
Estimation of Inverse Kinematics of Arbitrary Serial Chain
Manipulators and Human-Like Robotic Hands

Susanne Petsch and Darius Burschka

Abstract— The general solution for inverse kinematics is a
problem known for a long time. A lot of problems, algorithms,
etc., depend on inverse kinematics. While solutions for specific
serial or parallel chain manipulators exist, a good estimation for
an arbitrary serial robot within a short computation time is still
missing. We provide not only a tool for the discrete estimation of
inverse kinematics of arbitrary serial chain manipulators, but also
concepts for inverse kinematics optimization along entire paths
(adaptive tunneling) and an approximation of a desired grasp
with a human-like robotic hand (virtual shut grasp). The latter
concept includes an efficient reduction technique of a complex,
arbitrary hand, which enables a fast and accurate estimation
of the inverse kinematics of an entire hand. In contrast to
existing work, our approach is general, since it is neither
restricted to certain configurations of the serial manipulator
nor to specific structures of the hand. Moreover, our approach
does neither rely on proximate starting positions nor does it
require specific properties of the objective function concerning
the position of the minima. It works even under the presence of
multiple local minima in the solution space. Experiments show
the performance of our system. The results of the estimation
of the inverse kinematics are very accurate and the maximally
required joint speeds along the paths are low.

I. MOTIVATION

A robot which is supposed to reach a certain position
with its end-effector needs to be moved to an appropriate
configuration to place the end-effector in the desired position.
In many situations, it is advantageous to have a system
which takes the desired end-effector position as input and
gives one, several or all possible goal configurations as
output. The necessary mapping from the robot’s workspace
to its joint space is called inverse kinematics. The general
solution of inverse kinematics is a known problem for a long
time. Sometimes, the inverse kinematics can be computed
explicitly for manipulators with certain structures. A general
estimation framework for the inverse kinematics of an arbi-
trary serial robot is still missing. It can already be enough to
know, whether a solution exits. In other cases, the knowledge
about one, several or all solutions is desirable.

We focus on the discrete analysis of the configuration-
space. Such an analysis is, e.g., necessary for the evaluation
of an arbitrary manipulator structure. We are interested in the
inverse kinematics of an arbitrary serial chain manipulator
at a given point without any incremental methods based on
intermediate positions or (partial) derivatives (e.g., through
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Fig. 1. The figure illustrates the problem of inverse kinematics for a
manipulation scenario: The box should be transported. This means, first,
that the object has to be grasped by the robotic hand (brown palm, magenta
fingers). A serial chain manipulator has to put the hand into an appropriate
position, such that a successful grasp is possible. Several configurations
of the manipulator could be possible to reach a point (e.g., blue and red
configurations of the robot). Then, the manipulator has to reach several
desired positions along a trajectory for the transportation (not depicted).

the application of Jacobians). We do not assume any ad-
vantageous start configurations or something similar. Con-
sequently, we formulate the problem of inverse kinematics
as optimization problem. We look for configurations of the
robot which minimize the distance between the robot’s end-
effector and its desired position (3D: position; 6D: pose/ po-
sition with orientation). As for other optimization problems,
local minima can occur. Of course, we need to be able to
overcome these, since we want to know, whether it is possible
to reach the desired positions. Furthermore, we want to be
able to find several different solutions without getting stuck
in local minima. The solutions could be separated through
one or several large maxima. This means, that we need to
formulate our problem as a global optimization problem.
Therefore, the entire configuration space is considered for the
optimization. Such a global approach does not exist yet for
an arbitrary robot. For example, the widely known Jacobian
method depends on the start configuration of the robot.
Hence, it can also suffer from local minima. The desired
global optimizer has to run within a short computation time.
We apply the stochastic approach for global minimization
presented in [1], since it meets the above requirements.
The optimization in [1] was developed in another context.
Therefore, we need to develop a cost function in order to
(1) check if a solution exists and to (2) find several solutions
if there are more present. Hence, we cannot only minimize
the distance between the desired and the real position of
the end-effector in our cost function. If we have found one
solution, we need to be able to find further solutions.
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Furthermore, we want to determine a convenient solution
of the inverse kinematics along an entire path, e.g., for
the manipulation of an object. Of course, it is desirable to
achieve consecutive configurations which are close to each
other. Therefore, we introduce the concept of adaptive tun-
neling. Up to now, we formulated our optimization problem
in a manner, such that we find one or more solutions for a
single point. We are looking for these solutions in the entire
search space, e.g., from 0 to 360 degree for each joint. Now,
each configuration should be close to its ancestor. Hence, we
limit the search space to a region around the configuration
of the ancestor. A small search space is desirable to achieve
consecutive configurations which are really close to each
other. At the same time, a small space reduces the chance to
find a good solution to attain the goal. Therefore, the size of
the search space has to be adapted appropriately to ensure
consecutive configurations close to each other, while the
desired points are reached. Our concept of adaptive tunneling
provides a framework to achieve this goal.

Of course, it is desirable to estimate also the inverse
kinematics of more complex systems, while keeping the run
time very small. However, the more DoF have to be solved
by the optimizer, the longer it will take. An example is a
human-like hand with 20 DoF which should grasp an object.
If the desired positions of the finger tips and the thumb’s tip
are known, the position and the orientation of the hand as
well as its 20 DoF have to be determined in such a manner,
that the five tips can reach the goal positions. In order to
deal with this complex problem, we build on the concept
of the “virtual finger” [2], which is a combination of real
fingers. An object can be grasped through a shut of the object
between a thumb and a virtual finger. We call such a grasp a
virtual shut grasp. The application of the virtual shut grasp
reduces the number of DoF significantly from all DoF of the
hand (e.g. 20) to a small number of DoF in form of a serial
chain (7 DoF in our example, which is shown later).

To sum up, we provide very general tools for the global
estimation of inverse kinematics (1) at single points for
arbitrary serial chain manipulators, (2) along entire paths
with consecutive configurations for arbitrary serial chain
manipulators, and (3) of a complex human-like robotic hand.

The proposed discrete analysis of the configuration-space
was already successfully applied in structure analysis [3].
Another application area was path optimization for abstractly
represented tasks [4]. Up to now, the estimation methods
were not described in detail. Hence, we want to present the
detailed approach, since it renders very useful services.

The paper is organized as follows. After the overview of
the related work, we present the estimation of the inverse
kinematics for a single point, along a path and for a human-
like robotic hand. Afterward, information about the data and
the implementation as well as the experimental results are
provided. We end with conclusions.

II. RELATED WORK

A lot of work exists in the field of inverse kinematics.
Many applications and problems depend on inverse kinemat-

ics, e.g., [5]. A general introduction to the problem of inverse
kinematics can be found in [6]. Solutions for special ma-
nipulators can already be found there. For example, Pieper’s
solution [7] is well-known. Moreover, there are also solutions
for special redundant manipulators, e.g., [8]. Others make
use of the null-space, which comes along with a redundant
manipulator, e.g., [9]. Combinations of different methods
have been developed (analytic, numerical methods; including
optimization), e.g., in [10] or [11]. The Jacobian (including
its inverse, resp., pseudo inverse) is also often used as, e.g.,
in [12]. In general, optimization methods have already been
applied on the problem of inverse kinematics (e.g., [13]).
The determination of the inverse kinematics of parallel chain
manipulators has been presented as well (e.g., [14]). Inverse
kinematics and path planning were integrated in [15] to move
a manipulator arm from an initial configuration.

The concept of the virtual finger is originally used in the
context of mapping a human grasp to a grasp for a robotic
hand [2]. We adapt the original idea to our approach for
the estimation of inverse kinematics. We just use a thumb
and one virtual finger. In our case, the virtual finger is a
combination of the real fingers without the thumb.

In contrast to existing work, we aim to estimate the inverse
kinematics of an arbitrary serial chain manipulator and an
arbitrary human-like hand (resp., position and orientation).
The solution has to be general, so that it can be applied to
any serial chain manipulator, resp., robotic hand even under
the presence of redundancy. At first, we want to estimate
whether a solution exists. If one or more solutions exit,
we want to determine them. Otherwise, we are interested
in a solution close to the goal position. We do not assume
any pre-knowledge about (possibly) advantageous of known
(start-)configurations. Nevertheless, local minima may not
cause any problem. In contrast to local approaches (e.g.,
null-space), it has to be possible to find several optima, even
if they are significantly separated. Although local optimizer
can possibly find a solution of inverse kinematics, we need to
apply a global optimization method to achieve the previously
described aims. Additionally, the computation time should
stay within a reasonable boundary.

It is important to distinguish our approach from other
fields like path planning. We do not aim to, e.g., find a path
between two points or analyze the entire workspace of the
robot. We are interested in the discrete analysis of inverse
kinematics for one or more given points.

III. APPROACH

We want to determine appropriate joint angles θj for all
joints j in the joint space in such a manner, that the robot’s
end-effector is able to reach a desired position pd in the
workspace. This is called inverse kinematics. The mapping
from the robot’s joint space into the workspace can be
described by a function F : pd = F (Θ) with Θ = {θj}. We
describe the robotic system in the DH-convention suggested
by Denavit and Hartenberg [16] in the form shown in [6].
The orientation o of the robot’s end-effector is described as
Z-Y-X Euler angles [6].
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The robot is supposed to reach the desired point pd.
The currently reached, real point is labeled with pr. The
euclidean distance e describes the remaining distance be-
tween pd and pr. A desired position is reached, if e is
smaller than a certain tolerance t. A trajectory consists of
n desired points pi including the start point and end point.
The configuration Ci = {θj,i} for all joints j of the robot
corresponds to point pi in the trajectory. The euclidean
distance between two configurations is labeled with eC . The
total number of joints is M .

A. Inverse kinematics for a single point

In order to estimate the inverse kinematics for a single
point, we want to minimize the distance between the real and
the desired position. Therefore, we search for the minimum
in the following objective function Ok:

Ok = ‖pr − pd‖+ r (1)

with residual r. The residual r is zero for the search of the
first solution of Ok. If more solutions should be found for
the same point pd, we need to search for further, different
minima of Ok. Configurations which are close to already
determined configurations should be avoided. Therefore, r is
increased, when a new configuration is close to a previous,
already known one. The minimal distance, that is necessary
to declare two configurations as different, is labeled with u.
If the euclidean distance eC of the joint configurations is
smaller than the distance u, the residual r is increased. r is,
then, increased for each joint j in the configuration, if its
distance eC,j is smaller than u/M :

r := r + γ · ‖eC,j − u/M‖ (2)

with γ as a scaling factor. The higher the scaling factor, the
higher the punishment of known configurations.

If we want to determine the 3D position of the end-effector
as well as its orientation, we extend the previous objective
function Ok to the following objective function Oo:

Oo = ‖pr − pd‖+ α · ‖or − od‖+ r (3)

with od as desired orientation of the end-effector and or as
the current orientation of the end-effector. The factor α is
used as scaling, since the terms have different ranges.

If we want to transport an object, e.g., a cup filled with
coffee, we are interested in keeping the object upright, but the
orientation around the vertical axis of the object is allowed
to change. Then, the objective function Oo needs just to be
adapted slightly. Instead of including the orientations around
all axes, we just use the orientations around the horizontal
axes of the object in Oo. All described axes in this paragraph
are, of course, in an object-centric point of view.

It should be pointed out, that the formulation of the
objective functions is independent of the number of DoF
of the manipulator. For example, the inverse kinematics of
a redundant manipulator could be estimated as well. If the
result of the first estimation within the objective function is
higher than allowed, no solution is found. In this case, we get
automatically the configuration of the robot which is closest

to the goal, since we search for the global minimum of the
objective function.

B. Adaptive tunneling

We described already in the motivation, that we want to
estimate the inverse kinematics of an arbitrary serial chain
manipulator along a trajectory. Of course, it is desirable to get
robot configurations which are close to each other along the
trajectory to achieve smooth motions. Hence, we do not need
to evaluate the entire search space. We just change the search
space S of the optimizer. At the beginning, we use the entire
search space ranging from 0 to 360 degree for each joint to
determine the robot’s configuration at the start position of
the trajectory. For each following point pi with i > 0, the
search space is limited to a smaller search space S′j :

S′j = [θj,i−1 − lj ; θj,i−1 + lj ] (4)

for each joint j. θj,i−1 is the configuration of joint j at the
previous point pi−1. The variable lj limits the search space
around the previous configuration for joint j. At first, lj is
set to a small constant lc. If the manipulator is able to reach
the desired position, we are done. Otherwise, the limit lj is
adapted:

lj := lj ± δ (5)

with

δ = m · ‖(e− t)/M‖ and ‖e‖ > t (6)

The sign in Eq. 5 is positive for the upper bound and negative
for the lower bound. The adaption factor δ (Eq. 6) depends
on the distance e between the desired and the real position.
Hence, if the goal position is far away from the currently
reachable positions, the search space is extended by a large
step to overcome the gap to the goal. In the case of an
adaption, ‖e‖ > t must hold. Each lj is, then, increased
by the (proportionate, scaled) difference between the current
distance e and the tolerance t. The distance e− t is divided
by M , since lj limits the joint space for one joint j. The
scaling m determines the step size of the adaption. The
smaller m, the closer the consecutive configurations can
be. However, the run time can increase at the same time,
since more iterations can be necessary to reach the desired
points. The process of adaption can be repeated until either
a solution is found or if S = S′ without any solution. The
objective functions Ok and Oo themselves (see Section III-
A) are not changed. We just modify the search space.

If we concatenate the search spaces along the trajectory,
we can illustrate them as a tunnel. The diameter of the
tunnel depends on the size of the search space. This concept
is independent of the step size between consecutive points
or (partial) derivatives. The concept of adaptive tunneling
is shown in Fig. 2. It supports consecutive manipulator
configurations close to each other, while avoiding extensive
computation times.
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Fig. 2. Adaptive tunneling: The figure shows a tunnel in a 2D search
space for a 2 DoF manipulator (overall range: 0°-360° for each joint). The
green dots are consecutive configurations. The red circles show the (possibly
adapted) search space around the each configuration. Each consecutive
configuration is searched within the red circle of its ancestor.

C. Virtual shut grasp

A virtual shut grasp is built up as follows. We use the
thumb of the real hand and construct a “virtual finger” [2]. A
virtual finger is a combination of real fingers. In our concept,
it is the mean of all real fingers (mean of, resp., base, link
length, orientation). We concatenate the real thumb and the
virtual finger to a serial chain (from the tip of the thumb over
the hand carpus to the tip of the virtual finger). An object can
be grasped through a shut of the object between a thumb and
a virtual finger. We call such a grasp a virtual shut grasp.
Now, we attach the tip of the thumb to its 3D goal position.
Then, we just need to determine the thumb’s orientation and
the small number of DoF in the serial chain, so that the tip
of the virtual finger reaches its desired position (the mean of
the goal positions of all fingers).

Additionally, we need to make sure, that the serial chain
has the right orientation. It has to be oriented in a such
manner, that the real fingers are able to reach their goal
positions afterward. Hence, we attach an “orientation stick”
to the root Pv,root of the virtual finger. The stick is aligned
with the joint axis of the root of the virtual finger and points
towards the root Pl,root of the finger, which is the last one
or defined as the last one. We use the little finger as the last
finger. The orientation stick can be formulated as the vector−−−−−−−−−→
Pv,rootPl,root. This stick has to be parallel to an “aim stick”
and it has to point in the same direction. The desired aim
stick is the vector from the goal position of the virtual finger
to a point Pg,goal (−−−−−−−−−→Pv,goalPg,goal). To construct the point
Pg,goal, we imagine a plane PvFP within which the tip of
the virtual finger can move. If a goal position Pf,goal of a
real finger is on the same side of the plane PvFP as the goal
position of the last finger Pl,goal, we introduce a new point
P ′f,goal = Pf,goal. Otherwise, we mirror Pf,goal on PvFP

to create P ′f,goal. The mean of all P ′f,goal and Pl,goal is the
desired point Pg,goal, which is used for the aim stick. Fig. 3
illustrates the principle of the virtual shut grasp.

The determination of the virtual shut grasp gives us
the orientation of the thumb as well as the position and
orientation of the hand carpus. Afterward, just the joints
of the real fingers need to be estimated (independently of
each other). It is important to point out, that our approach
is independent of the number of fingers and the form of the
hand.

A robotic hand can be attached to the end-effector of a

Fig. 3. Human-like robotic hand and virtual shut grasp. Left: Illustration
of the human-like robotic hand with the brown palm of the hand, the dark
magenta fingers and the green joints. Middle: Model of the human-like
robotic hand with the red virtual finger and the blue orientation stick. Right:
Illustration of a grasp with the virtual finger and the orientation stick: The
yellow circles are the desired positions of the real fingers. The virtual finger
should reach the light magenta mean of these positions. The blue orientation
stick should be kept in the right orientation: It should be parallel to the black
aim stick and point into the same direction.

Fig. 4. Fig. 4. Data set I (left) and II (right): The lines/ curves between
the blue characteristic places (LA) refer to trajectories of lifted objects (red)
and trajectories of pushed objects (green). The robots’ base positions are
symbolized in yellow.

robotic serial chain manipulator. If we want to use a hand and
a manipulator for an action, e.g., object transportation, we
can go on as follows. First, we determine the joint parameters
as well as the orientation and position of the hand to grasp the
object. Afterward, we just need to deal with the serial chain
manipulator. We treat the hand carpus as the manipulator’s
end-effector, which has, first, to position the hand for the
grasp and, second, to keep the object upright during the
transportation. Its inverse kinematics can be estimated as
described in Section III-B.

IV. EXPERIMENTS

We test our approach on a manipulation scenario, in which
the robot has to grasp an object at a certain position and to
move it to another position in an upright orientation.

A. Data and Implementation

The experiments are processed on two data sets extracted
from human actions in manipulation experiments (see [17]).
The human transported objects between characteristic places.
Fig. 4 illustrates both data sets used in the experiments. The
manipulations take place in an area of about 40 cm x 40 cm.

The implementation is done in C/C++. The stochastic
approach for global minimization was presented in [1]. We
use the implementation by Oliver Ruepp [18]. The used
computer has a Intel(R) Core(TM)2 Duo CPU.
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Fig. 5. Exemplary virtual shut grasp (Data set II). The illustrated hand
has a black palm, blue real fingers and a magenta model of the hand with
the virtual finger, the thumb and the red orientation stick. The red dots are
the aim positions of the real fingers, the blue one is the goal of the virtual
finger. The black axes of the global coordinate frame give an impression
about the magnitude of the hand (unit: mm). As it can be seen, the virtual
finger does not exactly reach its aim position. However, the real fingers are
achieving their aim positions precisely.

The used serial chain manipulator has 6 DoF with a resp.
link length of 300 mm. Each link is perpendicular to its resp.
consecutive link. The human-like hand has a thumb and four
fingers with three DoF each (resp. link length: 30 mm). The
hand has one additional DoF between the root of the thumb
and the roots of the fingers (see also Fig. 3). Each finger
joint has a range from 0 to 120 degree.

The tolerance for a hit is set to t = 20. The variable γ is
set to 1

3 to punish configurations smoothly, when they are
close to each other. The scaling α = 300 is large, since the
range of the second term in Eq. 3 is much smaller than the
first one. Two configurations are treated as different, if the
euclidean distance eC in between is at least u = 0.2 rad. The
search for further solutions is stopped, if either the result of
the corresponding objective function is higher than 2.5 · t
or a maximal number of iterations is reached (200 in our
experiments). We choose lc = 0.01 and m = 0.2, in order to
increase the search space just in very small steps to ensure
smooth motions (see Eq. 4-6). Our trajectories consist of
n = 20 consecutive points.

B. Results

We analyze a transportation task for each data set. More-
over, we repeat each experiment five times to check the
stability of the experiments.

At first, we estimate the inverse kinematics of the human-
like hand. An exemplary virtual shut grasp is depicted in
Fig. 5. Nearly all of the grasps are done successfully. There
is just one grasp among all experiments and repetitions,
which could not be applied in reality: Since we do not have
implemented a collision detection yet, the fingers are inter-
secting themselves in form of a loop. A collision detection
could be added to the objective function in Section III-A as
punishment of undesired intersections. Once the hand has
successfully grasped the object, we just need to position
the end-effector of the serial chain manipulator. It has to
be positioned in such a manner, that the computed grasp can
be performed. Some of the solutions are illustrated in Fig. 6.

Afterward, the desired manipulation is performed with
the serial chain manipulator. The hand needs just to stay
in the known grasp position to hold the object. We re-
peat the process of adaptive tunneling for different start

Fig. 6. Exemplary configurations of the magenta manipulator with the red
base for the same position of the end-effector (data set I). For illustration,
a stick stub was added to the end-effector instead of the hand to show its
orientation more clearly. The black axes of the global coordinate frame are
given as orientation between the subfigures (unit: mm).

Fig. 7. Statistical results of the best (left) and the worst (right)
results of adaptive tunneling for data set II. Each figure shows the
blue mean and the orange maximum of the joint speed (in rad/
time unit), the angle around the horizontal axes (in degree) and the
residual of the position (in 10 mm).

configurations, if the start position can be reached with
different configurations. The desired manipulation consists
of a 3D trajectory, on which the object has to be kept upright
(e.g., a cup with coffee), while the joint speed should stay
low. Fig. 7 shows the average and maximum of, resp., the
joint speed, the angle around the horizontal axes and the
residual of the position for data set II. The best result is
shown on the left, the worst on the right. Even the worst
result has very desirable low values. This shows clearly, that
the direct optimization of the angle around the horizontal
axes and the residual in position (see Eq. 3) succeeds. The
desired low joint speeds are achieved indirectly through
the limitation of the search space in the adaptive tunneling
method. The results for data set I are even better. Fig. 8 shows
an exemplary development of joint speeds. On the right, we
see, that one trajectory is done at an extremely low speed,
but in a zig-zag-pattern. This can be explained through the
application of the Stochastic Optimization: We search for the
solution in a very small search space at the beginning. Within
this space, the solution is picked arbitrarily. The joint speed
of the trajectory in Fig. 8 is so small, that the solution is
already found within this extremely small search space. Some
trajectories have a peak in the development of the joint speed,
but even this peak is very low with 0.5 rad. Fig. 9 illustrates
some consecutive configurations of the manipulator along the
trajectory. As we can see, its motions are smooth.

Concerning the computation time and the stability of the
solutions, we achieve satisfying results. The estimation of
the inverse kinematics of one single point takes between
15 and 60 seconds, depending on the number of possible
solutions (between 20 and 80 solutions for a point in our
experiments). The adaptive tunneling is started with the three
best solutions of the inverse kinematics of the start positions,
the best one according to the statistical values in Fig. 7
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Fig. 8. Exemplary joint speeds along the trajectories. The x-axis can be
seen as the time axis, if 1 s is needed to move to a consecutive point. Left:
Speed of joint 1 in data set I. Right: Speed of joint 4 in data set II.

Fig. 9. Consecutive configurations of the manipulator along the blue
trajectory at position 1, 5, 10 (data set I). Illustration similarly to Fig. 6.

is chosen at the end. The adaptive tunneling for the entire
trajectory is done in 45-90 seconds. The inverse kinematics
of the entire human like robotic hand is estimated within
5-10 seconds. We tested several local optimization methods
(e.g., Matlab Optimization Toolbox: simplex search method,
Trust-Region Dogleg method, Levenberg-Marquardt method)
on the same data sets, but all of them got stuck in local
minima. It was not possible to find the inverse kinematics
for all desired points with any of these methods. This forced
us to search for a global estimation of inverse kinematics.
The small peaks in the speed profiles (see, e.g., Fig. 8) are
negligible, if one considers, that it was not possible to find
solutions with another method.

The number of solutions is stable for the inverse kine-
matics of a single point in data set I with just two outliers
(just about 25 solutions found instead of about 40). For data
set II, the estimation of the inverse kinematics seems to
be more difficult for two places: About 50 solutions are
found in ca. 50% of the repetitions, while just the half
of this amount is determined in the other repetitions. The
amount of possible solutions depends also on the definition
of “different solutions”, e.g., the tolerance t and the minimal
distance u between two different configurations. Moreover,
the number of possible solutions can differ, depending on
the real distance between two configurations. Nevertheless,
the large amount of solutions in our experiments shows, that
we find many possible solutions, even in the worst case. As
described, the three best results of the inverse kinematics of
the start position are evaluated before the adaptive tunneling.
The best result is taken at the end. A third of the other
solutions have single higher outliers in the joint speed about
1.5 - 2.5 rad/ time unit, the other values are approximately
the same. The repetitions show similar results, just one
outlier occurs in one repetition of one trajectory for the joint
speeds (about 3 rad/ time unit). The estimation of the inverse
kinematics of the hand is very stable, there is just one outlier
(residual of 10 mm for a finger; normally a residual about

1.5 mm) among all repetitions, which is still very small.

V. CONCLUSION

We proposed a concept for the estimation of the in-
verse kinematics of arbitrary serial chain manipulators and
a human-like robotic hand. We achieve good results for
the inverse kinematics of the serial chain manipulator. The
experiments with the efficiently reduced model of a complex,
arbitrary hand show very good results of the estimation of
the inverse kinematics.

Further applications of the described estimation approach
can be found in [3], [4]. The estimations there include further
features like another joint type (prismatic joint). The basic
idea is the same as described here.
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