
Synthesizing Controllers for Automation Tasks
with Performance Guarantees

Chih-Hong Cheng, Michael Geisinger, and Christian Buckl

fortiss GmbH, Guerickestr. 25, 80805 München, Germany
http://mgsyn.fortiss.org/

Abstract. We present an extension of the MGSyn toolbox that allows synthesizing par-
allelized controller programs for industrial automation with performance guarantees. We
explain the underlying design, outline its algorithmic optimizations, and exemplify its us-
age with examples for controlling production systems.

1 Introduction

Game-based synthesis is a technique that automatically generates controllers implementing high-
level specifications. A controller in the game-based setting corresponds to the finite representa-
tion of a winning strategy of a suitable game. Recent algorithmic improvements allow synthesis
to be applied in research domains such as programming languages, hardware design and robotics.
Within the domain of industrial automation, we created the MGSyn toolbox [3] to synthesize
centralized controller programs for industrial automation that orchestrate multiple processing
stations. Uncertainties from sensor readings are modeled as uncontrollable (but fully specified)
environment moves, thereby creating a game. The use of game-based modeling even allows the
automation plant to be dependable with respect to the introduction of faults. Although the initial
experiment is encouraging, the road to a solid methodology applicable to useful industrial set-
tings is still long. One crucial requirement is to generate efficient controllers, where efficiency
can be referred to several measures in production such as processing time, throughput or con-
sumed power.

In this paper, we present an extension of MGSyn that allows synthesis of programs that not
only win the corresponding game (i.e., successfully accomplish production tasks), but also pro-
vide explicit guarantees concerning specified quantitative measures. Admittedly, efforts within
the research community target to synthesize optimal controllers [1, 7, 2, 4]. Nevertheless, we ar-
gue that finding optimal controllers can be difficult in practice – apart from complexity consid-
erations, the optimality criteria are often multiple yet independent measures and no global opti-
mum exists in general. Creating engines that synthesize controllers and guarantee performance
is a reasonable alternative to the typical approach of listing performance criteria as secondary
specifications that need to be guaranteed.

The extensions of MGSyn presented in this paper target the following aspects:
• Enable an intuitive method to select performance measures in a cost-annotated model. For

every type of performance measure, provide a corresponding synthesis engine.
• Identify sets of actions that may be executed in parallel, as efficient execution of production

tasks requires the exploitation of parallelization.
• Synthesize controllers that guarantee performance under non-cooperative scenarios. For

many problems, completing the task is only possible when the environment cooperates. Our
approach allows a synthesized controller to loop as long as the environment does not co-
operate. The control task is achieved when the environment (e.g., a human operator) turns
cooperative.



2 C.-H. Cheng, M. Geisinger and C. Buckl

Table 1. Semantics of sequential (�) and parallel (⊗) composition (WC = worst case, ET = execution time).

cost ≈ ET � := max � := sum

⊗ := max WCET of any Total
single action WCET

⊗ := sum –
Total ET

of all actions

cost ≈ power � := max � := sum

⊗ := max Peak power consumption
–

of any single action

⊗ := sum WC peak power WC total power
consumption consumption

2 Approach
Cost annotation. For quantitative synthesis, the common model of computation is based on
weighted automata [5], where costs of actions are annotated on edges. The quantitative exten-
sion of MGSyn allows specifying costs as a performance metric with the following restrictions:
(1) Cost is annotated on a parameterized action as an upper bound and every concretized action
(i.e., action instance with concrete parameter values) inherits that cost. (2) All costs are non-
negative integers. (3) Uncontrollable actions (i.e., environment moves) have zero cost. The first
restriction is due to the syntactic format of the PDDL language [6]. The second restriction is used
for symbolic encoding in binary decision diagrams (BDD).

MGSyn allows selecting a sequential composition operator � that calculates a new value
from the value of the existing trace and the current cost associated with the selected edge. Two
common operators are max and sum. For example, if cost annotation in the weighted automaton
corresponds to power consumption, then a sequential composition based on the max operator
models peak power consumption, whereas the sum operator models total power consumption.
Parallel execution. MGSyn by default generates a sequence of control actions that achieve the
specified task. However, executing independent actions in parallel can be of advantage, for ex-
ample by reducing the overall execution time. MGSyn assumes that two or more actions can
in principle be executed in parallel when the workspaces affected by the actions are disjoint
and the actions have disjoint parameters (i.e., no “resource sharing”). When parallel execu-
tion of degree d is used, MGSyn generates combinations of d actions with syntactic guards
to prevent dependent actions from being executed in parallel1. Consider conveyor belt action
belt-move(dev,wp,pa,pb) which allows to use device dev to move a work piece wp from po-
sition pa to position pb. For d = 2, MGSyn automatically derives action PAR belt-move belt-
move(dev1,wp1,p1a,p1b,dev2,wp2,p2a,p2b) for moving two different work pieces on two
different conveyor belts at the same time. In the precondition of this action, the constraints
dev1 6= dev2, wp1 6= wp2, p1a 6= p2a,p2b and p1b 6= p2a,p2b are automatically added to
ensure that parameter values are different2.

To use quantitative synthesis, we provide parallel composition operators orthogonal to se-
quential composition operators. Table 1 lists some examples for cost semantics with respect to
execution time and power consumption and the two operators sequential composition (�) and
parallel composition (⊗), where “–” indicates that no meaningful semantics was found. The ef-
fects of parallel composition operators are statically created in MGSyn and are independent of the
synthesis algorithm. For example, if action belt-move has cost 3, MGSyn creates parallel action
PAR belt-move belt-move with cost 6 if ⊗ := sum and cost 3 if ⊗ := max.
Synthesis engine. We outline how the synthesis engine supports sequential operators.
• For max, given a performance (i.e., cost) bound k, the engine statically removes every param-

eterized control action whose cost is greater than k. Notice that as the cost of any environ-
ment action is always zero (cf. restriction 3), we never restrict the ability of the environment.
Then the game is created as if no cost is used. Therefore, max can be used in all game types.

1 We currently do not consider executing multiple sequential actions in parallel with another action.
2 MGSyn does not generate constraints such as dev1 6= p2a, because dev1 and p2a are of different types.



Synthesizing Controllers for Automation Tasks with Performance Guarantees 3

• For sum, the support of quantitative synthesis is mainly within reachability games where a
synthesized strategy does not contain a loop, since any loop with nonzero cost implies the
overall cost to be infinite. Given a performance bound k, the synthesis engine starts with the
set of goal states whose cost equals k and computes the reachability attractor. Let the state be
(q, α), where q is the state of the non-quantitative reachability game and α is the cost. During
the attractor computation, if (q, α) is in the attractor, one can reach the goal state from q with
cost k−α, because the environment has no control over the cost (cf. restriction 3). This allows
reusing our existing game engine with reachability winning conditions. The controller wins
the game if the attractor contains the initial state whose cost is greater than zero.

Non-cooperative environment. Lastly, MGSyn allows the backend solver to find strategies for
goal-or-loop specifications. This extension focuses on specifying non-cooperative scenarios as a
looping invariant. Whenever a run of the game leaves the invariant, the goal (i.e. the accomplish-
ment of the task) should eventually be reached. This concept can also be applied to synthesize
low-level controllers realizing parameterized actions. For example, consider the action belt-move
of the conveyor belt. Realizing such a controller requires a specification which checks when the
work piece has appeared at the start of the belt, and the synthesized program should allow to loop
as long as the work piece is not detected.

It is undesirable that an automation system behaves arbitrarily during the looping process
(although still conforming to the specification), because this would consume excessive energy.
This problem can be handled by a game reduction that sets the cost of idle or sensor-triggering
actions to be zero and all other actions greater than zero. When specifying an upper bound on the
total accumulated cost, the synthesis engine will ensure that the cost accumulation is zero during
the looping process, because this is the only way to ensure that the accumulated cost does not
exceed the threshold.

Given a looping condition Loop and a goal condition Goal, where both are sets of states,
the synthesis algorithm is based on an approach that solves reachability and safety games in se-
quence: first apply reachability game solving and compute the control attractorA := Attr0(Goal)
where states within A can eventually enter the goal regardless of choices made by the environ-
ment. Then use safety game to compute the environment attractor B := Attr1(¬Loop ∧ ¬A)
where the environment can guarantee to reach ¬Loop ∧ ¬A for every state s ∈ B regardless of
choices made by the controller. If a state is within A, a strategy to reach the goal exists. Other-
wise, if a controllable state s is not within B, it has a strategy to stay outside ¬Loop ∧ ¬A, i.e.,
to stay within Loop ∨A. As s is not within A, it is within Loop.

Therefore, with the above computation, a feasible strategy can guarantee to loop withinLoop,
or reach a state that is within A. From that state, the reachability strategy is used to guide the run
towards the goal. The complexity of solving goal-or-loop specifications is linear to the size of
the arena, making it feasible to be applied in larger scenarios. By annotating actions with cost,
MGSyn allows to synthesize controllers that guarantees efficiency in looping (i.e., looping cannot
increase cost).

3 Using MGSyn for Quantitative Synthesis
In the following, we demonstrate how quantitative synthesis is achieved in MGSyn in a simplified
scenario. The FESTO Modular Production System (MPS)3 is a modular system of mechatronic
devices that model industrial automation tasks by processing simple work pieces. Our demon-
stration comprises two FESTO MPS units that form a circular processing chain, namely storage
and processing (compare Figure 1). The formal model derived from this setup consists of:

3 http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/



4 C.-H. Cheng, M. Geisinger and C. Buckl

Processing Storage

Work pieces

A

B

C

F

E

D

A

B

C

F

E

D

A

B

C

F

E

D

Y

Level 3,2,1

RAS01

HS01

Drill01

P4

X

a

d

Lever 3

Lever 1

Lever 2

e

f

RP01

CB01

CB02

to mid

from tomid

Operating positions

Fig. 1. FESTO MPS automation system and its simplified abstract model.

• A list of formal predicates that describe the system state space, for example at(?work-piece
?position), drilled(?work-piece) and color(?work-piece ?value).

• A list of devices (instances of the predefined device types robot arm storage RAS, conveyor
belt CB, lever Lever, rotary plate RP, height sensor HS, drill Drill) with operating positions.

• Behavioral interfaces (actions) associated with each device type (e.g., belt-move, plate-rotate,
trigger-color-sensor) with annotated individual costs. Formally, a behavioral interface speci-
fies preconditions and effects on the system state space.

• Quantitative properties (i.e., goal conditions over the system state space) with annotated cost
bounds as well as sequential and parallel composition operators. Composition operators can
be either sum or max as presented in Section 1.

We formulate a formal specification in PDDL which resembles the following informal specifica-
tion: initially, work pieces wp1 and wp2 are located at CB01-mid and CB02-mid, respectively. The
goal is to drill wp1 if it is facing up (which means the work piece’s orientation is correct) and to
move it to CB02-mid. wp2 should be stored in the storage rack level that corresponds to its color
(red work pieces go to upper level and silver work pieces to middle level), but when the rack is
already occupied, it should be moved to CB01-mid. Costs are annotated as follows: behavioral
interfaces robot-move (for RAS01) and belt-move (for CB01 and CB02) have cost 3, plate-rotate
for RP-01 has cost 2 and all other behavioral interfaces (including sensor triggerings) have cost
1. Furthermore, we formulate the following optimization goals:

1. WCET optimization: Synthesize a strategy that does not exceed a specified maximal execu-
tion time. Cost corresponds to execution time with � := sum, ⊗ := max.

2. WC total power consumption optimization: Synthesize a strategy not exceeding a given WC
total power consumption. Cost represents power consumption with � := sum, ⊗ := sum.

3. WC peak power consumption optimization: Synthesize a strategy not exceeding a given WC
peak power consumption. Cost represents power consumption with � := max, ⊗ := sum.

Table 2 summarizes the results. In case of feasibility, synthesis times also include C code gen-
eration for execution on real hardware or simulation. Worst case (WC) numbers of moves were
directly extracted from the generated strategy. Worst case costs were derived by inspecting all
possible paths in the generated strategy using simulation.

The results show that about one third of the control moves can be parallelized and that par-
allelization requires about three times the synthesis time of the non-parallel case for the given
specification. Higher cost bounds require a slightly higher synthesis time. When the cost bound
is very tight, the tool synthesizes a strategy with more, but cheaper moves (e.g., 15 instead of
14). The generated strategy for experiment 3 significantly differs from the strategy for 1 and 2.



Synthesizing Controllers for Automation Tasks with Performance Guarantees 5

Table 2. Results of synthesis from quantitative specifications. For comparison, results for experiments with-
out cost model are provided. Times refer to a 3 GHz system with 4 GB of RAM (single-threaded algorithm).

Experiment Max. degree of Cost � ⊕ WC WC Synthesis
parallelization d bound moves cost time (sec)

1. WCET optimization
2 28 sum max inf.1 inf.1 18.7
2 29 sum max 15 29 19.4
2 302 sum max 14 29 22.1

2. WC total power consumption optimization
2 41 sum sum inf.1 inf.1 20.8
2 42 sum sum 15 42 21.0
2 432 sum sum 14 42 21.1

3. WC peak power consumption optimization
2 2 max sum inf.1 inf.1 14.93

2 3 max sum 18 3 16.3
2 42 max sum 15 4 19.2

Parallelization disabled

1 41 sum N/A inf.1 inf.1 6.5
1 42 sum N/A 22 42 7.1
1 432 sum N/A 21 42 7.6
1 2 max N/A inf.1 inf.1 5.4
1 32 max N/A 21 3 6.3

Non-quantitative (no consideration of cost)
1 ∞ N/A N/A 21 N/A 6.4
2 ∞ N/A N/A 14 N/A 19.0

1 Infeasible (i.e., no solution) due to cost bound being too restrictive.
2 The same strategy is generated also for higher cost bounds, only synthesis time differs.
3 Since it is not obvious whether behavioral interfaces with cost 3 are actually used in the generated

strategy, the infeasibility of this scenario cannot be directly decided from the cost annotation/bound.

4 Conclusion

In this paper, we report how MGSyn is extended to synthesize controllers with performance
guarantees. The key factors are (1) flexible interpretation of cost as a performance bound using
sequential and parallel composition operators as well as (2) suitable integration into the symbolic
synthesis engine. Experiments show that the resulting controllers are quantitatively better than
controllers being synthesized without cost analysis. The extra synthesis time can be tolerated
when controllers are generated offline.

References

1. R. Bloem, K. Chatterjee, T. A. Henzinger, and B. Jobstmann. Better quality in synthesis through quan-
titative objectives. In CAV, volume 5643 of LNCS, pages 140–156, Springer, 2009.

2. K. Chatterjee, T. Henzinger, B. Jobstmann, and R. Singh. Measuring and synthesizing systems in prob-
abilistic environments. In CAV, volume 6174 of LNCS, pages 380–395. Springer, 2010.

3. C.-H. Cheng, M. Geisinger, H. Ruess, C. Buckl, and A. Knoll. MGSyn: automatic synthesis for industrial
automation. In CAV, volume 7358 of LNCS, pages 658–664, Springer, 2012.

4. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled Markov processes.
Theoretical Computer Science, 318(3):323–354, 2004.

5. M. Droste, W. Kuich, and H. Vogler. Handbook of weighted automata. Springer-Verlag, 2009.
6. M. Ghallab, A. Howe, C. Krobnock, D. McDermott, A. Ram, M. Veloso, D. Weld, D. Wilkins. PDDL-

the planning domain definition language. Technical Report CVC TR-98003/DCS TR-1165, Yale Center
for Computer Vision and Control, Oct 1998.

7. P. Černý, K. Chatterjee, T. A. Henzinger, A. Radhakrishna, and R. Singh. Quantitative synthesis for
concurrent programs. In CAV, volume 6806 of LNCS, pages 243–259, Springer, 2011.


