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Capacity Bounds for Diamond Networks with an
Orthogonal Broadcast Channel
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Abstract

A class of diamond networks is studied where the broadcast component is orthogonal and modeled by two independent bit-
pipes. New upper and lower bounds on the capacity are derived. The proof technique for the upper bound generalizes bounding
techniques of Ozarow for the Gaussian multiple description problem (1981) and Kang and Liu for the Gaussian diamond network
(2011). The lower bound is based on Marton’s coding technique and superposition coding. The bounds are evaluated for Gaussian
and binary adder multiple access channels (MACs). For Gaussian MACs, both the lower and upper bounds strengthen the Kang-
Liu bounds and establish capacity for interesting ranges of bit-pipe capacities. For binary adder MACs, the capacity is established
for all ranges of bit-pipe capacities.

I. INTRODUCTION

The diamond network [1] is a two-hop network that is a cascade of a broadcast channel (BC) and a multiple access channel
(MAC). The two-relay diamond network has a source communicate with a sink through two relay nodes that do not have
information of their own to communicate. The underlying challenge may be described as follows. In order to fully utilize the
MAC to the receiver, we would like to achieve full cooperation at the relay nodes. On the other hand, to better use the diversity
that is offered by the relays, we would like to send independent information to the relay nodes over the BC.

The problem of finding the capacity of this network is unresolved. Lower and upper bounds on the capacity are given in [1].
An interesting class of networks is when the BC and/or MAC are modelled via orthogonal links [2], [3], [4], [5]. The problem
is solved for linear deterministic relay networks, and the capacity of Gaussian relay networks has been approximated within a
constant number of bits [6]. The capacity of Gaussian diamond networks with n relays is studied in [7], [8], [9]. These works
propose relaying strategies that achieve the cut-set upper bound up to an additive (or multiplicative) gap.

In this paper, we study capacity bounds when there are two relays and the BC is orthogonal, which means that the BC
may as well have two independent bit-pipes. This problem was studied in [2] where lower and upper bounds were derived on
the capacity. Recently, [3] studied a Gaussian MAC and derived a new upper bound that constrains the mutual information
between the MAC inputs. The bounding technique in [3] is motivated by [10] that treats the Gaussian multiple description
problem. Unfortunately, neither result seems to apply to discrete memoryless channels.

This paper is organized as follows. We state the problem setup in Section II. In Section III, we improve the achievable
rates of [2] by communicating a common piece of information from the source to both relays using superposition coding and
Marton’s coding. In Section IV, we prove new capacity upper bounds by generalizing and improving the bounding technique
of [3]. Our upper bounds apply to the general class of discrete memoryless MACs, and strictly improve the cut-set bound. We
study the bounds for networks with a Gaussian MAC (Section V) and a binary adder MAC (Section VI). For networks with a
Gaussian MAC, we find conditions on the bit-pipe capacities such that the upper and lower bounds meet. For networks with
a binary adder MAC, we find the capacity for all ranges of bit-pipe capacities.

II. PRELIMINARIES

A. Notation
Random variables are denoted by capital letters, e.g. X , and their realizations are denoted by small letters, e.g. x. The

probability mass function (pmf) describing X is denoted by pX(x) or p(x). The entropy of X is denoted by H(X), the
conditional entropy of X given Y is denoted by H(X |Y ), and the mutual information between X and Y is denoted by
I(X ;Y ). Differential entropies are denoted by h(X) and conditional differential entropies are denoted by h(X |Y ). Sets are
denoted by script letters and matrices are denoted by bold capital letters. The random sequence X1, . . . , Xn is denoted by Xn.
T n
ε (X) denotes the set of sequences xn that are ε− typical with respect to PX(.) [11]. When PX(.) is clear from the context

we write T n
ε .

When X is a Bernoulli random variable with pX(0) = q, its entropy in bits is h2(q) = −q log2(q)−(1−q) log2(1−q). The pair
of random variables (X,Y ) is said to be a doubly symmetric binary source with parameter p if pXY (0, 0) = pXY (1, 1) =

1−p
2 ,

and pXY (0, 1) = pXY (1, 0) = p
2 . Throughout this paper, all logarithms are to the base 2. For a real number x, we denote

max(x, 0) by x+.
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Fig. 1: Problem setup.

B. Model
Consider the diamond network in Fig. 1. A source communicates a message W with nR bits to a sink. The source encodes

W into the sequence V n
1 , which is available at relay 1, and the sequence V n

2 , which is available at relay 2. V n
1 and V n

2 are
such that H(V n

1 ) ≤ nC1 and H(V n
2 ) ≤ nC2. Each relay i, i = 1, 2, maps its received sequence V n

i into a sequence Xn
i which

is sent over a MAC with transition probabilities p(y|x1, x2), for each x1 ∈ X1, x2 ∈ X2, y ∈ Y . From the received sequence
Y n, the sink decodes an estimate Ŵ of W .

A coding scheme consists of an encoder, two relay mappings, and a decoder, and is said to achieve the rate R if, by choosing
n sufficiently large, we can make the error probability Pr(Ŵ $= W ) as small as desired. We are interested in characterizing
the largest achievable rate R. We refer to the maximum achievable rate as the capacity C" of the network.

III. LOWER BOUND

Our coding scheme is based on [2], but we further send a common message to both relaying nodes. This is done by rate
splitting, superposition coding and Marton’s coding and is summarized in the following theorem.

Theorem 1. The rate R is achievable if it satisfies the following condition for some pmf p(u, x1, x2, y) = p(u, x1, x2)p(y|x1, x2),
and U ∈ U with |U| ≤ min{|X1||X2|+ 3, |Y|+ 4}.

R ≤ min























C1 + C2 − I(X1;X2|U),
C2 + I(X1;Y |X2U),
C1 + I(X2;Y |X1U),
1
2 (C1 + C2 + I(X1X2;Y |U)− I(X1;X2|U)),
I(X1X2;Y )























(1)

Remark 1. If U is a constant then the fourth bound in (1) is redundant as it is half the sum of the first and fifth bounds.
This shows that Theorem 1 without a U reduces to [2, Theorem 1]. U turns out to be useful for Gaussian MACS, as shown
in Fig. 3. Theorem 1 appeared in [12, Theorem 2] and also in [13, Theorem 2].

Remark 2. One could add a time-sharing random variable Q to (1). However, by combining Q with U , one can check that
Theorem 1 is at least as large as this region.

Sketch of proof:
a) Codebook construction: Fix the joint pmf p(u, x1, x2) and R12, R1, R2, R

′
1, R

′
2 ≥ 0. Let

R = R12 +R1 +R2. (2)

Generate 2nR12 sequences un(m12) independently, each in an i.i.d manner according to
∏

l PU (ul). For each sequence un(m12),
generate (i) 2n(R1+R′

1) sequences xn
1 (m12,m1,m

′
1), m1 = 1, . . . , 2nR1 , m′

1 = 1, . . . , 2nR
′

1 , conditionally independently, each
in an i.i.d manner according to

∏

l PX1|U (x1,l|ul(m12)) and (ii) 2n(R2+R′

2) sequences xn
2 (m12,m2,m

′
2), m2 = 1, . . . , 2nR2 ,

m′
2 = 1, . . . , 2nR

′

2 , conditionally independently, each in an i.i.d manner according to
∏

l PX2|U (x2,l|ul(m12)). For each bin
index (m12,m1,m2), pick a sequence pair (xn

1 (m12,m1,m
′
1), x

n
2 (m12,m2,m

′
2)) that is jointly typical.

b) Encoding: To communicate message W = (m12,m1,m2), communicate (m12,m1,m
′
1) to relay 1 and (m12,m2,m

′
2)

to relay 2; here (xn
1 (m12,m1,m

′
1), x

n
2 (m12,m2,m

′
2)) is the jointly typical pair picked in the bin indexed by (m12,m1,m2).

c) Decoding: Upon receiving yn, the receiver looks for indices m̂12, m̂1, m̂2 for which the following tuple is jointly
typical for some m̂′

1, m̂′
2:

(un(m̂12), x
n
1 (m̂12, m̂1, m̂

′
1), x

n
2 (m̂12, m̂2, m̂

′
2), y

n) ∈ T n
ε .
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d) Error Analysis: The error analysis is standard and is deferred to Appendix A. Eliminating R12, R1, R2, R
′
1, R

′
2 by

Fourier-Motzkin elimination, we arrive at Theorem 1. Cardinality bounds follow by using the standard method via the Fenchel-
Eggleston-Carathéodory theorem [11, Appendix C], [14, Appendix B].

Proposition 1. The lower bound of Theorem 1 is concave in C1, C2.

Proof: We prove the statement for C1 = C2 = C. The same argument holds in general. We express the lower bound of
Theorem 1 in terms of the following maximization problem.

f"(C) = max
p(u,x1,x2)

fp
" (C, p(u, x1, x2)) (3)

In this formulation, fp
" (C, p(u, x1, x2)) is the minimum term on the right hand side (RHS) of (1).

The proof is by contradiction. Suppose that the lower bound is not concave in C; i.e., there exist values C(1), C(2), and
α, 0 ≤ α ≤ 1, such that C# = αC(1) + (1 − α)C(2) and f"(C#) < αf"(C(1)) + (1 − α)f"(C(2)). Let p(1)(u, x1, x2) (resp.
p(2)(u, x1, x2)) be the pmf that maximizes fp

" (C
(1), p(u, x1, x2)) (resp. fp

" (C
(2), p(u, x1, x2))). Let pQ(1) = α, pQ(2) = 1−α,

and define pUX1X2|Q(u, x1, x2|1) = p(1)(u, x1, x2) and pUX1X2|Q(u, x1, x2|2) = p(2)(u, x1, x2). Then we have

f"(C
#)

< αf"(C
(1)) + (1− α)f"(C

(2))

≤ min























2C# − I(X1;X2|UQ),
C# + I(X1;Y |X2UQ),
C# + I(X2;Y |X1UQ),
1
2 (2C

# + I(X1X2;Y |UQ)− I(X1;X2|UQ)),
I(UX1X2;Y |Q)























≤ min























2C# − I(X1;X2|UQ),
C# + I(X1;Y |X2UQ),
C# + I(X2;Y |X1UQ),
1
2 (2C

# + I(X1X2;Y |UQ)− I(X1;X2|UQ)),
I(UX1X2;Y )























(4)

(a)
≤ f"(C

#). (5)

Step (a) follows by renaming (U,Q) a U and comparing (4) with the lower bound of Theorem 1.

IV. AN UPPER BOUND

The idea behind our upper bound is motivated by [3], [10]. The proposed bound applies not only to Gaussian channels, but
also to general discrete memoryless channels. It strictly improves the cut-set bound as we show via two examples. The cut-set
bound [15, Theorem 15.10.1] is given by the following Lemma.

Lemma 1 (Cut-Set Bound). The capacity C" satisfies

C" ≤ max
p(x1,x2)

min















C1 + C2,
C1 + I(X2;Y |X1),
C2 + I(X1;Y |X2),
I(X1X2;Y )















. (6)

The cut-set bound disregards the potential correlation between the inputs in the first term of (6). More precisely, we have

nR ≤ H(V n
1 , V n

2 )

= H(V n
1 ) +H(V n

1 )− I(V n
1 ;V n

2 )

≤ nC1 + nC2 − I(Xn
1 ;X

n
2 ). (7)

It is noted in [2] that optimizing the following n-letter characterization gives the capacity of the network when n→∞:

nR ≤ nC1 + nC2 − I(Xn
1 ;X

n
2 ) (8)

nR ≤ nC1 + I(Xn
2 ;Y

n|Xn
1 ) (9)

nR ≤ nC2 + I(Xn
1 ;Y

n|Xn
2 ) (10)

nR ≤ I(Xn
1 X

n
2 ;Y

n). (11)

But, infinite letter characterizations are usually non-computable and we would like to find computable bounds.
We prove the following upper bound.
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Theorem 2. The capacity C" satisfies

C" ≤ max
p(x1,x2)

min
p(u|x1,x2,y)=p(u|y)

min























C1 + C2,
C1 + I(X2;Y |X1),
C2 + I(X1;Y |X2),
I(X1X2;Y ),
1
2 (C1 + C2 + I(X1X2;Y |U) + I(X1;U |X2) + I(X2;U |X1))























. (12)

Remark 3. For a fixed auxiliary channel p(u|x1, x2, y) and a fixed MAC p(y|x1, x2), all RHS terms in (12) are concave in
p(x1, x2). See Appendix B.

Remark 4. The last term of the minimum in (12) may be written as

R ≤ 1

2
(C1 + C2 + I(X1X2;Y U)− I(X1;X2) + I(X1;X2|U)) . (13)

Since we choose p(u|x1, x2, y) = p(u|y), the bound (13) becomes

2R ≤ C1 + C2 + I(X1X2;Y )− I(X1;X2) + I(X1;X2|U). (14)

Proof of Theorem 2: It is observed in [3] that I(Xn
1 ;X

n
2 ) may be written in the following form for any integer n, and

any random sequence Un:

I(Xn
1 ;X

n
2 ) =I(Xn

1 X
n
2 ;U

n)− I(Xn
1 ;U

n|Xn
2 )− I(Xn

2 ;U
n|Xn

1 ) + I(Xn
1 ;X

n
2 |Un). (15)

Therefore, using (7) and the non-negativity of mutual information we have

nR ≤nC1 + nC2 − I(Xn
1 X

n
2 ;U

n) + I(Xn
1 ;U

n|Xn
2 ) + I(Xn

2 ;U
n|Xn

1 ). (16)

To see the usefulness of (16), we proceed as follows. First, note that

nR ≤ I(Xn
1 X

n
2 ;Y

n) ≤ I(Xn
1 X

n
2 ;Y

nUn). (17)

Combining inequalities (16) and (17), we have

2nR ≤nC1 + nC2 + I(Xn
1 X

n
2 ;Y

n|Un) + I(Xn
1 ;U

n|Xn
2 ) + I(Xn

2 ;U
n|Xn

1 ). (18)

Define Ui from X1i, X2i, Yi through the channel pU|X1X2Y (ui|x1i, x2i, yi), i = 1, 2, . . . , n. With this choice of Ui we have
the following chain of inequalities:

2nR ≤ nC1 + nC2 + I(Xn
1 X

n
2 ;Y

n|Un) + I(Xn
1 ;U

n|Xn
2 ) + I(Xn

2 ;U
n|Xn

1 )

= nC1 + nC2 +
n
∑

i=1

I(Xn
1 X

n
2 ;Yi|UnY i−1) +

n
∑

i=1

I(Xn
1 ;Ui|Xn

2 U
i−1) +

n
∑

i=1

I(Xn
2 ;Ui|Xn

1 U
i−1)

(a)
≤ nC1 + nC2 +

n
∑

i=1

I(X1iX2i;Yi|Ui) +
n
∑

i=1

I(X1i;Ui|X2i) +
n
∑

i=1

I(X2i;Ui|X1i)

≤ nC1 + nC2 + nI(X1I , X2I ;YI |UI) + nI(X1I ;UI |X2I) + nI(X2I ;UI |X1I), (19)

where I is a time-sharing random variable with pI(i) =
1
n

for all i = 1, . . . , n. Step (a) holds because of the following two
Markov chains:

(Xn
1 X

n
2 U

nY i−1)− (X1iX2iUi)− Yi (20)
(Xn

1 X
n
2 U

i−1)− (X1iX2i)− Ui. (21)

From here on, for simplicity we restrict the auxiliary channel to satisfy

pU|X1X2Y (u|x1, x2, y) = pU|Y (u|y), ∀x1 ∈ X1, x2 ∈ X2, u ∈ U , y ∈ Y.

This proves Theorem 2.
We now refine our bounding technique to derive a stronger upper bound in Theorem 3.

Theorem 3. The capacity C" satisfies

C" ≤ max
p(x1,x2)

min
p(u|x1,x2,y)=p(u|y)

max
p(q|x1,x2,y,u)=p(q|x1,x2)

min























C1 + C2,
C1 + I(X2;Y |X1Q),
C2 + I(X1;Y |X2Q),
I(X1X2;Y |Q),
C1 + C2 − I(X1X2;U |Q) + I(X2;U |X1Q) + I(X1;U |X2Q)























.

(22)
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Fig. 2: The associated FDG for Theorem 3 and n = 3. The random variables Z1, Z2, Z3 and Z ′
1, Z

′
2, Z

′
3 are appropriate noise

random variables with the distributions pZ(.) and pZ′(.), respectively.

Remark 5. In the above characterization, it suffices to consider |Q| ≤ |X1||X2|+ 3. See Appendix C.

Remark 6. The upper bound in (22) may be loosened by exchanging the order of the fist maximization and the second
minimization. In this case, it suffices to consider |Q| ≤ 4. See Remark 21 in Appendix C.

Remark 7. The last term of the minimum in (22) may be re-written as

C1 + C2 − I(X1;X2|Q) + I(X1;X2|UQ). (23)

Observe that the difference of mutual information terms in (23) also appears in the Hekstra-Willems dependence balance
bound [16].

Remark 8. The upper bound given in Theorem 3 is tighter than Theorem 2 (see Appendix D). We show through the examples
of Sections V and VI that Theorem 3 can strictly improve on Theorem 2.

Proof of Theorem 3: We start with the multi-letter bound in (8)-(11). We use the identity in (15) to expand inequality
(8) for any random sequence Un as follows:

nR ≤ nC1 + nC2 − I(Xn
1 ;X

n
2 )

= nC1 + nC2 − I(Xn
1 X

n
2 ;U

n) + I(Xn
2 ;U

n|Xn
1 ) + I(Xn

1 ;U
n|Xn

2 )− I(Xn
1 ;X

n
2 |Un). (24)

In particular, we choose Un to be such that each symbol Ui is the output of the channel pU|Y (ui|yi) with input yi, i = 1, . . . , n.
Thus, we have the functional dependence graph (FDG) depicted in Fig. 2. Furthermore, we have

nR
(a)
≤ nC1 + nC2 −

∑

i

[

I(X1iX2i;Ui|U i−1) + I(X2i;Ui|U i−1X1i) + I(X1i;Ui|U i−1X2i)
]

= nC1 + nC2 − nI(X1IX2I ;UI |U I−1I) + nI(X2I ;UI |U I−1X1II) + nI(X1I ;UI |U I−1X2II)
(b)
= nC1 + nC2 − nI(X1IX2I ;UI |Q) + nI(X2I ;UI |X1IQ) + nI(X1I ;UI |X2IQ). (25)

Step (a) follows because Ui−X1iX2iU
i−1−Xn

1 X
n
2 forms a Markov chain (see (21)). Step (b) follows by defining Q = U I−1I .

We single-letterize (9)-(11) next:

nR ≤ nC1 + I(Xn
2 ;Y

n|Xn
1 )

≤ nC1 +
n
∑

i=1

I(X2i;Yi|X1iY
i−1)

(a)
= nC1 +

n
∑

i=1

I(X2i;Yi|X1iY
i−1U i−1)

≤ nC1 +
n
∑

i=1

I(X2i;Yi|X1iU
i−1)

= nC1 + nI(X2I ;YI |X1IU
I−1I)

= nC1 + nI(X2I ;YI |X1IQ). (26)
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Step (a) follows because X1iX2iYi − Y i−1 − U i−1 forms a Markov chain. Similarly, we have

R ≤ C2 + I(X1I ;YI |X2IQ) (27)
R ≤ I(X1IX2I ;YI |Q). (28)

We further have

pX1IX2IYIUIQ(x1, x2, y, u, q) = pX1IX2I (x1, x2)pQ|X1IX2I
(q|x1, x2)pY |X1X2

(y|x1, x2)pU|Y (u|y). (29)

Renaming (X1I , X2I , YI , UI , Q) as (X1, X2, Y, U,Q) concludes the proof of Theorem 3.

Remark 9. Note that Q is defined based on U . That is, p(q|x1, x2) could be a function of p(u|y) and we cannot necessarily
change the order in which we minimize over p(u|y) and maximize over p(q|x1, x2).

V. THE GAUSSIAN MAC
The output of the Gaussian MAC is

Y = X1 +X2 + Z

where Z ∼ N (0, 1) and the transmitters have average block power constraints P1, P2; i.e., we have

1

n

n
∑

i=1

E(X2
1,i) ≤ P1 (30)

1

n

n
∑

i=1

E(X2
2,i) ≤ P2. (31)

When C1 = C2 = C and P1 = P2 = P , we call the network symmetric.
To find a lower bound on the maximum achievable rate, we use Theorem 1. We choose (U,X1, X2) to be jointly Gaussian

with zero mean and covariance matrix KUX1X2 . A special case is when U is null and (X1, X2) is jointly Gaussian with the
correlation coefficient ρ. The rates that satisfy the following constraints for some ρ, 0 ≤ ρ ≤ 1, are thus achievable.

R ≤C1 + C2 −
1

2
log

1

1− ρ2
(32)

R ≤C1 +
1

2
log
(

1 + P2

(

1− ρ2
))

(33)

R ≤C2 +
1

2
log
(

1 + P1

(

1− ρ2
))

(34)

R ≤1

2
log
(

1 + P1 + P2 + 2
√

P1P2ρ
)

(35)

This choice of (U,X1, X2) is not optimal in general. For example when C1 and C2 are large (i.e., C1, C2 > 1
2 log(1 + P1 +

P2 + 2
√
P1P2)), the rate

R =
1

2
log(1 + P1 + P2 + 2

√

P1P2)

is not achievable by (32)-(35) but is achievable by Theorem 1 if we choose (U,X1, X2) to be jointly Gaussian and such that
U√
P1

= X1√
P1

= X2√
P2
∼ N (0, 1). Theorem 1 therefore gives a strictly larger lower bound compared to [2, Theorem 1], [3,

Theorem 2]. More interestingly, in certain regimes of C1, C2 the optimal (U,X1, X2) is not jointly Gaussian.
Fig. 3 shows the lower bound as a function of C for a symmetric network with P = 1. The dotted curve in Fig. 3 shows

the rates achieved using the scheme of Section III with jointly Gaussian random variables (U,X1, X2) (see [3, Fig. 2] and
also [13, Fig. 4]). It is interesting that the obtained lower bound is not concave in C. This does not contradict Proposition 1
because Gaussian distributions are sub-optimal. The improved solid curve shows rates that are achievable using a mixture
of two Gaussian distributions. These rates are slightly larger than the rates achieved by time-sharing between two Gaussian
distributions with powers P1 = P2 = 1. If one permits both time-sharing and power control, then one achieves similar rates
as for mixture distributions.

Theorems 2 and 3 give upper bounds on the capacity. From Remark 8, Theorem 3 is stronger than Theorem 2. Nevertheless,
the bound in Theorem 2 is simpler to evaluate analytically because we can use the maximum entropy lemma to bound all
terms. We study both bounds for the Gaussian MAC.

First, we find an upper bound using Theorem 2. We choose U = Y + Z ′, where Z ′ is Gaussian noise with zero mean and
variance N (to be optimized later). The constrains in (12) are written as follows using maximum entropy lemmas:

R ≤ C1 + C2 (36)

R ≤ C1 +
1

2
log
(

1 + P2(1− ρ2)
)

(37)
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Fig. 3: Upper and lower bounds on R as functions of C for the Gaussian MAC with P1 = P2 = 1.

R ≤ C2 +
1

2
log
(

1 + P1(1− ρ2)
)

(38)

R ≤ 1

2
log
(

1 + P1 + P2 + 2ρ
√

P1P2

)

(39)

2R
(a)
≤ C1 + C2 +

1

2
log
(

1 + P1 + P2 + 2ρ
√

P1P2

)

+
1

2
log

(

(1 +N + P1(1− ρ2))(1 +N + P2(1− ρ2))

(1 +N + P1 + P2 + 2ρ
√
P1P2)(1 +N)

)

. (40)

To obtain inequality (a) above, write the last constraint of (12) as

2R ≤ C1 + C2 + h(Y |U)− h(Y U |X1X2) + h(U |X1) + h(U |X2)− h(U |X1X2). (41)

The negative terms are easy to calculate because of the Gaussian nature of the channel and the choice of U . The positive terms
are bounded from above using the conditional version of the maximum entropy lemma [17]. It remains to solve a max-min
problem (max over ρ and min over N ). So the rate R is achievable only if there exists some ρ ≥ 0 for which for every N ≥ 0
inequalities (36)-(40) hold.

We choose N to be (see [3, eqn. (21)])

N =

(

√

P1P2

(

1

ρ
− ρ

)

− 1

)+

. (42)

Let us first motivate this choice. From (14), the inequality in (40) is

2R ≤ C1 + C2 + I(X1X2;Y )− I(X1;X2) + I(X1;X2|U) (43)

evaluated for the joint Gaussian distribution p(x1, x2) with covariance matrix
[

P1 ρ
√
P1P2

ρ
√
P1P2 P2

]

. (44)

The choice (42) makes U satisfy the Markov chain X1 − U −X2 for the regime where
√

P1P2

(

1

ρ
− ρ

)

− 1 ≥ 0 (45)
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and thus minimizes the RHS of (43). Otherwise, we choose U = Y which results in a redundant bound. The resulting upper
bound is summarized in Corollary 1.

Corollary 1. Rate R is achievable only if there are ρ ≥ 0 such that

ρ ≤
√

1 +
1

4P1P2
−
√

1

4P1P2
, (46)

R ≤ C1 + C2 (47)

R ≤ C2 +
1

2
log
(

1 + P1(1− ρ2)
)

(48)

R ≤ C1 +
1

2
log
(

1 + P2(1− ρ2)
)

(49)

R ≤ 1

2
log
(

1 + P1 + P2 + 2ρ
√

P1P2

)

(50)

2R ≤ C1 + C2 +
1

2
log
(

1 + P1 + P2 + 2ρ
√

P1P2

)

− 1

2
log

(

1

1− ρ2

)

, (51)

or
√

1 +
1

4P1P2
−
√

1

4P1P2
≤ ρ ≤ 1, (52)

R ≤ C1 + C2 (53)

R ≤ C2 +
1

2
log
(

1 + P1(1− ρ2)
)

(54)

R ≤ C1 +
1

2
log
(

1 + P2(1− ρ2)
)

(55)

R ≤ 1

2
log
(

1 + P1 + P2 + 2ρ
√

P1P2

)

. (56)

The above upper bound is plotted in Fig. 3 for different values of C and for P = 1. For symmetric diamond networks,
we specify a regime of C for which the above upper bound meets the lower bound in Theorem 1 and thus characterizes the
capacity. This is summarized in Theorem 4 and its proof is deferred to Appendix E.

Theorem 4. For a symmetric Gaussian diamond network with orthogonal broadcast links, the upper bound in Theorem 2 is
tight if C ≤ 1

4 log(1 + 2P ), C ≥ 1
2 log(1 + 4P ), or

1

4
log

1 + 2P (1 + ρ(1))

1−
(

ρ(1)
)2 ≤ C ≤ 1

4
log

1 + 2P (1 + ρ(2))

1−
(

ρ(2)
)2 (57)

where

ρ(1) =
−(1 + 2P ) +

√

12P 2 + (1 + 2P )2

6P
(58)

ρ(2) =

√

1 +
1

4P 2
− 1

2P
. (59)

Remark 10. The ρ(1) given in (58) maximizes the RHS of (51). The ρ(2) given in (59) is the solution of (45) with equality.
Note that ρ(2) forms the RHS of (46) and the LHS of (52). In other words, for ρ ≤ ρ(2) one can find U as a degraded version
of Y such that X1 − U −X2 forms a Markov chain. This is not possible for ρ > ρ(2).

Remark 11. For C ≤ 1
4 log(1 + 2P ), the capacity is equal to 2C and is achieved by (32)-(35) with ρ = 0 (no cooperation

among the relays). In the regime (57), the capacity is given by (32)-(35) with partial cooperation among the relays. For
C ≥ 1

2 log(1 + 4P ), the capacity is equal to 1
2 log(1 + 4P ) and is achieved using Theorem 1 with X1 = X2 = U ∼ N (0, P )

(full cooperation among the relays).

Remark 12. The bound in Corollary 1 and the bound in [3, Theorem 1] are closely related. The bound in [3, Theorem 1] is
tighter than Corollary 1 in certain regimes of operation. We will see that Theorem 3 strengthens Corollary 1 and is in general
tighter than [3, Theorem 1].

Based on Theorem 4, the upper and lower bounds match in Fig. 3 (where P = 1) for C ≤ 0.3962, 0.4807 ≤ C ≤ 0.6942,
and C ≥ 1.1610. Theorem 3 tightens the above upper bound as we show next. We again choose U = Y + Z ′ where Z ′ is a
Gaussian random variable with zero mean and variance N (to be optimized). In contrast to Theorem 2, it is not clear whether
Gaussian distributions are optimal in Theorem 3. To compute the bound in Theorem 3, we proceed as follows.

The first four bounds of (22) may be loosened by dropping the time-sharing random variable Q and using the maximum
entropy lemma:
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R ≤ C1 + C2 (60)

R ≤ C1 + I(X2;Y |X1Q) ≤ C1 +
1

2
log
(

1 + P2

(

1− ρ2
))

(61)

R ≤ C2 + I(X1;Y |X2Q) ≤ C2 +
1

2
log
(

1 + P1

(

1− ρ2
))

(62)

R ≤ I(X1X2;Y |Q) ≤ 1

2
log
(

1 + P1 + P2 + 2
√

P1P2ρ
)

. (63)

To bound the last constraint in (22), we use both the entropy power inequality [15, Theorem 17.7.3] and the maximum entropy
lemma:

R ≤C1 + C2 − I(X1X2;U |Q) + I(X1;U |X2Q) + I(X2;U |X1Q)

=C1 + C2 − h(U |Q)− h(U |X1X2) + h(U |X2Q) + h(U |X1Q)

≤C1 + C2 − h(U |Q)− h(U |X1X2) + h(U |X2) + h(U |X1)
(a)
≤C1 + C2 −

1

2
log
(

2πeN + 22h(Y |Q)
)

− h(U |X1X2) + h(U |X2) + h(U |X1)

(b)
≤C1 + C2 −

1

2
log
(

2πeN + 22h(Y |Q)
)

− 1

2
log (2πe(1 +N))

+
1

2
log
(

2πe
(

1 +N + P1

(

1− ρ2
)))

+
1

2
log
(

2πe
(

1 +N + P2

(

1− ρ2
)))

(64)

where (a) holds by the entropy power inequality and (b) holds by the maximum entropy lemma. We now use R ≤ I(X1X2;Y |Q)
to write

h(Y |Q) =
1

2
log(2πe) + I(X1X2;Y |Q)

≥ 1

2
log(2πe) +R. (65)

From (64) and (65) we obtain

R ≤ C1 + C2 −
1

2
log
(

N + 22R
)

− 1

2
log (1 +N) +

1

2
log
(

1 +N + P1

(

1− ρ2
))

+
1

2
log
(

1 +N + P2

(

1− ρ2
))

. (66)

Remark 13. The above argument is similar to the argument used in [10], and it is also related to [18, Section X].

Remark 14. Expression (66) may be re-written as

R ≤ 1

2
log
−N +

√

N2 + 22(C1+C2+1) (1+N+P1(1−ρ2))(1+N+P2(1−ρ2))
1+N

2
. (67)

Recall that (67) holds for any value of N ≥ 0. We choose N as a function of ρ to minimize the RHS of (67). It remains to
maximize over ρ and find the maximum rate R admissible by (60)-(63), (67). We solve this optimization problem numerically
for the symmetric Gaussian network with P = 1, and plot the resulting upper bound in Fig. 3. Note that the upper bound of
Theorem 3 is strictly tighter than Theorem 2 for 0.3962 < C < 0.4807. Furthermore, from the numerical evaluation of the
bound, the upper bound of Theorem 3 is tight for C ≤ 0.6942 and C ≥ 1.1610. This is made precise for symmetric Gaussian
networks in the following theorem which we prove in Appendix F.

Theorem 5. For a symmetric Gaussian diamond network, the upper bound in Theorem 3 meets the lower bound in Theorem 1
for all C such that C ≥ 1

2 log(1 + 4P ), or

C ≤ 1

4
log

1 + 2P (1 + ρ(2))

1−
(

ρ(2)
)2 (68)

where

ρ(2) =

√

1 +
1

4P 2
− 1

2P
. (69)

Sketch of proof: The regime C ≥ 1
2 log(1 + 4P ) is addressed in Remark 11. We briefly outline the proof for the regime

in (68). Consider the lower bound in (32)-(35) and let R(l)
max be the maximum achievable rate. This lower bound meets the

cut-set bound (and is thus tight) unless (32) and (35) are both active in which case we have

R(l)
max = C1 + C2 −

1

2
log

1

1− λ2
=

1

2
log
(

1 + P1 + P2 + 2λ
√

P1P2

)

(70)
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where λ is the optimal correlation coefficient in (32)-(35). We show in Appendix F that the upper bound given by (60)-(63),
(66) meets the lower bound R

(l)
max when we have (70) and λ ≤ ρ(2). One can check for symmetric networks that λ ≤ ρ(2) if

and only if (68) is satisfied.
More generally, we have the following result for asymmetric networks. This is addressed in Remark 26 in Appendix F.

Theorem 6. The upper bound in Theorem 3 meets the lower bound in Theorem 1 if any of the following conditions hold:

C1 + C2 ≤
1

2
log

(

1 + P1 + P2 + 2ρ(2)
√
P1P2

1−
(

ρ(2)
)2

)

(71)

C1 ≤
1

2
log

(

1 + P1 + P2 + 2ρ0
√
P1P2

1 + P2(1− ρ20)

)

(72)

C2 ≤
1

2
log

(

1 + P1 + P2 + 2ρ0
√
P1P2

1 + P1(1− ρ20)

)

(73)

min(C1, C2) ≥
1

2
log
(

1 + P1 + P2 + 2
√

P1P2

)

(74)

where ρ(2) is given by (69) and ρ0 is given by

ρ0 =
−
√
P1P2 +

√

P1P2 + 22(C1+C2)
(

22(C1+C2) − 1− P1 − P2

)

22(C1+C2)
.

Remark 15. ρ0 is defined such that C1 +C2 = 1
2 log

(

1+P1+P2+2ρ0
√
P1P2

1−ρ2
0

)

. Note that we have ρ0 ≤ ρ(2) if and only if (71)
is satisfied. In defining ρ0, we have implicitly assumed that C1 +C2 ≥ 1

2 log (1 + P1 + P2); this is without loss of generality
because otherwise C1, C2 are in the regime defined by (71).

Remark 16. In the regime (74), the cut-set bound is achievable using Theorem 1 with U√
P1

= X1√
P1

= X2√
P2
∼ N (0, 1) and the

lower bound in (32)-(35) is loose.

Remark 17. Theorem 6 reduces to Theorem 5 when P1 = P2 = P and C1 = C2 = C.

Remark 18. Theorem 3 is strictly tighter than [3, Theorem 1] and [13, Theorem 1]. The regime of interest is given by (70)
because otherwise both upper bounds reduce to the cut-set bound which is tight. First suppose λ > ρ(2). In this case, [3,
Theorem 1] reduces to the cut-set bound and is larger than or equal to the upper bound of Theorem 3. Next suppose λ ≤ ρ(2).
Here, the upper bound given by (60)-(63), (66) can be shown to be equal to R

(l)
max and is thus tight but [3, Theorem 1] may

not be tight, see [13, Theorem 3]. For example, when P1 = P2 = 0.25 and C1 = C2 = 0.15 Theorem 3 gives C" ≤ .2994
(which is tight) whereas [3, Theorem 1] gives C" ≤ 0.3. The looseness of [3, Theorem 1] in comparison to our result seems
to be due to the relaxation of [3, eqn. (28)] in the final theorem statement of [3, Theorem 1].

VI. THE BINARY ADDER CHANNEL

Consider the binary adder channel defined by X1 = {0, 1}, X2 = {0, 1}, Y = {0, 1, 2}, and Y = X1+X2. Suppose without
loss of generality that C1 ≤ C2. When C1 = C2 = C, we call the network symmetric. The best known upper bound for this
channel is the cut-set bound and the best known lower bound is given by [2, Theorem 1]. More precisely, using a doubly
symmetric input distribution, R is achievable if it satisfies the following inequalities for some p, 0 ≤ p ≤ 1.

R ≤ C1 + C2 − 1 + h2(p) (75)
R ≤ C1 + h2(p) (76)
R ≤ h2(p) + 1− p (77)

This lower bound is a special case of Theorem 1 with U a constant. The bound is plotted in Fig. 4 as a function of C for
symmetric networks where C1 = C2 = C.

We evaluate Theorems 2 and 3 to derive new upper bounds on the achievable rate. The obtained upper bounds are plotted
in Fig. 4. It turns out that the upper bound of Theorem 3 meets the lower bound for all ranges of C. Theorem 3 is better than
Theorem 2, but Theorem 2 is simpler to analyze and gives capacity for C ≤ 0.75 and C ≥ .7929.

Consider first Theorem 2. Let p(u|y) be a symmetric channel as shown in Fig. 5 with parameter α, α ≤ 1
2 , to be optimized.

From Theorem 2, we must solve a max-min problem (max over p(x1, x2), min over α). For a fixed α, the upper bound is
concave in p(x1, x2) (see Remark 3). The concavity together with the symmetry of the problem and the auxiliary channel in
p(x1, x2) imply the following lemma. We defer the proof to Appendix G.

Lemma 2. An optimizing pmf p(x1, x2) in (12) is that of a doubly symmetric binary source.
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Fig. 4: Upper and lower bounds on R as functions of C for the binary adder MAC.

So suppose p(x1, x2) is a doubly symmetric binary source with parameter p. The upper bound in Theorem 2 with p(u|y)
in Fig. 5 reduces to

max
0≤p≤ 1

2

min
0≤α≤ 1

2

min















C1 + C2,
C1 + h2(p),
h2(p) + 1− p,
C1+C2

2 + h2(p)− p
2 + 1

2I(X1;X2|U)















(78)

where the last term of (78) is written using (14), and where the range of p is [0, 12 ]. Note that α is implicit in I(X1;X2|U):

I(X1;X2|U) = 2h2

(

α &
p

2

)

− (1 − p)h2(α)− h2(p)− p. (79)

Here the & operator is defined by α & β = α(1 − β) + β(1 − α), β ≤ 1. To obtain the best bound, we choose U such that
X1 − U −X2 forms a Markov chain. This requires

α(1 − α) =

(

p

2(1− p)

)2

(80)

which has a solution for α because p ≤ 1
2 .

Corollary 2. Rate R is achievable only if there is some p, 0 ≤ p ≤ 1
2 , such that

R ≤ C1 + C2 (81)
R ≤ C1 + h2(p) (82)
R ≤ h2(p) + 1− p (83)

R ≤ C1 + C2

2
+ h2(p)−

p

2
. (84)

We compare Corollary 2 with the lower bound in (75)-(77) for symmetric networks and find the capacity for some ranges
of C. This is summarized in Theorem 7 and the proof is deferred to Appendix H.
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Fig. 6: The auxiliary channel p(u|y) as the cascade of p(ỹ|y) and p(u|ỹ) for the binary adder MAC.

Theorem 7. The upper bound in Theorem 2 meets the lower bound in Theorem 1 for the symmetric diamond network with a
binary adder channel if C ≤ .75 or

C ≥ 1− p(1)

2
≈ 0.7929 (85)

where p(1) = 1
1+

√
2
≈ 0.4142.

In the rest of this section, we show that Theorem 3 gives the capacity of the diamond network with a binary adder MAC
for all ranges of C1, C2. We first state a generalization of Mrs. Gerber’s Lemma [19] that we prove in Appendix J. For other
generalizations, please see [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]. Our generalization is different than previous
ones in that it establishes the convexity of a difference of entropies, rather than an individual entropy. In this sense, Lemma 3
seems similar to an extension [30] of Shannon’s entropy power inequality [31].

Lemma 3 (Generalization of Mrs. Gerber’s Lemma). The function

g(x, y) = h2

(

α &

(

y

2
+ (1− y)h−1

2

(

(x − h2(y))+

1− y

)))

− h2

(

α &
y

2

)

(86)

is jointly convex in x and y, 0 ≤ x ≤ 1 + h2(y)− y, 0 ≤ y ≤ 1. We recover Mrs. Gerber’s Lemma by choosing y = 0.

Theorem 8. The upper bound of Theorem 3 matches the lower bound of Theorem 1; i.e., the capacity C" of diamond networks
with binary adder MACs and C1 ≤ C2 is

C" = max
0≤p≤ 1

2

min







C1 + C2 − 1 + h2(p)
C1 + h2(p)
h2(p) + 1− p.

(87)

Proof: We again use the auxiliary channel p(u|y) depicted in Fig. 5. This channel may be viewed as the cascade of the
channels p(ỹ|y) and p(u|ỹ) shown in Fig. 6, where p(u|ỹ) is a BSC with cross over probability α. Define pi, qi, i ∈ Q, and
q by

pi = pY |Q(0|i) (88)
qi = pY |Q(1|i) (89)
q = pY (1). (90)
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The first four terms of (22) may be loosened by dropping the time sharing random variable Q. We use the symmetry and
concavity of those terms in p(x1, x2) to write

R ≤ C1 + C2 (91)
R ≤ C1 + h2(q) (92)
R ≤ h2(q) + 1− q. (93)

It remains to bound the last term of (22):

R ≤C1 + C2 − I(X1X2;U |Q) + I(X2;U |X1Q) + I(X1;U |X2Q)

=C1 + C2 −H(U |Q)−H(U |X1X2) +H(U |X1Q) +H(U |X2Q). (94)

We optimize the RHS of (94) under the constraint

R ≤ I(X1X2;Y |Q) = H(Y |Q) (95)

that is imposed by the fourth term of (22). We have H(U |X1X2) = (1−q)h2(α)+q and can upper bound both H(U |X1Q = i)
and H(U |X1Q = i) by

h2

(

α &
qi
2

)

by the concavity of h2(.) and symmetry of pU|Y (see Appendix I). But how to bound (94) from above is not obvious because
H(U |Q) appears with a negative sign. We start with

H(U |Q = i) = h2

(

α &
(qi
2
+ pi

))

(96)

H(Y |Q = i) = h2(qi) + (1− qi)h2

(

pi
1− qi

)

. (97)

Note that both (96) and (97) are symmetric in pi with respect to 1−qi
2 . We may therefore choose pi ≤ 1−qi

2 , find pi from (97)
and insert it into (96) to obtain

H(U |Q = i) = h2

(

α &

(

qi
2
+ (1 − qi)h

−1
2

(

H(Y |Q = i)− h2(qi)

1− qi

)))

. (98)

Combining the above bounds and inserting in (94), we have

R ≤C1 + C2 +

|Q|
∑

i=1

pQ(i)

(

−h2

(

α &

(

qi
2
+ (1 − qi)h

−1
2

(

H(Y |Q= i)−h2(qi)

1− qi

)))

− (1− qi)h2(α) − qi + 2h2

(

α &
qi
2

)

)

(a)
≤C1 + C2 − h2

(

α &

(

q

2
+ (1 − q)h−1

2

(

(H(Y |Q)− h2(q))
+

1− q

)))

− (1− q)h2(α) − q + 2h2

(

α &
q

2

)

(b)
≤C1 + C2 − h2

(

α &

(

q

2
+ (1 − q)h−1

2

(

min

(

1,
(R− h2(q))

+

1− q

))))

− (1− q)h2(α) − q + 2h2

(

α &
q

2

)

(99)

where (a) follows by concavity of the binary entropy function and Lemma 3, and (b) follows from (95) because h2(α &
(

q
2 + (1− q)h−1

2 (x)
)

) is non-decreasing in x for α ≤ 1
2 . Choosing α appropriately, we show in Appendix K that the upper

bound in (91)-(93) and (99) matches the lower bound in (75)-(77).

Remark 19. One may use Mrs. Gerber’s lemma [19] to obtain

H(U |Q) ≥h2

(

α & h−1
2

(

H(Ỹ |Q)
))

≥h2

(

α & h−1
2

(

min
(

1, (R− h2(q) + q)+
)))

(100)

where the second inequality follows by

R ≤ I(X1X2;Y |Q)

= I(X1X2;Y Ỹ |Q)

= H(Ỹ |Q) +H(Y |Ỹ Q)−H(Ỹ |X1X2)

≤ H(Ỹ |Q) + h2(q)− q (101)

and the monotonicity of h2(α & h−1
2 (x)) in x. This approach gives an upper bound that is tight when C1 +C2 ≥ 1.5317 (and

when C1 +C2 ≤ 1.5). The range of symmetric bit-pipe capacities C for which Mrs. Gerber’s lemma is tight is shown in Fig.
4. In fact, Mrs. Gerber’s lemma is within less than 10−3 bits of capacity for all C in Fig. 4.
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VII. CONCLUSION

We studied diamond networks with an orthogonal broadcast channel and found new upper and lower bounds on their
capacities. The lower bound is based on Marton’s coding technique and superposition coding. We showed through an example
with a Gaussian MAC that the new lower bound strictly improves the previous bounds in [2], [3], [13]. The proof technique
for the upper bound generalizes bounding techniques of Ozarow [10] and Kang and Liu [3] and applies to discrete memoryless
MACs. We specialized the upper bound for networks with a Gaussian MAC and a binary adder MAC. We strengthened the
results of Kang and Liu [3], [13] for Gaussian MACs and found the capacity for binary adder MACs.

APPENDIX A
ERROR PROBABILITY ANALYSIS FOR SECTION III

We give a proof for discrete alphabet MACs. A proof for the AWGN MAC follows in the usual way be quantizing alphabets
and taking limits [11, Page 50]. We calculate the average error probability Pe, averaged over the codebook and the message
set, and show that Pe approaches zero, as n gets large, if we have

R′
1 +R′

2 > I(X1;X2|U) (102)
R12 +R1 +R′

1 < C1 (103)
R12 +R2 +R′

2 < C2 (104)
R12 +R1 +R′

1 +R2 +R′
2 < I(X1X2;Y ) + I(X1;X2|U) (105)

R1 +R′
1 +R2 +R′

2 < I(X1X2;Y |U) + I(X1;X2|U) (106)
R2 +R′

2 < I(X2;Y |X1, U) + I(X1;X2|U) (107)
R1 +R′

1 < I(X1;Y |X2, U) + I(X1;X2|U). (108)

Conditions (102)-(108), together with R′
1, R

′
2, R1, R2, R12 ≥ 0 and the rate-splitting condition in (2), characterize an achievable

rate. By the symmetry of the codebook construction and the encoding/decoding scheme, we have

Pe = Pr
(

(M12,M1,M2) $= (M̂12, M̂1, M̂2)
)

= Pr
(

(M12,M1,M2) $= (M̂12, M̂1, M̂2)|(M12,M1,M2) = (1, 1, 1)
)

. (109)

Conditioned on (M12,M1,M2) = (1, 1, 1), an error occurs only if one of the following events occurs:
• E1: There is no index pair (m′

1,m
′
2) such that (Un(1), Xn

1 (1, 1, m̂
′
1), X

n
2 (1, 1, m̂

′
2), Y

n) ∈ T n
ε .

• E2: There are m̃12, m̃1, m̃2, m̃
′
1, m̃

′
2 such that (m̃12, m̃1, m̃2) $= (1, 1, 1) and

(Un(m̃12), X
n
1 (m̃12, m̃1, m̃

′
1), X

n
2 (m̃12, m̃2, m̃

′
2), Y

n) ∈ T n
ε .

We have

Pe ≤ Pr(E1|(M12,M1,M2) = (1, 1, 1)) + Pr(E2|(M12,M1,M2) = (1, 1, 1))

= Pr(E1) + Pr(E2). (110)

Using the Mutual Covering lemma [11, Lemma 8.1], Pr(E1) can be made small for large n if (102) is satisfied. To analyze
Pr(E2), consider the following partition of E2:

• m̃12 $= 1
• m̃12 = 1, m̃1 $= 1, m̃2 $= 1
• m̃12 = 1, m̃1 = 1, m̃2 $= 1
• m̃12 = 1, m̃1 $= 1, m̃2 = 1.
The first case has a small error probability, for large n, if (105) is satisfied. Similarly, the second, third, fourth cases have

small error probabilities, for large n, if (106), (107), (108) are satisfied, respectively. We illustrate the analysis for the second
case here:

Pr





⋃

m̃1 &=1,m̃2 &=1,m̃′

1,m̃
′

2

(Un(1), Xn
1 (1, m̃1, m̃

′
1), X

n
2 (1, m̃2, m̃

′
2), Y

n) ∈ T n
ε





≤
∑

m̃1 &=1,m̃2 &=1,m̃′

1,m̃
′

2

Pr ((Un(1), Xn
1 (1, m̃1, m̃

′
1), X

n
2 (1, m̃2, m̃

′
2), Y

n) ∈ T n
ε )

≤ 2n(R1+R′

1+R2+R′

2)
∑

(un,xn
1 ,x

n
2 ,y

n)∈Tε

p(un)p(xn
1 |un)p(xn

2 |un)p(yn|un)

≤ 2n(R1+R′

1+R2+R′

2)2n(H(UX1X2Y )+εH(UX1X2Y ))
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× 2−n(H(U)−εH(U))2−n(H(X1|U)−εH(X1|U))2−n(H(X2|U)−εH(X2|U))2−n(H(Y |U)−εH(Y |U))

= 2n(R1+R′

1+R2+R′

2)2−n(I(X1X2;Y |U)+I(X1;X2|U)−δ(ε)) (111)

where δ(ε)→ 0 as ε→ 0. For rates that satisfy (106), the RHS in (111) approaches zero as n grows large.

APPENDIX B
CONCAVITY IN p(x1, x2)

Consider (12) and

I(X1;Y |X2) = H(Y |X2)−H(Y |X1X2). (112)

H(Y |X2) is a concave function of p(x2, y) which is a linear function of p(x1, x2). H(Y |X1X2) is a linear function of p(x1, x2).
So I(X1;Y |X2) is concave in p(x1, x2). A similar result holds for I(X2;Y |X1) and I(X1, X2;Y ) when p(y|x1, x2) is fixed.

Finally, consider the last RHS term in (12) when p(y|x1, x2) and p(u|x1, x2, y) are fixed. We have

I(X1X2;Y |U) + I(X1;U |X2) + I(X2;U |X1) (113)
= H(Y |U)−H(Y U |X1X2) +H(U |X2) + I(X2;U |X1).

H(Y |U) is concave in p(u, y), H(Y U |X1X2) is linear in p(x1, x2), H(U |X2) is concave in p(u, x2) and I(X2;U |X2) is
concave in p(x1, x2). Since p(u, y) and p(u, x2) are both linear in p(x1, x2), (113) is concave in p(x1, x2).

APPENDIX C
CARDINALITY BOUND FOR THEOREM 3

We follow the line of argument in [14, Appendix B]. Denote by P the set of all probability vectors p(x1, x2) and let P be an el-
ement of P . Suppose that R is such that for a certain distribution p0(x1, x2, u, y, q) = p0(x1, x2)p#(y|x1, x2)p#(u|y)p0(q|x1x2)
the following inequalities hold:

R ≤ C1 + I0(X2;Y |X1Q), (114)
R ≤ C2 + I0(X1;Y |X2Q), (115)
R ≤ I0(X1X2;Y |Q), (116)
R ≤ C1 + C2 − I0(X1X2;U |Q) + I0(X2;U |X1Q) + I0(X1;U |X2Q) (117)

In the above inequalities, the index 0 on the mutual information terms emphasizes that the mutual information is evaluated for
p0(x1, x2, u, y, q). We now interpret p0(x1, x2|q) for every q ∈ Q as an element P q

0 of P with a corresponding probability
p0(q). Consider the following continuous functions that map an element of P into an element of R.

fx1,x2(P ) = Pr
P
{X1 = x1, X2 = x2}, ∀(x1, x2) ∈ X1 × X2 except one (118)

fI(P ) = IP (X2;Y |X1), (119)
fII(P ) = IP (X1;Y |X2), (120)
fIII(P ) = IP (X1X2;Y ), (121)
fIV (P ) = −IP (X1X2;U) + IP (X2;U |X1) + IP (X1;U |X2) (122)

We are interested in the following terms.

p0(x1, x2) =
∑

q∈Q

fx1,x2(P
q
0 )p0(q), ∀(x1, x2) ∈ X1 × X2 except one (123)

I0(X2;Y |X1Q) =
∑

q∈Q

fI(P
q
0 )p0(q), (124)

I0(X1;Y |X2Q) =
∑

q∈Q

fII(P
q
0 )p0(q), (125)

I0(X1X2;Y |Q) =
∑

q∈Q

fIII(P
q
0 )p0(q), (126)

− I0(X1X2;U |Q) + I0(X2;U |X1Q) + I0(X1;U |X2Q) =
∑

q∈Q

fIV (P
q
0 )p0(q) (127)

The Fenchel-Eggleston-Carathéodory theorem [11, Appendix A] ensures that there are |X1||X2| + 3 vectors Pk ∈ P , k =
1, . . . , |X1||X2|+3, whose convex combination gives (123)-(127). In other words, we may restrict attention to |Q| ≤ |X1||X2|+3.
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Remark 20. We need to keep p(x1, x2) fixed because p#(u|y) can be a function of p(x1, x2) and we don’t want to change
p#(u|y).

Remark 21. If p#(u|y) is fixed (and not a function of p(x1, x2)), then it suffices to have |Q| ≤ 4 because we must fix only
(119)-(122).

APPENDIX D
THEOREM 3 IS TIGHTER THAN THEOREM 2

Let R be less than or equal to the upper bound of Theorem 3. Therefore, there is a p(x1, x2) for which for all p(u|x1, x2, y) =
p(u|y) there is a p(q|x1, x2, y, u) = p(q|x1, x2) such that the constraints in (22) hold. Combining the last two bounds in (22),
we obtain

2R ≤ C1 + C2 + I(X1X2;Y |Q)− I(X1X2;U |Q) + I(X1;U |X2Q) + I(X2;U |X1Q)

= C1 + C2 + I(X1X2;Y |UQ) + I(X1;U |X2Q) + I(X2;U |X1Q)

≤ C1 + C2 + I(X1X2;Y |U) + I(X1;U |X2) + I(X2;U |X1). (128)

Furthermore, we have

I(X2;Y |X1Q) ≤ I(X2;Y |X1) (129)
I(X1;Y |X2Q) ≤ I(X1;Y |X2) (130)
I(X1X2;Y |Q) ≤ I(X1X2;Y ). (131)

APPENDIX E
PROOF OF THEOREM 4

Consider first the regime
C ≤ 1

4
log(1 + 2P ).

The lower bound of Theorem 1 meets the upper bound of Corollary 1 for U = φ, X1 ∼ N (0, P ), X2 ∼ N (0, P ) , and X1

independent of X2. Consider next
C ≥ 1

2
log(1 + 4P ).

The lower bound of Theorem 1 meets the upper bound of Corollary 1 for X1 = X2 = U ∼ N (0, P ).
The more interesting regime of C is given in (57). Consider the upper bound in Corollary 1 and define the functions

f1(C) = 2C
f2(C, ρ) = C + 1

2 log
(

1 + P (1− ρ2)
)

f3(ρ) = 1
2 log (1 + 2P (1 + ρ))

f4(C, ρ) =
1
2

(

2C + 1
2 log (1 + 2P (1 + ρ))− 1

2 log
(

1
1−ρ2

))

f ′
4(C, ρ) =

{

f4(C, ρ) ρ ≤ ρ(2)

f2(C, ρ) ρ > ρ(2).

(132)

The functions f1(C), f2(C, ρ), f3(ρ), f ′
4(C, ρ) are plotted in Fig. 7 for different values of C (where C increases from Fig. 7a

to Fig. 7c).

Remark 22. For symmetric diamond networks, one can check that f4(C, ρ) ≤ f2(C, ρ) for all 0 ≤ ρ ≤ 1. Recall from
Corollary 1 that f4(C, ρ) is not limiting for ρ > ρ(2). This is reflected in the definition of f ′

4(C, ρ). So we can write the upper
bound of Corollary 1 as

max
ρ

min{f1(C), f3(ρ), f
′
4(C, ρ)}. (133)

Remark 23. The function f4(C, ρ) is concave in ρ and it attains its maximum at ρ(1) given in (58). f2(C, ρ) is concave and
decreasing in ρ. One can check by substitution and differentiation that f ′

4(C, ρ) is continuous and differentiable with respect
to ρ at ρ = ρ(2). Furthermore, f ′

4(C, ρ) is concave and attains its maximum at ρ(1). The derivative of f ′
4(C, ρ) is non-positive

at ρ(2) and thus we have ρ(1) ≤ ρ(2).

Remark 24. In the regime 1
4 log(1 + 2P ) < C < 1

2 log(1 + 4P ) the functions f3(ρ) and f ′
4(C, ρ) have exactly one point ρ

where f3(ρ) = f ′
4(C, ρ). To see this we study the zeros of the function g(C, ρ) = f3(ρ)− f ′

4(C, ρ). Since C > 1
4 log(1 + 2P ),

we have g(C, 0) < 0. Since C < 1
2 log(1 + 4P ), we have g(C, 1) > 0. Furthermore, we have

∂g

∂ρ
(C, ρ) =

∂f3
∂ρ

(ρ)− ∂f ′
4

∂ρ
(C, ρ) > 0, ∀ρ ∈ [0, 1] (134)
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Fig. 7: The functions in (132) for different values of C where C increases from Fig. 7a to Fig. 7c. Note the range of the
R−axis in Fig. 7c.

and thus g(C, ρ) is increasing in ρ. So g(C, ρ) has exactly one zero.

Remark 25. In the regime

2C ≤ f ′
4(C, ρ

(1)) (135)

we have

f3(ρ
(1)) =

1

2
log
(

1 + 2P (1 + ρ(1))
)

≥ 1

2
log
(

1 + 2P (1 + ρ(1))
)

− 1

2
log

(

1

1−
(

ρ(1)
)2

)

= 2f ′
4(C, ρ

(1))− 2C

≥f ′
4(C, ρ

(1)). (136)

Inequality (136) follows by (135). The implication is that f3(ρ) is not “limiting” in (133) for the the regime given by (135).

Fix the value of C. Define ρ# to be the optimal correlation coefficient in Corollary 1 and let Rmax be the maximum value
it attains. We have one of the following cases.
(a) ρ# is such that Rmax = f1(C).
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(b) ρ# is the unique ρ that maximizes f ′
4(C, ρ) and Rmax = f ′

4(C, ρ
(1)).

(c) ρ# is such that Rmax = f3(ρ#).
When C = 0, we are in case (a). As C increases, f3(ρ) remains unchanged but f1(C) and f ′

4(C, ρ) increase. We remain
in case (a) as long as 2C ≤ f ′

4(C, ρ
(1)). This is illustrated in Fig. 7a. We then transit to case (b) where Rmax = f ′

4(C, ρ
(1)),

see Fig. 7b. To see this, keep increasing C until 2C = f ′
4(C, ρ

(1)). At this point, we are about to leave case (a), and we still
have f3(ρ(1)) ≥ f ′

4(C, ρ
(1)) (see Remark 25). Moreover, f ′

4(C, ρ) is decreasing in ρ for ρ > ρ(1), and f3(ρ) is increasing in
ρ. So the crossing point of the two curves should be at or before ρ(1). As C further increases, ρ# remains equal to ρ(1) until
f3(ρ(1)) = f ′

4(C, ρ
(1)). From that point on, we have

C ≥ 1

4
log

1 + 2P
(

1 + ρ(1)
)

1− ρ(1)
2 (137)

and we move into case (c). In this case, ρ# is such that Rmax = f3(ρ#) = f ′
4(C, ρ

#) (see Fig. 7c). We note that as C increases,
so does ρ#. We thus have ρ# ≤ ρ(2) if

C ≤ 1

4
log

1 + 2P
(

1 + ρ(2)
)

1− ρ(2)
2 . (138)

In this regime, besides the bounds (47)-(50), we have

Rmax = f3(ρ
#)

= 2f ′
4(C, ρ

#)− f3(ρ
#)

=

{

2C − 1
2 log

(

1
1−ρ"2

)

ρ# ≤ ρ(2)

2f2(C, ρ#)− f3(ρ#) ρ# > ρ(2)
. (139)

Therefore, when C satisfies (137) and (138) the upper bound meets the lower bound of (32)-(35).

APPENDIX F
PROOF OF THEOREM 5

Consider (66) and suppose C" is the capacity of the network. For symmetric networks, we thus have

C" ≤2C − 1

2
log
(

N + 22C
"
)

− 1

2
log (1 +N) + log

(

1 +N + P
(

1− ρ2
))

(a)
≤2C − 1

2
log
(

N + 22R
(l)
max

)

− 1

2
log (1 +N) + log

(

1 +N + P
(

1− ρ2
))

(140)

where R
(l)
max is the maximum admissible rate in the lower bound of (32)-(35). Note that (a) holds because R

(l)
max ≤ C". The

upper bound of Theorem 3 is thus loosened to:

R(u)
max = max

0≤ρ≤1
min
N

min {f1(C), f2(C, ρ), f3(ρ), f5(C, ρ, N)} (141)

where f1, f2, f3 are defined in (132) and f5(C, ρ, N) is the RHS of (140). Furthermore, define

f0(C, ρ) = 2C − 1

2
log

(

1

1− ρ2

)

(142)

so that we have

R(l)
max = max

0≤ρ≤1
min {f0(C, ρ), f2(C, ρ), f3(ρ)} . (143)

We shall prove that (143) is equal to (141) for the range of C given in (68). We start with (143). Fix C and let λ be the
optimizing correlation coefficient. The functions f0(C, ρ) and f2(C, ρ) are decreasing in ρ and f3(ρ) is increasing in ρ. So
depending on how f3(0) compares with min(f0(C, 0), f2(C, 0)) we have the following cases for λ:

• If 2C ≤ 1
2 log(1 + 2P ), then we have λ = 0 and R = 2C is achievable using independent Gaussian random variables

X1, X2 with zero mean and variance P .
• If 2C > 1

2 log(1 + 2P ), then λ is such that either R(l)
max = f3(λ) = f2(C,λ) (where the cut-set bound is achievable) or

R
(l)
max = f3(λ) = f0(C,λ). We show that in the latter case R

(l)
max and R

(u)
max are equal if (68) is satisfied.

Suppose λ is such that

R(l)
max = f3(λ) = f0(C,λ). (144)
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Fig. 8: Several functions of ρ. At ρ = λ, the curves f0(C, ρ), f3(ρ), and f5(C, ρ, Nλ) all have the same value.

Here λ is defined by the crossing point of f3(ρ) and f0(C, ρ) and is such that

C =
1

4
log

(

1 + 2P (1 + λ)

1− λ2

)

. (145)

The RHS of (145) is an increasing function of λ and thus we have λ ≤ ρ(2) if and only if (68) is satisfied.
Next consider (141) in the regime of C given by (68). First note that for a fixed N , f5(C, ρ, N) is decreasing in ρ. Let

Nλ = P

(

1

λ
− λ

)

− 1. (146)

Since λ ≤ ρ(2), we have Nλ ≥ 0 and the upper bound may be written as follows:

R ≤f5(C, ρ, Nλ)

=2C − 1

2
log
(

Nλ + 22R
(l)
max

)

− 1

2
log (1 +Nλ) + log

(

1 +Nλ + P
(

1− ρ2
))

(a)
=2C − 1

2
log (1 +Nλ + 2P (1 + λ)) − 1

2
log (1 +Nλ) + log

(

1 +Nλ + P
(

1− ρ2
))

(147)

where (a) holds by (144). The RHS of (147), evaluated for ρ = λ, is given by

f5(C,λ, Nλ) = 2C − 1

2
log

(

1

1− λ2

)

= f0(C,λ).

This follows by the argument in (42)-(45). We conclude that f5(C, ρ, Nλ) is equal to f0(C,λ) = f3(λ) at ρ = λ. Since
f5(C, ρ, Nλ) is decreasing in ρ, λ is the optimal ρ# in (141) too. This is illustrated in Fig. 8. So in the regime characterized
by (68) the upper bound is equal to R

(l)
max and is thus achievable.

Remark 26. A similar result can be established for asymmetric networks. Let f0(C1, C2, ρ) and f3(ρ) be the RHSs of (32)
and (35), respectively. Define λ to be the optimizing correlation coefficient in (32)-(35) and R

(l)
max as the maximum achievable

rate. One can check that R(l)
max is equal to the cut-set bound if C1, C2 satisfy C1 + C2 ≤ 1

2 log (1 + P1 + P2), or if (72) or
(73) are satisfied. The cut-set bound may not be achievable by (32)-(35) when we have

R(l)
max = f3(λ) = f0(C1, C2,λ). (148)

For C1, C2 where (71) is satisfied, we have

λ ≤ ρ(2). (149)

Therefore, following the steps in (146)-(147), we have a matching upper bound based on Theorem 3 (in the form of (141)
but written for general C1, C2). Finally, for C1, C2 that satisfy (74) the cut-set bound is achievable using Theorem 1 with
U√
P1

= X1√
P1

= X2√
P2
∼ N (0, 1).
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APPENDIX G
PROOF OF LEMMA 2

Consider the following optimization problem:

max
p(x1,x2)

min
p(u|y)

min























2C
C + I(X2;Y |X1)
C + I(X1;Y |X2)
I(X1X2;Y )
1
2 (2C + I(X1X2;Y |U) + I(X1;U |X2) + I(X2;U |X1))























. (150)

We first note that the objective function in (150) is symmetric in p(x1, x2) (when p(u|y) is given by the channel in Fig. 5).
More precisely, for every pmf p(x1, x2), the pmf p̄(x1, x2) with p̄(0, 0) = p(1, 1), p̄(0, 1) = p(1, 0), p̄(1, 0) = p(0, 1),
p̄(1, 1) = p(0, 0) gives the same objective function. Let p(1)(x1, x2) be the pmf that attains the optimal value of (150). Take
the pmf p(1)(x1, x2) and form the doubly symmetric pmf

p#(x1, x2) =
p(1)(x1, x2) + p̄(1)(x1, x2)

2
, x1 = 0, 1, x2 = 0, 1.

For a fixed p(u|y), all terms of the min expression in (150) are concave functions of p(x1, x2) (see Remark 3). Therefore,
at any point (p#(x1, x2), p(u|y)) they take on values larger than or equal to their respective values at (p(1)(x1, x2), p(u|y)) (or
(p̄(1)(x1, x2), p(u|y))). This proves that there exists at least one optimizing doubly symmetric pmf p(x1, x2) in (150).

APPENDIX H
PROOF OF THEOREM 7

The proof is similar to the proof of Theorem 4. The lower and upper bounds match for C ≤ 0.75 and C ≥ 1. In the former
regime, the cut-set bound is achievable using no cooperation among the relays with p = 1

2 in (75)-(77). In the latter case, the
cut-set bound is achievable using full cooperation among the relays with p = 1

3 in (75)-(77). We prove the theorem for C’s
satisfying (85) and we assume C ≤ 1.

Define
g1(C) = 2C
g3(p) = h2(p) + 1− p
g4(C, p) = C + h2(p)− p

2

(151)

so that the upper bound of Corollay 2 is given by

Rmax = max
0≤p≤ 1

2

min{g1(C), g3(p), g4(C, p)}. (152)

The functions g1(C), g3(p), and g4(C, p) are drawn in Fig. 9 as functions of p ≤ 1
2 for different values of C, where C

increases from Fig. 9a to Fig. 9d. We consider two probabilities:

p(1) =
1

1 +
√
2

(153)

p(3) = 2(1− C). (154)

Remark 27. g4(C, p) is concave in p and it attains its maximum at p = p(1). g3(p) is also concave and it attains its maximum
at p = 1

3 . We have
1
3 ≤ p(1). g3(p) and g4(C, p) cross at p = p(3).

Remark 28. For the regime

2C ≤ g4(C, p
(1)) (155)

we have

C ≤ h2(p
(1))− p(1)

2
< 1− p(1)

2
. (156)

As a result, we have
g4(C, p

(1)) < g3(p
(1)).

The implication is that g3(p) is not “limiting” for the regime given by (155).

Fix the value of C and denote the maximizing p in (152) by p#. We have one of the following cases:
(a) p# is such that Rmax = g1(C).
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Fig. 9: The functions in (151) for different values of C.

(b) p# = p(1) and Rmax = g4(C, p(1)).
(c) p# = p(3) and Rmax = g3(p#) = g4(C, p#).
(d) p# = 1

3 and Rmax = g3(
1
3 ).

When C = 0, we are in case (a). We remain in this case as long as 2C ≤ g4(C, ρ(1)). When 2C = g4(C, p(1)) we have
g4(C, p(1)) < g3(p(1)), see Remark 28. So as C increases we have p# = p(1) and we move into case (b), see Fig. 9b. In this
regime, g3(p) and g4(C, p) cross at the point p(3) which is larger than or equal to p(1). As C further increases, the crossing
point p(3) of g3(p) and g4(C, p) decreases towards p(1), and as soon as g3(p(1)) = g4(C, p(1)) we move into case (c) where
p# = p(3), see Fig. 9c. In this case, we have

Rmax = g3(p
#) = g4(C, p

#). (157)

Using (157), we obtain

Rmax = 2g4(C, p
#)− g3(p

#)

= 2C + h2(p
#)− 1. (158)

So the upper bound reduces to

R ≤ C + h2(p
#) (159)
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R ≤ h2(p
#) + 1− p# (160)

R ≤ 2C + h2(p
#)− 1 (161)

which matches the lower bound in (75)-(77). Finally, when p(3) ≤ 1
3 we have p# = 1

3 and full cooperation is achieved. We
thus meet the cut-set bound. This concludes the proof.

APPENDIX I
AN UPPER BOUND ON H(U |X1, Q = i) AND H(U |X2, Q = i)

H(U |X1, Q = i) may be expanded as follows:

H(U |X1, Q = i)

= pX1|Q(0|i)h2

(

pX1X2|Q(0, 0|i)(1− α) +
pX1X2 (0,1)

2

pX1|Q(0|i)

)

+ pX1|Q(1|i)h2

(

pX1X2|Q(1, 1|i)(1− α) +
pX1X2 (1,0)

2

pX1|Q(1|i)

)

≤ h2

(

(1− qi)(1− α) +
qi
2

)

= h2(α &
qi
2
) (162)

where the inequality is by the concavity of h2(.) in its argument. H(U |X2Q) may be bounded similarly.

APPENDIX J
PROOF OF LEMMA 3

First, note that for x ≤ h2(y), we have g(x, y) = 0. For x ≥ h2(y), g(x, y) is non-negative. Since g(x, y) is continuous at
x = h2(y), it suffices to prove convexity of g(x, y) in the regime x ≥ h2(y). Recall that y ≤ 1 and α ≤ 1

2 . We prove that the
Hessian matrix

H =

[

∂2g(x,y)
∂x2

∂2g(x,y)
∂x∂y

∂2g(x,y)
∂y∂x

∂2g(x,y)
∂y2

]

. (163)

is positive semi-definite. Using Sylvester’s criterion [32, Theorem 7.2.5], H is positive semi-definite if and only if its leading
principal minors are non-negative; i.e., if

∂2g(x, y)

∂x2
≥ 0 (164)

∂2g(x, y)

∂x2

∂2g(x, y)

∂y2
− ∂2g(x, y)

∂x∂y

∂2g(x, y)

∂y∂x
≥ 0. (165)

We use the following notation:

z = h−1
2

(

x− h2(y)

1− y

)

, y ≤ 1 (166)

s = α &
(y

2
+ (1 − y)z

)

(167)

r(x) = −h′
2(x)

h′′
2(x)

= x(1 − x) ln
1− x

x
0 ≤ x ≤ 1

2
(168)

h′
2(x) =

1

ln 2
ln

1− x

x
0 ≤ x ≤ 1

2
(169)

h′′
2(x) = −

1

ln 2

1

x(1 − x)
0 ≤ x ≤ 1

2
. (170)

Taking the partial derivatives, we have
∂2g(x, y)

∂x2
=

(1 − 2α)

(1− y) (h′
2(z))

3 (−h′′
2(z)h

′
2(s) + (1− 2α)(1 − y)h′′

2(s)h
′
2(z))

=
(1− 2α)h′′

2(z)h
′′
2(s)

(1− y) (h′
2(z))

3 (r(s)− (1 − 2α)(1− y)r(z)) (171)

∂2g(x, y)

∂x2

∂2g(x, y)

∂y2
− ∂2g(x, y)

∂x∂y

∂2g(x, y)

∂y∂x

=
(1− 2α)2

(h′
2(z))

3 (1− y)







− (1−2α)
4 (−h′′

2(z)h
′
2(s) + (1 − 2α)(1− y)h′′

2(s)h
′
2(z))h

′′
2(α & y

2 )

+h′′

2 (z)
h′

2(z)
h′′
2(y) (h

′
2(s))

2

+(1− 2α)
(

−(12 − z)2h′′
2(z)− (1− y)h′′

2(y)
)

h′
2(s)h

′′
2 (s)






. (172)
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We shall prove that (171) and (172) are non-negative for all non-negative parameters α ≤ 1
2 , y ≤ 1, z ≤ 1

2 . We start with
(171). We claim that

r(s) − (1− 2α)(1 − y)r(z) (173)

is non-negative because it is equal to 0 at z = 1
2 and is a non-increasing function of z, 0 ≤ z ≤ 1

2 . To see this, consider

∂

∂z
(r(s) − (1− 2α)(1 − y)r(z)) = (1 − 2α)(1− y) (r′(s)− r′(z)) (174)

where

r′(x) = (1− 2x) ln
1− x

x
− 1. (175)

Since r′(x) is non-increasing in x and s ≥ z, (174) is non-positive. This line of argument is very similar to [20, Theorem 2]
and [29, Theorem 2].

To prove the non-negativity of (172) we proceed as follows. We have h′′
2(α & y

2 ) ≤ h′′
2 (s) because h′′

2(x) is increasing in x,
0 ≤ x ≤ 1

2 , and α & y
2 ≤ s. We thus have

∂2g(x, y)

∂x2

∂2g(x, y)

∂y2
− ∂2g(x, y)

∂x∂y

∂2g(x, y)

∂y∂x

≥ (1− 2α)2

(h′
2(z))

3 (1− y)







− (1−2α)
4 (−h′′

2(z)h
′
2(s) + (1 − 2α)(1− y)h′′

2(s)h
′
2(z))h

′′
2(s)

+h′′

2 (z)
h′

2(z)
h′′
2(y) (h

′
2(s))

2

+(1− 2α)
(

−(12 − z)2h′′
2(z)− (1− y)h′′

2(y)
)

h′
2(s)h

′′
2 (s)







=
(1 − 2α)4 (h′′

2(s))
2
h′′
2 (z)h

′′
2(y)

(h′
2(z))

4 (1− y)

(

−1

4
y(1− y)2 ln

(

1− z

z

)

r(z) +
(r(s))2

(1− 2α)2
− (1− y)2

r(s)r(z)

1− 2α

)

. (176)

It suffices to prove the non-negativity of

t(α, y, z) = −1

4
y(1− y)2 ln

(

1− z

z

)

r(z) +
(r(s))2

(1− 2α)2
− (1− y)2

r(s)r(z)

1− 2α
(177)

for every non-negative parameter α ≤ 1
2 , y ≤ 1, z ≤ 1

2 . First we show that t(α, y, z) is non-decreasing in α, and conclude
that t(α, y, z) is non-negative if and only if t(0, y, z) is non-negative. By taking the derivative of t(α, y, z) with respect to α
we obtain

∂t(α, y, z)

∂α
=

(

2r(s)− (1− 2α)(1 − y)2r(z)
)

(2r(s) + (1− 2α)(1 − y)(1− 2z)r′(s))

(1− 2α)3
. (178)

Both terms in the numerator are non-negative. The first term is non-negative because it is larger than (173) and the second
term is non-negative because it is a non-increasing function of z, 0 ≤ z ≤ 1

2 , and is equal to 0 at z = 1
2 .

Finally, we plot
f(y, z) =

t(0, y, z)

(1 − y)2(1− 2z)4

in Fig. 10 and demonstrate that the function is non-negative over 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1
2 . The terms in the denominator of

f(y, z) capture the behaviour of t(0, y, z) around z = 1
2 and y = 1. f(y, z) is zero at y = 0 with a strictly positive slope at

y = 0 for all z, 0 < z < 1
2 .

APPENDIX K
PROOF OF THEOREM 8

Consider (75)-(77) and let R(l)
max be the maximum rate admissible. We have

R(l)
max = max

0≤p≤1
min{g0(C1, C2, p), g2(C1, p), g3(p)} (179)

where

g0(C1, C2, p) = C1 + C2 − 1 + h2(p) (180)
g2(C1, p) = C1 + h2(p) (181)
g3(p) = h2(p) + 1− p. (182)
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Fig. 10: The function f(y, z) is non-negative for y, z, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1
2 .

Consider next (91)-(93), (99) with q = PY (1) as in (90). Let R
(u)
max be the maximum admissible rate. Since the function

h2(α &
(

q
2 + (1− q)h−1

2 (x)
)

) is non-decreasing in x, we have

R(u)
max ≤ C1 + C2 − h2






α &







q

2
+ (1 − q)h−1

2






min






1,

(

R
(l)
max − h2(q)

)+

1− q
























− (1− q)h2(α) − q + 2h2

(

α &
q

2

)

.

(183)
So the capacity is upper bounded by

R(u)
max ≤ max

0≤q≤1
min

0≤α≤ 1
2

min{g1(C1, C2), g2(C1, q), g3(q), g5(C1, C2, q,α)} (184)

where g1(C1, C2) = C1 + C2 and g5(C1, C2, q,α) is the RHS of (183). Since (184) depends only on q = pX1X2(0, 1) +
pX1X2(1, 0), we may assume, without loss of generality, that p(x1, x2) is a doubly symmetric binary pmf with parameter q.
Using (79) the bound in (183) may be re-written as

g5(C1, C2, q,α) = g0(C1, C2, q) + I(X1;X2|U) + 1− h2






α &







q

2
+ (1− q)h−1

2






min






1,

(

R
(l)
max − h2(q)

)+

1− q

























(185)

where I(X1;X2|U) is a function of α and q. We denote this conditional mutual information by Iα,q(X1;X2|U).
Consider (179) and let η be the optimizing p. We have η ≤ 1

2 . Note that when C2 ≥ 1, g0(C1, C2, p) is redundant in (179)
and the cut-set bound is achievable. Otherwise, g2(C1, p) is redundant and we have one of the following cases:
(a) η = 1

3 and R
(l)
max = g3(

1
3 ). In this case, R(l)

max = log2(3) and the cut-set bound is achievable.
(b) η = 1

2 and R
(l)
max = g0(C1, C2,

1
2 ). In this case, R(l)

max = C1 + C2 and the cut-set bound is achievable.
(c) η is such that R(l)

max = g0(C1, C2, η) = g3(η). We show that R(l)
max and R

(u)
max match in this case. Here, we have

η = 2− C1 − C2 (186)
R(l)

max = g0(C1, C2, η) = g3(η). (187)

Consider (184) in regime (c) and let αη be the solution of

αη(1− αη) =

(

η

2(1− η)

)2

(188)
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Fig. 11: Several functions of q. At q = η, the curves g0(C1, C2, q), g3(q), and g5(C1, C2, q,αη) all have the same value.

that is less than or equal to 1
2 where η is given by (186). With this choice of α, we study g5(C1, C2, q,αη). At q = η,

X1 − U −X2 forms a Markov chain and using (187) we have

g5(C1, C2, η,αη) = g0(C1, C2, η). (189)

In regime (c) given by (187), g3(q) and g0(C1, C2, q) cross at q = η. At this point, g3(q) is decreasing and g0(C1, C2, q) is
increasing in q. Also, g5(C1, C2, q,αη) crosses the two curves at q = η as shown in (189). Therefore, if g5(C1, C2, q,αη) is
non-decreasing in q, q ≤ η, then η maximizes (184) and R

(u)
max = R

(l)
max, see Fig. 11.

It remains to show that g5(C1, C2, q,αη) is non-decreasing in q, q ≤ η. g5(C1, C2, q,αη) is continuous and piece-wise
concave. We thus look at the following two regimes and prove that g5(C1, C2, q,αη) is non-decreasing in both regimes: q ≤ η̃

and η̃ ≤ q ≤ η where η̃ and η are the two solutions of R(l)
max = 1 + h2(q) − q.

• q ≤ η̃: Here, we have R
(l)
max ≥ 1 + h2(q)− q and

g5(C1, C2, q,αη) = g0(C1, C2, q) + Iαη ,q(X1;X2|U)

= C1 + C2 − (1− q)h2(αη)− q + 2h2

(

αη &
q

2

)

− 1. (190)

The RHS of (190) is concave in q. By showing that this function is non-decreasing at q = η we prove that it is non-
decreasing in q, q ≤ η. We first show that Iαη ,q(X1;X2|U) has a zero derivative at q = η:

∂Iαη ,q(X1;X2|U)

∂q
= h2(αη)− 1− log

(

1− q

q

)

− (1− 2αη) log

(

αη +
q

2(1−q)

(1− αη) +
q

2(1−q)

)

= h2(αη)− 1− log

(

1− q

q

)

− (1− 2αη) log

(

αη +
q

2(1−q)

(1− αη) +
q

2(1−q)

×
q

2(1−q) − αη

q
2(1−q) − αη

)

= h2(αη)− 1− log

(

1− q

q

)

− (1− 2αη) log

(

( q
2(1−q) )

2 − α2
η

( q
2(1−q) )

2 − αη(1 − αη) +
q

2(1−q) (1 − 2αη)

)

.

(191)

We use (188) to write

∂Iαη,q(X1;X2|U)

∂q

∣

∣

∣

∣

q=η

= h2(αη)− log

(

2(1− η)

η

)

− (1− 2αη) log

(

αη(1− 2αη)
η

2(1−η) (1 − 2αη)

)

= h2(αη) +
1

2
log (αη(1− αη))− (1− 2αη) log (αη) +

(

1

2
− αη

)

log(αη(1− αη))

= 0. (192)

At q = η, Iαη ,q(X1;X2|U) has a zero derivative and g0(C1, C2, q) is non-decreasing. So the RHS of (190) is non-
decreasing at q = η, and since it is concave, it is also non-decreasing at all q, q ≤ η, and in particular at all q, q ≤ η̃.
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• η̃ ≤ q ≤ η: In this regime, we have

g5(C1, C2, q,αη) = g0(C1, C2, q) + Iαη ,q(X1;X2|U) + 1− h2






αη &







q

2
+ (1− q)h−1

2







(

R
(l)
max − h2(q)

)+

1− q



















(193)

= C1 + C2 − (1− q)h2(α) − q + 2h2

(

α &
q

2

)

− h2






α &







q

2
+ (1− q)h−1

2







(

R
(l)
max − h2(q)

)+

1− q


















.

(194)
The RHS of (194) is concave in q (see Appendix J). Furthermore, (194) is non-decreasing at q = η. To see this, one can
take its derivative with respect to q and evaluate it at q = η − ε, ε→ 0:

lim
ε→0

∂g5(C1, C2, q,αη)

∂q

∣

∣

∣

∣

q=η−ε

(a)
= log

(

1− η

η

)

+
∂Iαη ,q(X1;X2|U)

∂q

∣

∣

∣

∣

q=η

− (1− 2αη)
2 (1− h′

2(η)) (1− η)

(b)
= log

(

1− η

η

)

−
(

1−
(

η

1− η

)2
)

(

1− log

(

1− η

η

))

(1− η)

= log

(

1− η

η

)

−
(

1− η

1− η

)(

1− log

(

1− η

η

))

(195)

where (a) follows by differentiating (193) with respect to q and evaluating it at q = η and (b) follows by (192) and (188).
The function log (x) − (1 − 1

x
) (1− log(x)) is equal to 0 at x = 1 and is non-decreasing for x ≥ 1; therefore, (195) is

non-negative and g5(C1, C2, q,αη) is non-decreasing in q, η̃ ≤ q ≤ η.
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