRayleigh.
The bubble radius is calculated from the global vapor volume fraction in
the numerical simulations. Samples are recorded at identical time instants
for the three grid resolutions. The numerically predicted collapse times
are almost independent of the grid resolution and in excellent agreement
with the Rayleigh time tRayleigh. The vapor bubble collapses slightly faster
on the coarse and medium grids.
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Figure 47: Collapse of a 3-D isolated vapor bubble: (a) sketch of the problem
setup, (b) evolution of the normalized bubble radius R/R0 with re-
spect to normalized time t/tRayleigh. –––– Rayleigh-Plesset solution, ◽

coarse grid, ▵ medium grid, ◇ fine grid. Reprinted with permission
from Egerer et al. [30]. Copyright 2016, Elsevier.

9.2 bubble cloud collapse

As a second cavitating test-case for evaluating the robustness of the present
scheme, we choose the collapse of a bubble cloud above a solid wall [92].
The bubble cloud consists of 125 spherical vapor bubbles with initial radii
0.7 ≤ Rb,0 ≤ 1.65 mm and average radius Rb,0 = 0.95 mm, see Fig. 48a. The
bubbles do not intersect with a minimum distance of 0.2 mm between two
bubbles. Furthermore, we assume that bubbles become larger towards the
center of the cloud and are spaced more densely. The vapor bubble cloud
is located within a liquid-filled inner domain of size 20× 20× 20 mm3. The
inner domain is embedded in a larger outer domain of size 4×4×2m3. The
inner domain is discretized by 2203 cubic cells, while the grid in the outer
domain consists of hexahedral cells that are stretched towards the bound-
aries. The initial pressure in the liquid satisfies a Laplace equation, ∆p = 0,
with boundary conditions p∞ = 40× 105 Pa at the far-field boundaries and
p = psat = 2340 Pa at the vapor bubble surfaces. Thereby, we ensure that
the initial pressure field is free of spurious acoustics. The velocity field is
zero initially and the initial temperature is T = 293 K. Viscous effects and
non-condensable gas are neglected. For time integration we use the RK2S4

scheme with CFL = 1.0. Fig. 48b shows active regions of the proposed va-
por volume sensor on three cut planes at initial time. It is observed that
the active regions of the vapor volume sensor coincide with the vapor-
bubble surfaces demonstrating the correct behavior of the proposed flow
sensor. The time of the initial collapse of the bubble cloud is nearly identi-
cal between CATUM and the new method, see Fig. 49a. The rebounds also
follow a similar evolution with the exception that the predicted vapor vol-
ume fraction for the first and second rebound is slightly larger for the new
method. Thus, we conclude that the global dynamics of the bubble cloud
is not altered by the new hybrid formulation. The same result holds for
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(a) (b)

Figure 48: Vapor bubble cloud collapse above a solid wall: (a) initial distribution
of vapor bubbles visualized by iso-surfaces of vapor volume fraction
α = 0.1, and (b) initial active regions of the flow sensor on three cut
planes. Reprinted with permission from Egerer et al. [30]. Copyright 2016,
Elsevier.
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Figure 49: Comparison between baseline ( –––– ) and proposed scheme ( - - - - ) of
the evolution of (a) the vapor volume fraction of the bubble cloud and
(b) the integral value of the static pressure as measured on a numerical
pressure sensor of size 0.2 × 0.2 cm2. Reprinted with permission from
Egerer et al. [30]. Copyright 2016, Elsevier.
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Table 10: Initial conditions of temporally evolving cavitating mixing layers match-
ing cavitation and Reynolds number of the experiment by Aeschlimann
et al. [6, 7]. Reprinted with permission from Egerer et al. [30]. Copyright
2016, Elsevier.

σc ∆U ρ∞ p∞ T∞ δω,0

− m/s kg/m3 ×105 Pa K ×10−3 m

1.0 40.0 998.52 8.012 293.15 0.4

0.167 40.0 998.22 1.357 293.15 0.4

0.1 40.0 998.19 0.822 293.15 0.4

the static pressure recorded on a numerical sensor on the bottom wall of
size 0.2× 0.2 cm2. We observe that the maximum pressure recorded on the
wall is larger for the new method while the overall time evolution of the
pressure signal is similar, cf. Fig. 49b. Finally, we conclude that restrict-
ing an upwind-biased reconstruction to regions where the vapor volume
fraction rapidly changes is sufficient for stable time integration.

9.3 cavitating turbulent mixing layer

As final test case, we perform LES of a temporally evolving turbulent mix-
ing layer in water with the new method and use results obtained with
ALDM adopted for cavitating flows [29] as reference. We consider three
cases, one without cavitation (σc = 1.0) and two with cavitation (σc = 0.167
and σc = 0.1). The cavitation numbers are taken from the experiment by
Aeschlimann et al. [6, 7]. The initial conditions are provided in Table 10.
The initial streamwise velocity profile is u = (∆U/2) tanh(4y/δω,0). We
choose the initial vorticity thickness in the simulations, δω,0 , so that we
match the Reynolds number of the experiment, Re ≈ 1.5× 105, at the begin-
ning of the self-similar region. Solenoidal 3-D velocity fluctuations, which
are restricted to the initial shear layer by an exponential damping function,
exp(−y2/(2δω,0)), are super-imposed onto the mean velocity in order to
trigger transition. Their maximum amplitude is 0.1∆U. We use the RK3S3

scheme for time integration with CFL = 0.5.
The computational domain is a rectangular box of size Lx × Ly × Lz =

300× 100× 60δω,0 in streamwise, cross-stream and spanwise direction, see
Fig. 50. Periodic boundary conditions are applied in streamwise and span-
wise directions, while we set the static pressure according to Table 10 at
the cross-stream boundaries. The domain is discretized by Nx ×Ny ×Nz =
768× 192× 192 cells. The grid spacing is homogeneous in streamwise and
spanwise direction, while a hyperbolic tangent function is employed in
cross-stream direction to refine the grid towards the mixing layer inter-
face. Statistical quantities are computed by averaging in streamwise and
spanwise directions.
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Figure 50: Computational domain for the temporally evolving cavitating mixing
layer. Reprinted with permission from Egerer et al. [30]. Copyright 2016,
Elsevier.

Fig. 51a compares the predicted temporal growth of the vorticity thick-
ness. We find that it is independent of the cavitation number, which is
in agreement with the experiments by Aeschlimann et al. [6]. Further-
more, the new method performs equally well as ALDM. The normalized
growth-rate, rω = δ̇ω/∆U, is approximately 0.08 for all simulations in the
self-similar region, see dashed line in Fig. 51a, and agrees well with the
experiment where the growth-rates are within the range rω = [0.09− 0.11].
Incompressible or low-Mach-number (quasi-incompressible) DNS [78, 85]
and LES [32] of single-phase mixing layers give growth rates of rω =

[0.07− 0.08].
Fig. 51b shows the temporal evolution of the mean maximum vapor vol-

ume fraction. The LES with the new method agrees well with ALDM data
and reproduces the experimental values within experimental-data uncer-
tainty [7]. Note that the streamwise coordinate of the experiment was
transformed to a time coordinate according to t = x(Uc/∆U)exp, where
(Uc/∆U)exp is the ratio of mean convection velocity Uc to velocity differ-
ence ∆U in the experiment.

Finally, we present a comparison of the mean streamwise velocity and
normalized mean vapor volume profiles at t∗ = t∆U/δω,0 = 250 between
the new method, ALDM and experiment, Fig. 52. The mean streamwise
velocity profiles of the new method are in excellent agreement with the
ALDM reference LES and with experimental data, see Fig. 52a. The shapes
of the mean vapor volume fraction profiles also agree well with ALDM and
experimental data for both cavitation numbers, see Fig. 52b.
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We have demonstrated that a thermodynamic equilibrium cavitation model
coupled with a state-of-the-art implicit LES model is a feasible approach to
the simulation of cavitating turbulent flow in open and confined shear
flows.

Quantitative comparison with experimental data of a cavitating turbu-
lent mixing layer shows that mean velocity and vapor volume fraction are
reproduced within the limits of experimental uncertainties, see Chapter 5.

Detailed and comprehensive experimental analyses of cavitating flows
in sub-millimeter geometries, such as the generic throttle considered in
Chapter 6, are extremely challenging. LES, where the full unsteady and
three-dimensional flow field information is available, significantly enhance
the understanding of the flow in such devices.

For the very complex flow through a generic throttle geometry LES re-
sults reproduce the essential cavitation and flow dynamics that are rep-
resentative also for fuel injectors. For example, the change in cavitation
and flow dynamics associated with the transition from a non-chocked to a
chocked flow were predicted properly. At a non-chocked operating point,
high-frequency recurring vortex cavitation, associated with boundary-layer
separation and shear-layer instabilities at the throttle intake, is the predom-
inant cavitation mechanism. On the other hand, the cavitation process is
driven by inertia effects in the first part of the throttle at a chocked operat-
ing point. The analysis of the mean flow field revealed a system of stream-
wise vortices that was not anticipated and could not be directly inferred
from the experimental results illustrating the importance of LES investiga-
tions complementing the experiment. Their origin was traced back to the
boundary layer upstream of the contraction. Compared to developed tur-
bulent flow in a square duct, that is discussed extensively in the literature,
the cavitating flow is characterized by quite different secondary mean-flow
structures. Significant effects also on mean velocity profiles and resolved
Reynolds stress profiles are visible.

The fully compressible treatment of the liquid and the liquid-vapor mix-
ture, i.e., resolving dynamics of shock waves that are emitted during the
final stages of the collapse of vapor structures and that play an essential
role for the prediction of cavitation erosion, allows for the detection of
erosion-relevant events. It is confirmed that the absolute amount of vapor
is no indicator for cavitation erosion, but rather that dominant unsteady
flow features, such as cavitating shear layers, need to be captured for ero-
sion prediction.
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We have proposed a modification of a previously established finite-volume
method for inviscid simulation of cavitating flows (baseline scheme/CATUM

[93, 97, 98]). The proposed modification enables LES of turbulent cavitat-
ing flow within the existing modeling framework. In previous work [29]
we have demonstrated that turbulent cavitating flow can be accurately pre-
dicted by the state-of-the-art implicit LES method ALDM [46, 47] in combina-
tion with a thermodynamic equilibrium cavitation model. Part iii demon-
strates that we are able to improve computational efficiency by retaining
the four-cell stencil of the baseline scheme CATUM while achieving com-
parable SGS modeling quality as ALDM, which relies on a six-cell stencil.
This is achieved by switching between a central discretization with physi-
cally consistent turbulence regularization and the existing upwind-biased
baseline scheme CATUM dependent on a flow sensor. Numerical dissipa-
tion is localized to regions where it is necessary for capturing large flow
gradients, e.g., phase boundaries in cavitating flows. Thus, an efficient
integrated approach with problem-independent discretization-scheme pa-
rameters is obtained.

Since many popular discretization schemes operate on four-cell stencils,
e.g., the Jameson-Schmidt-Turkel (JST) scheme [55] or Monotonic Upstream-
Centered Scheme for Conservation Laws (MUSCL), the proposed method
can be easily implemented into existing codes. Moreover, the numerical
dissipation introduced by the regularization of the proposed method is
physically consistent with turbulence theory contrary to artificial dissipa-
tion of the JST scheme or of MUSCL schemes. Although only structured
grids were considered in this thesis, the complexity for porting the pro-
posed method to unstructured grids is comparable to that of the JST or
MUSCL schemes.
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12O U T L O O K

Wall-resolved Large-Eddy Simulations as performed in Chapter 6 entail
high computational cost due to DNS-like resolution requirements close to
walls. Wall models might alleviate these resolution requirements. Consid-
ering operating point A of the micro throttle study, cf. Section 6.2.2, where
cavitation originates in the shear layer created by the detached boundary
layer, it is questionable if such boundary layer dynamics relevant for the
correct prediction of cavitation dynamics are retained by standard wall
function approaches [100, 101].

For the simulation of the injection process, it is necessary to include
free gas as a third phase. Building on the Adaptive Local Deconvolution
Method for cavitating flows, see Chapter 4, Örley et al. [77] already de-
velop a thermodynamic closure to include free gas and investigate the
flow through a rectangular injector [105] and the subsequent liquid jet
break-up.

The inclusion of surface tension forces and their effect is another pos-
sible option for future research. Nevertheless, since most phase inter-
faces cannot be resolved in many applications, a rigorous investigation of
subgrid scale terms originating from surface tension forces for cavitating
flows, cf. Eqs. (20b) and (20c), is necessary.

In the present thesis, we have not considered the effect of non-conden-
sable gas, although experimental evidence exists that it may have a sig-
nificant impact on cavitation dynamics and chararcteristics of vapor col-
lapses. For the reference experiments, non-condensable gas has been re-
moved from the test liquid. The analysis of the influence of solved non-
condensable gas on cavitation dynamics and collapse characteristics is sub-
ject of current research.
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AA U X I L I A RY D ATA F O R L E S O F C AV I TAT I N G M I X I N G
L AY E R S

a.1 reynolds stress transport equation

The transport equation for the resolved Reynolds stresses reads

∂tρũ
′′
iu

′′
j +

∂

∂xk
(ρũkũ

′′
iu

′′
j ) =

ρ (Pij − εij − ε
SGS
ij )−

∂

∂xk
(Ttijk + T

p
ijk + T

τ
ijk)+Φij +Πij,

(87)

where

Pij = −(ũ′′iu
′′
k

∂ũj

∂xk
+ ũ′′j u

′′
k

∂ũi

∂xk
) (88a)

is turbulent production,

Ttijk = ρu
′′
iu

′′
j u

′′
k, (88b)

Tpijk = p
′u′iδjk +p

′u′jδik, (88c)

Tτijk = − (τ′jku
′′
i + τ

′
iku

′′
j ) , (88d)

are turbulent, pressure and viscous transport

Φij = u
′′
i (
∂τjk

∂xk
−
∂p

∂xj
)+u′′j (

∂τik

∂xk
−
∂p

∂xi
) , (88e)

represents exchange due to variable inertia,

Πij = p′ (
∂u′′i
∂xj

+
∂u′′j

∂xi
), (88f)

is pressure dilatation, and

εij =
1

ρ
τ′jk
∂u′′i
∂xk

+ τ′ik

∂u′′j

∂xk
, (88g)

(88h)

is resolved dissipation. Contributions from subgrid scales are lumped
together in εSGSij . Figs. 53 to 56 show a comparison of budgets of the
Reynolds stress transport equation terms for the non-zero components of
the Reynolds stress tensor, ũ′′iu

′′
j , for different cavitation numbers.
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For the streamwise Reynolds stress production is balanced by the pres-
sure dilatation and dissipation which is completely provided by the SGS

model. The pressure dilatation redistributes energy contained in the stream-
wise fluctuations to fluctuations in the other spatial dimensions. The cavi-
tation number has no significant effect on the budget terms.

For the Reynolds shear stress we observe an effect of the cavitation num-
ber on the production and pressure dilatation, cf. Fig. 54a. For decreasing
cavitation number both terms decrease in their magnitude. Production is
balanced by contribution of the pressure dilatation.

For the cross-stream Reynolds stress pressure dilatation is the main
source, cf. Fig. 55a. The pressure dilatation term slightly decreases for
decreasing cavitation numbers.

Similar effects can be observed for the spanwise Reynolds stress, cf.
Fig. 56a.

We would like to note, however, that there is the possibility of model-
related uncertainties in the presented data of the Reynolds stress transport
equations. Especially effects of non-resolved phase interfaces and their
interaction with turbulence is unclear. In order to investigate such phe-
nomena, fully resolved simulations are required, i.e., DNS of turbulence as
well as phase interfaces. Such simulations are, however, not feasible with
currently available computing power.
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Figure 53: Budgets of streamwise Reynolds stress transport equation in cavitat-
ing mixing layers: comparison between mixing layer LES at different
cavitation numbers. Profiles are normalized by (∆U)3/δθ. Symbols
indicate different cavitation numbers: ◽ σc = ∞; ○ σc = 0.167; ▵

σc = 0.1. Line styles/colors indicate the various terms of the Reynolds
stress transport equation (87): –––– P11; - - - - −∂kT

t
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′′
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Note that Φ11 and ε11 are zero and not shown.
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Figure 54: Budgets of Reynolds shear-stress transport equation in cavitating mix-
ing layers: comparison between mixing layer LES at different cavita-
tion numbers. Profiles are normalized by (∆U)3/δθ. Symbols indicate
different cavitation numbers: ◽ σc = ∞; ○ σc = 0.167; ▵ σc = 0.1.
Line styles/colors indicate the various terms of the TKE transport equa-
tion (55): –––– P12; - - - - −∂kT

t
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2)/ρ; - - - - - - Π12/ρ. Note that Φ12 and

ε12 are zero and not shown.
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Figure 55: Budgets of cross-stream Reynolds stress transport equation in cavitat-
ing mixing layers: comparison between mixing layer LES at different
cavitation numbers. Profiles are normalized by (∆U)3/δθ. Symbols
indicate different cavitation numbers: ◽ σc = ∞; ○ σc = 0.167; ▵

σc = 0.1. Line styles/colors indicate the various terms of the TKE trans-
port equation (55): –––– P22; - - - - −∂kT

t
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′′
2u

′′
2)/ρ; - - - - - - Π22/ρ. Note that Φ22

and ε22 are zero and not shown.
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Figure 56: Budgets of spanwise Reynolds stress transport equation in cavitating
mixing layers: comparison between mixing layer LES at different cavita-
tion numbers. Profiles are normalized by (∆U)3/δθ. Symbols indicate
different cavitation numbers: ◽ σc = ∞; ○ σc = 0.167; ▵ σc = 0.1.
Line styles/colors indicate the various terms of the TKE transport equa-
tion (55): –––– PTKE; - - - - −∂kT

t
k,TKE/ρ; – ⋅ ⋅ – −∂kT

p
k,TKE/ρ; - - -

- −εSGSTKE. – ⋅ – ∂k(ρũkk)/ρ; - - - - - - ΠTKE/ρ. Note that ΦTKE and
εTKE are zero and not shown.



BA U X I L I A RY D ATA F O R L E S O F M I C R O C H A N N E L
F L O W

b.1 reynolds stress tensor profiles

The Reynolds stress components for OPA show larger values compared to
developed plain channel flow data due to the recirculation zone at x/l ≈ 0.3
and due to collapsing vapor structures in this region, see Fig. 57. Further
downstream the turbulent boundary layer redevelops and values compara-
ble to developed turbulent boundary layers are found. Towards the center
of the throttle the influence of the vortices γA can be observed which re-
sults in larger Reynolds stresses. Fluctuations u′ and v′ exhibit the same
sign resulting in positive Reynolds shear stresses, see Fig. 57b. We find
similar trends for the spanwise variation of Reynolds stresses at stream-
wise position x/l = 0.8, see Fig. 58.

For OPB the stable vapor sheet prevents the development of a turbulent
boundary layer. Consequently, Reynolds stresses are small at the wall, see
Fig. 59. The streamwise Reynolds stress and Reynolds shear stress exhibit
large values at the boundary of the vapor sheet, see streamwise positions
at x/l = 0.3 and x/l = 0.5 in Figs. 59a and 59b. The spanwise variation of
the Reynolds stresses is dominated by the system of vortices, see Fig. 60.

b.2 qualitative comparison with inviscid solution

In Fig. 61 we qualitatively compare cavitation structures between the LES

and inviscid solutions at two time instants for the generic throttle flow.
For OPA the inviscid solutions exhibits a larger maximum extent of the

cavitation region, compare Fig. 61a with Figs. 61c and 61e. The cavitation
structures predicted by the inviscid solution resemble better the third state
observed in the experimental light transmission images, see Fig. 22c.

For OPB the center vortices ΓA and ΓB are missing in the inviscid so-
lutions due to missing velocity gradient in the boundary layers, compare
Fig. 61b with Figs. 61d and 61f. Moreover, the sheet cavity completely
detached in the inviscid case and has to redevelop subsequently, compare
Fig. 61d with Fig. 61f, which is not observed in the experiment.

Nevertheless, solutions obtained with a compressible but inviscid frame-
work can help in the design process since main features of the cavitation
dynamics are still retained (shedding in case of OPA, sheet cavity in case
of OPB) and the time to solution is smaller by orders of magnitude.
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Figure 57: Streamwise variation of wall-normal profiles of (a) streamwise
Reynolds stress, (b) Reynolds shear stress, (c) transverse Reynolds
stress, and (d) spanwise Reynolds stress at z = 0 for OPA of the generic
throttle. Reynolds stresses and wall distance are scaled by the local
friction velocity uτ and the local viscous lengthscale δµ, respectively.
Streamwise positions are - - - - x/l = 0.3, – ⋅ – x/l = 0.5, – ⋅ ⋅ –
x/l = 0.7, and - - - - - - x/l = 0.9. Reprinted with permission from Egerer
et al. [29]. Copyright 2014, AIP Publishing LLC.
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Figure 58: Spanwise variation of wall-normal profiles of (a) streamwise Reynolds
stress, (b) Reynolds shear stress, (c) transverse Reynolds stress, and (d)
spanwise Reynolds stress at x/l = 0.8 for OPA of the generic throttle.
Reynolds stresses and wall distance are scaled by the local friction ve-
locity uτ and the local viscous lengthscale δµ, respectively. Spanwise
positions are –––– 2z/W = 0, - - - - 2z/W = 0.25, – ⋅ – 2z/W = 0.5, –
⋅ ⋅ – 2z/W = 0.75, and - - - - - - 2z/W = 0.9. Reprinted with permission
from Egerer et al. [29]. Copyright 2014, AIP Publishing LLC.
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Figure 59: Streamwise variation of wall-normal profiles of (a) streamwise
Reynolds stress, (b) Reynolds shear stress, (c) transverse Reynolds
stress, and (d) spanwise Reynolds stress at z = 0 for OPB of the generic
throttle. Reynolds stresses normalized by mean streamwise velocity at
the centerline U0 at the considered spanwise position. Wall distance
normalized by throttle height h. Streamwise positions are - - - -
x/l = 0.3, – ⋅ – x/l = 0.5, – ⋅ ⋅ – x/l = 0.7, and - - - - - - x/l = 0.9.
Reprinted with permission from Egerer et al. [29]. Copyright 2014, AIP
Publishing LLC.
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Figure 60: Spanwise variation of wall-normal profiles of (a) streamwise Reynolds
stress, (b) Reynolds shear stress, (c) transverse Reynolds stress, and (d)
spanwise Reynolds stress at x/l = 0.8 for OPB of the generic throt-
tle. Reynolds stresses normalized by mean streamwise velocity at the
centerline U0 at the considered spanwise position. Wall distance nor-
malized by throttle height h. Spanwise positions are –––– 2z/W = 0, - -
- - 2z/W = 0.25, – ⋅ – 2z/W = 0.5, – ⋅ ⋅ – 2z/W = 0.75, and - - - - - -
2z/W = 0.9. Reprinted with permission from Egerer et al. [29]. Copyright
2014, AIP Publishing LLC.
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Figure 61: Qualitative comparison of instantaneous vapor structures between LES

(a,b) and inviscid solution at two time instants (c,d,e,f): (a,c,e) OPA,
(b,d,f) OPB of the generic throttle. Additionally, the instantaneous wall
pressure is shown.
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