
Settling Time Reduction for Underactuated Walking Robots

Sotiris Apostolopoulos1,2, Marion Leibold1 and Martin Buss1,2

Abstract— This paper introduces a novel way to improve
the settling time of transitions between different walking
controllers. This improvement is achieved by commanding a
sequence of intermediate transitions to the target controller. As
a result, the state of the system enters the domain of attraction
of the target controller closer to the fixed point of the Poincaré
Map. The method is applicable to any walking robot with
one degree of underactuation. The problem is expressed as a
Markov Decision Process and then solved with Reinforcement
Learning. In order to simplify the stability analysis of un-
deractuated walking the Hybrid Zero Dynamics framework is
utilized. Another advantage of using the Hybrid Zero Dynamics
is the dimensionality reduction of the state representation in
the Markov Decision Process. The experimental results suggest
that the proposed methodology performs better than a one-
step transition for 84.34% of all the considered transitions for
a simulated walking robot matching the parameters of RABBIT
[1].

I. INTRODUCTION

The settling time of a transition between periodic con-

trollers can be defined as the time until convergence to

the new limit cycle. Any effort in minimizing it, can be

considered equivalent to improving the reaction time of

the system to unexpected situations. Assume that an abrupt

change of velocity is required, thus a new controller has to

be commanded. In the case of underactuation, a transition

between two different controllers will not drive the state of

the system to the fixed point of the target controller, but in

a region around it, called the domain of attraction. Thus, the

entry point of the domain of attraction plays an important

role in the rate of convergence to the limit cycle and as a

consequence to the desired velocity.

One possible way to improve the settling time of such

a transition is to minimize the maximum eigenvalue of

the Poincaré Map, as done in [2] for a simulated running

robot. This minimization led to improvement in convergence

rate and stability. As discussed though in this work [2],

eigenvalue optimization constitutes a difficult problem. One

of the reasons behind this is the fact that the construction

of the Poincaré Map requires the computation of the first

order sensitivities of the discontinuous joint trajectories. The

suggested way of treating such an objective is based on a two

layer optimization procedure where the outer loop performs

stability optimization while the inner loop optimizes an

energy criterion based on the parameters delivered from the

outer loop.

1Chair of Automatic Control Engineering, Technische
Universität München, Theresienstr. 90, 80333 München, Germany,
{sotiris.apostolopoulos, marion.leibold,
mb}@tum.de

2TUM Institute for Advanced Study, Technische Universität München,
Lichtenbergstrasse 2a, 85748 Garching, Germany

Another way of dealing with the problem of settling time

reduction is to consider a sequence of controllers that enters

the domain of attraction of the target controller closer to

the fixed point, than if a one-step transition was taken as

suggested in [3]. When such methods are utilized, feasibility

has to be ensured such that a sequence will drive the state of

the system in the domain of attraction of the target controller.

The feasibility problem has been treated in [4] and [5].

In [4], the idea of LQR-Trees is introduced, where the

state space is partitioned in different regions. Each region

corresponds to the domain of attraction of a LQR controller

which is computed based on a conservative approach using

Sum-of-Squares optimization. Thus, the system can be driven

to a final state from any initial one by finding a sequence

of LQR controllers. This idea is claimed to be extendible to

walking robots as well. In [5] the framework of Sequential

Composition Control is introduced. The idea is more generic

than the LQR-Trees, since it describes how any kind of

controllers can be composed into a sequence in order to

accomplish a high-level plan. The feasibility condition states

that a transition between different controllers is feasible only

when the image of the funnel of one controller belongs to

the domain of attraction of the other one.

In related work [6], the idea of Sequential Composi-

tion Control was used to define feasibility conditions for

transitions between different controllers. When a transition

was not feasible, a connecting controller was learnt online.

Despite the fact that these ideas describe ways to create a

composite controller as a concatenation of different ones,

they do not take into account any optimality criteria for the

way this composite controller is generated, but only focus

on feasibility. In this paper we overcome this limitation

by expressing the problem of controller composition as

a Markov Decision Process and by introducing a reward

function that takes into account optimality criteria related

with the task under study.

In this paper, we study the case of underactuated walking.

We assume a set of controllers and consider the problem of

reducing the settling time of a transition between different

controllers. Due to the underactuation, the feasibility of a

transition is not pre-determined but rather has to be verified

at each impact event (i.e. swing leg establishing contact with

the ground). The settling time reduction is set up as a Markov

Decision Process and then solved with a realization of

Reinforcement Learning. A contribution of using the Hybrid

Zero Dynamics framework is that the proposed methodology

can be extended to any walking robot with one degree of

underactuation. In addition, the state of the Markov Decision

Process has lower dimensionality.

The paper is structured as follows: Sections II and III

present the dynamics of underactuated walking and the

Hybrid Zero Dynamics framework, respectively. In section

IV the problem under study is formulated as a Markov

Decision Process and the Reinforcement Learning algorithm

is presented. The simulation results are presented in section

V. Section VI concludes the paper.

II. UNDERACTUATED WALKING

Underactuated walking is modeled as a hybrid process

with two discrete states: the single support and the rigid

impact. In order to explain these two phases more thoroughly,

the dynamics of underactuated walking are introduced. They

are based on the Lagrangian formulation and the assumption

of rigid bodies. Motion is restricted in the sagittal plane, but

can be extended to the 3D case [7].

A. Single Support

During the single support, the legs of the robot are labelled

as ”stance” and ”swing”. The stance leg is pinned on the

ground and the swing leg moves forward with an adequate

foot clearance in order to become the new stance leg,

concluding the single support phase. The state x of such a

robot contains the joint positions q and the joint velocities q̇,

i.e. x = [qT q̇T]T . Thus, a robot with n degrees of freedom

has a 2n-dimensional state. Utilizing Lagrangian dynamics,

the equations of motion can be expressed as

D(q)q̈ +C(q, q̇)q̇ +G(q) = Bu, (1)

where D(q) ∈ R
n×n is the mass-inertia matrix, C(q, q̇) ∈

R
n×n is the matrix of centrifugal and Coriolis terms, G(q) ∈

R
n summarizes the gravitational terms, B ∈ R

n×(n−1) is

the input matrix and u ∈ R
n−1 is the vector of generalized

torques. The challenge in controlling such a system is due

to the fact that the input matrix B is non-square. Thus,

when applying input-output feedback linearization methods,

there will be dynamics which are non-observable known

as zero dynamics. However, they have to be taken into

account when designing individual walking gaits but also

when concatenating different gaits in a single motion plan.

Section III explains the zero dynamics and the methodology

to design feedback controllers for underactuated walking

robots in more detail.

B. Rigid Impact

The rigid impact takes place when the swing leg estab-

lishes contact with the ground. The impact is assumed to

be inelastic and instantaneous. At the rigid impact, the leg

previously pinned on the ground (i.e. the stance leg) loses

contact with the ground and the role of the legs is switched.

The impact causes a discontinuity on the joint velocities q̇

which can be determined by the impact map ∆ and the

pre-impact joint velocities q̇−. Instead of introducing an

additional model for the single support with the new stance

leg, we relabel (or equivalently transform) the coordinates of

the robot. Formally, this can be expressed as

q+ = Rq−

q̇+ = R∆(q−)q̇− = ∆s(q
−)q̇−

(2)

where the plus and minus superscripts denote the post-

impact and pre-impact state of the system, respectively. The

relabelling matrix is denoted by R and is circular (i.e.

RR = I).

III. HYBRID ZERO DYNAMICS OF WALKING

Controller synthesis for underactuated walking robots has

been a topic of extensive investigation in the literature [3],

[8], [9]. The main idea is to design a set of virtual holonomic

constraints and enforce them by input-output feedback lin-

earization. More specifically, the controller design can be

formulated as a tracking control problem where the outputs

are defined as

hi(t) = qi(t)− qdi (t), i = 1, ..., n− 1, (3)

where qdi is the desired trajectory corresponding to the

i-th degree of freedom (DoF). The index i runs from 1

to n − 1, since a desired trajectory cannot be enforced

on the underactuated DoF qn (without loss of generality

qn is the underactuated DoF). In walking, time t can be

replaced by a monotonically increasing variable θ(x), which

replaces trajectories by paths and we can rewrite h(t) as

h(θ(x)) = h(x). This variable is usually the underactuated

coordinate of the robot qn or a function of it. In order to

facilitate the design process of the walking controller, a short

introduction to the Hybrid Zero Dynamics of walking is

necessary. Connection with the robotic model under study

can be found in Fig. 1. For more details on Hybrid Zero

Dynamics, the reader is encouraged to refer to [3] or [10].

A. Control Law

The main principle in Hybrid Zero Dynamics is the

introduction of a coordinate transformation, such that the

q5

θ

q3 q2

q4q1(xs, ys)

(0, 0)

Fig. 1. Kinematic model of the biped under study. The underactuated DoF
is the torso angle q5. The Cartesian coordinates of the swing leg are denoted
as (xs, ys). The x-axis is pointing to the right and the y-axis upwards.

outputs h and their time derivatives are zeroed and the zero

dynamics are periodically stable.

Assuming that the dynamics of the robot are expressed in

the state-space form

ẋ =

[

q̇

D(q)−1(−C(q, q̇)q̇ −G(q) +Bu)

]

= f(x) + g(x)u,

(4)

the feedback controller which zeroes the outputs h is given

by

u(x) = (LgLfh(x))
−1(v(x)−L2

fh(x)), (5)

where the Lie derivatives are defined as

LgLfh(x) =
∂h

∂q
D−1B, (6)

and

L2

fh(x) =
[

∂
∂q

(∂h
∂q

q̇) ∂h
∂q

]

[

q̇

D−1(−Cq̇ −G)

]

.

(7)

Here the arguments of the matrix and vector functions are

omitted for brevity. The term v(x) in (4) is taken to be a PD

term. Under the control law (5), the outputs are zeroed and

the zero dynamics need to be checked for orbital stability.

B. Zero Dynamics Manifold

The Zero Dynamics Manifold is formally defined as

Z = {x|h(x) = 0,Lfh(x) = 0} , (8)

where Lfh(x) =
∂h
∂q

q̇.

Let x ∈ Z and define γ0 as the last row of the mass-

inertia matrix D, then the coordinates can be transformed

into

ξ1 = θ, ξ2 = γ0q̇. (9)

The variable θ is shown in Fig. 1 and can be formally defined

as θ = cTq =
[

−1 0 −1/2 0 −1
]

q. The variable ξ2
is the angular momentum conjugate to the underactuated DoF

q5. With this transformation the joint positions and velocities

can be reconstructed by

q = H−1

[

qd

ξ1

]

and q̇ =

[

∂h
∂q

γ0

]−1 [
0
ξ2

]

, (10)

where H =

[

H0

c

]

and H0 =
[

In−1 0(n−1)×1

]

.

The remaining analysis of the Hybrid Zero Dynamics fol-

lows from [3] and is given without any proofs. A difference is

made on the description of the fixed point which corresponds

to the post-impact state of the robot, instead of the pre-impact

one. This difference is done to facilitate the formulation of

the settling time reduction as a Markov Decision Process, as

will be described in section IV.

C. Orbital stability of zero dynamics

The derivatives of ξ1 and ξ2 can be written as

ξ̇1 = κ1(ξ1)ξ2

ξ̇2 = κ2(ξ1)
(11)

where

κ1(ξ1) =
∂θ

∂q

[

∂h
∂q

γ0

]−1 [
0
1

]

(12)

κ2(ξ1) = −
∂V

∂qn
(13)

In (13), V is the potential energy function of the system (4).

The impact event is taken into account by the resets

ξ+1 = θ+ (14)

ξ+2 = δzeroξ
−

2 (15)

The quantity δzero accounts for the angular momentum

exchange at the impact and can be computed analytically

based on the dynamics of the system, i.e.

δzero = γ0(q
+)∆s(q

−)

[

∂h
∂q

(q−)

γ0(q
−)

]−1 [
0
1

]

. (16)

Since the zero dynamics manifold is 2-dimensional, the

stability analysis is simplified. In this manifold, Lagrangian

dynamics can be introduced and kinetic and potential energy

functions can be defined as Kzero(ξ1) and Vzero(ξ1) respec-

tively. The formal definition of these functions is

Kzero(ξ1) =
1

2

(

ξ̇1
κ1(ξ1)

)2

= ζ2 (17)

Vzero(ξ1) = −

∫ ξ1

θ+

κ2(ξ1)

κ1(ξ1)
dξ1. (18)

If the kinetic energy at the beginning of the walking motion

ζ+2 is greater than the maximum value of the potential energy

V MAX
zero , the numeric integration of the zero dynamics (11) will

yield a periodic orbit. Formally, if

V MAX
zero − ζ+2 < 0, (19)

a periodic orbit exists and if 0 < δ2zero < 1, it is exponentially

stable. The associated Poincaré Map is given by

ρ(ζ+2) = δ2zeroζ
−

2 = δ2zero(ζ
+
2 − Vzero(θ

−)). (20)

The fixed point of this orbit is

ζ∗2 =
δ2zero

δ2zero − 1
Vzero(θ

−), δ2zero 6= 1 (21)

and its domain of attraction is the set

Dzero =
{

ζ+2 > 0|ζ+2 − V MAX
zero > 0

}

. (22)

Thus, the dimensionality of the system can be reduced

from 2n to 2. This leads to a 1-dimensional Poincaré Map

where the stability analysis can be conducted with analytical

expressions. The same holds for the domain of attraction.

D. Transition between Walking Controllers

A transition between periodic controllers allows aperiodic

walking. Assume that a transition from controller Φi to a

controller Φj is required. Then the transition is feasible only

if

ζ+2 − V MAX,i→j
zero > 0. (23)

If equation (23) is fulfilled, the state of the robot after the

impact will be inside the domain of attraction of the periodic

controller Φj . The quantity V i→j
zero can be computed as in (18)

where the integration interval now is from θ+i to θ−j . That

means, the joint positions at the end of the transition will be

identical to those of controller Φj , unlike the joint velocities.

After the feasibility condition for aperiodic walking has

been defined, the settling time reduction can be investigated.

IV. LEARNING FOR SETTLING TIME REDUCTION

The purpose of this work is to find a sequence of con-

trollers in order to reduce the settling time of a transition

from an initial walking controller Φinit to another one

Φtarget. In order to do so, we formulate the settling time

reduction as a Markov Decision Process, which we solve

with Reinforcement Learning. For this work, each controller

corresponds to a desired average walking velocity.

A. One-step Transition

In the one-step approach, a transition between two differ-

ent walking controllers is realized by checking first if (23)

holds. If this is the case, the transition is executed and then

the state of the robot is inside the domain of attraction of

the target controller. Otherwise, an intermediate transition

is taken to the controller whose domain of attraction can

be reached by the initial controller and is closest (in terms

of fixed point) to the target one. If the target controller is

still unreachable, this process can be repeated. In any case,

once in the domain of attraction of the target controller, the

convergence to the fixed point is dictated by the quantities

δzero and Vzero(θ
−), thus it is possible that convergence

requires a lot of time and steps.

B. Multi-Step Transition

In this work, this slow convergence is confronted by re-

quiring that the transition to the target controller Φtarget does

not have to be realized following the one-step approach, but

there might be a sequence of transitions that can potentially

reduce the settling time. More formally, assume that in the

multi-step transition the state of the robot enters the domain

of attraction of Φtarget at time t∗ and ζ∗2 denotes the fixed

point of Φtarget. Since the one-step transition might be

executing a step at time t∗, we allow it to conclude the step

and measure ζ+2 at time t+ > t∗.

Definition 1: A composite controller is successful if and

only if

|ζ+2 (t∗)− ζ∗2 | ≤ |ζ
+
2 (t+)− ζ∗2 |, (24)

�

If the entry point to the domain of attraction of the target

controller is closer following the multi-step transition than

the one-step, the principle of optimality can be utilized and

claim that convergence is achieved faster. In order to find

such multi-step transitions, we use Reinforcement Learning.

C. Reinforcement Learning

Reinforcement Learning has been proposed as a semi-

supervised optimization method [11] and has been exten-

sively used in the field of Robotics [12]. An optimization

problem in the context of Reinforcement Learning can be

defined as a Markov Decision Process described by the tuple

P (S, T, F, r, γ), where S is the state space, T is the action

space, F : S×T → S is the state transition function, r is the

reward function and γ ∈ [0, 1] is a discount factor. The state

transition function F returns the state sk+1 when applying

the action τk at state sk. The reward function returns a scalar

value rk after such a transition. The action selection should

be dictated by a policy π, such that π : S × T → S.

The idea behind Reinforcement Learning is to find this

policy π such that the discounted sum of future rewards is

maximized. This discounted sum is represented by a state-

action value function Qπ : S × T → R. In a few words, we

are trying to find a policy π such that

Qπ(sk, τk) = E

(

∞
∑

i=0

γirk+i+1

)

, (25)

where E the expectation operator.

Different realizations have been proposed in the literature

for finding such a policy. When dealing with large state-

action spaces, a practical solution is to use approximation

techniques in order to learn the Q function. These techniques

are continuous and assume that the state space can be

represented by a sufficiently large number of basis functions.

In this work, a Q-learning method is adopted with linear

parametrization such that Q(sk, τk) = φT (sk, τk)β and ǫ-
greedy action selection, where a random action is taken with

probability ǫ and an optimal one with probability 1 − ǫ. In

this linear parametrization of Q, the parameter vector to be

learnt is β and the parametrization of the state is given by

the vector φ = [φ1, φ2, ..., φL]
T

, where each φi corresponds

to a basis function and L is the total number of them.

In the Reinforcement Learning framework, the state-action

space has to be defined for the Settling Time Reduction:

• The state space S = [ζ+2,min, ζ
+
2,max]×{1, ..., card(Φ)}.

For this representation, ζ+2 is already defined and card
denotes the cardinality of the set of controllers Φ.

The discrete set {1, ..., card(Φ)} describes the domain

of attraction where the state of the system currently

belongs. The limits of ζ+2 are determined by the set

of controllers Φ.

• The action space T = {1, ..., card(Φ)} corresponds to

the domain of attraction where we want to drive the

state of the system.

Note that if the state ζ+2 was replaced with the velocity of the

robot, the integration of the equations of motion would be

necessary and requires a considerable amount of time. When

utilizing the Hybrid Zero Dynamics framework though, an

integration is unnecessary. Additionally, according to (23),

the information of the current domain of attraction is nec-

essary to evaluate the feasibility of a transition and the

subsequent value of ζ+2 as well, which is given by

ζ+2 (k + 1) = δ2zero,i→j(ζ
+
2 (k)− V i→j

zero) (26)

For each transition, a different parameter vector β is

learnt. An outline of the Reinforcement Learning algorithm

is presented in Algorithm 1. Once the learning is concluded,

actions are selected in a greedy way according to

τ ← argmax
τ̄

φT (s, τ̄)β

Details regarding the convergence proof for this algorithm

can be found in [13] (Ch. 3.4).

D. Reward Function for Settling Time Reduction

Assuming that the fixed point ζ∗2,g corresponds to the target

controller Φg, the reward function r is chosen as

r(ζ+2 , i, j) = exp(−λ|ζ+2 (k + 2)− ζ∗2,g|), (27)

where

ζ+2 (k + 1) = δ2zero,i→j(ζ
+
2 − V i→j

zero) (28a)

ζ+2 (k + 2) = δ2zero,j→g(ζ
+
2 (k + 1)− V j→g

zero) (28b)

The justification behind this reward function follows from

the fact that the target controller Φg is pre-determined. The

reward function accounts for the distance between the fixed

point of the target controller ζ∗2,g and the value of ζ+2 , if a

transition from Φi to Φj and then to the target controller

Φg is taken. In a few words, we are interested in how the

transition from the domain of attraction of Φi to that of Φg

is influenced by an intermediate transition to the domain of

attraction of Φj . If the transition is not feasible, the reward

is equal to −1.

V. EXPERIMENTAL EVALUATION

This section presents the evaluation of the learning scheme

proposed in the previous section. The parameters of the

dynamic model adopted for this paper match those of the

robot RABBIT [1]. The set of controllers Φ is populated

by 81 periodic controllers corresponding to average desired

velocities ranging from 0.7 to 1.5 m/s with a step of

0.01 m/s. Each controller is determined by an optimization

procedure as described in [3] where the desired walking

velocity was imposed as an equality constraint. The one-step

transitions between them are precomputed and stored. The

parameter λ in the reward function (27) is 0.2. Regarding

the learning algorithm itself, the discount factor γ is 0.7

and the possibility of taking a random action ǫ is 30%. The

learning procedure lasts for 30000 epochs, while each epoch

lasts for 40 episodes. The aforementioned parameters were

experimentally chosen.

C
o

n
tr

o
ll

er
in

d
ex

Steps

eζ

Time

multi-step

one-step

40

60

80

2

2

4

4

6

6

8

8 10 12 14 16 18

20

20

50

100

150

200

0
0 1 3 5 7

Fig. 2. The multi-step policy and the error convergence for a transition
from a velocity of 1.37 m/s to that of 1.14 m/s (Φ68 → Φ45).

ev

Time

t∗

t+

multi-step

one-step

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8

Fig. 3. The convergence of the velocity error for the transition Φ68 → Φ45

A. Learning a single transition

This subsection presents the experimental results obtained

for learning a single transition from a velocity of 1.37 m/s to

that of 1.14 m/s. As illustrated in Fig. 2, the multi-step policy

tries to decelerate the robot by commanding it to walk with

a much lower velocity than the target one. Then, converges

to the desired one after two more steps. The validity of our

approach can also be justified by plotting the convergence

of the velocity error ev = |v̄ − vtarget|, where v̄ is the

average velocity of the robot during a step and vtarget is

the target velocity. As shown in Fig. 3, there is a high

correlation between the way the velocity and ζ+2 converge to

their desired values.

The superiority of the multi-step transition is clearly

highlighted when the error eζ = |ζ+ − ζ∗| is taken into

account. The multi-step policy enters the domain of attraction

of Φ45 at time t∗ ≈ 1.1 s (see Fig. 3) with an error eζ = 1.85,

while at time t+ ≈ 1.3 s (see Fig. 3) the one-step transition

has an error eζ = 34. The error ev following the multi-step

policy becomes negligible in approximately 2.2 s, while for

the one-step it requires approximately 3.8 s.

Algorithm 1 Q-Learning with linear parametrization

1: for all transitions Φi → Φj do

2: for all epochs do

3: Initialize learning rate η0
4: Initialize ǫ
5: Initialize state s0 =

[

ζ∗2,i, i
]

6: Initialize randomly the parameter vector β

7: for all episodes do

8: τk ←

{

uniform random action in T with probability ǫ

argmaxτ̄ φ
T (sk, τ̄)βk with probability 1− ǫ

9: Apply τk, measure sk+1 and reward rk+1

10: βk+1 ← βk + ηk

[

rk+1 + γmaxτ ′(φT (sk+1, τ
′)βk)− φT (sk, τk)βk

]

φ(sk, τk)

11: Reduce learning rate η and ǫ
12: end for

13: end for

14: end for

C
o

n
tr

o
ll

er
in

d
ex

Steps

eζ

Time

multi-step

one-step
20

20

40

60

80

0
0 1 2

2

3 4

4

5 6

6 8 10 12 14 16 18

100

200

300

400

Fig. 4. An exemplary oscillating policy. The desired transition is from
0.84 m/s to 1.39 m/s.

B. Dealing with non-stationary policies

When it comes to Reinforcement Learning, one might end

up dealing with policies that oscillate around the desired

terminal state or in our case the controller index that cor-

responds to the desired target velocity. Once the policies for

all the transitions are learnt, a post-processing procedure is

initiated to detect such repeating patterns. An example of

such a policy can be seen in Fig. 4 for a transition from a

velocity of 0.84 m/s to that of 1.39 m/s. As shown there,

the policy utilizes the controller which gives the largest

velocity and then gradually decelerates the robot to the

desired velocity, but does not eventually reach it, rather it

oscillates between 1.38 m/s and 1.40 m/s. Since the target

velocity is known, once these policies are detected, the

pattern can be removed by fixing the action τ to the controller

corresponding to the target velocity as illustrated in Fig. 5.

C. Overall performance

When evaluated on all possible transitions Φi → Φj , i 6=
j, the proposed methodology has a success rate of 84.34%,

meaning that 84.34% of the overall transitions are performed

C
o

n
tr

o
ll

er
in

d
ex

Steps

eζ

Time

multi-step

one-step
20

20

40

60

80

0
0 1 2

2

3 4

4

5 6

6 8 10 12 14 16 18

100

200

300

400

Fig. 5. The solution to the problem of the non-stationary policy. When the
pattern 71 → 69 → 71 is discovered starting at the sixth step, the policy
is fixed to controller Φ70.

faster with this framework. For the remaining 15.66% of the

transitions, the one-step approach can be utilized, since it

is known that it will perform better. There is always the

possibility to fine tune the policies that perform worse than

the one-step approach, but it is desired to have a uniform

framework. Fig. 6 presents the overall performance of the

proposed methodology.

Finally, Fig. 7 gives a ”heat” map, which shows how much

better the proposed methodology can perform in comparison

to the one-step approach. The ”heat” corresponds to the value

∆eζ = |ζ+2 (t∗)− ζ∗2 | − |ζ
+
2 (t+)− ζ∗2 |.

It is evident that the proposed methodology cannot out-

perform the one-step approach in cases where a transition

is taken between ”neighbouring” controllers, i.e. transitions

close to the secondary diagonal. For these cases, a sequence

of controllers is not expected to offer much, since the fixed

points of these controllers are close with each other. On the

other hand, learning the one-step transition for these cases

depends strongly on the randomly selected actions at the

beginning of each epoch.

F
ro

m
(m

/s
)

To (m/s)

0.7

0.8

0.8

0.9

0.9

1.0

1.0

1.1

1.1

1.2

1.2

1.3

1.3

1.4

1.4

1.5

1.5

Fig. 6. The overall score for the proposed methodology. Yellow denotes
that the multi-step policy performs better than the one-step approach, while
red suggests the opposite. The periodic transitions (secondary diagonal) are
not taken into account.

F
ro

m
(m

/s
)

To (m/s)

0.7

0.8

0.8

0.9

0.9

1.0

1.0

1.1

1.1

1.2

1.2

1.3

1.3

1.4

1.4

1.5

1.5

-60

-40

-20

0

20

40

Fig. 7. A ”heat” map showing how much better the proposed methodology
performs in comparison to the one-step approach. The evaluation criterion
is ∆eζ .

The second big class where the one-step approach has

better performance, comprises transitions where the target

controller index is close to the limits (1 or 81). In that case,

a multi-step transition cannot perform better than a one-step

transition, since a possible deceleration or acceleration below

and above the target velocity is not possible.

VI. CONCLUSION

This paper proposes a methodology for reducing the

settling time of transitions between periodic controllers. This

framework is applicable to any walking machine with one

degree of underactuation since it utilizes the Hybrid Zero Dy-

namics of the system. The problem is expressed as a Markov

Decision Process and solved with Reinforcement Learning.

Using the Hybrid Zero Dynamics assists both in simplifying

the controller design and reducing the state representation for

the Reinforcement Learning formulation. The experimental

results demonstrate that the proposed framework can perform

better for 84.34% of 6480 transitions for a biped walking

robot matching the parameters of RABBIT. In the future the

utilization of different cost functions will be investigated in

order not only to increase the success rate but also to achieve

better error differences.

VII. ACKNOWLEDGEMENT

This work is supported in part within the ERC Ad-

vanced Grant SHRINE Agreement No. 267877 (www.shrine-

project.eu) and in part by the Technische Universität

München - Institute for Advanced Study (www.tum-ias.de),

funded by the German Excellence Initiative.

REFERENCES

[1] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. Westervelt,
C. Canudas-de Wit, and J. Grizzle, “RABBIT: a testbed for advanced
control theory,” IEEE Control Systems Magazine, pp. 57–79, 2003.

[2] K. D. Mombaur, R. W. Longman, H. G. Bock, and J. P. Schloeder,
“Open-loop stable running,” Robotica, vol. 23, pp. 21–33, 2005.

[3] E. Westervelt, J. Grizzle, and D. Koditschek, “Hybrid zero dynamics
of planar biped walkers,” IEEE Transactions on Automatic Control,
vol. 48, no. 1, pp. 42–56, 2003.

[4] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-
trees: Feedback Motion Planning via Sums-of-Squares Verification,”
The International Journal of Robotics Research, vol. 29, pp. 1038–
1052, 2010.

[5] R. Burridge, A. Rizzi, and D. Koditschek, “Sequential composition of
dynamically dexterous robot behaviors,” The International Journal of

Robotics Research, vol. 18, pp. 534–555, 1999.
[6] E. Najafi, G. Lopes, and R. Babuska, “Reinforcement learning for

sequential composition control,” in IEEE 52nd Annual Conference on

Decision and Control, 2013, pp. 7265–7270.
[7] B. Buss, A. Ramezani, K. Hamed, B. Griffin, K. Galloway, and

J. Grizzle, “Preliminary walking experiments with underactuated 3D
bipedal robot MARLO,” in IEEE International Conference on Intelli-

gent Robots and Systems, Sept 2014, pp. 2529–2536.
[8] D. Djoudi, C. Chevallereau, and Y. Aoustin, “Optimal reference

motions for walking of a biped robot,” in Proceedings of the IEEE

International Conference on Robotics and Automation, 2005, pp.
2002–2007.

[9] A. Shiriaev, J. Perram, and C. Canudas-de Wit, “Constructive tool for
orbital stabilization of underactuated nonlinear systems: Virtual con-
straints approach,” IEEE Transactions on Automatic Control, vol. 50,
no. 8, pp. 1164–1176, 2005.

[10] E. Westervelt, J. Grizzle, C. Chevallereau, J. H. Choi, and B. Morris,
Feedback control of dynamic bipedal robot locomotion, ser. Control
and automation. Boca Raton: CRC Press, 2007.

[11] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[12] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, pp. 1238–1274, 2013.

[13] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement

learning and dynamic programming using function approximators.
CRC press, 2010.

