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1 Introduction, motivation and outline

Numerical analysis of heterogeneous structures plays a pivotal role in multiscale approaches
where the scales of interest range over several orders of magnitude. In the solid mechanics
and materials science community, the micromechanical modelling of polycrystalline materi-
als is an area of long standing interest. At these length scales, plasticity phenomena at the
grain boundaries have a significant influence on the macroscopic response of a material. The
effect of grain boundaries is considered as the governing deformation mechanism at elevated
temperatures [32] or when the grain size approaches the nanometer length scale [43] (see
figure 1.1a). At the other end of the spectrum, numerical analysis of the evolution or fault-
ing of tectonic plates also includes frictional sliding between several fault planes [34] (see
figure 1.1b).

(a) Transmission electron micrograph highlight-
ing the heterogeneous nature of polycrystalline
materials at small length scales [25]

(b) Modell of faulted tectonic plates [34]

Figure 1.1: Two possible applications, including sliding effects along the boundaries of
subdomains

Solving problems that consist of discontinuous material response is a challenging task within
the classical finite element framework. To obtain optimal rates of convergence, the mesh
generator has to design a mesh where the element edges or faces align themselves with the
embedded lines or surfaces of discontinuity. This preprocessing step makes such investiga-
tions prohibitively expensive. The situation gets worse in a three-dimensional configuration,
and there are cases, for example when grains are shaped like a wedge, in which it is not
even possible to achieve the desired quality [38]. In such cases, the use of the extended finite
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element method [28] or the generalized finite element method [12] with embedded interfaces
suggests itself, since the mesh is independent of the topology of the subdomains with a discon-
tinuous material response. Only a simple background mesh is needed, on which the topology
of the subdomains is superimposed, as schematically depicted in figure 1.2. However, this

+ =

background mesh topology of subdomains XFEM grid

Figure 1.2: Background mesh with superposed subdomain topology [38]: The topology of
the subdomains does not need to align with the background mesh.

added simplicity affords itself at a cost. In such an embedded approach, stable imposition
of constraints on the embedded surface of discontinuity is a non-trivial task. Recently, much
work has been done in this regard by several authors to address robustness issues while
imposing Dirichlet-type conditions on these interfaces in an XFEM approach. In some of
the early work done in this regard, imposing essential boundary conditions in the context
of the extended finite element method was examined by [10, 20] where they observed that a
convenient choice for the ansatz space of the Lagrange multiplier field results in severe oscil-
latory behavior of the traction field if the ansatz space for the Lagrange multipliers does not
satisfy the LBB-conditions. Similar observations were made for the penalty method, where
the oscillations in the traction field increase with an increasing penalty parameter [33, 37].
The lack of stability observed in the penalty method stems from its variational inconsistency.
The desired result of imposing a Dirichlet constraint is only achieved in the limiting case
when the penalty parameter tends to infinity. However, the discrete results suffer due to
ill-conditioning of the stiffness matrix for such large values of the penalty parameter and
can also be overly sensitive to the chosen value of the penalty parameter [4]. To date,
the stability issues have been addressed either through a judicial reconstruction of a sta-
ble Lagrange mutiplier space [27, 5] or through a stabilized variationally consistent penalty
approach [29, 8]. In this work, the focus is on the latter approach and its extension to non-
linear interfacial response. These approaches derive from the method originally proposed by
Nitsche [30] to impose Dirichlet boundary conditions weakly to solve elliptic partial differen-
tial equations with the finite element method. The relationship to stabilized finite element
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methods was later shown in [39], who suggests its application to contact problems, fictitious
domain methods or domain decomposition techniques. The method has been used in differ-
ent applications in the past ranging from frictionless sliding in contact mechanics [45, 46],
embedded interface problems with scalar fields [8, 18] or with vector valued fields as in elas-
ticity problems [33], to imposing constraints between overlapping finite element meshes [17]
or to imposing boundary conditions in meshfree methods [14]. Recently, it has also been
used to impose general boundary conditions [21]. To the author’s best knowledge, it has
never been applied to nonlinear interfacial behavior like plasticity or frictional sliding. Thus,
the goal of this work is to develope a stabilized method inspired by Nitsche’s method in
order to enforce frictional sliding on embedded interfaces. Its performance will be compared
to two classical approaches, the Lagrange multiplier method and the penalty method and
its advantages will be shown.
This work is outlined as follows: In the next section, a generalized description for a problem
with two grains is given. The domain and its boundaries as well as the enriched displace-
ment field are defined. The governing equations for the bulk field are presented in the strong
form. Interfacial constraints are not considered here, but they are specified for each type of
constraints at the beginning of the corresponding sections. Afterwards, an untied problem,
where the interface is not subjected to any kinematic constraints, is considered in order to
provide the variational form and its discretization for the bulk field which is common for
all other sections. In section 4, the generalized problem is specified to a problem with an
perfectly bonded interface such that the two grains are kinematically fully tied and the in-
terface is in traction equilibrium. Three methods to enforce the kinematics at the interface
are illustrated, namely: Lagrange multiplier method, penalty method and Nitsche’s method.
For Lagrange multipliers and penalty method, well known potentials are used. The deriva-
tion of Nitsche’s variational form starts with an augmented Lagrangian potential where the
Lagrange multipliers are expressed in terms of the displacement field such that a Nitsche
potential can be defined, directly yielding the variational problem. The discretizations are
provided where the common parts from section 4 are used. Following an apporach in [8], an
estimate for the stabilization parameter α in Nitsche’s method for linear triangular elements
is derived, which guarantees the coercivity fo the bilinear form and avoids the risk of choos-
ing a “bad” parameter. In section 5, a problem with constraints only in normal direction
is considered. There, the variational forms and their discretizations for the three methods
are presented for an interface with frictionless sliding. In order to capture a more physical
behaviour, a method to model perfect plasticity in tangential direction at the interface is
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introduced in section 6. The constraints are enforced, using the penalty method and a sta-
bilized method, which is inspired by Nitsche’s method. The return-mapping framework is
introduced. The presented methods can be easily extended to problems containig more than
two grains and one interface, which is shown in section 7. Some implementational details
are provided in section 8. Afterwards, numerical examples are presented in order to show
the correctness of the implementation and to demonstrate some properties of the methods
developed in the previous sections. The advantages of Nitsche’s method and the stabilized
method over the other methods are shown. Finally, some concluding remarks are given in
section 10. In appendix A, an alternative derivation of Nitsche’s method, following [21], is
provided which starts with a penalty formulation in opposite to the one in section 4. Ap-
pendix B provides some remarks on Young’s inequality which is used to derive an estimate
for the stabilization parameter for Nitsche’s method.
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2 Problem description and governing equations in

strong form for a generalized two grain problem

First, a problem description for a generalized problem with two grains is given. For illustra-
tion, a problem domain which comprises of two grains is considered. Still, the formulation
can be easily generalized to account for cases with multiple grains.
The domain Ω is comprised of two subdomains, Ω(1) and Ω(2), called grains.

Ω = Ω(1) ∪ Ω(2) (2.1)

The boundary of the domain Ω and the boundary of grain Ω(m) is defined as follows:

Γext = ∂Ω

Γ(m) = ∂Ω(m)
(2.2)

Both grains, Ω(1) and Ω(2), share a common internal boundary Γ∗, called interface:

Γ∗ = Γ(1) ∩ Γ(2) (2.3)

The problem is posed as two grains and one interface, with the possibility of different ma-
terial properties in each grain Ω(m), m ∈ {1,2}. Problems consisting of multiple grains and
interfaces may be treated by looping over interfaces, each only dividing two grains, see sec-
tion 7. The boundary of each grain Ω(m) can potentially be divided into three separate parts:
Γ

(m)
d , Γ

(m)
σ and Γ∗, where Γ

(m)
d denotes the Dirichlet boundary, Γ

(m)
σ the Neumann boundary

and Γ∗ the part of the grain boundary, that divides the domain, Ω, into two grains, Ω(1)

and Ω(2).

Γ(m) = Γ
(m)
d ∪ Γ(m)

σ ∪ Γ∗ , m ∈ {1,2} (2.4)

with

Γ
(m)
d ∩ Γ(m)

σ = Γ
(m)
d ∩ Γ∗ = Γ(m)

σ ∩ Γ∗ = ∅ , m ∈ {1,2} (2.5)
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The external boundary of the domain Ω is the combination of all Dirichlet and Neumann
boundaries:

Γext = Γd ∪ Γσ = Γ
(1)
d ∪ Γ

(2)
d ∪ Γ(1)

σ ∪ Γ(2)
σ (2.6)

A schematic of the domain is given in figure 2.1. The unit vector n(m), that is normal to the

Figure 2.1: Domain Ω with two grains Ω(1) and Ω(2) divided by an embedded interface Γ∗.
The domain is supported along the Dirichlet boundaries Γ

(1)
d and Γ

(2)
d and

loaded with external tractions on the Neumann boundaries Γ
(1)
σ and Γ

(2)
σ .

interface, is defined as positive outwards from grain Ω(m). The following convention is used:

n = n(1) = −n(2) (2.7)

The primary unknown is the displacement field ui(x) over Ω, which can be seen as the
collection of the displacement fields u(1)

i (x) and u(2)
i (x) over each grain Ω(1) and Ω(2), where

ui(x) = u
(m)
i (x), if x ∈ Ω(m) ∀ i = 1, 2 (2.8)

The enriched finite element method, as described in [28, 33, 38] for this problem, departs
from the traditional method in the assumed form of the displacement field over the body.
Due to the interface Γ∗ in the domain Ω, the displacement field has to be treated in a different
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way compared to the classical finite element method, after a discretiztation is introduced. In
order to prepare this process, it is assumed, that the displacement field can be decomposed
into continuous and discontinuous parts, with the latter contributing only in the vicinity of
the interface. The addition of a discontinuous function near the interface geometry allows
the kinematics to properly capture the form of the solution at the interface. According
to [33, 38], the displacement field near the interface is enriched and given by:

ui(x) = ûi(x) +
2∑

m=1

H(m)(x)ũ
(m)
i (x) ∈ U (2.9)

Its variation δui takes the same form:

δui(x) = δûi(x) +
2∑

m=1

H(m)(x)δũ
(m)
i (x) ∈ V (2.10)

where the spaces of the displacements U and its variations V are defined as:

U = {ui(x)|ui(x) ∈ H1(Ω), ui(x) = gi on Γd, ui(x) discontinous on Γ∗} (2.11)

V = {δui(x)|δui(x) ∈ H1(Ω), δui(x) = 0 on Γd, δui(x) discontinous on Γ∗} (2.12)

As a matter of fact, the displacement field ûi can be seen as a coarse-scale field, which is
active over the entire domain Ω. The fine-scaled field ũi is a local solution, that exists only
near the interface Γ∗. Through multiplication by a characteristic grain function H(x)(m), it
is restricted to an individual grain Ω(m), where H(x)(m) is defined as a Heaviside-function,
that is equal to one only in grain Ω(m) and zero everywhere else [33, 38]:

H(m)(x) =

1 if x ∈ Ω(m)

0 otherwise.
, m ∈ {1,2} (2.13)

The expression “near the interface” is specified in detail after introducing a discretization
(see remark 3.3). Individually, both ûi and ũi belong to H1(Ω) denoting the Sobolev
space of functions possessing square integrable derivatives. For convenience, the argu-
ment x is omitted in the sequel and the shorthand notations H(m), ui and δui are intro-
duced to indicate H(x)(m), ui(x) and δui(x), respectively. Since the problem comprises two
grains Ω(m), m ∈ {1,2}, the possible values of m will not be mentioned any more.
Using these notations, the governing equations for a small strain, elastic boundary value
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problem in a small perturbation setting can be given. Thereby, indicial notation is used,
where repeated indices imply a summation over these indices, according to Einstein’s conven-
tion for summation. For every grain in static equilibrium, the momentum balance equation
is given as

σ
(m)
ij,j + b

(m)
i = 0 in Ω(m) ∀ i, j = 1, 2 (2.14)

On the Dirichlet boundary Γ
(m)
d , displacements gi are prescribed.

u
(m)
i = g

(m)
i on Γ

(m)
d (2.15)

On the Neumann boundary Γ
(m)
σ , tractions hi are prescribed:

σ
(m)
ij n

(m)
j = h

(m)
i on Γ(m)

σ (2.16)

where the stresses are computed via the constitutive law:

σ
(m)
ij = C

(m)
ijklε

(m)
kl ∀ i, j, k, l = 1, 2 (2.17)

with the constitutive tensor C(m)
ijkl and the strain tensor ε(m)

ij . Here, the material in the interior
of the grains is assumed to be linear elastic. For small strains, the strains are related to the
displacements by:

ε
(m)
ij =

1

2

(
u

(m)
i,j + u

(m)
j,i

)
(2.18)

According to (2.9), the strain field and its variation are defined as:

ε
(m)
ij = ε̂ij +

2∑
m=1

H(m) ε̃
(m)
ij

δε
(m)
ij = δε̂ij +

2∑
m=1

H(m)δε̃
(m)
ij .

(2.19)

At the internal boundary, Γ∗, the kinematics and tractions are subjected to different laws,
depending on the constraints. Four different types of constraints are described in the follow-
ing sections. The particular law to constrain the kinematics and tractions at the embedded
interface is specified separately for each case at the beginning of the corresponding section.
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A brief overwiew is given here:

• Section 3: no kinematic constraints, traction-free interface

• Section 4: perfect kinematic bond, tractions in perfect equilibrium

• Section 5: kinematics constrained only in normal direction, no tractions in tangential
direction

• Section 6: perfect kinematic bond and traction equilibrium in normal direction, tan-
gential traction limited to a yield value, corresponding tangential kinematic constraints

After introducing some notations and the governing equations for the bulk field, the different
types of interfacial constraints will be put into focus.
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3 The untied problem

First, an untied problem is investigated in order to derive the variational form and its dis-
cretization for the bulk field, since it leads to the common parts for all types of constraints
and the three methods of constraint enforcement. After specifying the constraints for kine-
matics and tractions at the interface, the variational as well as the discrete form are derived.
After that, all contributions from the bulk field are known and can be used for the other
kinds of constraints and for all three methods of constraint enforcement.

3.1 Constraints for kinematics and tractions

For the untied problem, the embedded interface is traction free:

σ
(m)
ij n

(m)
i = 0 on Γ∗ (3.1)

The kinematics at the interface are not constrained. Hence, a jump in the displacement field
is expected after loading the domain with arbitrary tractions or prescribed displacements.
The two grains might separate or penetrate each other. The displacement fields do not
influence each other.

3.2 Variational form

Using the principle of minimum of total potential energy [19], the variational form can be
derived as the first variation of the total potential energy due to the stationarity of the
potential. This guarantees the symmetry of the bilinear form and hence the symmetry of
the tangent stiffness matrix [19, 41]. The potential for the untied problem Πu is computed
as the sum of the internal potential Πint, representing the elastic energy, and the opposite
of the external potential Πext, representing the work contribution of the body forces bi and
the tractions hi on the Neumann boundary. Πu depends only on the displacements ui and
is given by

Πu = Πint − Πext =
1

2

∫
Ω

εijσij dΩ−
∫

Ω

uibi dΩ−
∫

Γσ

uihi dΓ (3.2)
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where the stress tensor σij and the strain tensor εij are defined in (2.17) and (2.18). The
stationarity of Πu implies that its first variation should be equal to zero:

δΠu =

∫
Ω

δεijσij dΩ−
∫

Ω

δuibi dΩ−
∫

Γσ

δuihi dΓ = 0 (3.3)

Considering the enriched displacement field from (2.9), the variational problem for the untied
problem reads as follows:

Find u ∈ U for all δu ∈ V such that

δΠu =

∫
Ω

δε̂ijσij dΩ +
∑
m

∫
Ω(m)

H(m)δε̃
(m)
ij σ

(m)
ij dΩ

−
∫

Ω

δûibi dΩ−
∑
m

∫
Ω(m)

H(m)δũ
(m)
i b

(m)
i dΩ

−
∫

Γσ

δûihi dΓσ −
∑
m

∫
Γ
(m)
σ

H(m)δũ
(m)
i h

(m)
i dΓ = 0

(3.4)

Here, m is the global grain numbering index as discussed in section 2. The displacement
field ui has the same structure as indicated in (2.9). For more details on the variational form
of an elastic boundary-value problem, see for example [19].

3.3 Discretization

Now, the weak form of the untied problem given in (3.4) can be discretized in order to
construct a finite dimensional approximation of the problem. The discretized form yields
the formulation of a residual as required for a Newton-Raphson-scheme. Although a Newton
scheme is not necessary for the small perturbation problem with linear elastic material as it
is considered in this section, it provides a general framework to ease the transition to plastic
behavior and thus material nonlinearity at the interface (see section 6). Due to a possible
nonlinear behavior, an incremental loading process, referred to as load stepping scheme, is
applied. More details on the load stepping scheme and the nested Newton-Raphson-scheme
are given in section 8.3.
In the following, discretized quantities are denoted with the superscript h. The domain is
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partitioned into a set of elements:

Ω =
numele⋃
e=1

Ω(e) (3.5)

where numele denotes the number of elements. This is done independently of the geometry
of any internal interface. Hence, elements may be “cut” by the interface Γ∗, see figure 1.2 or
figure 3.1. The interface Γ∗ is divided into subsegments Γ

(e)
∗ :

Γ∗ =
cutnumele⋃

e=1

Γ(e)
∗ (3.6)

where cutnumele denotes the number of subsegments. A subsegment Γ
(e)
∗ is that portion

of the interface Γ∗ that intersects the element e (see figure 3.2. The isoparametric concept
is used. A Bubnov-Galerkin method is applied, so that the interpolation of the variation
of the displacement field, δui, uses the same shape functions as the interpolation of the
displacement field ui. According to [9, 33], the displacement field, ui, and its variation, δui,
will be discretized in the near field of the interface, whereby the displacement field in an
element is interpolated as follows:

u ≈ uh = N̂ d̂+
∑
m

(
H(m)Ñ

(m)
)
d̃ ∈ Uh ⊂ U (3.7)

δu ≈ δuh = N̂δd̂+
∑
m

(
H(m)Ñ

(m)
)
δd̃ ∈ Vh ⊂ V (3.8)

where N̂ and Ñ
(m)

are matrices containing usual finite element shape functions. The nodal
displacements in the base and enriched degrees of freedom are denoted with d̂ and d̃. Re-
spectively, δd̂ and δd̃ refer to the nodal values of the variation of the displacement field. It is
common to use the same shape functions for the base and the enriched degrees of freedom:

Na = N̂a = Ña (3.9)
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where a is the index over the nodes of an element. Still there is a difference in the matrices
due to the Heaviside functions:

N̂ =

[
N1 0 N2 0 N3 0

0 N1 0 N2 0 N3

]
(3.10)

Ñ
(m)

=

[
H(m)N1 0 H(m)N2 0 H(m)N3 0

0 H(m)N1 0 H(m)N2 0 H(m)N3

]
(3.11)

Remark 3.1. Since the Heaviside function H(m) occurs in the discretization of the displace-
ment field as well as in the shape function matrix for the enriched degrees of freedom, it
would be sufficient to drop it in the displacement field. Still, this form keeps the notation
consistent with the one employed for the displacement field (2.9).

The strain field, εij, and its variation, δεij, is discretized, accordingly:

ε ≈ εh = B̂ d̂+
∑
m

(
H(m)B̃

(m)
)
d̃, (3.12)

δε ≈ δεh = B̂δd̂+
∑
m

(
H(m)B̃

(m)
)
δd̃, (3.13)

where B̂ and B̃
(m)

are matrices, containing spatial derivatives of the shape functions,
where B̃

(m)
contains also the Heaviside functions in the same manner as Ñ

(m)
. For ex-

ample, the scheme for numbering the degrees of freedom for a linear triangular element is
given in figure 3.1.

Remark 3.2. Here, only one set of extra degrees of freedom, d̃, is introduced for all grains,
whereas in [38] one set, d̃ (m), for each grain is used. This affects the size of the elemen-
tary quantities. Considering linear triangular elements and two grains, the element stiffness
matrix in this paper has the size 12 × 12, whereas the size is 18 × 18 when using the dis-
cretization proposed in [38]. This reduction to only one set of enriched degrees of freedom
is admissible since only “active” degrees of freedom have a contribution. “Inactive” degrees
of freedom result in zero-contributions which only increase the size of the global system but
have no influence on the solution.

Remark 3.3. After discretizing, the expression “near the interface”, which was used to in-
troduce the enriched displacement field, given in (2.9), can now be specified in more detail:
Each element, that is intersected by the interface Γ∗, is referred to as an enriched element
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Figure 3.1: Numbering scheme for degrees of freedom in an enriched element [33]: The
base degrees of freedom comprise numbers 1 to 6, while the enriched degrees
of freedom comprise numbers 7 to 12.

and its nodes as enriched nodes. An important aspect of the method is that enrichment is
only necessary for nodes whose supports are crossed by an interface [9, 28, 38]. Sufficiently
far from an interface, a standard interpolation is used. Thus, the displacement and its vari-
ation in unenriched elements are discretized as in the traditional finite element method, see
for example [19]. A strategy for enriching the nodes is given in [38] or [28].

Inserting the discretization of the variation of the displacement field into (3.4) leads to the
discretized variational problem:

numele∑
e=1

{
δd̂

T
∫

Ω(e)

B̂
T
σh dΩ + δd̃

T∑
m

∫
Ω(m),(e)

H(m)B̃
(m)T

σh,(m) dΩ

}

−
numele∑
e=1

{
δd̂

T
∫

Ω(e)

N̂
T
b dΩ + δd̃

T∑
m

∫
Ω(m),(e)

H(m)Ñ
(m)T

b(m) dΩ

}

−
numele∑
e=1

{
δd̂

T
∫

Γ
(e)
σ

N̂
T
h dΓ + δd̃

T∑
m

∫
Γ
(m),(e)
σ

H(m)Ñ
(m)T

h(m) dΓ

}
= 0

(3.14)

with the discrete stress vector σh =
[
σhxx σhyy σhxy

]T
in Voigt notation. The arbitrariness

of the variations of the displacement field allows to formulate an element residual, ru,(e):

ru,(e) = r
u,(e)
b + r

u,(e)
f + ru,(e)σ (3.15)

with the contributions from the bulk field, ru,(e)b , the body forces, ru,(e)f , and the external
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tractions on the Neumann boundary, ru,(e)σ :

r
u,(e)
b =

 ∫
Ω(e) B̂

T
σh dΩ∑

m

{∫
Ω(m)(e) H

(m)B̃
(m)T

σh,(m) dΩ
} (3.16)

r
u,(e)
f = −

 ∫
Ω(e) N̂

T
b dΩ∑

m

{∫
Ω(m)(e) H

(m)Ñ
(m)T

b(m) dΩ
} (3.17)

ru,(e)σ = −

 ∫
Γ
(e)
σ
N̂

T
h dΓ∑

m

{∫
Γ
(m)(e)
σ

H(m)Ñ
(m)T

h(m) dΓ
} (3.18)

(3.19)

The global residual can be assembled from the element residuals:

Ru =

numele

A
e=1

ru,(e) (3.20)

The global system of equations can be expressed as a residual, Ru, that has to be equal to
zero:

R(D) = Ru(D) = 0 (3.21)

To solve this system of equations, the standard technique of a Newton-Raphson-scheme is
applied.

Remark 3.4. Actually,the residual has to be built in each Newton-Raphson-iteration in each
load step, but here the indices for load steps and Newton-Raphson-iterations are omitted in
order to avoid confusion through too many indices. For more details on the Newton-Raphson-
scheme, see section 8.3.

In this framework, the solution is computed in an iterative procedure where the residual, R,
and its linearization is required. Hence, these quantities are presented here without consider-
ing the Newton-Raphson-background in detail. Using the linearity of the assembly operator,
the linearization of the global residual is computed as the assembly of the linearizations of
the element residuals:

∆R =
∂R

∂D
∆D =

∂A
numele
e=1 ru,(e)

∂D
∆D =

numele

A
e=1

(
∂ru,(e)

∂d
∆d

)
=

numele

A
e=1

(
ku,(e)∆d

)
(3.22)



Matthias Mayr Different sliding laws on embedded interfaces 21

with the element tangent stiffness matrix ku,(e). The linearization of the element residual is
obtained by deriving ru,(e) with respect to the displacements. Since the external forces do
not depend on the displacements, only the internal forces yield a contribution to the tangent
stiffness matrix:

∆ru,(e) =
∂ru,(e)

∂d
∆d = ku,(e)∆d =

[
κ
u,(e)
11 κ

u,(e)
12

κ
u,(e)
21 κ

u,(e)
22

][
M d̂

M d̃

]
(3.23)

Using the discretization of the enriched displacement field, the element stiffness matrix, ku,(e),
is built with the following entries:

κ
u,(e)
11 =

∫
Ω(e)

B̂
T ∂σh

∂εh
B̂ dΩ

κ
u,(e)
12 =

∑
m

{∫
Ω(m)(e)

B̂
T ∂σh

∂εh
H(m)B̃

(m)
dΩ

}
κ
u,(e)
21 =

∑
m

{∫
Ω(m)(e)

H(m)B̃
(m)T ∂σh

∂εh
B̂ dΩ

}
κ
u,(e)
22 =

∑
m

{∫
Ω(m)(e)

H(m)B̃
(m)T ∂σh

∂εh
H(m)B̃

(m)
dΩ

}
(3.24)

For the linear elastic material, the discrete constitutive matrix C = ∂σh

∂εh
is introduced.

Remark 3.5. Since the developed code is for two-dimensional problems, a dimensional re-
duction is necessary. In this work, this is done by assuming a plane stress state where the
constitutive matrix takes the form:

C =
E

1− ν2

1 ν 0

ν 1 0

0 0 1−ν
2

 (3.25)

with Young’s modulus E and Poisson’s ratio ν as the two independent parameters to charac-
terize the material’s behavior. A mapping between the entries in Cijkl and C is given in [19],
for example.

Now, the global tangent stiffness matrix can be assembled:

Ku =
∂Ru

∂D
=

numele

A
e=1

ku,(e) (3.26)
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Ku represents the elastic stiffness of the bulk field. The residual of the bulk field and its
linearization will be used in the following sections with constraints at the interface, whereby
they are not repeated again.

Remark 3.6. For elements which are intersected by a segment of the interface, the standard
element quadrature routines must be modified to account for bulk terms that are active over
only a portion of the domain, i.e. Ω(1) or Ω(2). Following [28], the integration over cut
elements is split into two integrations over the two parts of an element, Ω(e),(1) and Ω(e),(2)

(see figure 3.2). Reference [38] suggests to divide cut elements into triangular subelements
and to perform the quadrature on these subelements. This is also the way it is done here.

Figure 3.2: Integration domains for cut elements
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4 The fully tied problem

After deriving the bulk field quantities using an untied problem, three methods to enforce a
perfect bond and perfect traction equilibrium at the interface are introduced. Therefor, the
kinematics are constrained at the internal interface Γ∗ by adding terms to the variational
problem (3.4). The additional terms depend on the particular method, chosen to enforce
the continuity of the displacement field across the interface. Here, three methods are consid-
ered, namely: Lagrange multipliers, penalty method and Nitsche’s method. The variational
forms are derived as the variation of the potential Π, where Π is different for each method.
Finally, the additional contributions to the discrete system are derived. These derivations
are done quite extensively, because they are the basis to obtain the variational forms and
their discretizations for the frictionless sliding problem presented in section 5.

4.1 Constraints for kinematics and tractions

At a fully tied interface, the two grains are connected with a perfect bond, i.e. the displace-
ment field is perfectly continuous at the interface. The continuity of the displacement field
is postulated as:

u
(1)
i = u

(2)
i on Γ∗ (4.1)

This can be rewritten as:

u
(1)
i − u

(2)
i = 0 on Γ∗ (4.2)

This expression will be used often in the following, so it will be referred to as gap-function
or jump-function u

(1)
i − u

(2)
i . A shorthand notation is introduced which is often used in

literature, see for example [33, 38]:

JuiK = u
(1)
i − u

(2)
i = ũ

(1)
i − ũ

(2)
i (4.3)

This notation can be introduced for the variation of the displacement field, respectively:

JδuiK = δu
(1)
i − δu

(2)
i = δũ

(1)
i − δũ

(2)
i (4.4)
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Since the coarse background displacement field ûi is continuous at the interface, it occurs in
both u(1)

i and u(2)
i and cancels out, so that only the enriched displacement field remains [33,

38]. An equivalent observation can be made for (4.4). For a fully tied problem, the constraint
equation enforces the continuity of the displacement field over the interface Γ∗:

JuiK
.
= 0 on Γ∗ (4.5)

Continuity is enforced in normal and tangential direction with respect to the interface Γ∗.
The traction equilibrium is also satisfied:

σ
(1)
ij n

(1)
j = −σ(2)

ij n
(2)
j on Γ∗ (4.6)

To enforce these constraints, three different methods are used whose variational forms are
derived now.

4.2 Variational forms

The variational forms for the three methods of constraint enforcement are derived. First,
Lagrange multipliers are used which satisfy the continuity of the displacement field perfectly
but may result in oscillations in the traction field. Then, a penalty method is considered
which cannot give a perfect continuity since it is based on a regularization. Finally, Nitsche’s
method [30] is used, leading to a stabilized formulation.

4.2.1 Lagrange multipliers

The simplest possibility to tie the two grains together works by introducing a Lagrange
multiplier field, λi, over the interface which can be physically interpreted as the internal
tractions, h∗i , at the interface. The starting point is the variational form representing the
boundary value problem without any tractions at the internal interface as given in (3.4).
Now, a Lagrange multiplier field is assumed which is represented by λi ∈ L with:

L = {λi(x)|λi(x) ∈ H−1/2(Γ∗)} (4.7)



Matthias Mayr Different sliding laws on embedded interfaces 25

It acts over the embedded interface [33]. The traction field along the interface, h∗i , is repre-
sented by the Lagrange multiplier field as follows:

h∗i = −λi (4.8)

Since the Lagrange multipliers are additional unknown variables, one has to solve for them,
too. The variation of λi is denoted as δλi which is also defined on L. The additional potential
of the Lagrange multiplier field, ΠLag, is given as:

ΠLag =

∫
Γ∗

λiJuiK dΓ (4.9)

The entire potential for the fully tied case using Lagrange multipliers to enforce the continuity
of the displacement field can be written as:

Π = Πu + ΠLag = Πint − Πext + ΠLag (4.10)

Since the variation of Πu = Πint − Πext does not change, only the variation of ΠLag is
investigated here:

δΠLag =

∫
Γ∗

λiJδuiK dΓ +

∫
Γ∗

δλiJuiK dΓ (4.11)

Using the stationarity of Π, (3.4) and (4.11) and considering the enriched displacement field,
the variational problem for the fully tied problem using Lagrange multipliers reads as follows:

Find (u,λ) ∈ U × L for all (δu,δλ) ∈ V × L such that

δΠ =

∫
Ω

δε̂ijσij dΩ +
∑
m

∫
Ω(m)

H(m)δε̃
(m)
ij σ

(m)
ij dΩ

+

∫
Γ∗

λiJδuiK dΓ +

∫
Γ∗

δλiJuiK dΓ

−
∫

Ω

δûibi dΩ−
∑
m

∫
Ω(m)

H(m)δũ
(m)
i b

(m)
i dΩ

−
∫

Γσ

δûihi dΓ−
∑
m

∫
Γ
(m)
σ

H(m)δũ
(m)
i h

(m)
i dΓ = 0

(4.12)
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The continuity of the displacement field is enforced in a weak sense. The constraint is
satisfied perfectly. According to [3], the Lagrange multiplier method can be shown to provide
optimal convergence rates. Still, one major drawback of mixed methods such as the Lagrange
multiplier method is, that when discretized, their performance depends on the finite element
subspaces satisfying the inf-sup conditions. If the inf-sup conditions are not satisfied, stability
problems might occur and manifest themselves as oscillations in the Lagrange multiplier field.
Numerical examples in [33] show these oscillations.

4.2.2 Penalty method

To avoid the stability issues, arising with Lagrange multipliers, it is desirable to look at an
alternative approach, known as the penalty method. Instead of introducing new unknowns λi,
the penalty method approximates the Lagrange multipliers via a regularization [33]:

λi = −h∗i ≈ αJuiK (4.13)

The tractions at the interface depend on the jump in the displacement field, JuiK. The so
called penalty parameter, α, is some large positive number which can be interpreted either
as a gap stiffness or just as a mathematical tool to enforce the constraint. A graphical
interpretation of a penalty regularization for a one-dimensional case is shown in figure 4.1.
Sometimes, different penalty parameters for normal and tangential direction are used, espe-

Figure 4.1: Penalty regularization for a one-dimensional case

cially in contact mechanics [23, 45]. This might be useful here, too, especially, when other
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constitutice laws at the interface are considered. The decomposition of the traction field into
a normal and a tangential part is done by using a dyadic product of the normal vector:

h∗i = h∗i,normal + h∗i,tangential = njnih
∗
i + (δji − njni)h∗i

≈ −αnnjniJuiK− αt(δji − njni)JuiK
(4.14)

where αn denotes the penalty parameter for the normal direction and αt the one for the tan-
gential direction. Now, it is possible to use different penalty parameters for normal and tan-
gential direction. This will be used later on, but here — for an perfect bond and an isotropic
material — it seems to make sense to use only one penalty parameter α = αn = αt working
in all directions. It is easy to verify that (4.14) is identical with (4.13) for α = αn = αt.

Remark 4.1. In the following, the decomposition into normal and tangential direction is
performed several times. In these cases, it is always assumed that α = αn = αt in order
for the equality to hold. For practical computations, the penalty parameters can be chosen
differently, of course.

The penalty contribution to the potential Π is given by Πpen:

Πpen =
1

2

∫
Γ∗

αJuiKJuiK dΓ (4.15)

Since the penalty parameter α is constant, it can be pulled out of the integral. The entire
potential for the fully tied case using a penalty method to enforce the continuity of the
displacement field is given by:

Π = Πu + Πpen = Πint − Πext + Πpen (4.16)

Since the variation of Πu = Πint − Πext does not change, only the variation of Πpen is
investigated here. It reads:

δΠpen = α

∫
Γ∗

JδuiKJuiK dΓ (4.17)

Using the stationarity of Π, (3.4) and (4.17) as well as considering the enriched displacement
field, the variational problem for the fully tied problem using the penalty method reads:
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Find u ∈ U for all δu ∈ V such that

δΠ =

∫
Ω

δε̂ijσij dΩ +
∑
m

∫
Ω(m)

H(m)δε̃
(m)
ij σ

(m)
ij dΩ + α

∫
Γ∗

JδuiKJuiK dΓ

−
∫

Ω

δûibi dΩ−
∑
m

∫
Ω(m)

H(m)δũ
(m)
i b

(m)
i dΩ

−
∫

Γσ

δûihi dΓ−
∑
m

∫
Γ
(m)
σ

H(m)δũ
(m)
i h

(m)
i dΓ = 0

(4.18)

Considering the possible decomposition into normal and tangential direction (4.14) leads to
the following variational problem which has the same meaning as (4.18) but uses a different
notation:

Find u ∈ U for all δu ∈ V such that

δΠ =

∫
Ω

δε̂ijσij dΩ +
∑
m

∫
Ω(m)

H(m)δε̃
(m)
ij σ

(m)
ij dΩ

+ αn

∫
Γ∗

JδuiKninjJujK dΓ + αt

∫
Γ∗

JδuiK (δij − ninj) JujK dΓ

−
∫

Ω

δûibi dΩ−
∑
m

∫
Ω(m)

H(m)δũ
(m)
i b

(m)
i dΩ

−
∫

Γσ

δûihi dΓ−
∑
m

∫
Γ
(m)
σ

H(m)δũ
(m)
i h

(m)
i dΓ = 0

(4.19)

Of course, this split form has the same meaning as (4.18), but it helps preparing interfacial
laws with different behaviour in normal and tangential direction.
The advantage of the penalty method is that no additional unknowns are introduced, since
the traction field is regularized with the jump, JuiK. The traction field can thus be re-
constructed from the displacement solution, using the regularization (4.13) or using (4.14).
However, the usual problems of this method cannot be neglected. Some of them will be
mentioned here without claiming completeness. The penalty method can be shown as vari-
ationally inconsistent (see appendix A or [20]). Due to the regularization, the condition of
the continuity of the displacement field at the interface as postulated in (4.5) will always
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be violated for finite penalty parameters since the internal traction is propotional to the
gap, JuiK. The magnitude of this violation depends on the magnitude of the penalty pa-
rameter. The higher the penalty parameter is chosen, the less the violation will be. The
continuity condition is only perfectly represented as the penalty parameter α→∞, which is
practically impossible in real calculations for several reasons [23]. The most important one
is, that a very high penalty parameter results in an ill-conditioned system [23, 45]. Indeed, a
very high penalty parameter reduces the gap and hence raises accuracy in the displacement
field, but can lead to stability problems. Hence, there is always a trade-off between accuracy
and stability. According to [4], the discrete results can be overly sensitive to α.

4.2.3 Nitsche’s method

It can be shown, that the Lagrange multiplier method can cause stability problems, depend-
ing on the particular choice of the discrete ansatz spaces. The penalty method is variationally
inconsistent [20]. Numerical examples showing these stability problems as oscillations in the
traction field are given in [33] for the fully tied problem. Hence, an alternative method
without these issues is desired.
An alternative method to impose Dirichlet boundary conditions was developed in [30]. [39]
shows its consistency as well as stability and recommends it to enforce constraints at inter-
faces, since it does not have to deal with the stability problems of the other two methods.
Since it can be derived by starting with a penalty fomulation, it can be seen as a consistent
form of the penalty method [11, 20]. In contrast to the standard penalty method, good
convergence behavior can be obtained using a relatively small stabilization parameter [11].
In fact, the original contribution [30] proved that the discrete solution converges towards the
exact solution with optimal convergence rates in the error of the displacement field as of the
traction field as well, if the parameter α is chosen properly and scaled by 1/h with mesh
refinement [1]. For a mathematical analysis of Nitsche’s method, see [21, 39]. A derivation
of Nitsche’s method, following [21] and starting with a penalty formulation, is presented in
appendix A.
However, here Nitsche’s method will be derived starting with an augmented Lagrangian for-
mulation, as suggested by [46] for frictionless contact. Therefor, the distinction between the
two displacement fields, u(1)

i and u(2)
i , in the two grains, Ω(1) and Ω(2), is made since it makes

it more obvious. The convention on the normal vectors in (2.7) is recalled, which establishes
the opposite signs of the normal vectors n(1) and n(2). Green’s first identity is applied to
the first variation of the augmented Lagrangian. The resulting expression is used to write
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the Lagrange multipliers in terms of the primal variable, ui. Finally, a one-field potential is
obtained which directly yields Nitsche’s variational form.
The augmented Lagrangian potential, ΠAL, is introduced as follows:

ΠAL =

∫
Γ∗

(
λi +

α

2
JuiK

)
JuiK dΓ (4.20)

with α being the penalty parameter and λi denoting the Lagrange multiplier, defined on L
from (4.7) as well as its variation δλi. The entire potential Π is computed as the sum of the
potential for the untied problem, Πu, and the augmented Lagrangian potential, ΠAL:

Π =
1

2

∫
Ω

σijεij dΩ−
∫

Ω

biui dΩ−
∫

Γσ

hiui dΓ +

∫
Γ∗

(
λi +

α

2
JuiK

)
JuiK dΓ (4.21)

The stationarity of Π imposes that its first variation should be equal to zero. This leads to
the following variational problem for an augmented Lagrangian method:

Find (u,λ) ∈ U × L for all (δu, δλ) ∈ V × L such that

δΠ =

∫
Ω

δεijσij dΩ−
∫

Ω

δuibi dΩ−
∫

Γσ

δuihi dΓ

+

∫
Γ∗

(λi + αJuiK) JδuiK dΓ +

∫
Γ∗

δλiJuiK dΓ = 0

(4.22)

Since the augmented Lagrangian formulation contains two fields of unknowns, ui and λi,
the next step is to express the Lagrange multipliers in terms of displacements. Therefor,
Green’s first identity is applied to the first variation of the internal potential, δΠint. Using
the symmetry of the stress tensor, σij = σji, the first variation of the internal potential reads:

∫
Ω(m)

δε
(m)
ij σ

(m)
ij dΩ =

∫
Γ
(m)
σ

δu
(m)
i σ

(m)
ij n

(m)
j dΓ +

∫
Γ∗

δu
(m)
i σ

(m)
ij n

(m)
j dΓ

−
∫

Ω(m)

δu
(m)
i σ

(m)
ij,j dΩ

(4.23)

The boundary integral is split into three integrals over Γ
(m)
d , Γ

(m)
σ and Γ∗. Since δu

(m)
i belongs

to V , the integrals over the Dirichlet boundaries vanish. Replacing (4.23) in the first variation
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of Π yields:

δΠ =
2∑

m=1

∫
Γ
(m)
σ

δu
(m)
i

(
σ

(m)
ij n

(m)
j − h(m)

i

)
dΓ−

2∑
m=1

∫
Ω(m)

δu
(m)
i

(
b

(m)
i + σ

(m)
ij,j

)
dΩ

+

∫
Γ∗

δu
(1)
i

(
σ

(1)
ij n

(1)
j + λi + αJuiK

)
+ δu

(2)
i

(
σ

(2)
ij n

(2)
j − λi − αJuiK

)
+ δλiJuiK dΓ

(4.24)

Due to the Cauchy principle, the first term in (4.24) vanishes along with the second one due
to the balance of linear momentum. Since δu(m)

i and δλi can be chosen arbitrarily, it falls
that

JuiK = 0 on Γ∗ (4.25)

and thus that:

λi = −σ(1)
ij n

(1)
j = −σ(1)

ij nj (4.26)

λi = +σ
(2)
ij n

(2)
j = −σ(2)

ij nj (4.27)

Adding (4.26) and (4.27) leads to the following expression for λi:

λi = −1

2

2∑
m=1

σ
(m)
ij nj = −〈σij〉nj (4.28)

where 〈σij〉 is introduced as the averaged stress over the embedded interface:

〈σij〉 =
σ

(1)
ij + σ

(2)
ij

2
(4.29)

By replacing λi in the augmented Lagrangian potential, ΠAL, with (4.28), a Nitsche poten-
tial, ΠNit, which depends only on the displacement field, can be expressed as:

ΠNit =

∫
Γ∗

(
−〈σ(u)ij〉nj +

α

2
JuiK

)
JuiK dΓ (4.30)

The quadratic functional introduced in the original contribution [30] can be written as:

Π = Πint − Πext −
∫

Γ∗

JuiK〈σ(u)ij〉nj dΓ +
α

2

∫
Γ∗

JuiK2 dΓ (4.31)
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Using the stationarity of Π yields:

δΠ =
2∑

m=1

∫
Ω(m)

δε
(m)
ij σ

(m)
ij dΩ−

2∑
m=1

(∫
Ω(m)

δu
(m)
i b

(m)
i dΩ +

∫
Γ
(m)
σ

δu
(m)
i h

(m)
i dΓ

)
+ α

∫
Γ∗

JδuiKJuiK dΓ−
∫

Γ∗

〈σ(u)ij〉njJδuiK dΓ−
∫

Γ∗

〈σ(δu)ij〉njJuiK dΓ = 0

(4.32)

Using the enriched displacement field from (2.9), the variational problem for Nitsche’s
method applied to the fully tied problem can be posed as follows:

Find u ∈ U for all δu ∈ V such that

δΠ =

∫
Ω

δε̂ijσij dΩ +
∑
m

∫
Ω(m)

H(m)δε̃
(m)
ij σ

(m)
ij dΩ + α

∫
Γ∗

JδuiKJuiK dΓ

−
∫

Γ∗

JδuiK〈σ(u)ij〉nj dΓ−
∫

Γ∗

JuiK〈σ(δu)ij〉nj dΓ

−
∫

Ω

δûibi dΩ−
∑
m

∫
Ω(m)

H(m)δũ
(m)
i b

(m)
i dΩ

−
∫

Γσ

δûihi dΓ−
∑
m

∫
Γ
(m)
σ

H(m)δũ
(m)
i h

(m)
i dΓ = 0

(4.33)

The fourth term guarantees the consistency of the method. Symmetry is provided by the
fifth term. As in the penalty method, α is a free parameter for Nitsche’s method. Rather
than a penalty parameter, however, it is more properly viewed as a stabilization parameter
in the context of Nitsche’s method. As such, it is expected to be relatively “small”, but
it should be noted, that for arbitrary values of α there is no guarantee, that the bilinear
form will remain coercive. This may be important, since the coercivity of the bilinear
form guarantees the positive definiteness of the stiffness matrix. However, the patch test
can be passed with an arbitrary choice of α ≥ 0 [33]. It has been shown in the original
contribution [30], that a minimum αmin exists, that guarantees the coercivity of the bilinear
form associated with Nitsche’s method. A method to estimate the minimal stabilization
parameter which guarantees the coercivity using linear triangular elements to solve scalar
problems is proposed in [8]. Using a similar idea, an estimate for α for linear triangular
elements to solve two-dimensional elasticity problems is derived after discretizing Nitsche’s
variational form in section 4.3.3. For higher order shape functions, a local eigenvalue problem
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has to be solved which is explained in detail in [33] and references therein. Similar to the
penalty case, the interfacial contributions can be decomposed into normal and tangential
direction using the dyadic product ninj which leads to the following variational problem:

Find u ∈ U for all δu ∈ V such that

δΠ =

∫
Ω

δε̂ijσij dΩ +
∑
m

∫
Ω(m)

H(m)δε̃
(m)
ij σ

(m)
ij dΩ

+ αn

∫
Γ∗

JδuiKninjJujK dΓ + αt

∫
Γ∗

JδuiK (δij − ninj) JujK dΓ

−
∫

Γ∗

JδuiKninj〈σ(u)jk〉nk dΓ−
∫

Γ∗

JδuiK (δij − ninj) 〈σ(u)jk〉nk dΓ

−
∫

Γ∗

JuiKninj〈σ(δu)jk〉nk dΓ−
∫

Γ∗

JuiK (δij − ninj) 〈σ(δu)jk〉nk dΓ

−
∫

Ω

δûibi dΩ−
∑
m

∫
Ω(m)

H(m)δũ
(m)
i b

(m)
i dΩ

−
∫

Γσ

δûihi dΓ−
∑
m

∫
Γ
(m)
σ

H(m)δũ
(m)
i h

(m)
i dΓ = 0

(4.34)

Of course, this form has the same meaning as (4.33), but it helps preparing interfacial laws
with different behavior in normal and tangential direction.
Considering the similarities between Nitsche’s method and an augmented Lagrangian for-
mulation, it suggests itself to compute the traction field along the interface as follows:

h∗i = −αJuiK + 〈σij〉nj (4.35)

The contribution from the jump in the displacement field is expected to be very small.

Remark 4.2. The choice of the signs in (4.35) can easily be verified by considering, that
Nitsche’s method enforces the jump to be zero. Then (4.35) corresponds to Cauchy’s princi-
ple σijnj = h∗i .

4.3 Discretization

Now, these variational forms can be discretized. This leads to the discrete systems of equa-
tions that have to be solved. Since the common part has been presented in section 3, here
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only the additional terms due to the constraint enforcement are considered.
Since the jump in the dispacement field and in its variation appears quite often, the discretiza-
tion of the jump will be shown here, since it is common to all three methods of constraint
enforcement. Introducing the discretization (3.7) into the definition of the jump (4.3) leads
to:

JuK ≈ JuhK =
(
Ñ

(1) − Ñ (2)
)
d̃ = JÑKd̃ (4.36)

with JÑK denoting the jump in shape functions. The jump in the variation of the displace-
ment field is discretized, accordingly:

JδuK ≈ JδuhK =
(
Ñ

(1) − Ñ (2)
)
δd̃ = JÑKδd̃ (4.37)

Using these shorthand notations, the discrete forms for Lagrange multipliers, penalty method
and Nitsche’s method can be introduced.

4.3.1 Lagrange multipliers

In order to implement Lagrange multipliers, a choice for the interpolation of the multipliers
over the interface has to be made. In this study, the Lagrange multipliers are assumed to be
piecewise constant over each Γ

(e)
∗ since it is based on [33]. The choice of a piecewise constant

subspace is convenient and easy to implement, but is shown to have stability problems [20,
33]. Recent work by [27] or even more recent by [5] demonstrates, that a careful construction
of the multiplier space can circumvent the stability problems, introduced by a naive choice of
multipliers. The discretization of the Lagrange multipliers λi and its variation δλi is achieved
via

λ ≈ λh = N̄ λ̄ (4.38)

δλ ≈ δλh = N̄δλ̄ (4.39)

where N̄ contains the Lagrange multiplier shape functions which are equal to 1 over the
segment k and 0 over all other segments, and k is an index over the segments Γ

(e)
∗ . N̄ has

the following structure:

N̄ =

[
N̄k 0

0 N̄k

]
(4.40)
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Since the contributions from the bulk field as developed in section 3 do not change, only
the additional parts due to the variation of ΠLag have to be investigated. Inserting the
discretizations (3.8) and (4.39) into the variation of ΠLag (4.11) yields the discrete form of
the Lagrange multiplier contribution:

δΠLag ≈
cutnumele∑

e=1

{
δd̃

T
∫

Γ
(e)
∗

JÑKTλh dΓ + δλ̄
T
∫

Γ
(e)
∗

N̄
T JuhK dΓ

}
(4.41)

Using the arbitrariness of the nodal variation quantities, δd̃ and δλ̄, leads to a Lagrange
multiplier contribution to the elementary residual,

rLag,(e) =

 06×1∫
Γ
(e)
∗

JÑKTλh dΓ∫
Γ
(e)
∗
N̄

T JuhK dΓ

 (4.42)

which have to be assembled to a global contribution for Lagrange multipliers to the global
residual

RLag =

cutnumele

A
e=1

rLag,(e) (4.43)

such that the global system of equations becomes

R =

[
Ru

0

]
+RLag = 0 (4.44)

whereby the residual from the untied case has to be extended with 2 × cutnumele zeros in
order to obtain equal dimensions. These additional rows in the residual correspond to the
additional primary unknowns, the Lagrange multipliers, with the factor 2 stemming from
the two dimensions of the problem.
Since the global residual, R, depends on two fields of unknowns, the linearization has to be
done with respect to these two fields.

∆R =

[
∂R
∂D
∂R
∂Λ

][
∆D

∆Λ

]
(4.45)
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Due to the linearity of the assembly operator, it is sufficient to linearize the elmentary
residuals in order to obtain element contributions which can be assembled to the global
tangent stiffness matrix.

∆r(e) =

[
∂r(e)

∂d
∂r(e)

∂λ

][
∆d

∆λ

]
=

[
ku,(e) gλ,(e)

gd,(e) 0

][
∆d

∆λ

]
(4.46)

with

gλ,(e) =

∫
Γ
(e)
∗

JÑKTN̄ dΓ

gd,(e) =

∫
Γ
(e)
∗

N̄
T JÑK dΓ

(4.47)

where gd,(e) = gλ,(e)
T provides the symmetry of the stiffness matrix. The global tangent

stiffness matrix for Lagrange multipliers has a similar structure:[
∂R
∂D
∂R
∂Λ

]
=

[
Ku GT

G 0

]
=

numele

A
e=1

[
ku,(e) gλ,(e)

gd,(e) 0

]
(4.48)

Here, the submatrix Ku represents the stiffness contributions from the bulk field, adopted
from the untied problem. The coupling with Lagrange multipliers is done by the submatrixG
which occurs twice and is assembled from the element matrices gd,(e) = gλ,(e)

T .

4.3.2 Penalty method

Inserting the discretizations (3.7) and (3.8) into the penalty terms of the variational prob-
lem (4.18) yields:

δΠpen ≈
cutnumele∑

e=1

{
δd̃

T
α

∫
Γ
(e)
∗

JÑKT JuhK dΓ

}
(4.49)
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From the discretized variational problem, the elementary penalty contribution to the residual
can be extracted:

rpen,(e) =

[
06×1

α
∫

Γ
(e)
∗

JÑKT JuhK dΓ

]

=

[
06×1

αn
∫

Γ
(e)
∗

JÑKTnnT JuhK dΓ + αt
∫

Γ
(e)
∗

JÑKT
(
I − nnT

)
JuhK dΓ

] (4.50)

The second part of (4.50) presents the residual for the decomposition into normal and tan-
gential direction. Remember remark 4.1 for the choice of the penalty parameters. The
elementary penalty residuals can be assembled to a global penalty contribution to the global
residual:

Rpen =

cutnumele

A
e=1

rpen,(e) (4.51)

such that the global system of equations that has to be solved is built with the global residual
of the untied problem plus the penalty contribution:

R = Ru +Rpen = 0 (4.52)

The penalty contribution to the global tangent stiffness matrix is obtained by deriving the
global penalty contribution to the global residual with respect to the displacements. The
linearity of the assembly operator is used to define elementary penalty based stiffness con-
tributions

Kpen =
∂Rpen

∂D
=
∂A

cutnumele
e=1 rpen,(e)

∂D
=

cutnumele

A
e=1

∂rpen,(e)

∂d
=

cutnumele

A
e=1

kpen,(e) (4.53)

with

kpen,(e) =

[
06×6 06×6

06×6 κ
pen,(e)
22

]
(4.54)
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and

κ
pen,(e)
22 = α

∫
Γ
(e)
∗

JÑKT JÑK dΓ

= αn

∫
Γ
(e)
∗

JÑKTnnT JÑK dΓ + αt

∫
Γ
(e)
∗

JÑKT
(
I − nnT

)
JÑK dΓ

(4.55)

The second part of (4.55) represents the form for the decomposition into normal and tan-
gential direction. Remember remark 4.1 for the choice of the penalty parameters. Here, it
can be seen clearly that for the penalty method the coupling between the two grains hap-
pens only in the enriched degrees of freedom. This is based on the definition of the penalty
method since it is a regularization, linear in the jump in the displacement field. Since this
jump depends only on the enriched degrees of freedom, the element stiffness matrix in (4.54)
is mostly populated with zeros.

4.3.3 Nitsche’s method

In order to discretize the variational problem for Nitsche’s method, some discretization issues
of the stress tensor, σ, shall be discussed first. The discrete counterpart to the stress tensor
is the discrete stress vector, σ, in Voigt notation. To clarify the difference between the
continuous stress tensor and the discrete stress vector, the latter one is denoted with the
superscript h in the following. Using the Voigt notation, a tensor represented by a 2 × 2

matrix is approximated by a 3 × 1 vector. This change in dimensionality requires an
adaptaion of the product σn when going from the continuous to the discrete regime where
the average operator 〈•〉 is omitted for now to simplify the notation. In the continuous
regime, this product reads:

σn =

[
σ11 σ12

σ21 σ22

][
n1

n2

]
=

[
σ11n1 + σ12n2

σ21n1 + σ22n2

]
(4.56)

The discrete counterpart to σn has to result in the same expression. The normal vector, n,
has to be replaced by a matrix, ň, which leads to the same expression when multiplying with
the discrete vector, σh:

ňσh =

[
n1 0 n2

0 n2 n1

]σ
h
11

σh22

σh12

 =

[
σh11n1 + σh12n2

σ21hn1 + σh22n2

]
≈

[
σ11n1 + σ12n2

σ21n1 + σ22n2

]
(4.57)
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Since the stress is computed as σ = C : ε, the enrichments in the strain field yields the
following form of the stress tensor:

σ (u) = σ

(
û+

∑
m

H(m)ũ(m)

)
= σ (û) +

∑
m

H(m)σ
(
ũ(m)

)
(4.58)

This is valid in the discrete regime as well where the dependency of the stress vector on the
nodal displacements is inserted:

σh = CBd = CB̂d̂+
∑
m

(
H(m)C(m)B̃

(m)
)
d̃ (4.59)

Inserting the discretizations into the variation of the Nitsche potential (4.30) yields the
following discrete expression:

δΠNit ≈
cutnumele∑

e=1

{
α

∫
Γ
(e)
∗

(
JÑKδd̃

)T
JuhK dΓ−

∫
Γ
(e)
∗

(
JÑKδd̃

)T
ň〈σh〉 dΓ

}

−
cutnumele∑

e=1

{∫
Γ
(e)
∗

JuhKT ň〈CB̂δd̂+
∑
m

(
H(m)C(m)B̃

(m)
δd̃
)
〉 dΓ

}

=
cutnumele∑

e=1

{
δd̃

T
α

∫
Γ
(e)
∗

JÑKT JuhK dΓ− δd̃T
∫

Γ
(e)
∗

JÑKT ň〈σh〉 dΓ

}

−
cutnumele∑

e=1

{
δd̂

T
∫

Γ
(e)
∗

〈CB̂〉T ňT JuhK dΓ

}

−
cutnumele∑

e=1

{
δd̃

T
∫

Γ
(e)
∗

〈
∑
m

(
H(m)C(m)B̃

(m)
)
〉T ňT JuhK dΓ

}

(4.60)

From the discretized variational problem, the elementary Nitsche contribution to the residual
can be extracted:

rNit,(e) =

[
−
∫

Γ
(e)
∗
〈CB̂〉T ňT JuhK dΓ

α
∫

Γ
(e)
∗

JÑKT JuhK dΓ−
∫

Γ
(e)
∗

JÑKT ň〈σh〉 dΓ−
∫

Γ
(e)
∗
〈CB̃〉T ňT JuhK dΓ

]
(4.61)

where the shorthand notation

〈CB̃〉 = 〈
∑
m

(
H(m)C(m)B̃

(m)
)
〉 (4.62)
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is introduced. The stabilization term is totally equivalent to the penalty term presented in
the previous section. The elementary Nitsche residuals can be assembled to a global Nitsche
contribution to the global residual:

RNit =

cutnumele

A
e=1

rNit,(e) (4.63)

such that the global system of equations that has to be solved is built with the global residual
of the untied problem plus the Nitsche contribution:

R = Ru +RNit = 0 (4.64)

The Nitsche contribution to the global tangent stiffness matrix is obtained by deriving the
global Nitsche contribution to the global residual with respect to the displacements. The
linearity of the assembly operator is used to define elementary Nitsche based stiffness con-
tributions

KNit =
∂RNit

∂D
=
∂A

cutnumele
e=1 rNit,(e)

∂D
=

cutnumele

A
e=1

∂rNit,(e)

∂d
=

cutnumele

A
e=1

kNit,(e) (4.65)

with

kNit,(e) =

[
06×6 κ

Nit,(e)
12

κ
Nit,(e)
21 κ

Nit,(e)
22

]
(4.66)

and

κ
Nit,(e)
12 = −

∫
Γ
(e)
∗

〈CB̂〉T ňT JÑK dΓ

κ
Nit,(e)
21 = −

∫
Γ
(e)
∗

JÑKT ň〈CB̂〉 dΓ

κ
Nit,(e)
22 = α

∫
Γ
(e)
∗

JÑKT JÑKdΓ−
∫

Γ
(e)
∗

JÑKT ň〈CB̃〉 dΓ−
∫

Γ
(e)
∗

〈CB̃〉T ňT JÑK dΓ

(4.67)

Due to the symmetry of Nitsche’s bilinear form, it is not surprising, that κNit,(e)12 = κ
Nit,(e)T

21

and that also the last two terms in κNit,(e)22 are the transpose of each other. So, the element
stiffness contribution for Nitsche’s method is symmetric.

Remark 4.3. The stabilization contribution in kNit,(e) is the same as in the penalty method.
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It can be seen, that through the entire derivation and discretization, the stabilization terms
always equal the penalty terms. This might be helpful for the implementation: In order to
obtain a Nitsche implementation, only additional code has to be added to a penalty code.

It has been shown in the original contribution [30] as well as in its analysis [39], that the
parameter α has to take at least a minimum value to guarantee the coercivity of the bilinear
form. Following [8], where an estimate for α for scalar problems is given, now an estimate
for α in a two-dimensional elasticity problem shall be derived. A local approach is used. Fol-
lowing the notation in [8], the variational form for Nitsche’s method (4.33) can be rewritten
in a general form without considering the paricular form of the enriched displacement field
since it is not important for this derivation:

a(u,w)− l(w) = 0 (4.68)

with the bilinear form, a(u,w), representing the internal contributions from the bulk and
the interfacial field

a(u,w) =

∫
Ω

wi,jCijklεkl dΩ + α

∫
Γ∗

JwiKJuiK dΓ

−
∫

Γ∗

JwiK〈Cijklεkl〉nj dΓ−
∫

Γ∗

JuiK〈Cijklwk,l〉nj dΓ

(4.69)

and the linear form, l(w), representing the external contribution from body forces bi and
external tractions hi on the Neumann boundary:

l(w) =

∫
Ω

wibi dΩ +

∫
Γσ

wihi dΓ (4.70)

Remark 4.4. In the context of a bilinear form, one usually considers weight functions wi
instead of variations in the displacement field. As a matter of fact, the principle of the
minimum of the total potential energy ends up with the same formulation as the method of
weighted residuals in a continuum mechanics context. Hence, δui can be replaced by a weight
function wi.

The goal is to provide a rule that helps to choose α such that the bilinear form a(u,w) is
coercive regardless of the values of u and w:

a(u,w) ≥ 0 ∀ (u,w) (4.71)
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First, an “energy” norm is defined for the sake of convenience:

‖ui‖2
Ω,C = (εij, Cijklεkl) =

∫
Ω

εijCijklεkl dΩ (4.72)

where (·, ·) denotes the L2 inner product. The duality pairing
〈
·, ·
〉
denotes integration along

the interface.

Remark 4.5. These notations are adopted from [8]. Unfortunately, the expressions
〈
·, ·
〉

and 〈•〉 seem to be very similar, but they are not. The first one with the comma in between
symbolizes an integration whereas the second one without a comma denotes the average op-
erator introduced in (4.29). The difference is also emphasized in the size of the operator.
Despite this clash of notations, they are used here, since they commonly appear in literature.
Similar notations are introduced in [4, 8, 39].

Following [8], there is a configuration-dependent constant CI > 0 such that:

‖〈Cijklεkl〉nj‖Γ∗ ≤ CI‖ui‖Ω,C (4.73)

with

‖〈Cijklεkl〉nj‖2
Γ∗ =

∫
Γ∗

(〈Cijklεkl〉nj) (〈Cijklεkl〉nj) dΓ (4.74)

Considering a(w,w) and rewriting it, using the shorthand notations, yields:

a(w,w) = ‖wi‖2
Ω,C + α‖JwiK‖2

Γ∗ − 2
〈
JwiK, 〈Cijklwk,l〉nj

〉
(4.75)

The Cauchy-Schwarz inequality can be applied to the last term:〈
JwiK, 〈Cijklwk,l〉nj

〉
≤ ‖JwiK‖Γ∗‖〈Cijklwk,l〉nj‖Γ∗ (4.76)

Inserting this into (4.75) yields a lower bound for the bilinear form:

a(w,w) ≥ ‖wi‖2
Ω,C + α‖JwiK‖2

Γ∗ − 2‖JwiK‖Γ∗‖〈Cijklwk,l〉nj‖Γ∗ (4.77)
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Using (4.73) and adding and subtracting C2
I ‖JwiK‖2

Γ∗ yields:

a(w,w) ≥ ‖wi‖2
Ω,C − 2CI‖JwiK‖Γ∗‖wi‖Ω,C + C2

I ‖JwiK‖2
Γ∗

+ α‖JwiK‖2
Γ∗ − C

2
I ‖JwiK‖2

Γ∗

(4.78)

Now, the binomial theorem can be applied leading to:

a(w,w) ≥

≥0︷ ︸︸ ︷(
‖wi‖Ω,C − C2

I ‖JwiK‖Γ∗

)2
+
(
α− C2

I

)
‖JwiK‖2

Γ∗ (4.79)

In (4.79), it can easily be seen that the coercivity of the bilinear form depends only on a
relation between α and CI since the first term on the right hand side is always greater or
equal to zero. The condition for coercivity can be formulated as:

α ≥ C2
I (4.80)

As mentioned above, a local approach is considered here. If (4.71) is satisfied in every
element, then it is also satisfied globally. Hence, all further investigations are done in a
discrete space, using the discretizations introduced so far. Therefor, linear shape functions
are assumed such that the strain and the gradient of the weight function in an element are
constant. This implies that the derivation is only valid for triangular elements, since it is the
only element type with a constant gradient in the entire element. It is also assumed, that the
constitutive tensor is constant within one element as well as its discrete counterpart. (4.71)
holds only if (4.73) holds, too. A deeper look at (4.73) leads to a relation between α and CI
such that (4.73) and hence (4.71) holds. In the following, this rule for matrix norms will be
applied [31]:

|AB| ≤ |A||B| (4.81)

where |A| denotes the 2-norm of matrix A. Investigating the right hand side of (4.73) and
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using the discrete counterpart of the “energy” norm (4.72) yields:

‖w‖2
Ω,C =

∫
Ω(e)

∇wTC∇w dΩ

=

∫
Ω(1),(e)

∇w(1)TC(1)∇w(1) dΩ +

∫
Ω(2),(e)

∇w(2)TC(2)∇w(2) dΩ

= |∇w(1)TC(1)∇w(1)|A(1) + |∇w(2)TC(2)∇w(2)|A(2)

≤ |C(1)||∇w(1)|2A(1) + |C(2)||∇w(2)|2A(2)

(4.82)

with the measures of the area, A(1) = meas
(
Ω(1),(e)

)
and A(2) = meas

(
Ω(2),(e)

)
, as depicted

in figure 4.2. Looking at the left hand side of (4.73) yields:

Figure 4.2: Geometric quantities to calculate the stabilization parameter α for Nitsche’s
method in a linear triangular element: The area of the element is divided into
two subareas, A(1) and A(2), by a subsegment of Γ∗ with the length Ls.

‖〈C∇w〉n‖
Γ
(e)
∗

= |〈C∇w〉n|2 · Ls (4.83)

where Ls = meas
(

Γ
(e)
∗

)
denotes a measured length of the subsegment of the interface

intersecting with the element, see figure 4.2. For the following transformations, the results
from appendix B regarding Young’s inequality with ε are used. Identifiying c = C(2)∇w(2)
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and d = C(1)∇w(1), the first term on the right hand side in (4.83) reads:

|〈C∇w〉n|2 ≤ |〈C∇w〉|2
=1︷︸︸︷
|n|2 =

1

4
|C(1)∇w(1) +C(2)∇w(2)|2

≤ 1

4
(1 + ε)|C(1)∇w(1)|2 +

1

4
(1 +

1

ε
)|C(2)∇w(2)|2

≤ 1

4
(1 + ε)|C(1)|2|∇w(1)|2 +

1

4
(1 +

1

ε
)|C(2)|2|∇w(2)|2

(4.84)

Selecting ε as

ε =
|C(2)|A(1)

|C(1)|A(2)
(4.85)

yields:

|〈C∇w〉n|2 ≤ 1

4

(
1 +
|C(2)|A(1)

|C(1)|A(2)

)
|C(1)|2|∇w(1)|2

+
1

4

(
1 +
|C(1)|A(2)

|C(2)|A(1)

)
|C(2)|2|∇w(2)|2

=
1

4

(
|C(1)|
A(1)

+
|C(2)|
A(2)

)(
A(1)|C(1)||∇w(1)|2 + A(2)|C(2)||∇w(2)|2

)
(4.86)

Inserting the results of (4.82) and (4.86) into (4.73) yields a lower bound for C2
I :

C2
I ≥

Ls
4

(
|C(1)|
A(1)

+
|C(2)|
A(2)

)
(4.87)

Following the local approach, the stabilization parameter α = αe has to be computed for
each element separately. According to (4.80), it is suffucient to choose αe = C2

I to guarantee
coercivity of the bilinear form, but following [8], the choice

αe = 2C2
I (4.88)

is recommended since it assures the coercivity of the bilinear form as well as provides good
performance in computation. In general, the solution is not as sensitive to the choice of α,
if α > αmin, as for the penalty method. Though, it is not recommended to choose the
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stabilization parameter much higher than necessary since then the stabilization term would
outpace the other terms in the stiffness matrix. A sensitivity analysis is performed in [13].
Since Ls as well as A(m) in (4.87) depend on the mesh size h, it can be seen easily that the
stabilization parameter scales 1/h.

Remark 4.6. The reader may be informed that neither a plain stress nor a plain strain state
was assumed to develop this estimate of the stabilization parameter. It thus can be used for
both types equally.
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5 The frictionless sliding problem

In this section, frictionless sliding at the interface is introduced. The same methods as for
the fully tied problem are used to constrain the interface, but they have to be modified.
First, the constraints at the interface are shown. Afterwards, the variational forms and the
discretization for Lagrange multipliers, penalty method and Nitsche’s method are presented
for the frictionless sliding problem.

5.1 Constraints for kinematics and tractions

For the frictionless sliding problem, the continuity of the displacement field is only required
in normal direction with respect to the interface Γ∗. Hence, (4.5) has to be modified:

JuiKni
.
= 0 on Γ∗ (5.1)

where ni denotes the normal vector, as it was introduced in section 2. Similar modifications
have to be done for every appearance of the variation of the displacement field. The definition
of the gap-function in contact mechanics which measures the gap in normal direction is done
in a similar way, see for example [23, 45]. Due to frictionless sliding, only normal tractions
can be assigned across the embedded interface:

niσ
(1)
ij n

(1)
j + niσ

(2)
ij n

(2)
j = 0 on Γ∗ (5.2)

The tangential direction is not constrained. This might result in problems with rigid body
modes which have to be constrained properly using Dirichlet boundary conditions.

5.2 Variational forms

The variational forms for frictionless sliding for Lagrange multipliers, penalty method and
Nitsche’s method are introduced by modifying the potentials of the fully tied problem and
building their first variations.

5.2.1 Lagrange multipliers

Since tractions in the interface occur only in normal direction, the Lagrange multiplier field
has to be projected onto the normal direction, too. The potential for Lagrange multipliers
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with frictionless sliding reads:

ΠLag =

∫
Γ∗

λininjJujK dΓ (5.3)

Here, also the dyadic product of the normal vector, ninj, occurs which was introduced when
the decomposition into a normal and a tangential traction was shown in (4.14).

Remark 5.1. The potential for Lagrange multipliers for the fully tied problem was denoted
by ΠLag, too, as well as it is done here for the frictionless sliding problem. It is obvious that
these two potentials are different, but in order to keep the number of indices and superscripts
small, the same notation is used. This clash of notations happens not only for Lagrange
multipliers but will occur several times in the following sections. Though, it will be totally
obvious from the context which type of problem is considered.

Building the first variation, δΠLag, yields:

δΠLag =

∫
Γ∗

λininjJδujK dΓ +

∫
Γ∗

δλininjJujK dΓ (5.4)

Using the same arguments as in section 4.2.1 yields the variational problem for frictionless
sliding at the interface with Lagrange multipliers:

Find (u,λ) ∈ U × L for all (δu, δλ) ∈ V × L such that

δΠ =

∫
Ω

δε̂ijσij dΩ +
∑
m

∫
Ω(m)

H(m)δε̃
(m)
ij σ

(m)
ij dΩ

+

∫
Γ∗

JδuiKninjλj dΓ +

∫
Γ∗

δλininjJujK dΓ

−
∫

Ω

δûibi dΩ−
∑
m

∫
Ω(m)

H(m)δũ
(m)
i b

(m)
i dΩ

−
∫

Γσ

δûihi dΓ−
∑
m

∫
Γ
(m)
σ

H(m)δũ
(m)
i h

(m)
i dΓ = 0

(5.5)

The stability problems, mentioned in section 4.2.1, occur here, too. A numerical example
showing the oscillations in the traction field is provided in section 9.2.2.
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5.2.2 Penalty method

The approximation of the Lagrange multiplier, as given in (4.13), has to be modified. Pluging
in (5.1) results in

λ ≈ αJuiKni. (5.6)

These modifications affect the potential, Πpen:

Πpen =
1

2

∫
Γ∗

αJuiKninjJujK dΓ (5.7)

Comparing to contact mechanics, this is similar to the penalty potential for frictionless
contact. Here, also the dyadic product of the normal vector, ninj, is introduced to account
for the decomposition into a normal and a tangential traction as shown in (4.14). The entire
potential is built from the potential of the untied problem and the new penalty potential.
Building the first variation, δ (Πu + Πpen), and using the same arguments as in section 4.2.2
yields the variational problem for frictionless sliding at the interface with the penalty method:

Find u ∈ U for all δu ∈ V such that

δΠ =

∫
Ω

δε̂ijσij dΩ +
∑
m

∫
Ω(m)

H(m)δε̃
(m)
ij σ

(m)
ij dΩ + α

∫
Γ∗

JδuiKninjJujK dΓ

−
∫

Ω

δûibi dΩ−
∑
m

∫
Ω(m)

H(m)δũ
(m)
i b

(m)
i dΩ

−
∫

Γσ

δûihi dΓ−
∑
m

∫
Γ
(m)
σ

H(m)δũ
(m)
i h

(m)
i dΓ = 0

(5.8)

Another way to obtain this variational problem is to use the one with splitted normal and
tangential parts of the fully tied case (4.19) and choosing the tangential penalty parameter
as zero: αt = 0. This equals the removal of all tangential stiffness at the interface and results
in frictionless sliding, too. The properties of the penalty method are preserved, of course.
Numerical examples and convergence rates are shown in section 9.2.
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5.2.3 Nitsche’s method

The modifications in the interfacial constraints yield a modified Nitsche potential:

ΠNit =

∫
Γ∗

(
−〈σ(u)jk〉nk +

α

2
JujK

)
njniJuiK dΓ (5.9)

Using the same arguments as in section 4.2.3, the first variation of the entire potential yields
the variational problem for frictionless sliding at the interface with Nitsche’s method:

Find u ∈ U for all δu ∈ V such that

δΠ =

∫
Ω

δε̂ijσij dΩ +
∑
m

∫
Ω(m)

H(m)δε̃
(m)
ij σ

(m)
ij dΩ + α

∫
Γ∗

JδuiKninjJujK dΓ

−
∫

Γ∗

JδuiKninj〈σ(u)jk〉nk dΓ−
∫

Γ∗

JuiKninj〈σ(δu)jk〉nk dΓ

−
∫

Ω

δûibi dΩ−
∑
m

∫
Ω(m)

H(m)δũ
(m)
i b

(m)
i dΩ

−
∫

Γσ

δûihi dΓ−
∑
m

∫
Γ
(m)
σ

H(m)δũ
(m)
i h

(m)
i dΓ = 0

(5.10)

The stability properties and the remarks regarding the choice of the stabilization parameter
stay the same as for the fully tied problem.

5.3 Discretization

The discretizations for the frictionless sliding problem can be derived in a similar manner,
but it is not done as extensively as it has been done for the fully tied problem since the
principles remain the same. The discrete representation of the bulk field is again adopted
from the untied problem. So, only the contributions due to the interfacial constraints are
considered here. The approximations (3.7), (3.8), (4.38) and (4.39) are used again. It has
been shown in the previous sections that it is sufficient to provide expressions for element
residuals and their linearizations since the global quantities are obtained obtained via an
assembly process which is not affected by the interfacial constraints. The element residuals
and their linearizations for the frictionless sliding problem will be presented for Lagrange
mulitpliers, penalty method and Nitsche’s method in the following subsections.
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5.3.1 Lagrange multipliers

Discretizing the first variation of the potential (5.4) leads to:

δΠLag ≈
cutnumele∑

e=1

{
δd̃

T
∫

Γ
(e)
∗

JÑKTnnTλh dΓ + δλ̄
T
∫

Γ
(e)
∗

N̄
T
nnT JuhK dΓ

}
(5.11)

Using the arbitrariness of the variations and considering the assembly process, a Lagrange
multiplier contribution to the elementary residual, rLag,(e), can be expressed:

rLag,(e) =

 06×1∫
Γ
(e)
∗

JÑKTnnTλh dΓ∫
Γ
(e)
∗
N̄

T
nnT JuhK dΓ

 (5.12)

The global contribution to the global residual can be assembled following (4.43). The lin-
earization of the element residual leads to an expression similar to (4.46):

∆r(e) =

[
∂r(e)

∂d
∂r(e)

∂λ

][
∆d

∆λ

]
=

[
ku,(e) gλ,(e)

gd 0

][
∆d, (e)

∆λ

]
(5.13)

with the submatrices

gλ,(e) =

∫
Γ
(e)
∗

JÑKTnnTN̄ dΓ

gd,(e) =

∫
Γ
(e)
∗

N̄
T
nnT JÑK dΓ

(5.14)

where gd,(e) = gλ,(e)
T provides the symmetry of the stiffness matrix. The typical structure

of the tangent stiffness matrix as indicated in (4.48) is preserved, of course.

5.3.2 Penalty method

Inserting the discretizations (3.7) and (3.8) into the variation of the penalty potential for
frictionless sliding (5.7) yields:

δΠpen ≈
cutnumele∑

e=1

δd̃
T
α

∫
Γ
(e)
∗

JÑKTnnT JuhK dΓ (5.15)
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From the discretized variational problem, the elementary penalty contribution to the residual
can be extracted:

rpen,(e) =

[
06×1

α
∫

Γ
(e)
∗

JÑKTnnT JuhK dΓ

]
(5.16)

This residual is equal to the normal counterpart in (4.50) of the fully tied problem after
introducing the decomposition into normal and tangential direction. A global contribution
to the global residual can be assembled following (4.51). Using the linearity of the assembly
operator and considering (4.53), element stiffness contributions with the same structure as
for the fully tied problem can be defined:

kpen,(e) =

[
06×6 06×6

06×6 κ
pen,(e)
22

]
(5.17)

For the frictionless sliding problem, the submatrix, κpen,(e)22 , takes the form:

κ
pen,(e)
22 = α

∫
Γ
(e)
∗

JÑKTnnT JÑKdΓ (5.18)

Again, this equals the normal counterpart in (4.55) after introducing the decomposition into
normal and tangential direction.

5.3.3 Nitsche’s method

As seen in the two previous sections, the discretization for the frictionless sliding problem
results in very similar expressions as the one of the fully tied problem. The same is valid for
Nitsche’s method. The matrix ň from (4.57) is used here, too. Inserting the discretization
into the variation of the Nitsche potential for frictionless sliding (5.9) yields:

δΠNit ≈
cutnumele∑

e=1

{
δd̃

T
α

∫
Γ
(e)
∗

JÑKTnnT JuhK dΓ− δd̃T
∫

Γ
(e)
∗

JÑKTnnT ň〈σh〉 dΓ

}

−
cutnumele∑

e=1

{
δd̂

T
∫

Γ
(e)
∗

〈CB̂〉T ňTnnT JuhK dΓ

}

−
cutnumele∑

e=1

{
δd̃

T
∫

Γ
(e)
∗

〈CB̃〉T ňTnnT JuhK dΓ

}
(5.19)
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where the shorthand notation (4.62) is used again. From the discretized variational problem,
the elementary Nitsche contribution to the residual is extracted:

rNit,(e) =

[
−
∫

Γ
(e)
∗
〈CB̂〉T ňTnnT JuhK dΓ∫

Γ
(e)
∗
αJÑKTnnT JuhK− JÑKTnnT ň〈σh〉 − 〈CB̃〉T ňTnnT JuhK dΓ

]
(5.20)

A global contribution to the global residual can be assembled following (4.63). Using the
linearity of the assembly operator and considering (4.65), element stiffness contributions with
the same structure as for the fully tied problem are defined:

kNit,(e) =

[
06×6 κ

Nit,(e)
12

κ
Nit,(e)
21 κ

Nit,(e)
22

]
(5.21)

with the submatrices

κ
Nit,(e)
12 = −

∫
Γ
(e)
∗

〈CB̂〉T ňTnnT JÑK dΓ

κ
Nit,(e)
21 = −

∫
Γ
(e)
∗

JÑKTnnT ň〈CB̂〉 dΓ

κ
Nit,(e)
22 = α

∫
Γ
(e)
∗

JÑKTnnT JÑKdΓ−
∫

Γ
(e)
∗

JÑKTnnT ň〈CB̃〉 dΓ

−
∫

Γ
(e)
∗

〈CB̃〉T ňTnnT JÑK dΓ

(5.22)

As in the fully tied problem, the last two terms in κNit,(e)22 are the transpose of each other as
well as κNit,(e)12 = κ

Nit,(e)T

21 .
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6 Perfect plasticity in tangential direction

In order to be able to model real physics better than with no or frictionless sliding, a
combination of a linear elastic bulk field with an embedded interface that is governed by a
plasticity law is introduced, following [44]. The interface is subjected to a rate-independent
perfect plasticity law in tangential direction, whereby the behavior in normal direction is
adopted from the previous cases. Now it is obvious, why the nonlinear framework and
the decomposition into normal and tangential direction was used also for the purely elastic
problems. The integration of the rate-indepentent elasto-plastic model uses a return-mapping
algorithm proposed in [35]. First of all, the admissible kinematics and tractions at the
interface are described. Then, the equations used in the return-mapping algorithm are
developed for the penalty method and a stabilized method, inspired by Nitsche’s method.
Afterwards, the weak forms are presented, which finally are discretized, leading to expressions
for the residual and stiffness contributions. The return-mapping algorithm itself is shown in
section 8.4.

6.1 Constraints for kinematics and tractions

Here, the behavior in normal and tangential direction of the interface is decoupled. The
kinematics in normal direction are governed by the same constraint (5.1) as in the frictionless
sliding problem:

JuiKni
.
= 0 on Γ∗ (6.1)

The tractions in normal direction can be assigned from one grain to the other as in the
frictionless sliding problem:

niσ
(1)
ij n

(1)
j + niσ

(2)
ij n

(2)
j = 0 on Γ∗ (6.2)

The kinematics in tangential direction are not constrained primarily, but they have to be
determined by the traction law in tangential direction. The equations for perfect plasticity
at the interface can be presented on the basis of either a plasticity background [35] or a
frictional contact background [24].

Remark 6.1. The fact, that the normal constraints are the same as in the frictionless sliding
problem from section 5 implies, that all equations from the frictionless sliding problem hold
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here, too. From an implementational perspective, the normal constraints can be applied using
the methods for frictionless sliding. The tangential constraints have to be treated separetely,
of course.

Remark 6.2. The problem considered in this work has two dimensions. Though, plastic
behavior occurs only in the tangential direction of the interface. Hence, a one-dimensional
plasticity law is sufficient. The adaptation in dimensionality can be done by introducing a
reference frame which is attached to the interface. A similar procedure is used in a frictional
contact context [24], which is also based on [35].

It has been shown in [26], that perfect plasticity and frictional contact are described by a
similar set of equations. Following the theory of rate-independent plasticity [35] as well as of
frictional contact [23], the model is governed by so-called loading/unloading conditions which
can be expressed as Kuhn-Tucker conditions. According to [35], the constitutive model for
perfect plasticity can be summarized with the following five equations:

Traction law: h∗t = f(u)

Flow rule: Ju̇Kplt = −γ h∗t
‖h∗t‖

Yield condition: Φ = ‖h∗t‖ − h
y
t ≤ 0

Kuhn-Tucker complementarity condition: Φ ≤ 0, γ ≥ 0, γΦ = 0

Consistency condition: γΦ̇ = 0 (if Φ = 0)

(6.3)

The traction law has to be specified for each method and gives a rule how to compute the
tangential traction based on the displacement field. The flow rule claims that slip occurs
in the same direction as the applied traction with γ being the absolute value of the slip
rate. Due to the existence of a yield traction, hyt , which can be seen as an equivalent to a
yield stress, the absolute value of the tangential traction cannot be greater than the yield
traction. This fact is expressed by the yield condition. The Kuhn-Tucker conditions state,
that either the yield condition or the consistency parameter, γ, has to be zero, which means,
that plastic slip can only occur if the absolute value of the tangential traction is greater than
the yield traction, hyt . Otherwise, there cannot be plastic slip, if the absolute value of the
tangential traction is less or equal than the yield traction. Finally, the consistency condition
corresponds to the physical requirement that for a non-zero slip rate γ > 0 the traction is
limited to the yield traction such that Φ̇ = 0.
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Remark 6.3. As stated above, the following equations can be derived from a plasticity point
of view [35] or a frictional contact point of view [23]. When considering the plasticity context,
the yield traction equals the yield stress. In a frictional contact context, the tangential yield
“traction” depends on the normal pressure and the Coulomb friction coefficent [23].

Remark 6.4. A closer look at the yield condition shows, that the fully tied problem is covered
by the perfect plasticity case, if the yield stress is high enough, such that no part of the
interface gets into slip. The frictionless sliding problem is covered, if the yield traction is
chosen as zero. This is also shown in the numerical examples in section 9.3. This relationship
between the method is summarized in figure 6.1

perfect
plasticity

hyt > 0,
but finite

hyt = 0 hyt → 0

actual perfect
plasticity

frictionless
sliding
problem

(section 5)

fully tied
problem

(section 4)

Figure 6.1: Relationship between the fully tied problem, the frictionless sliding problem
and perfect plasticity

6.2 Return-mapping equations

The traction laws for perfect plasticity in tangential direction are now presented for the
penalty method and the stabilized method. The rate equations are integrated using a back-
ward Euler scheme leading to the classical return-mapping algorithm [35]. Here, only the
equations for the return-mapping algorithm are presented. The algorithmic framework itself
is presented in section 8.4. For the penalty method, the developement of the equations for
the return-mapping algorithm is explained in detail, whereas for the stabilized method only
the equations are given since the steps and applied transformations are the same. Also, the
linearizations are given in order to prepare the derivation of the stiffnes contributions.
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6.2.1 Penalty method

For the penalty method, the traction in tangential direction is computed using the tangential
penalty parameter, αt:

h∗t = −αtJuKelt = −αt
(
JuKt − JuKplt

)
(6.4)

where the index t denotes the projection onto the tangential direction. Applying a backward
Euler scheme to the flow rule in (6.3) yields an update formula to compute the plastic part
of the tangential jump at the pseudo-time step k + 1. It is based on the known plastic part
of the tangential jump at pseudo-time step k and its derivative which has to be evaluated at
the new pseudo-time step:

JuKplt,k+1 − JuKplt,k = −ξ
h∗t,k+1

‖h∗t,k+1‖
(6.5)

Here, ξ ≥ 0 denotes the product of γ with an increment in pseudo-time, ξ = γ∆t. It
can be seen as a Lagrange multiplier [35] and represents the algorithmic counterpart of the
consistency parameter γ ≥ 0. The traction at the new pseudo-time step is computed as:

h∗t,k+1 = −αt
(
JuKt,k+1 − JuKplt,k+1

)
(6.6)

It is constrained by the following discrete version of the Kuhn-Tucker conditions:

Φk+1 = ‖h∗t,k+1‖ − h
y
t ≤ 0

ξ ≥ 0

ξΦk+1 = 0

(6.7)

Following the procedure in [35], first an auxiliary state is considered, which does not need to
correspond to an actual state as shown below, and is obtained by freezing the plastic flow.
It means, that a purely elastic step is assumed which leads to the so-called trial state:

h∗,trialt,k+1 = −αt
(
JuKt,k+1 − JuKplt,k

)
≡ h∗t,k − αt (JuKt,k+1 − JuKt,k) (6.8)

The second equivalence in (6.8) is obtained by adding and subtracting JuKt,k and iden-
tifying the known traction at the end of the previous pseudo-time step. The trial state
is thus determined solely in terms of the known state and a given displacement incre-
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ment, JuKt,k+1 − JuKt,k. The reader may observe that the plastic part of the tangential
jump from the previous pseudo-time step is used, i.e. it is assumed that this step produces
no additional plastic deformation. It follows that the plastic part of the tangential jump for
the trial state is adopted from the previous pseudo-time step:

JuKpl,trialt,k+1 = JuKplt,k (6.9)

The yield condition can be evaluated for the trial state, too:

Φ
(
h∗,trialt,k+1

)
= Φtrial

k+1 = ‖h∗,trialt,k+1 ‖ − h
y
t (6.10)

As mentioned above, the trial state does not need to correspond to an actual state, although
it is possible. This depends on the loading conditions. First, the case with Φtrial

k+1 ≤ 0 is
considered. It follows that the trial state is an admissible state and the trial quantities are
the actual quantities:

h∗t,k+1 = h∗,trialt,k+1

JuKplt,k+1 = JuKpl,trialt,k+1

(6.11)

Now, the case with Φtrial
k+1 > 0 is investigated. Clearly, the trial state cannot be an actual

state since it violates the constraint condition Φ ≤ 0. Thus, it is required that ξ > 0 such
that JuKplt,k+1 6= JuKplt,k and h

∗
t,k+1 6= h∗,trialt,k+1 . The algorithmic consistency parameter ξ > 0

assures that the yield condition holds since, according to (6.7), Φ has to be zero if ξ is
unequal to zero. This process is thus incrementally plastic. The distinction between an
elastic and a plastic step can be summarized as:

Φtrial
k+1

≤ 0 ⇒ elastic step: ξ = 0

> 0 ⇒ plastic step: ξ > 0
(6.12)

The next step is to examine the algorithmic problem for an incrementally plastic step.
Therefor, the final traction, h∗t,k+1, can be expressed in terms of the trial state, h∗,trialt,k+1 , and
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the algorithmic consistency parameter, ξ:

h∗t,k+1 = −αt
(
JuKt,k+1 − JuKplt,k+1

)
= −αt

(
JuKt,k+1 − JuKplt,k

)
− αt

(
JuKplt,k − JuKplt,k+1

)
= h∗,trialt,k+1 − αt ξ

h∗t,k+1

‖h∗t,k+1‖

(6.13)

Here, JuKplt,k was added and subtracted and (6.8) as well as (6.5) were used. From the result
of (6.13) follows:

‖h∗t,k+1‖
h∗t,k+1

‖h∗t,k+1‖
= ‖h∗,trialt,k+1 ‖

h∗,trialt,k+1

‖h∗,trialt,k+1 ‖
− αt ξ

h∗t,k+1

‖h∗t,k+1‖
(6.14)

which can be rewritten as:

(
‖h∗t,k+1‖+ αt ξ

) h∗t,k+1

‖h∗t,k+1‖
= ‖h∗,trialt,k+1 ‖

h∗,trialt,k+1

‖h∗,trialt,k+1 ‖
(6.15)

Since αt > 0 as well as ξ > 0, it holds that:

h∗t,k+1

‖h∗t,k+1‖
=

h∗,trialt,k+1

‖h∗,trialt,k+1 ‖
(6.16)

along with the condition:

‖h∗t,k+1‖+ αt ξ = ‖h∗,trialt,k+1 ‖ (6.17)

So far, the value of the algorithmic consistency parameter, ξ, is not determined, yet. This
can be done by looking at the discrete consistency condition. Using (6.17) yields:

Φk+1 = ‖h∗t,k+1‖ − h
y
t = ‖h∗,trialt,k+1 ‖ − αt ξ − h

y
t = Φtrial

k+1 − αt ξ
.
= 0 (6.18)

Hence, the algorithmic consistency parameter can be computed as:

ξ =
Φtrial
k+1

αt
(6.19)



Matthias Mayr Different sliding laws on embedded interfaces 60

Finally, the actual state for an incrementally plastic step can be computed via:

h∗t,k+1 =

(
1− αt ξ

‖h∗,trialt,k+1 ‖

)
h∗,trialt,k+1

JuKplt,k+1 = JuKplt,k − ξ
h∗,trialt,k+1

‖h∗,trialt,k+1 ‖

(6.20)

where (6.16) is used. Now, all equations are known which are needed to apply the return-
mapping algorithm. Here, a brief summary is given in order to prepare the presentation of
the algorithm in section 8.4: A trial state, which is assumed to be purely elastic, can be
computed using (6.8) and (6.9). The evalutation of the yield condition for the trial state
determines whether the step is elastic or plastic, see (6.12). For an elastic step, the trial
state is the actual state. For a plastic step, the trial state has to be corrected using (6.19)
and (6.20) in order to satisfy the consistency condition Φ ≤ 0.
The expression for the tangential traction is now linearized in order to prepare the derivation
of the stiffness contributions in section 6.4.1. The linearization of the trial state is denoted
with ∆h∗,trialt,k+1 . A second expression, which will be needed later, is the linearization of the
algorithmic consistency parameter, ∆ξ:

∆ξ = ∆
Φtrial
k+1

αt
=

1

αt
∆‖h∗,trialt,k+1 ‖ =

1

αt

h∗,trialt,k+1

‖h∗,trialt,k+1 ‖
∆h∗,trialt,k+1 (6.21)

The linearization of the tangential traction can then be given, depending whether Φtrial
k+1 ≤ 0

or Φtrial
k+1 > 0. If Φtrial

k+1 ≤ 0, then the linearization of the tangential traction is equal to the
linearization of the tangential traction in the trial state:

∆h∗t,k+1 = ∆h∗,trialt,k+1 (6.22)
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But if Φtrial
k+1 > 0, the linearization of the tangential traction can be obtained by lineariz-

ing h∗t,k+1 in (6.20):

∆h∗t,k+1 = ∆

(
1− αt ξ

‖h∗,trialt,k+1 ‖

)
h∗,trialt,k+1 +

(
1− αt ξ

‖h∗,trialt,k+1 ‖

)
∆h∗,trialt,k+1

= −∆

(
αt ξ

‖h∗,trialt,k+1 ‖

)
h∗,trialt,k+1 +

(
1− αt ξ

‖h∗,trialt,k+1 ‖

)
∆h∗,trialt,k+1

= −αt
h∗,trialt,k+1

‖h∗,trialt,k+1 ‖
∆ξ +

αt ξ

‖h∗,trialt,k+1 ‖
∆h∗,trialt,k+1 + ∆h∗,trialt,k+1 −

αt ξ

‖h∗,trialt,k+1 ‖
∆h∗,trialt,k+1

= 0

(6.23)

The first line follows from the product rule, the third line from the quotient rule. Insert-
ing (6.21) into the third line yields, that the linearization for a plastic step is equal to zero.
The linearization can be summarized as follows:

∆h∗t,k+1 =

∆h∗,trialt,k+1 if Φtrial
k+1 ≤ 0

0 if Φtrial
k+1 > 0

(6.24)

∆h∗,trialt,k+1 will be specified after introducing the discretization.

6.2.2 Stabilized method inspired by Nitsche’s method

For the stabilized method, the reconstruction of the traction field along the interface is
inspired by Nitsche’s method and is adopted from (4.35):

h∗t = −αtJuKelt + [〈σ〉n]t = −
(
I2×2 − n⊗ n

) (
αtJuKel − 〈σ〉n

)
(6.25)

with the identity matrix I2×2. Applying the backward Euler scheme yields the same results
as for the penalty metod:

JuKplt,k+1 − JuKplt,k = −ξ
h∗t,k+1

‖h∗t,k+1‖
(6.26)

The traction at the new pseudo-time step is computed as:

h∗t,k+1 = −αt
(
JuKt,k+1 − JuKplt,k+1

)
+ [〈σ〉n]t,k+1 (6.27)
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It is constrained by the following discrete version of the Kuhn-Tucker conditions:

Φk+1 = ‖h∗t,k+1‖ − h
y
t ≤ 0

ξ ≥ 0

ξΦk+1 = 0

(6.28)

Assuming an purely elastic step, the trial state is computed as:

h∗,trialt,k+1 = −αt
(
JuKt,k+1 − JuKplt,k

)
+ [〈σ〉n]t,k+1

≡ h∗t,k − αt (JuKt,k+1 − JuKt,k) + ([〈σ〉n]t,k+1 − [〈σ〉n]t,k)
(6.29)

The contribution of the averaged stress stems from the bulk field and hence is not influenced
by the plastic contribution to the tangential jump in the displacement field. The plastic
contribution to the tangential jump in the displacement field for the trial state can be
adopted from (6.9). The evaluation of the yield condition for the trial state is done as
in (6.10) for the penalty method as well as the distinction between an elastic and a plastic
step (6.12), since these steps are independent from the method since they are given by the
return-mapping framework. If the current step is an elastic step in the sense of (6.12), the
trial quantities are adopted for the actual state as in (6.11). If the step is a plastic step in
the sense of (6.12), the actual state can be computed as a correction of the trial state. A
similar observation as in (6.13) can also be made for the stabilized method such that the
traction at the new pseudo-time step is expressed in terms of the trial state, h∗,trialt,k+1 , and the
algorithmic consistency parameter, ξ:

h∗t,k+1 = −αt
(
JuKt,k+1 − JuKplt,k+1

)
+ [〈σ〉n]t,k+1

= −αt
(
JuKt,k+1 − JuKplt,k

)
+ [〈σ〉n]t,k+1 − αt

(
JuKplt,k − JuKplt,k+1

)
= h∗,trialt,k+1 − αt ξ

h∗t,k+1

‖h∗t,k+1‖

(6.30)

Following the procedure as shown for the penalty method, (6.14), (6.15), (6.16) and (6.17)
can be applied here, too. Then, the algorithmic consistency parameter can be computed by
looking at the discrete consistency condition. Using (6.17) yields:

Φk+1 = ‖h∗t,k+1‖ − h
y
t = ‖h∗,trialt,k+1 ‖ − αt ξ − h

y
t = Φtrial

k+1 − αt ξ
.
= 0 (6.31)
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The algorithmic consistency parameter can thus be computed as:

ξ =
Φtrial
k+1

αt
(6.32)

Finally, the actual state for an incrementally plastic step can be computed via:

h∗t,k+1 =

(
1− αt ξ

‖h∗,trialt,k+1 ‖

)
h∗,trialt,k+1

JuKplt,k+1 = JuKplt,k − ξ
h∗,trialt,k+1

‖h∗,trialt,k+1 ‖

(6.33)

where (6.16) is used. A comparison bewteen the equations for the penalty method and
the stabilized method concludes that differences arise only in the traction law and in the
computation of the trial state. Also here, a brief summary is given in order to prepare the
presentation of the algorithm in section 8.4: A trial state, which is assumed to be purely
elastic, can be computed using (6.29) and (6.9). The evalutation of the yield condition for
the trial state determines whether the step is elastic or plastic, see (6.12). For an elastic
step, the trial state is the actual state. For a plastic step, the trial state has to be corrected
using (6.32) and (6.33) in order to satisfy the consistency condition Φ ≤ 0.
The linearization of the tangential traction has to be computed for the stabilized method
as well. As mentioned above, the traction for the stabilized method is computed using the
same formula as in the penalty case after expressing everything in terms of the trial state.
The linearization of the traction is hence not presented in detail since it is exactly the same
as for the penalty method. The result can be summarized as:

∆h∗t,k+1 =

∆h∗,trialt,k+1 if Φtrial
k+1 ≤ 0

0 if Φtrial
k+1 > 0

(6.34)

∆h∗,trialt,k+1 will be specified after introducing the discretization.

Remark 6.5. As seen during the derivation of the variational form for the fully tied problem,
there are some similiarities and links between Nitsche’s method and augmented Lagrangian
formulations. Similarities between the stabilized method, presented here, and an augmented
Lagrangian regularization for frictional contact [36] can also be found. An advantage of
the Nitsche-like formulation over the pure augmented Lagrangian one is, that no additional
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update of the Lagrange multiplier is needed, since the Lagrange mulitplier is replaced by the
averaged stress, that depends only on the displcament field. Hence no additional iterations
have to be carried out.

6.3 Weak forms

Since the problem contains plastic contributions, it is not conservative anymore. Thus, a
potential cannot be formulated and be used to state a variational problem. Hence, the
principle of the minimum of the total potential energy cannot be applied anymore. However,
since the bulk field is still assumed to behave following a linear elastic constitutive model and
only the interfacial contributions are not conservative, the derivations done for the untied
problem are still valid. Also the contributions from interfacial constraints in normal direction
are not influenced by the plasticity law. Thus, they are still valid. Using the well known fact,
that the principle of the minimum of the total potential energy ends up with an equivalent
problem as the method of weighted residuals using test functions, allows to use the variational
problem from the purely elastic problems and rewrite them, using a test function, wi. The
test function, wi, takes a similar form as the enriched displacement field [33]:

wi(x) = ŵi(x) +
2∑

m=1

H(m)(x)w̃
(m)
i (x) ∈ W (6.35)

with W defined similar to (2.12):

W = {wi(x)|wi(x) ∈ H1(Ω), wi(x) = 0 on Γd, wi(x) discontinous on Γ∗} (6.36)

A closer look shows, that the parts, that can be adopted form the purely elastic cases,
correspond to the frictionless sliding problem. Now, the variational problem for penalty
method and Nitsche’s method from the frictionless sliding problem can be rewritten using
the test function, wi. Finally, only the contributions for the tangential direction have to be
derived again.

6.3.1 Penalty method

The weak form for the contributions from the bulk field and the normal constraints at the
interface takes can be obtained by replacing the variation of the displacement field, δui, with
the test function, wi, in (5.8). The tangential contributions can be obtained by multiplying
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the tangential tracion law (6.4) with a test function, wi, followed by the integration over the
embedded interface. Then, the weak form reads:∫

Ω

ŵi,jσij dΩ +
∑
m

∫
Ω(m)

H(m)w̃
(m)
i,j σ

(m)
ij dΩ

+ α

∫
Γ∗

JwiKninjJujK dΓ−
∫

Γ∗

JwiKh∗t,i dΓ

=

∫
Ω

ŵibi dΩ +
∑
m

∫
Ω(m)

H(m)w̃
(m)
i b

(m)
i dΩ

+

∫
Γσ

ŵihi dΓ +
∑
m

∫
Γ
(m)
σ

H(m)w̃
(m)
i h

(m)
i dΓ

(6.37)

where the tangential traction, h∗t,i, is subjected to the set of constraints in (6.3).

6.3.2 Stabilized method inspired by Nitsche’s method

A similar procedure can be applied for the stabilized method. To enforce the constraints in
normal direction, Nitsche’s method is used. The tangential contributions can be obtained
by multiplying the tangential traction law (6.25) with a test function, wi, followed by the
integration over the embedded interface. Then, the weak form reads:∫

Ω

ŵi,jσij dΩ +
∑
m

∫
Ω(m)

H(m)w̃
(m)
i,j σ

(m)
ij dΩ + α

∫
Γ∗

JwiKninjJujK dΓ

−
∫

Γ∗

JwiKninj〈σ(u)jk〉nk dΓ−
∫

Γ∗

JuiKninj〈σ(w)jk〉nk dΓ

−
∫

Γ∗

JwiKh∗t,i dΓ

=

∫
Ω

ŵibi dΩ +
∑
m

∫
Ω(m)

H(m)w̃
(m)
i b

(m)
i dΩ

+

∫
Γσ

ŵihi dΓ +
∑
m

∫
Γ
(m)
σ

H(m)w̃
(m)
i h

(m)
i dΓ

(6.38)

where the tangential traction, h∗t,i, is subjected to the set of constraints in (6.3). When
comparing the weak form to the variational problem (4.33), one can see, that the term re-
sponsible for the symmetry in the tangential contributions is absent. Hence, the formulation
is not symmetric anymore.
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6.4 Discretization

As indicated above, the equations for the bulk field and the normal constraints do not
change. The residual, Ru, and its linearization can be adopted from the untied problem in
section 3. As also mentioned above, the normal behavior at the interface is the same as in
the frictionless sliding problem. The contributions to the residual and its linearization due to
normal constraints are adopted from the frictionless sliding problem in section 5. They are
not derived again. Nevertheless, the contributions to the global residual and its linearization
due to the tangential constraints at the interface have to be derived again by discretizing
the additional contributions to the weak forms presented in sections 6.3.1 and 6.3.2 for the
penalty method and the stabilized method. The discretization of the test function takes the
same form as the one of the variation of the displacement field (3.8):

w ≈ wh = N̂ ĉ+
∑
m

(
H(m)Ñ

(m)
)
c̃ ∈ Wh ⊂ W (6.39)

with ĉ and c̃ denoting the nodal values of the test function.

6.4.1 Penalty method

Inserting the discretization of the test function and of the displacement field and using the
arbitrariness of the test function leads to an expression for the elementary contribution to
the residual for the constraints in tangential direction:

r
pen,(e)
t =

[
06×1

−
∫

Γ
(e)
∗

JÑKTh∗t dΓ

]
(6.40)

where the tangential traction h∗t has to be determined at every Gauß point using the return-
mapping framework presented in section 6.2.1. These elementary contributions can be as-
sembled to a global contribution such that the global residual is computed as the sum of the
residual contributions of the bulk field, the normal and the tangential constraints.
The global linearization of the residual can be assembled from element contributions, since
the assembly operator is linear. The residual given in (6.40) has to be linearized:

∆r
pen,(e)
t = k

pen,(e)
t ∆d =

[
06×6 06×6

06×6 κ
pen,(e)
22

]
(6.41)
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with

κ
pen,(e)
22 =

∫
Γ
(e)
∗

JÑKT
∂h∗t

∂d̃
dΓ

=

−αT
∫

Γ
(e)
∗

JÑKT
(
I2×2 − nnT

)
JÑK dΓ if Φtrial ≤ 0

06×6 if Φtrial > 0

(6.42)

Here, the results from (6.24) in conjunction with (6.8) are used. The integration along the
interface is done by Gauß quadrature. As for the integration process for the residual, the
distinction bewteen stick and slip has to be made at every Gauß point. Before looking at
the stabilized method, it should be noted that the stiffness matrix for the penalty method
with perfect plasticity is symmetric.

6.4.2 Stabilized method inspired by Nitsche’s method

Inserting the discretization of the test function and of the displacement field and using the
arbitrariness of the test function leads to an expression for the elementary contribution to
the residual for the constraints in tangential direction:

r
stab,(e)
t =

[
06×1

−
∫

Γ
(e)
∗

JÑKTh∗t dΓ

]
(6.43)

where the tangential traction h∗t has to be determined using the return-mapping framework
presented in section 6.2.2. These elementary contributions can be assembled to a global
contribution such that the global residual is computed as the sum of the residual contributions
of the bulk field, the normal and the tangential constraints.
The global linearization of the residual can be assembled from element contributions, since
the assembly operator is linear. The residual given in (6.43) has to be linearized:

∆r
pen,(e)
t = k

pen,(e)
t ∆d =

[
06×6 06×6

κ
stab,(e)
21 κ

stab,(e)
22

]
(6.44)
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with the submatrices

κ
stab,(e)
21 =


∫

Γ
(e)
∗

JÑKT
(
I2×2 − nnT

)
ň〈CB̂〉 dΓ if Φtrial ≤ 0

06×6 if Φtrial > 0

κ
stab,(e)
22 =

−
∫

Γ
(e)
∗

JÑKT
(
I2×2 − nnT

) (
αtJÑK− ň〈CB̃〉

)
dΓ if Φtrial ≤ 0

06×6 if Φtrial > 0

(6.45)

As seen in the weak form (6.38), the element stiffness matrix for the tangential constraints
is not symmetric anymore.
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7 Domains with more than one interface

Since the presented formulations are not restricted to a domain comprising only two grains
with one interface, some remarks on the handling of more grains and interfaces have to be
given. Basically, only the notation is a bit more complicated because some additional indices
are necessary. The basic equations presented so far are still valid and can easily be extended
to an arbitrary number of interfaces. This results only in a more complicated implementation
and additional effort on “bookkeeping” but not in conceptual difficulties. First of all, some
general remarks are made. Afterwards, special properties of two types of interface topologies
are shown. A possibility for an algorithmic treatment is given in section 8.5.

7.1 General remarks

Basically, two cases can be considered when more than one interface is located in the do-
main: These interfaces intersect each other (see figure 7.1b), or not (see figure 7.1a). To be

(a) Non intersecting interfaces (b) Intersecting interfaces

Figure 7.1: More grains and interfaces in a domain

clear, each normal vector needs a further index, since there might be more than one normal
belonging to a grain. Also, the interfaces get indices. With more than one interface, the
variational forms, given in sections 4.2, 5.2 and 6.3 have to be generalized by replacing the
integrals over the interface Γ∗ with a sum over all interfacial integrals:

∫
Γ∗

• dΓ→
numint∑
M=1

∫
Γ
(M)
∗

• dΓ (7.1)
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whereM is the index for the numint interfaces in the domain. The basic idea to handle more
than one interface from an implementational point of view is to loop over all interfaces. The
equations and methods of the problem with two grains and one interface can be used, where
only the grain indices have to be adapted. The idea to treat each interface independently
from the other interfaces results not only in the variational and implementational treatment.
It also provides additional freedom to design a problem. The constraints of each interface
can be chosen individually and do not have to be the same for all interfaces. Of course, all
grains can have different material properties.
Numerical examples with more than one interface for the fully tied problem can be found
in [33]. Section 9.2.3 provides an example with two triple junctions and five interfaces with
frictionless sliding. The same example is solved with plasticity in section 9.3.3. An example
containing several grains with plasticity at the interfaces is presented in section 9.3.4. For
more algorithmic and implementational details, see section 8.5.
Following [38], additional sets of enriched degrees of freedoms are introduced. The new
numbering scheme is depicted in figure 7.2. The only difference to the simple case with only

(a) Two non intersecting interfaces in an element (b) Three intersecting interfaces in an element

Figure 7.2: Two admissible cases for more grains and interfaces in a single element. The
base degrees of freedom comprise numbers 1 to 6, while the first set of enriched
degrees of freedom comprise numbers 7 to 12 and the second set the numbers 13
to 18.

two grains and one interface is, that one has to pick the right enriched degree of freedom,
if a node is enriched twice. Hence, the bookkeeping of the degrees of freedom is a bit more
complicated, but the principles remain the same. Using a second set of enriched degrees of
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freedom, the discretization of the displacement field (3.7) has to be extended, too:

u ≈ uh = N̂ d̂+
∑
m

(
H(m)Ñ

(m)
)
d̃+

∑
m

(
H(m) ˜̃N

(m)
)

˜̃d ∈ Uh ⊂ U (7.2)

where ˜̃N represents the shape function matrix for the second enrichment. It takes the same
structure as Ñ . The displacements in the second enriched degrees of freedom are denoted
as ˜̃d. Using this discretization, the residual and its linearization can be derived again. This
is not done here explicitely, since it follows the same procedures as in the previous sections.
However, the size of the elementary quantities changes. For example, the element stiffness
matrix for a linear triangular element, which is intersected by one interface, is 12 × 12,
whereas the element stiffness matrix for a linear triangular element, which is intersected by
two interfaces, is 18 × 18, since there are 6 more enriched degrees of freedom. After these
general remarks, the two cases depicted in figure 7.1 will be discussed in detail. In order to
reduce the implementational effort, some assumptions are made in this work:

• The maximum number of non intersecting interfaces, that cut one element, is two,
whereby each grain has to contain one node.

• The maximum number of interfaces, that intersect in one point, is three, whereby each
grain has to contain one node.

• The number of triple junctions in one element is limited to one.

• The number of triple junctions in the entire domain is not restricted, unless the previous
assumption is violated.

These assumptions make sure, that a node has either no, one or two enrichments.

Remark 7.1. The methods presented here are general enough to be applied to any kind of
elements. Though, since the code, developed for this work, uses linear triangular elements, all
graphics are shown for this type of elements. The size of elementary quantities is computed
based on this element type, too.

7.2 Non intersecting interfaces

The case of non intersecting interfaces can be divided into two subcases, where the mesh
size h plays an important role. If the minimal distance between the interfaces is greater than
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the mesh size h, which means, that all nodes in the domain are either not enriched or only
once. This case is very similar to the problem with only two grains and one interface. Due
to the large distance between the two interfaces, grain Ω(1) does not interact with grain Ω(3),
where notations from figure 7.1 are used. Since there is no element, which is enriched by two
grains, the modification from (7.1) is the only one, that has to be considered. The reason for
this is, that the enrichment influences only the elements near the interface. Referring to the
example given above, this case results in 12× 12 element stiffness matrices for cut elements.
But if the minimal distance between the interfaces is so small, that two interfaces will cut
the same element (see figure 7.2a), some additional issues have to be considered. The total
number of degrees of freedom of the element is now 2 × nodes × 3, where 2 is the number
of degrees of freedom per node, nodes the number of nodes per element and 3 refers to the
number of sets of degrees of freedom. This number is based on the base degrees of freedom
and the two enrichments. For a linear triangular element, then the element stiffness matrix
has the dimensions 18× 18 for example.

7.3 Intersecting interfaces

When there are intersecting interfaces, at least one element is cut by three interfaces (see
figure 7.2b). In this case, each node is enriched twice. The element stiffness matrix has
contributions based on all three grains. The determination of its size is similar to the case
with non intersecting interfaces in an element and results also in a 18 × 18 matrix. In this
case, the integration along the interfaces might be interesting. Using the looping-scheme
from algorithm 8.3, even this case can be handled very easily.
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8 Implementational details

The implementation that was done parallel to this work is presented briefly in this section.
The code is written in Matlab R2010a - Student. First of all, the current status of the
code is compared to the one at the beginning of the work, followed by some remarks on the
ordering scheme of the degrees of freedom in the global system of equations. Then, the load
stepping scheme and the nested Newton-Raphson-scheme that are used to solve the nonlin-
ear equations are presented in detailed algorithmic notation. Afterwards, the algorithmic
framework for the return-mapping algorithm is presented, which uses the equations provided
in section 6.2. Finally, an implementational framework to handle more than one interface is
discussed.

8.1 Comparison between original and current implementation

The routines for computational geometry and structured meshing were written by John E.
Dolbow, Duke University. The preprocessing routines to create the mesh and interfaces were
restricted such that it is not possible, that an interface intersects a node. The reason lies only
in the implementation, whereas the method itself is capable of that [38]. An implementation
of the equations presented in [33] was done by Jessica D. Sanders, Duke University. This
code could solve three pure elastic problems with stabilized interfacial constraints for the
fully tied problem. It had some trouble to handle triple junctions like the ones described in
section 7.3 correctly. For postprocessing, some routines to plot the deformed mesh without
considering the displacement jump at the interface were available. The stress computation
had trouble with triple junctions, too. All these parts of solving a problem had to be executed
by hand whereby the user had to take care of copying data from one directory to another.
First steps were to modify the code such that examples are not part of the code itself but
are given in separate input files. Dirichlet and Neumann boundary conditions are defined in
separate files now, which are included during the preprocessing. A control routine manages
the geometry configuration, preprocessing, solving and postprocessing and handles the data
exchange between these steps. The routines to create the geometry were modified since
some of the geometric data is needed to describe the interface properly. Unfortunately,
the restriction of interfaces, that are not allowed to lie on nodes, could not be removed.
The use of unstructured meshes which are created with GMSH [15] is possible. The purely
linear computation was dropped and a load stepping scheme with a nested Newton-Raphson-
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scheme is implemented. It is possible to use different load curves. The types of interfacial
constraints were extended to the ones described in this work. Postprocessing routines to
evaluate stresses in the bulk field and tractions at the interface are available. Visualization
of the enriched displacement field, stresses and tractions as well as the stick-slip-zones is
possible with Matlab figures or with ParaView 3.8.0 using the VTK Version 4.2 file
format. Movies can be generated.

8.2 Ordering of degrees of freedom

The ordering of the degrees of freedom in the global displacement vector, D, influences
the bandwidth of the tangent stiffness matrix. Often, a small bandwith is desired. The
displacement vector, used to derive the expressions for the residuals and the stiffness matrices,
is not the best choice regarding the bandwidth of the stiffness matrix. Instead of appending
the enriched degrees of freedom at the end of the base degrees of freedom, they should be
inserted in between. An example can be given as:

d =
[
d̂1x d̂1y d̃1x d̃1y d̂2x d̂2y d̃2x d̃2y d̂3x d̂3y d̃3x d̃3y

]T
(8.1)

where the number denotes a node in a triangular element and the letters x and y correspond
to the x- and y-direction of the reference frame. Hence, the bandwith of the resulting stiffness
matrix can be reduced for structured meshes.

8.3 Load stepping scheme and nested Newton-Raphson-scheme

Since problems with plasticity at the interface give rise to a nonlinear system, a proper
solution technique has to be applied. Here, the external load, either tractions or prescribed
displacements, is increased stepwise using a load stepping scheme with the load step indes k.
For each load step, the system of equations that has to be solved can be written as a residual:

R(Dk+1) = 0 (8.2)

This system of equations is solved using a Newton-Raphson-technique which is a standard
iterative method to solve systems of nonlinear equations. Thus, (8.2) is solved iteratively
such that the unknown solution at iteration j + 1 can be computed based on the known
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solution at iteration j. It can be derived by introducing a Taylor expansion of (8.2):

R(Dj+1
k+1) = R(Dj

k+1) +
∂R(Dj

k+1)

∂D
∆Dj+1

k+1 +O(∆D2)
.
= 0 (8.3)

In order to compute the displacement increment, ∆Dj+1
k+1, the following linear system has to

be solved:

∂R(Dj
k+1)

∂D
∆Dj+1

k+1 = −R(Dj
k+1) (8.4)

This can be done using several types of solvers. A detailed description is omitted here.
The global displacement vector, Dj

k+1, as well as the global displacement increment for the
current load step, δDj

k+1, can be updated:

Dj+1
k+1 = Dj

k+1 + ∆Dj+1
k+1

δDj+1
k+1 = δDj

k+1 + ∆Dj+1
k+1

(8.5)

Since it is an iterative procedure, some criteria help to decide, when the approximation of the
solution is sufficiently accurate. One of them is the Euclidian norm of the residual, ‖Rj

k+1‖.
Also, the Euclidian norm of the displacement increment, ‖∆Dj+1

k+1‖, might be of interest. A
third often used criterion is the energy norm, |RjT

k+1∆Dj+1
k+1|. For a practical computation, it

makes sense to limit the number of Newton-Raphson-iterations to a maximum number, jmax.
For further remarks on these norms, see [6]. The norms and the number of iterations have
to be checked in each iteration step. If the norms are smaller than given tolerances, tol(•),
the solution is assumed to be converged. In order to make the tolerances independent of
the physical problem, they are normalized with the norms of the first iteration. The load
stepping scheme with nested Newton-Raphson-scheme used in the code for this work is given
in algorithm 8.1.
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Algorithm 8.1 Load stepping scheme with nested Newton-Raphson-scheme
for k = 0 to k = K do
compute: F ext

k+1 = k+1
K+1

F ext
total

set: D0
k+1 = Dconverged

k

set: δD0
k+1 = 0

repeat
assemble residual: Rj

k+1

assemble tangent matrix: Kj
k+1

solve: Kj
k+1∆Dj+1

k+1 = −Rj
k+1

update: δDj+1
k+1 = δDj

k+1 + ∆Dj+1
k+1

update: Dj+1
k+1 = Dj

k+1 + ∆Dj+1
k+1

update iterator: j = j + 1
if j > jmax then
error: Newton did not converge in jmax iterations.

end if

until ‖Rjk+1‖
‖R0

k+1‖
< tolres and

‖∆Dj
k+1‖

‖∆D0
k+1‖

< toldis and
|Rj

T

k+1∆Dj+1
k+1|

|R0T
k+1∆D0

k+1|
< tolen

end for

8.4 Return-mapping algorithm

In order to compute the residual, the integrations, that have to be carried out, are done by
Gauß quadrature. The return-mapping algorithm has to be applied at every Gauß point.
Since the return-mapping algorithm is displacement driven [36], a given displacement incre-
ment is needed to compute the trial state. This displacement increment is the difference
between the current displacement vector and the displacement vector at the end of the pre-
vious converged load step. Since a Newton-Raphson-technique is used to solve the nonlinear
system of equations, the current displacement vector changes in every Newton step. The
displacement increment which has to be considered for the return-mapping algorithm can be
identified as the current displacement increment for the current load step, δDj+1

k+1, where k
refers to the load steps and j to the Newton iterations. The increment is zero in the first
Newton step of each load step and is unequal to zero in all other iterations. During the
Gauß quadrature, the following return-mapping algorithm is applied at every Gauß point:
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Algorithm 8.2 Return-mapping algorithm

Compute elastic trial state: h∗,trialt,k+1 , JuKpl,trialt,k+1

Evaluate yield condition for trial state: Φtrial
k+1

if Φtrial
k+1 ≤ 0 then

Elastic step:
h∗t,k+1 = h∗,trialt,k+1

JuKplt,k+1 = JuKpl,trialt,k+1

else
Plastic step:
ξ =

Φtrialk+1

αt

h∗t,k+1 =

(
1− αt ξ

‖h∗,trial
t,k+1 ‖

)
h∗,trialt,k+1

JuKplt,k+1 = JuKplt,k − ξ
h∗,trial
t,k+1

‖h∗,trial
t,k+1 ‖

end if

Using this algorithm guarantees, that the tangential traction always satisfies the yield con-
dition Φ ≤ 0. In order to prepare the assembly of the stiffness matrix, one should store,
whether the trial state at a Gauß point is admissible or not since this information is needed
to decide which stiffness contribution has to be assembled.

8.5 Handling of more than one interface

In order to handle more than one interface in the domain, the following method is used:
A data structure stores some information about each cut element like the connectivity be-
tween all cut elements and all interfaces, coordinates of intersection points or the inner state
variables used for plasticity. The following looping scheme is applied to assemble contribu-
tions to the residual or the tangent matrix due to constraints or to evaluate tractions at the
interface:

Algorithm 8.3 Looping-scheme for more interfaces
for all interfaces i do
for all elements e that are cut by interface i do
...

end for
end for

The interfaces are treated independently. The only problem to take care of is to pick the
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right enriched degrees of freedom, when an element is intersected by more than one interface.
This framework can be applied for an arbitrary number of interfaces in the domain.
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9 Numerical examples

Some numerical examples are provided to show features of the presented methods. First,
some general remarks are given, that are common for all examples. Afterwards, examples
with frictionless sliding at the interface are given in section 9.2, followed by examples with
perfect plasticity at the interface in section 9.3.

9.1 General remarks

Here, some general remarks, which are valid for all numerical examples in this work, are
presented. All examples are modelled with linear triangular elements [19]. Structured and
unstructured meshes are used. The unstructured meshes are generated via GMSH [15].
The properties of meshes are often summarized in a table, where the following notations
are used: Mesh ID is an ID to refer to the mesh later. The characteristic mesh size h
is given by Mesh size h, which is computed as the circumradius of the greatest element
in the entire mesh. Elements gives the number of elements in the entire discretization.
The number of base degrees of freedom is given by Base DOFs, the number of all degrees
of freedom, including base and enriched degrees of freedom, is given by All DOFs. Cut
elements indicates, how many elements are intersected by interfaces. The material in each
grain is assumed to be linear elastic, but may have different properties in different grains.
A plane stress state is assumed. No example contains any body forces. Dirichlet boundary
conditions along the embedded interface are imposed using the methods which are described
in this thesis. Dirichlet boundary conditions to support the domain along the Dirichlet
boundary, Γd, are imposed using a collocation method. The convergence of the Newton-
Raphson-scheme is controlled by a relative tolerance, which is generally chosen as 10−10 for
all types of convergence criteria. Different choices are mentioned explicitely.
To show the accuracy of the presented methods, some examples compare simulation results
to analytical solutions or results which are obtained with very fine meshes when no analytical
solution could be found. Therefor, errors are computed as a norm of the difference between
the simulation result and the “reference” solution and are normalized with the norm of the
reference solution:

error(•) =
‖(•)h − (•)ref‖
‖(•)ref‖

(9.1)
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where (•)h denotes a discretized quantitiy and (•)ref the reference solution. The error in
the displacement field and in the traction field is measured in the L2-norm which is defined
as [6]:

‖(•)‖L2 =

√√√√∫
Ω

(•)2 dΩ, (9.2)

If (•) is defined only on a boundary Γ, the domain of integration in (9.2) has to be adapted
properly. Also, the energy norm is computed which is defined as [6]:

energy norm :

√√√√∫
Ω

εijCijklεkl dΩ (9.3)

Here, the error in the energy norm is also normalized with the energy norm of the reference
solution.

9.2 Numerical examples for frictionless sliding

First, it will be shown, that all three methods, presented in section 5, pass the patch test.
Then, some convergence and stability properties will be shown for all three methods. Finally,
a free grain boundary sliding example adopted from [38] is presented. All loads are imposed
in a single step.

9.2.1 Modified Patch test

An adaptation of the well-known patch test adopted from [7] is used here to show frictionless
sliding at the interface. The numerical results are compared to an analytical solution.
The considered domain is a rectangle with length l = 16 and height h = 4. The right
boundary is loaded with a constant traction p = −0.25, such that a constant stress field
is expected. A vertical interface with frictionless sliding is introduced at position x = 5.5,
which divides the domain into two grains Ω(1) and Ω(2) such that the length of interfacial
subsegments is not the same in every cut element. A schematic is given in figure 9.1. Ω(1) is
fixed at its left boundary. Therefore, the x-displacement is constrained over the entire left
boundary. The y-displacement is only constrained at the center node at y = 0. Lateral
contraction is enabled. To constrain the rigid body mode of Ω(2) in y-direction, the y-
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Figure 9.1: Schematic of domain for modified patch test: Two grains divided by an em-
bedded interface with a constant line load.

Name Notation value
Young’s modulus in Ω(1) E(1) 1000.0
Young’s modulus in Ω(2) E(2) 1000.0
Poisson’s ratio in Ω(1) ν(1) 0.3
Poisson’s ratio in Ω(2) ν(2) 0.0

Table 1: Material properties for modified patch test: Different Poisson’s ratios lead to a
discontinuous displacement field at the interface as a result of lateral expansion.

displacement of the center node of the right boundary is imposed to be equal to zero, since
no displacement in y-direction is expected. In order to demonstrate frictionless sliding,
different material properties are assigned to the two grains. They are listed in table 1. Due
to a non-zero Poisson’s ratio, Ω(1) is expected to expand in y-direction under compression.
Ω(2) will not have any lateral contraction, so there has to be a jump in the y-displacement
at the interface. This jump will be enabled by the frictionless sliding.
First, an analytical solution is presented. Due to the boundary conditions and using Cauchy’s
theorem σijnj = hi with nj denoting the normal vector pointing outward of the domain and
the external traction vector hi, the stresses in both grains take the following values:

σ(1)
xx = −0.25, σ(1)

yy = 0, σ(1)
xy = 0

σ(2)
xx = −0.25, σ(2)

yy = 0, σ(2)
xy = 0

(9.4)

Due to σ(1)
xy = σ

(2)
xy = 0, the shear strains ε(1)

xy and ε(2)
xy will be zero, too. According to [40], the

strains ε(1)
xx , ε(1)

yy , ε(2)
xx and ε(2)

yy in a two dimensional setting for a plane stress state are given
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by:

ε(1)
xx =

1

E(1)

(
σ(1)
xx − ν(1)σ(1)

yy

)
= −2,5 · 10−4

ε(1)
yy =

1

E(1)

(
σ(1)
yy − ν(1)σ(1)

xx

)
= 7,5 · 10−5

ε(2)
xx =

1

E(2)

(
σ(2)
xx − ν(2)σ(2)

yy

)
= −2,5 · 10−4

ε(2)
yy =

1

E(2)

(
σ(2)
yy − ν(2)σ(2)

xx

)
= 0

(9.5)

Using the strain values and the geometric quantities, the elongations M l(m) in x-direction
and Mh(m) in y-direction compute as:

Mh(1) = 3 · 10−4

Mh(2) = 0

M l(1) = −1.375 · 10−3

M l(2) = −2.625 · 10−3

=⇒M l =M l(1)+ M l(2) = −4 · 10−3

(9.6)

Using (9.6), the displacement field is given as function of the coordinates x and y:

ux =
M l
l
x

uy =

Mh(1)

h
y if x < 5.5

0 otherwise.

(9.7)

The patch test can be passed independently of the mesh density. Here, examples for a coarse
structured and a finer unstructured mesh are presented (see figure 9.2 for mesh and interface).
An overview over the number of elements and degrees of freedom for both meshes is provided
in table 2. For the penalty method, the penalty parameter is chosen as α = 1.0 · 107 for the
coarse structured mesh and as α = 3.0 ·108 for the finer unstructured mesh. Using Nitsche’s
method, the patch test can be passed regardless of the choice of the stability parameter α [33],
if α ≥ 0. So, here α = 0 is chosen for Nitsche’s method. The deformed state for the
coarse mesh is shown in figure 9.3, where the deformation is scaled by factor 1000 and the
displacement field is shown as a contour plot. The continuity of the x-component as well as
the discontinuity of the y-component at the interface is very obvious. For all three methods,
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(a) Structured mesh with 32 elements

(b) Unstructured mesh with 2020 elements

Figure 9.2: Structured and unstructured mesh with embedded interface with frictionless
sliding at x = 5.5 for modified patch test

the stresses are computed correctly. The stress in x-direction, σxx, is constant in the entire
domain and takes the value σxx = −0.25. The stresses σyy and σxy are zero to machine
precision, as it is expected. The stress field and the displacement field match the analytical
solution, provided in (9.4) and (9.6) for both meshes. Since the interface is in an area with a
constant stress field, the tractions at the interface show no oscillations for all methods. So,
the patch test is passed for all three methods.
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structured mesh unstructured mesh
Mesh size h 1.414 0.208
Number of elements 32 2020
Number of base DOFs 54 2168
Number of all DOFs 66 2236
Number of cut elements 4 32

Table 2: Summarized data for structured and unstructured mesh for the modified patch
test
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(a) x-component

(b) y-component

Figure 9.3: Contour plot of the displacement field in deformed state for modified patch
test with frictionless sliding. Deformation is scaled by factor 1000. The x-
component is continuous, the y-component is discontinuous at the interface.
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9.2.2 Stability and convergence analysis using an analytical solution

In order to show some properties of convergence and convergence rates of the presented
methods for frictionless sliding, simulation results are compared to an analytical solution.
A special focus is drawn on the stability of the methods. If the interface with frictionless
sliding resides in a part of the domain, where the stress field is not constant, oscillations will
occur, when Lagrange multipliers are used to enforce the constraints at the interface. This
does not happen for interfaces in constant stress fields like a patch test as it can be seen
in the previous example or in [33]. In order to trigger stability problems, the interface has
to be located in an area with a stress field that is at least linear. Due to the frictionless
sliding, there are no shear stresses allowed in the part of the domain which is intersected
by the interface. The problem considered here is set up as follows: A straight beam with
length l = 16 and height h = 4 is loaded with bending moments, M , at both ends. These
are applied as linear distributed tractions, hx, in x-direction, such that:

M =

h
2∫

−h
2

hxy dy (9.8)

A schematic is given in figure 9.4. The interface with frictionless sliding is located at the

Figure 9.4: Schematic of domain and loading for pure bending example: Two grains divided
by an embedded interface with linear line loads.

center of the rectangle and divides the domain into two grains, Ω(1) and Ω(2). The loads are
applied by prescribing the analytical displacement solution on the left and right boundary.
Thus, the bending is modelled as well as all rigid body modes are constrained without
limiting the possibility of sliding at the interface. According to [40], the analytical solution
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for the stress field can be obtained by introducing a stress function, ϕ(x, y):

ϕ(x, y) =
a

6
x3 +

b

2
x2y +

c

2
xy2 +

d

6
y3 (9.9)

The stresses are computed as derivatives of the stress function:

σxx = ϕ,yy = cx+ dy

σyy = ϕ,xx = ax+ by

σxy = −ϕ,xy = −bx− cy

(9.10)

A pure bending case is obtained, if only d is unequal to zero. Here, d is chosen as d = 2p/h

with p = 1. Hence, there are no shear stresses in the system. The problem is a pure
beam bending problem. Setting the parameters as indicated above, the Cauchy stress tensor
becomes:

σ =

[
σxx σxy

σxy σyy

]
=

[
2p
h
y 0

0 0

]
(9.11)

A linear distribution of the stress σxx over y is expected everywhere in the domain and
hence at the interface, too. The absolute maximum value is |σxx,max| = |2p/h · ymax| =

|p| = 1. Using (9.11), the reader can verify easily, that the Neumann boundary conditions
are fullfilled, since σijnj = hi with nj denoting the normal vector pointing outwards from
the domain. Assuming a linear elastic constitutive law for a plane stress state, the strain
tensor becomes [40]:

ε =

[
εxx εxy

εxy εyy

]
=

[
2p
Eh
y 0

0 −2pν
Eh
y

]
(9.12)

where E denotes the Young’s modulus and ν the Poisson’s ratio. After integration of the
strain field, using the compatibility equation, given by the shear strain, and including the
boundary conditions, the displacement field can be written as:

u =

[
ux

uy

]
=

[
2p
Eh
xy

− p
Eh

(x2 + νy2)

]
(9.13)
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Name Notation Value
Young’s modulus E 1000.0
Poisson’s ratio ν 0.0

Table 3: Material properties for both grains for pure bending example for stability and
convergence analysis

Mesh ID Mesh size h Elements Base DOFs All DOFs Cut elements
1 0.506 252 308 336 12
2 0.279 820 924 968 20
3 0.141 3240 3444 3528 40
4 0.094 7260 7564 7688 60
5 0.070 12880 13284 13448 80
6 0.035 51360 52164 52488 160

Table 4: Different meshes for pure bending example for stability and convergence analysis

The stress tensor σ, the strain tensor ε and the displacement field u are used for error
computation. The material properties are the same in both grains and are listed in table 3.
The problem is solved using the three methods presented in section 5. Different structured
meshes are used, which are listed in table 4. See figure 9.5 for example, where also the
interface is drawn. The reference frame, used for simulation, has an offset 8 in x-direction

Figure 9.5: Meshed domain and interface with 820 triangular elements

compared to figure 9.4 to simplify the mesh generation. Of course, this is considered for the
error computations. The order of simulations for the convergence study is as follows: First,
all meshes are solved, using Lagrange multipliers. Then, all meshes are solved with Nitsche’s
method where the stabilization parameter is computed for each element separately using
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Mesh ID penalty parameter Stabilization parameter
1 9.00 · 104 3.50 · 103

2 2.95 · 105 6.83 · 103

3 1.17 · 106 1.35 · 104

4 2.62 · 106 2.02 · 104

5 4.64 · 106 2.68 · 104

6 1.85 · 107 5.35 · 104

Table 5: Penalty parameters and stabilization parameters for each mesh

the estimate (4.88). Hence, the stabilization parameter scales 1/h. Due to the symmetry
of the problem, the estimate gives the same value for each element. Finally, the penalty
method is used. The penalty parameter for the coarsest mesh is chosen such that the error
in the displacement field takes the same value as for Nitsche’s method. According to [4], it is
scaled 1/h2 with h denoting the mesh size. The penalty parameters and Nitsche parameters
used for each mesh are listed in table 5. The penalty parameters and stabilization parameters
are plotted versus the mesh size h in figure 9.6, where it becomes obvious that the penalty
parameter grows faster than the stabilization parameter for Nitsche’s method with ongoing
mesh refinement. The displacement field in the deformed state, obtained with Nitsche’s
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Figure 9.6: Penalty parameter and stabilization parameter for Nitsche’s method for differ-
ent mesh sizes: The penalty parameter scales 1/h2, the stabilization parameter
for Nitsche’s method scales 1/h.

method, is shown in figure 9.7, where the deformation is scaled with the factor 100. The
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contour plot is generated with respect to the x- and y-component of the displacement field.
A plot of σxx is given in figure 9.8, obtained with Nitsche’s method. The errors in the

(a) x-component (b) y-component

Figure 9.7: Contour plot of displacement field in deformed state for structured mesh
with 12880 elements. Deformation scaled by factor 100

Figure 9.8: Distribution of σxx in the beam for mesh 5

displacement field, the energy norm and the traction field are plotted in figure 9.9. The
error in the displacement field decreases for all three methods with the same convergence
rate of 2 which is the optimal one. For classical finite elements, see [48], for Lagrange
multipliers, see [3], for penalty method, see [4], for Nitsche’s method, see [39]. In the energy
norm, an optimal convergence rate of only 1 can be expected since the energy norm is based
on the derivatives of the displacement field. All three methods converge with the optimal
convergence rate in the energy norm. Differences can be seen in the error in the traction field.
The Lagrange multiplier method does not converge due to the oscillations in the traction
field. The penalty method converges, but not with the optimal convergence rate of 1. This
is not suprising since there is no guarantee of optimal convergence rates for the penalty
method [4]. However, for Nitsche’s method optimal convergence rates are expected. This
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Mesh ID error in displacement field error in energy norm error in traction field
1 0.005266 0.329150 4.268300
2 0.001684 0.184540 7.497100
3 0.000504 0.092915 15.32840
4 0.000250 0.062086 23.09930
5 0.000154 0.046618 30.85620
6 0.000049 0.023348 61.85400

Table 6: Numerical values for convergence study and error analysis for the Lagrange mul-
tiplier method

Mesh ID error in displacement field error in energy norm error in traction field
1 0.005243 0.327790 0.540160
2 0.001656 0.184050 0.358190
3 0.000495 0.092779 0.211960
4 0.000246 0.062023 0.152850
5 0.000152 0.046582 0.122670
6 0.000049 0.023338 0.072650

Table 7: Numerical values for convergence study and error analysis for the penalty method

expectation is fullfilled also in the traction field where Nitsche’s method converges with the
optimal rate of 1. Differences in the accuracy are only identified in the traction field since the
penalty parameter was chosen such that there is no difference in the error in the displacement
field. As mentioned above, the representation of the traction field with Lagrange multipliers
is really bad due to the stability issues. The penalty method represents the traction field
quite well but the accuracy is much less than with Nitsche’s method. Hence, Nitsche’s
method has another advantage over the penalty method besides the slower increase of the
stabilization parameter: The accuracy is much better in the traction field for the same error
in the displacement field. For the sake of completeness, all values are given in tables 6, 7
and 8 where they are rounded to six digits. In order to show the oscillations, the traction
fields for all methods are plotted in figure 9.10 for mesh 5. The analytical solution is drawn
as a red line. One can see clearly the oscillations for the Lagrange multiplier method. The
best approximation of the traction field is done by Nitsche’s method.
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Mesh ID error in displacement field error in energy norm error in traction field
1 0.005249 0.326620 0.204120
2 0.001667 0.183830 0.112270
3 0.000502 0.092744 0.053135
4 0.000250 0.062012 0.034740
5 0.000154 0.046576 0.025795
6 0.000049 0.023338 0.012701

Table 8: Numerical values for convergence study and error analysis for Nitsche’s method
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(c) Traction field

Figure 9.9: Convergence plots for errors in displacement field, energy norm and traction
field for Lagrange multipliers, penalty method and Nitsche’s method
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(a) Lagrange multipliers

(b) Penalty method (α = 4.64 · 106)

(c) Nitsche’s method with stabilization parameter
estimated using (4.88)

Figure 9.10: Traction field along interface Γ∗ for all three methods for mesh 5 for the pure
bending example
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9.2.3 Free grain boundary sliding in a polycrystal

An often used model to examine inelasticity in polycrystals based on grain boundary sliding
is a periodic array of hexagonal grains. It was introduced in [47]. Some finite element
analysis has been performed in [16, 42]. The setup of this example is very similar to the one
given in [38]. However, the examples in the literature often use dynamic simulations and a
viscous law for the grain boundary sliding. This is not the case, here. So, only a qualitative
match of the results is expected. Due to the periodicity, the latter authors suggest to restrict
the domain to an unit cell, see figure 9.11. The unit cell is supported with loose bearings

Figure 9.11: Hexagonal polycrystals with unit cell as given in [42]

on three sides, whereas the fourth side will be subjected to a small prescribed displacement,
gx. A sketch of the domain and the boundary conditions is provided in figure 9.12. Here,

Figure 9.12: Schematic of domain, boundary conditions and prescribed displacements for
an example with free grain boundary sliding: Four grains divided by five
embedded interfaces with prescribed displacements as load.
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Mesh size h Elements Base DOFs All DOFs Cut elements
0.020408 14406 14800 15596 390

Table 9: Structured mesh for grain boundary sliding example

the dimensions are chosen as l = 1, b = 3 and h =
√

3. The prescribed displacement in
x-direction is gx = 3 · 10−6, such that the resulting strain in x-direction is εxx = 10−6. For
all grains Ω(m), m ∈ {1, 2, 3, 4}, a linear elastic material with Young’s modulus E(m) = 1000

and Poisson’s ratio ν(m) = 0.3 is used. A structured mesh with 14406 elements is applied
to the unit cell, where the mesh density is adopted from [38]. The grain boundaries are
represented by embedded interfaces, where the formulation for frictionless sliding is used.
Mesh and interfaces are depicted in figure 9.13. To enforce the constraints at the interfaces, a
penalty method with α = 4.25 ·106 is used, which is 102 times the biggest value of the elastic
stiffnes matrix. The mesh data are summarized in table 9. A contour plot of the absolute

Figure 9.13: Meshed domain with interfaces for grain boundary sliding

values of the displacement field is presented in figure 9.14 as well as one of the distribution
of the von-Mises-stress. The jumps due to the tangential gap at the interfaces can be seen
clearly in the displacement field. Of course, the horizontal interface shows no jump in the
displacements, which is expected. The tangential gap along the auxiliary coordinate s (see
figure 9.12) is shown in figure 9.15 and takes the same form as in [38]. The distribution
of the von-Mises-stress matches the ones provided in [38, 42] very well. The high stress
concentrations at the triple junctions are also expected since only these points prevent the
grains from totally sliding apart.
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The example can also be solved, using Lagrange multipliers or Nitsche’s method. Then, the
same results are obtained.
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(a) Absolute displacements

(b) von-Mises-stress

Figure 9.14: Contour plots for results of the grain boundary sliding example
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Figure 9.15: Tangential gap along the auxiliary coordinate s for free grain boundary sliding
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9.3 Numerical examples for perfect plasticity

Some examples with perfect plasticity in tangential direction are presented. They are all
solved using the methods described in section 6. First, a model problem for plasticity, similar
to the one from section 9.2.1, is investigated. Afterwards, an example similar to frictional
contact is considered where the solution can be compared to one obtained with a very fine
mesh without interface. Then, the grain boundary sliding example from section 9.2.3 is
solved with different yield stresses. Finally, a polycrystalline specimen is modelled, that is
subjected to a pure shear load. This example shows the capability of the method to handle
many grains and interfaces as well as reproduces some physical properties of polycrystalline
material.

9.3.1 Model problem with perfect plasticity

The example from section 9.2.1 is used again. A sketch of the domain is depicted in figure 9.4,
the material properties are listed in table 1. It is recalled that both grains have different
Poisson’s ratios such that transversal contraction is enabled in grain Ω(1), whereas it is
disabeld in grain Ω(2). The Dirichlet boundary conditions are the same as before, but the
load is increased to p = −25. Using a similar procedure as for the example with frictionless
sliding, the total elongation can be determined to M l = −0.4. A structured mesh is
used. The mesh data is summarized in table 10. The mesh with interface is shown in
figure 9.16. The penalty parameter for normal direction chosen as αn = 5.0 · 104, the one
for the tangential direction as αt = 8 · 103, such that the traction in the elastic regime
does not show severe oscillations. The external load is applied in 20 equally sized load steps
and decreased to zero in 20 equally sized steps, afterwards. The example is solved with six
different yield tractions, hyt,i, listed in table 11. The first one is chosen to be equal to zero.
It is expected that the results are similar to the ones from the example with frictionless
sliding. The other yield tractions are chosen in an increasing order. The last one is chosen
so high that the entire interface remains in the elastic regime. These results are expected to
match the results, one would obtain for a fully tied problem. Due to plasticity, it is expected
that a deformation remains after removing the load. Since the problem is symmetric to the

Mesh size h Elements Base DOFs All DOFs Cut elements
0.157 2592 2774 2850 36

Table 10: Data for structured mesh
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Figure 9.16: Structured mesh with interface for model problem for perfect plasticity

hyt,i Yield traction
hyt,1 0.0
hyt,2 0.5
hyt,3 1.0
hyt,4 2.0
hyt,5 3.0
hyt,6 1012

Table 11: Different yield tractions

x-axis, the results are expected to be symmetric to the x-axis, too. The x-components of
the displacement fields are plotted as contour plots in the deformed state under the full load
in figure 9.17, where the deformation is scaled with the factor 10. The y-components of
the displacement field are shown in figure 9.18, respectively. As expected, the displacement
fields are symmetric to the x-axis. For the case with hyt,1 = 0.0 can be seen, that the y-
component of the displacement field in grain Ω(1) is totally decoupled from the displacement
field in Ω(2) as it was in the modified patch test with frictionless sliding (see figure 9.3).
The discontinuities in the displacement field decrease with an increasing yield traction. The
evolution of the stick-slip-zone during the increase of the load is depicted in figure 9.19 for
all the different yield tractions. The vertical interface is plotted at the end of each loadstep.
Therefor, each subsegment is divided into two parts, each containing one Gauß point. Each
part of a subsegment is colored with respect to the sign of Φtrial

k+1 . A blue colored part means
that the trial state is admissible at this Gauß point, i.e. Φtrial

k+1 ≤ 0. A red colored part means
that the trial state is not admissible at this Gauß point, i.e. Φtrial

k+1 > 0. The horizontal axis
corresponds to the normalized pseudo-time. So, the first line on the left belongs to the first
load step and the last line on the right shows the stick-slip-zone when the entire load is
applied. The stick-slip-zones are symmetric to the x-axis. The tangential traction is plotted
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in figure 9.20 for all the different yield tractions for both methods. The penalty method does
not show severe oscillations, since the penalty parameter was chosen small enough. The
tangential traction field for the stabilized method shows an oscillatory pattern, which does
not stem from stability issues at the interface but — according to [33] — from the underlying
mesh since linear triangular elements are used.

Remark 9.1. The oscillatory pattern in the stabilized method can also be seen in the fully
tied problem, investigated in [33]. There, results for a cantilever beam problem are compared
to an analytical solution. The traction field in the normal direction is represented very well
for Nitsche’s method, whereas the tangential traction field shows some oscillations around
the analytical solution. These oscillations basically occur in the shear field and hence in the
traction field for Nitsche’s method, since it is directly influenced by the stress field. The
oscillatoric behaviour of the shear field can also be seen for classical finite elements without
any interfaces with linear triangular elements.

After removing the load, a plastic deformation remains, if plasticity was activated during the
loading process. The remaining plastic deformation in y-direction is depicted in figure 9.21.
For the case with hyt,1 = 0.0, that is equal to frictionless sliding, and for hyt,6 = 1012, that is
equal to a fully tied interface, no plastic deformation remains, as expected. For the other
cases, the plastic deformation is the greater, the lower the yield traction is since a lower yield
traction results in a larger slip zone.
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(a) x-component for hyt,1 = 0.0 (b) x-component for hyt,2 = 0.5

(c) x-component for hyt,3 = 1.0 (d) x-component for hyt,4 = 2.0

(e) x-component for hyt,5 = 3.0 (f) x-component for hyt,6 = 1012

Figure 9.17: Contour plots for x-components of the displacement fields under the full load
for the model problem with different yield tractions. The x-component of the
displacement field is continuous at the interface. The deformation is scaled
with factor 10.
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(a) y-component for hyt,1 = 0.0 (b) y-component for hyt,2 = 0.5

(c) y-component for hyt,3 = 1.0 (d) y-component for hyt,4 = 2.0

(e) y-component for hyt,5 = 3.0 (f) y-component for hyt,6 = 1012

Figure 9.18: Contour plots for y-components of the displacement fields under the full load
for the model problem with different yield tractions. The y-component of the
displacement field can be discontinuous at the interface, depending on the
yield traction. The deformation is scaled with factor 10.
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(a) hyt,1 = 0.0 (b) hyt,2 = 0.5

(c) hyt,3 = 1.0 (d) hyt,4 = 2.0

(e) hyt,5 = 3.0 (f) hyt,6 = 1012

Figure 9.19: Evolution of the stick-slip-zone during loading process for the model prob-
lem with different yield tractions. The horizontal axis shows the normalized
pseudo-time, the vertical axis the y-coordinate of the interface. Subsegments
in stick are colored blue, subsegments in slip are colored red.
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(a) hyt,1 = 0.0 (b) hyt,2 = 0.5

(c) hyt,3 = 1.0 (d) hyt,4 = 2.0

(e) hyt,5 = 3.0 (f) hyt,6 = 1012

Figure 9.20: Tangential traction at the interface for different yield tractions. For an de-
tailed explanation for the oscillations of the stabilized method, see [33].
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(a) y-component for hyt,1 = 0.0 (b) y-component for hyt,2 = 0.5

(c) y-component for hyt,3 = 1.0 (d) y-component for hyt,4 = 2.0

(e) y-component for hyt,5 = 3.0 (f) y-component for hyt,6 = 1012

Figure 9.21: Contour plots for remaining plastic deformation in y-direction after the un-
loading process for the model problem with different yield tractions. The
deformation is scaled with factor 10.
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9.3.2 “Frictional” sliding of an elastic block on a rigid surface

In this example, an elastic block is pressed on a rigid surface with a prescribed displace-
ment, g1 = −0.01, and then moved transversal with a prescribed displacement, g2 = 0.005.
A sketch of the domain and its loads is given in figure 9.22. The vertical displacement is im-

(a) Domain with emebedded interface with
perfect plasticity

(b) Domain for reference solution

Figure 9.22: Domain, boundary conditions and prescribed displacements for a “frictional”
sliding problem and the corresponding domain to compute a reference solution
with classical finite elements

posed within 5 load steps, the tangential displacement within 20 load steps. The load curves
are shown in figure 9.23, where the horizontal axis shows the load steps. The rigid surface is
represented by grain Ω(2), whose Young’s modulus is chosen very high in comparison to the
one in the elastic block. In addition, all degrees of freedoms of not enriched nodes in Ω(2) are
fixed by Dirichlet boundary conditions. Grain Ω(1) represents the elastic block with Young’s
modulus E(1) = 1000. All material data are summarized in table 12. The yield traction is
chosen as hyt = 0.25. Since the bottom block in figure 9.22a is assumed to be rigid, the
displacement field is knwon a priori. Hence, one is only interested in the solution for the
elastic block. If the prescribed horizontal displacement is large enough, so that the entire
interface is in slip, a reference solution can be constructed, using a domain as depicted in
figure 9.22b. For the reference solution, the elastic block is fixed at its upper boundary. At
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Figure 9.23: Load curves for prescribed displacements. First, the vertical displacement g1

is imposed, then the horizontal displacement g2.

Name Notation value
Young’s modulus in Ω(1) E(1) 1.0 · 103

Young’s modulus in Ω(2) E(2) 1.0 · 1015

Poisson’s ratio in Ω(1) ν(1) 0.0
Poisson’s ratio in Ω(2) ν(2) 0.0

Table 12: Material properties for frictional sliding with Tresca friction

first, the bottom boundary is moved in positive y-direction, corresponding to the prescribed
y-displacement, gy = −g1 = 0.01. Then, a horizontal external traction is applied at the
bottom boundary representing the yield traction in a fully sliding interface. So, its value
is chosen equal to the yield traction: |p| = hyt = 0.25. Of course, there is an offset in
the displacement field which equals the prescribed horizontal displacement which can be re-
spected with a translation of the reference frame. The domain for the reference solution does
not contain any interface. So, it can be solved with classical finite elements. Optimal con-
vergence rates are expected. A mesh with 51842 elements is used to compute the reference
solution. A brief convergence study shows, that this is sufficiently fine in the sense, that the
absolute value of the x-displacement does not change significantly with further refinement.
This is shown in figure 9.24, where the absolute value of the x-displacement of both corners is
plotted versus the inverse of the mesh size h. The finest mesh shown in figure 9.24 is chosen
to compute the reference solution1. The problem, that contains an embedded interface, can
be solved for different meshes and for the penalty method and the stabilized method with

1In this study, it is not possible to use a finer mesh due to limitations in the computational resources, but
this one seems to be sufficiently fine.
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Figure 9.24: Convergence plot for absolute values of x-displacements of the two bottom
corners of the reference problem

Mesh ID Mesh size h Elements Base DOFs All DOFs Cut elements
1 0.13283 1134 1232 1320 42
2 0.06916 4182 4368 4536 82
3 0.03496 16362 16728 17056 162
4 0.02803 25452 25908 26316 202

Table 13: Data for structured meshes for the “frictional” sliding example

plasticity. The accuracy of both methods can be analysed by computing the L2-norm of
the error in the displacement field, whereby the reference solution is used. Data about the
meshes to solve the plasticity problem are summarized in table 13. According to [4], the
penalty parameter has to be scaled by 1/h2. The normal penalty parameter is chosen as
high as possible, but such, that no oscillations appear in the normal traction field. It takes
the value αn = 5.00 · 104 for the coarsest mesh. In order to choose a tangential penalty
parameter for the coarsest mesh, a parameter study is done, which shows, that the error in
the displacement field does not depend on the tangential penalty parameter as soon as it is
high enough that the entire interface is in slip. The error in the displacement field is plotted
over the tangential penalty parameter in figure 9.25. Higher parameters as used in figure 9.25
prevent the Newton scheme from converging. Hence, the tangential penalty parameter for
the coarstest mesh is chosen as αt = 5.00 · 104. The penalty parameters for all meshes
are listed in table 14. For the stabilized method, the estimate (4.88) is used to determine
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Figure 9.25: Parameter study to chose the tangential penalty parameter for the coarsest
mesh. Penalty parameter varies between 0.1 and 2.6 · 106.

Mesh ID normal penalty parameter αn tangential penalty parameter αt
1 5.00 · 104 5.00 · 104

2 1.84 · 105 1.84 · 105

3 7.22 · 105 7.22 · 105

4 1.12 · 106 1.12 · 106

Table 14: Normal and tangential penalty parameters for different meshes

the stabilization parameter for both normal and tangential direction. Since one grain is
much stiffer than the other, the average operator (4.29) has to be modified. In addition,
the influence of the stiffer grain is removed from the estimate. A contour plot of the x- and
y-component of the displacement field is given in figure 9.26. The error in the displacement
field, measured in the L2-norm, is plotted in figure 9.27 for the different meshes and both
methods. The slightly higher convergence rate with the fine mesh is purely artificial since
the mesh size takes almost the same magnitude of the one, used to compute the reference
solution. Both methods reach the same optimal convergence rate, but the stabilized method
is more accurate. The accuracy of the penalty method cannot be improved as shown in
figure 9.25.
In this particular example, the influence of the penalty parameter is not that important
but in genereal the results for the penalty method is sensitive to the coice of the penalty
parameter [4]. The stabilization parameter can be estimated using (4.88). This estimate is
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(a) x-component (b) y-component

Figure 9.26: Contour plot of x- and y-component of the displacement field for the stabilized
method using mesh 3.

based only on the mesh and the material properties. It is determined by the problem and
the user cannot choose a “bad” parameter. Bottom line, this example showes two advantages
of the stabilized method: Firstly, it is more accurate than the penalty method. Secondly,
there is no free parameter that has to be chosen by the user.
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Figure 9.27: Error in the displacement field for penalty and stabilized method. The sta-
bilized method is shown to be more accurate than the penalty method. The
slightly higher convergence rate at finer meshes is artificial due to comparison
to a solution obtained with a fine mesh.

9.3.3 Grain boundary sliding with perfect plasticity

The grain boundary sliding example from section 9.2.3 is revisited. Perfect plasticity in tan-
gential direction is introduced at all interfaces. The penalty method as well as the stabilized
method are used to enforce the constraints at the interfaces. The normal and tangential
penalty parameters are chosen as αn = αt = 4.25 ·106, again. The stabilization parameter
is estimated, using (4.88). The problem is solved with different yield tractions, listed in
table 15. The results for hyt,1 = 0.0 are the same as in the frictionless sliding case from
section 9.2.3. For hyt,5 = 5.0, no plasticity occurs. The stress field is constant throughout

hyt,i Yield traction
hyt,1 0.0
hyt,2 1.0
hyt,3 2.0
hyt,4 3.0
hyt,5 5.0

Table 15: Different yield tractions for the grain boundary sliding example with perfect
plasticity



Matthias Mayr Different sliding laws on embedded interfaces 114

the entire domain. There is no discontinuity in the displacement field. For hyt,2 = 1.0

and hyt,4 = 3.0, the von-Mises-stress in the domain is plotted in figure 9.28 whereby the
simulations are done using the stabilized method. The higher the yield traction is chosen, the

(a) hyt,2 = 1.0 (b) hyt,4 = 3.0

Figure 9.28: Distribution of the von-Mises-stress for different yield tractions. The peaks
at the triple junctions are reduced with higher yield tractions.

smaller the stress peaks at the triple junctions are. The tangential gap along the auxiliary
coordinate s, defined in figure 9.12, is plotted for all yield stresses in figure 9.29 where the
penalty method is used. It can be seen, that the results for hyt,1 = 0.0 are the same as in
figure 9.15. For the highest yield traction hyt,5 = 5.0, there is no tangential gap, anymore.
The tangential gap for yield tractions in between decreases with an increasing yield traction.
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Figure 9.29: Comparison of the tangential gap along the auxiliary coordinate s for different
yield tractions: The tangential gap decreases with an increasing yield traction.

9.3.4 Polycrystalline specimen under shear load

The classical J2 flow theory for rate-independent plasticity uses the decomposition of the
Cauchy stress tensor σ into a hydrostatic and a deviatoric part [35]. The hydrostatic part
represents the stress, that leads to a change in volume. The deviatoric part contains all
shear contributions and is responsible for distortion. Experiments show, that plasticity in
metals often occurs under a shear load. Hence, it suggests itself to investigate the behaviour
of a polycrystalline material under shear loading. In order to derive the effective properties
of heterogeneous materials, often homogenization techniques are applied. Several of these
theories propose estimates for material properties for specimens with an infinite extension.
They can be seen as asymptotic estimates. In opposite to the infinite extension of these
techniques, one can also apply numerical simulations to samples of the microstructure. There,
only a small specimen is modelled. The boundary conditions on these specimens have to be
imposed properly, such that the macroscopic behavior is modelled correctly. Such boundary
conditions are the kinematic uniform boundary conditions, described in [22] and references
therein. Only a brief summary is given here: On the Dirichlet boundary, the displacement
field u is prescribed at each point x such that

u = E x ∀x ∈ Γd (9.14)
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with the symmetric tensor E, representing a mean strain at the macroscopic scale. The
local strain and stress tensors ε and σ may be different at every point x ∈ Ω. They
are homogenized, such that the strain and stress tensor on the macroscopic scale can be
computed. A mean strain tensor is defined as:

E =
1∫

Ω
dΩ

∫
Ω

ε dΩ (9.15)

The mean stress is defined, accordingly:

Σ =
1∫

Ω
dΩ

∫
Ω

σ dΩ (9.16)

For a pure shear state, the strain tensor E, needed to impose the Dirichlet boundary con-
ditions, is populated only in the secondary diagonal [22] with the follwoing values for this
particular example:

E =

[
0 0.001

0.001 0

]
(9.17)

Here, a square domain with unit length is investigated. Two grain topologies are compared.
First, the domain is divided into 15 grains, then into 50 grains. The grains are modelled by a
Voronoi tessellation, whose “center” nodes are distributed randomly according to a uniform
distribution as also done by [44]. A sketch of the domain as well as the two grain topologies
with underlying meshes are depicted in figure 9.30. Following [43], a larger effect in the plastic
regime is expected for more grains. The strength in the macroscopic response is expected to
be less for 50 grains than for 15 grains. The domain is loaded with prescribed displacements,
using the method of kineamtic uniform boundary conditions as described above. The use
of (9.14) and (9.17) leads to the absolute value for the prescribed displacement on each
boundary, |g| = 0.0005. The prescribed displacement is imposed within 100 equally sized
load steps. Then, the boundary is forced into its initial position within 100 steps.

Remark 9.2. It is possible to reduce the number of load steps to 2 × 20 and one will still
get the same final results. However, the resolution of the evolution of the stick-slip-zone is
finer with a higher number of load steps. Hence, more load steps are used in order to show
the evolution of the stick-slip-zone quite accurately.

Different structured meshes are used for both grain topologies. Their data are summarized
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Number of grains Mesh size h Elements Base DOFs All DOFs Cut elements
15 0.020203 2450 2592 3598 447
50 0.008838 12800 13122 17672 2061

Table 16: Data for structured meshes for two different grain topologies

Number of grains normal penalty parameter tangential penalty parameter
15 1.0 · 108 1.0 · 107

50 1.0 · 109 3.0 · 107

Table 17: Penalty parameters for both grain topologies

in table 16. The material properties are assumed to be constant in a grain, but different
in each grain. The Young’s modulus is distributed randomly in the range of 2.0 · 105 ≤
E(m) ≤ 2.2 · 105 using a uniform distribution. The Poisson’s ratio is distributed in the range
of 0.29 ≤ ν(m) ≤ 0.31, respectively. The yield traction is chosen as hyt = 50. The problem
is solved with the penalty method. The parameters are listed in table 17. In order to show
the evolution of the stick-slip-zone during the loading and unloading, a series of contour
plots is shown in figure 9.31 for the 15 grain topology. The same loadsteps are shown for
the 50 grain topology in figure 9.32 The plots show the distribution of the shear stress, σxy.
The grain boundaries are drawn. The coloring of the grain boundaries is done according
to the same principle as explained in section 9.3.1: Subsegments in stick are colored blue,
subsegments in slip are colored red. After reaching the maximal load in loadstep 100, the
load is decreased. The decrease will result in elastic deformation at the beginning. Hence,
the interfaces in loadstep 101 are mostly in stick. When plotting the mean shear stress,
computed with (9.16), versus the imposed shear angle, γ, for both grain topologies, one can
see the decrease in strength when plastic effects start working (see figure 9.33). In the elastic
regime, the slope of both graphs represents the shear modulus, G. Assuming homogenized
material properties with Young’s modulus Ehom = 210000 and Poisson’s ratio νhom = 0.3,
the homogenized shear modulus is computed to:

Ghom =
Ehom

2(1 + νhom)
≈ 80769 (9.18)

For the 15 grain topology, the homogenized shear modulus can be extracted from the graph
and takes the value G15 ≈ 79100 whereas the one for the 50 grain topology is G50 ≈ 79180.
The slight deviations can be explained with the randomness in the material properties and
by using a penalty method to enforce the constraints. Before plasticity starts in loadstep 32,
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the stress increases linear with the slope of the shear modulus. As expected, one can see
a weakening effect due to grain boundary sliding. This effect starts, when the shear stress
reaches the value of the yield traction, hyt = 50. The weakening effect is greater for a greater
number of grains.
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(a) Schematic of the domain using the
concept of the kinematic uniform bound-
ary conditions

(b) 15 randomly distributed grains (c) 50 randomly distributed grains

Figure 9.30: Schematic of the domain and meshes with two different grain topologies
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(a) loadstep 1 (b) loadstep 30 (c) loadstep 35 (d) loadstep 50

(e) loadstep 75 (f) loadstep 100 (g) loadstep 101 (h) loadstep 120

(i) loadstep 140 (j) loadstep 160 (k) loadstep 180 (l) loadstep 200

Figure 9.31: Shear stress σxy and evolution of the stick-slip-zone for the 15 grain topology



Matthias Mayr Different sliding laws on embedded interfaces 121

(a) loadstep 1 (b) loadstep 30 (c) loadstep 35 (d) loadstep 50

(e) loadstep 75 (f) loadstep 100 (g) loadstep 101 (h) loadstep 120

(i) loadstep 140 (j) loadstep 160 (k) loadstep 180 (l) loadstep 200

Figure 9.32: Shear stress σxy and evolution of the stick-slip-zone for the 50 grain topology
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Figure 9.33: Mean shear stress Σxy versus the shear angle γ for both grain topologies. The
weakening effect is larger for a higher number of grains. After removing the
load, some stress remains since the system is irreversible. The loading curve
is drawn as a solid line, the unloading curve as a dotted line.
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10 Conclusion and outlook

In this work, various approaches to enforce interfacial constraints weakly over enriched in-
terfaces are compared. The variational forms for each of the three methods were derived,
namely: Lagrange multipliers, penalty method and Nitsche’s method. Their effectiveness
in representing frictionless as well as “frictional” sliding behavior was investigated. A stabi-
lized Nitsche based method was developed to represent perfect plasticity at the interfaces.
Each of the variational forms was discretized and expressions for residuals as required by a
Newton-Raphson-scheme were presented. An estimate for the stabilization parameter, re-
lated to Nitsche’s method, was derived. Some remarks on the extension of the approaches to
more grains and some implementational and algorithmic details finish the theoretical part.
Then, several numerical examples for frictionless sliding and perfect plasticity are presented.
They show, that not only problems with two grains, but also polycrystalline examples can
be solved. Optimal rates of convergence were observed in the bulk field as well as in the
interfacial field with Nitsche based methods in the L2- and H1-norms. In contrast, Lagrange
multipliers fail to converge and the penalty method converges at sub-optimal rates, consid-
ering the interfacial field. This illustrates the advantages of a Nitsche type approach.
Since the stabilized method for perfect plasticity at the interface leads to an unsymmetric
formulation, one could be interested in a symmetrization. The inclusion of hardening effects
into the plasticity model should be quite straight forward. A further generalization of the
interfacial law could involve a traction-separation-law, such that a cohesive law in normal
direction is included in order to enable the subdomains to separate from each other. Finally,
the step from quasi-static simulations to dynamic simulations could be done. Some appli-
cations, like the faulted tectonic plates mentioned at the beginning, deal with large sliding
at the interface, so that it is interesting to extend the formulations to a setting with large
sliding.
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A Alternative derivation of Nitsche’s method

Following an approach in [21], an alternative derivation of Nitsche’s method is provided which
starts with a penalty formulation. The variational inconsistency in the penalty method
is resolved and an additional term is added in order to obtain a symmetric formulation.
For now, a simplified problem description is used, where body forces bi are omitted. The
equilibrium equation is given by:

σ
(m)
ij,j = 0 in Ω(m) (A.1)

The displacement field takes prescribed values on the Dirichlet boundary:

u
(m)
i = g

(m)
i on Γ

(m)
d (A.2)

On the Neumann boundary, external tractions are prescribed:

σ
(m)
ij n

(m)
j = h

(m)
i on Γ(m)

σ (A.3)

The traction at the interface is approximated using a penalty regularization:

σ
(1)
ij n

(1)
j = −σ(2)

ij n
(2)
j ≈ −

1

ε
JuiK (A.4)

where the penalty parameter α is replaced by 1/ε in order to show the variational inconsis-
tency of the penalty method. Multiplying (A.1) with weighting functions, w(m)

i , integration
by parts and applying the divergence theorem results in:∫

Ω(m)

w
(m)
i σij,j dΩ =

∫
Γ(m)

w
(m)
i σ

(m)
ij n

(m)
j dΓ−

∫
Ω(m)

w
(m)
i,j σij dΩ , m ∈ {1, 2} (A.5)

Applying a similar procedure to (A.4) yields:∫
Γ∗

w
(1)
i σ

(1)
ij n

(1)
j dΓ = −1

ε

∫
Γ∗

w
(1)
i JuiK dΓ∫

Γ∗

w
(2)
i σ

(2)
ij n

(2)
j dΓ =

1

ε

∫
Γ∗

w
(2)
i JuiK dΓ

(A.6)
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Adding (A.5) and (A.6), splitting the boundary of a grain Γ(m) into its three parts Γ
(m)
d , Γ

(m)
σ

and Γ∗ and using the fact, that the weighting function vanishes on the Dirichlet boundary,
yields the weak form for the penalty method:

2∑
m=1

∫
Ω(m)

w
(m)
i,j σ

(m)
ij dΩ +

1

ε

∫
Γ∗

JwiKJuiK dΓ =
2∑

m=1

∫
Γ
(m)
σ

w
(m)
i h

(m)
i dΓ (A.7)

The constraint is satisfied perfectly only if ε → 0. In the limiting case, one would have to
divide by zero, which is mathematically not admissible. The variational inconsistency of the
penalty method can be seen clearly. To get a stabilized method, (A.6) is rescaled by dividing
it by ε+ β. After adding these modified version to (A.5), the integral equation reads:

2∑
m=1

∫
Ω(m)

w
(m)
i,j σ

(m)
ij dΩ− β

ε+ β

∫
Γ∗

w
(1)
i σ

(1)
ij n

(1)
j dΓ− β

ε+ β

∫
Γ∗

w
(2)
i σ

(2)
ij n

(2)
j dΓ

+
1

ε+ β

∫
Γ∗

JwiKJuiK dΓ =
2∑

m=1

∫
Γ
(m)
σ

w
(m)
i h

(m)
i dΓ

(A.8)

Using the traction eqilibrium at the interface and the convention nj = n
(1)
j = −n(2)

j from (2.7)
leads to the defintion of the averaged stress 〈σij〉, which is also defined in (4.29). Then (A.8)
can be rewritten as:

2∑
m=1

∫
Ω(m)

w
(m)
i,j σ

(m)
ij dΩ− β

ε+ β

∫
Γ∗

JwiK〈σij〉nj dΓ

+
1

ε+ β

∫
Γ∗

JwiKJuiK dΓ =
2∑

m=1

∫
Γ
(m)
σ

w
(m)
i h

(m)
i dΓ

(A.9)

This weak form is not symmetric, which would result in an asymmetric stiffnes matrix. A
term can be added on both sides of (A.9) in order to restore symmetry:

2∑
m=1

∫
Ω(m)

w
(m)
i,j σ

(m)
ij dΩ− β

ε+ β

∫
Γ∗

JwiK〈σ(u)ij〉nj dΓ− β

ε+ β

∫
Γ∗

JuiK〈σ(w)ij〉nj dΓ

+
1

ε+ β

∫
Γ∗

JwiKJuiK dΓ =
2∑

m=1

∫
Γ
(m)
σ

w
(m)
i h

(m)
i dΓ +

εβ

ε+ β

∫
Γ∗

〈σ(u)ij〉nj〈σ(w)ij〉nj dΓ

(A.10)

In opposite to (A.7), this weak form is well defined also for ε → 0. Hence, it is capable of
satisfying the continuity requirements at the interface perfectly. According to [21], Nitsche’s
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method can be obtained by setting ε = 0:

2∑
m=1

∫
Ω(m)

w
(m)
i,j σ

(m)
ij dΩ−

∫
Γ∗

JwiK〈σ(u)ij〉nj dΓ−
∫

Γ∗

JuiK〈σ(w)ij〉nj dΓ

+
1

β

∫
Γ∗

JwiKJuiK dΓ =
2∑

m=1

∫
Γ
(m)
σ

w
(m)
i h

(m)
i dΓ

(A.11)

Replacing 1/β in the fourth term with the stabilization parameter α yields a formulation,
that corresponds to the variational form (4.33) as well as the weak form, provided in [33].
Due to the second term, the weak form is consistent. The third term provides symmetry.
The coercivity of the bilinear form is achieved by the stabilization term, if the stabilization
paramter α is greater than a minimum value αmin [30]. Stability is also proved by [39]
and some references therein. For some remarks on choosing the stabilization parameter, see
section 4.3.3.
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B A note on Young’s inequality

The well-known Young’s inequality [2] reads for the exponent 2:

ab ≤ a2

2
+
b2

2
(B.1)

A modified form can be obtained by choosing:

a =
c√
ε
, b =

√
εd ∀ε > 0 (B.2)

Inserting (B.2) into the original form (B.1) yields Young’s inequality with ε [2]:

cd ≤ c2

2ε
+
εd2

2
(B.3)

This can be used to rewrite the binomial (c+ d)2:

(c+ d)2 = c2 + 2cd+ d2 ≤ c2 +
c2

ε
+ εd2 + d2 =

(
1 +

1

ε

)
c2 + (1 + ε)d2 (B.4)

So, an upper bound for the binomial (c+ d)2 can be estimated:

(c+ d)2 ≤
(

1 +
1

ε

)
c2 + (1 + ε)d2 ∀ε > 0 (B.5)
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List of Notations

Notations

Aij tensor or matrix in index notation
A matrix
A tensor
ai vector in index notation
a vector in vector notation
a vector in tensor notation
(•)i,j partial derivative ∂(•)i/∂xj
aTb, aibi scalar product of vectors a and b
abT , aibj dyadic product of vectors a and b
J•K jump or gap function
〈•〉 average operator〈
·, ·
〉

integration along the interface

(·, ·) L2 inner product
|A| 2-norm of matrix A
‖(•)‖L2 L2-norm of (•)
δ(•) variation of (•)
DOF degree of freedom
meas(•) measure of •
∆(•) = ∂(•)

∂D
∆D shorthand notation for linearization of (•)

I2×2,δij identity matrix
(•)trial trial state

A assembly operator

Superscripts

h disretized quantity
(M),(I),(II),(III) indices for interfaces
(m),(1),(2) indices for grains
ref reference quantity (analytical or with very fine mesh)
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Parameters and indices

a index over nodes of an element
CI configuration-dependent constant to estimate the stabilization

parameter in a Nitsche context
c real number to derive an estimate for the stabilization parameter
d real number to derive an estimate for the stabilization parameter
e index over elements
i index
j index, Newton-Raphson-step index
jmax maximum number of Newton iterations
K total number of load steps
k index, load step index
l index
t projection onto tangential direction
toldis tolerance for convergence check in the norm of the displacement

increment
tolen tolerance for convergence check in the energy norm
tolres tolerance for convergence check in the norm of the residual
α, α̂ penalty parameter, stabilization parameter
αn, α̂ penalty parameter, stabilization parameter for normal direction
αt, α̂ penalty parameter, stabilization parameter for tangential direc-

tion
γ absolute value of slip rate, consistency parameter
ε real number to derive an estimate for the stabilization parameter
ξ algorithmic consistency parameter

Physical field variables

a(u, δu) bilinear form for internal contributions
bi body forces
C,Cijkl constitutive tensor
E homogenized mean strain tensor
E Young’s modulus
gi prescribed displacements on Dirichlet boundary
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H Heaviside function
hi prescribed tractions on Neumann boundary
h∗, h∗i traction field along the internal interface
hyt yield traction for perfect plasticity in tangential direction
l(u, δu) linear form for external contributions
M prescribed bending moment
n normal vector of interface
n(m), n(m)

i normal vector of interface of grain m
u, u, ui displacement field
ûi coarse displacement field
ũi enrichments in displacement field
δu,δui variation of displacement field
δûi variation of coarse displacement field
δũi variation of enrichments in displacement field
w, wi test function of displacement field
ŵi test function of coarse displacement field
w̃i test function of enrichments in displacement field
x, xi vector to a point in deformed configuration
ε, εij strain tensor
δε, δεij variation of strain tensor
λ, λi Lagrange multiplier field
ν Poisson’s ratio
Π entire potential
ΠAL augmented Lagrangian contribution to potential
Πext potential of external forces
Πint internal potential
ΠLag potential of Lagrange multiplier field
ΠNit Nitsche contribution to potential
Πpen penalty contribution to potential
Πu contribution of the bulk field to potential
Σ homogenized mean stress tensor
σ, σij Cauchy stress tensor
Φ yield condition
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Discrete quantities

B̂ matrix with spatial derivatives of shape functions in base degrees
of freedom

B̃ matrix with spatial derivatives of shape functions in enriched
degrees of freedom

cutnumele number of cut elements

C,Ĉ,C̃
(m)

discrete constitutive matrix
ĉ nodal value of weight function of displacements in base degrees

of freedom
c̃ nodal value of weight function of displacements in first set of

enriched degrees of freedom
D global displacement vector
∆D global displacement increment in Newton-Raphson-scheme
δD global displacement increment in load stepping scheme
d, di nodal displacements in an element
d̂ nodal displacements in base degrees of freedom
d̃ nodal displacements in first set of enriched degrees of freedom
˜̃
d nodal displacements in second set of enriched degrees of freedom
enrnumele number of enriched elements in entire discretization
G global stiffnes contribution for Lagrange multipliers
gd,(e),gλ,(e) elemental stiffnes contribution for Lagrange multipliers
K global tangent stiffness matrix
Ku contributions of bulk field to global stiffness matrix
KNit Nitsche contributions to global stiffness matrix
Kpen penalty contributions to global stiffness matrix
ku,(e) contributions of bulk field to element stiffness matrix
kNit,(e) Nitsche contributions to element stiffness matrix
kpen,(e) penalty contributions to element stiffness matrix
Na shape function at a node
N̂ shape function matrices for base degrees of freedom
Ñ shape function matrices for first set of enriched degrees of free-

dom
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˜̃N shape function matrices for second set of enriched degrees of free-
dom

nodes number of nodes per element
numele number of elements in entire discretization
R global residual
Ru global residual for untied problem
RLag contribution to global residual due to Lagrange multipliers
RNit contribution to global residual due to Nitsche’s method
Rpen contribution to global residual due to penalty method
ru,(e) element residual for untied problem
r
u,(e)
b element residual due to the bulk field
r
u,(e)
f element residual due to body forces
r
u,(e)
σ element residual due to external tractions
rLag,(e) contribution to element residual due to Lagrange mulitpliers
rNit,(e) contribution to element residual due to Nitsche’s method
rpen,(e) contribution to element residual due to penalty method
rstab,(e) contribution to element residual due to stabilized method
ε, εh strain tensor in Voigt notation
δε, δεh variation of strain tensor in Voigt notation
κ
Nit,(e)
ij submatrices for Nitsche element stiffness matrix
κ
pen,(e)
22 submatrix for penalty element stiffness matrix
κ
u,(e)
ij submatrices for bulk element stiffness matrix
λ̄ discrete Lagrange multiplier
δλ̄ variation of discrete Lagrange multiplier
σ, σh stress tensor in Voigt notation

Geometric entities

A(m) area of part of element overlapping with grain m
h height
Ls length of subsegment of interface
l length
numint number of interfaces in the entire domain
x x-coordinate
y y-coordinate
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Γext boundary of the domain Ω

Γ(m) boundary of a grain
Γd,Γ

(m)
d Dirichlet boundary

Γσ,Γ
(m)
σ Neumann boundary

Γ∗, Γ
(M)
∗ internal boundary or embedded interface

Γ
(e)
∗ subsegment of internal boundary or embedded interface

Ω entire domain
Ω(e) element domain
Ω(m), Ω(1), Ω(2) grains as parts of entire domain
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