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Abstract— Efficient visual pose estimation plays an important
role for a variety of applications. To improve the quality, the
measurements from different sensors can be fused. However,
a reliable fusion requires the knowledge of the uncertainty of
each estimate. In this work, we provide an error analysis for the
Z∞ algorithm. Furthermore, we extend the existing first-order
error propagation for the 8-point algorithm to allow for feature
normalization, as proposed by Hartley or Mühlich, and the
rotation matrix based decomposition. Both methods are efficient
visual odometry techniques which allow high frame-rates and,
thus, dynamic motions in unbounded workspaces. Finally, we
provide experiments which validate the accuracy of the error
propagation and which enable a brief comparison, showing that
the Z∞ significantly outperforms the 8-point algorithm. We also
discuss the influence of the number of features, the aperture
angle, and the image resolution on the accuracy of the pose
estimation.

I. MOTIVATION

There is a strong trend towards the use of cameras for
pose estimation on mobile robots. They have low power
consumption, large measurement fields, and are available in
lightweight and compact housings. However, due to the large
data volume, image processing is a computationally expen-
sive task, which, in general, requires significant resources
on robotic platforms. Hence, for monocular pose estimation
on resource limited systems efficient algorithms have to be
used. Depending on the environment, the camera parameters
and the image quality, the uncertainty of any image based
motion estimation can vary significantly. To allow for a
proper post-processing of these measurements, like the fusion
with other data, an accuracy uncertainty estimate for each
measurement is crucial. The only information available to
estimate the expected error are the feature correspondences
which are used as input for the respective algorithm, the
camera parameters, the expected tracking accuracy in the
image, and the motion estimation result.

Several solutions already exist to estimate the camera
motion from a monocular image stream. Especially in the
last decade novel solutions, like MonoSLAM [1], PTAM [6]
or DTAM [10], have been presented, which allow for an
accurate and reliable motion estimation. However, they are
quite memory and processing intensive and are restricted to
a limited workspace. Hand-held systems, wearable devices,
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micro aerial or ground robots, they all have in common
to provide only very limited processing resources, whereas
requiring a pose estimation within an unbound workspace.
Furthermore, the high dynamic motions in such applications
demand an image processing at high frame-rates.

In this work, we derive a first-order error propagation for
two highly efficient visual pose estimation algorithms, the
Z∞ and the normalized 8-point algorithm. We introduce a
first-order error propagation for the rotation and the trans-
lation estimation of the Z∞ algorithm [8], which allows for
a fast motion estimation due to its closed-form solutions.
There is some work in literature analysing the perturbation of
the Fundamental matrix computation [15], [11], [12]. These
solutions do not consider the motion estimation from an
Essential matrix and are computationally complex or limited
to a specific number of features. A straight forward first-
order error propagation for the original 8-point algorithm
including the motion estimation based on the Essential
matrix is shown in [14]. We will extend this work taking
into consideration the effect of feature normalization as
proposed by Hartley [4] or Mühlich [9] which improves
the estimation result significantly. We also propagate the
uncertainty for the rotation matrix based decomposition,
which is computationally more robust than the quaternion
estimation as used in [14]. Additionally, we show how to
compute the axis and the magnitude of the error rotation
which allows for a geometrical interpretation of the error. The
contribution of this work is a set of equations, including their
derivations, which can be directly applied to any application
which requires an efficient image-based pose estimation and
the corresponding uncertainty measure. By comparing the
results, we also show that the Z∞ greatly outperforms the 8-
point algorithm. The experiments reveal also some insights
how the estimation accuracy correlates with the aperture
angle, the number of features and the tracking accuracy.

In the following, we briefly sketch the Z∞ and the 8-
point algorithm to ease the understanding for the successive
first-order uncertainty derivations in Sections III and IV. In
Section V, we evaluate the accuracy of the error propagation
and briefly compare both motion estimation techniques.

II. MATHEMATICAL FRAMEWORK

In the following, we assume intrinsically calibrated cam-
eras and undistorted image features. Let p denote the image
coordinates of a specific feature corresponding to the 3D-
point P =

(
xP yP zP

)T . The respective projection onto
a camera plane with focal length f is referred to as r̃ =(
xr̃ yr̃ f

)T , the projection onto the unit focal camera



plane as r =
( xP

zP

yP
zP

1
)T

and the unit length vector as
r̄. In the following perturbation analysis we assume that the
tracking errors of different features and different components
are uncorrelated and have the same standard deviation σ . The
Essential matrix, E, describes the mapping between two rep-
resentations of a point in different camera coordinate frames,
(P,P′), such that r′T Er=0 and E=[t]×R, where P′=RP+ t
with R denoting the rotation matrix and t representing the
translation vector. For the perturbation analysis we assume an
additive translational error t̃ = t +δ t . However, the rotation
error has to meet some requirements in order to fulfil the
orthogonality constraint of a rotation matrix [2]:

I = (R+∆R)(R+∆R)
T

= RRT +∆RR+R∆
T
R +O

(
∆R∆

T
R
)

∼= I +∆RR+R∆
T
R

⇒ ∆RRT =−
(
∆RRT )T de f

= ∆
′
R =

[
d ′R
]
×

(1)

where the operator [·]× denotes the cross-product skew
matrix. It follows that

R+∆R =
(
I +∆RRT )R =

(
I +∆

′
R
)

R
de f
= R∆′R

R . (2)

The covariance matrix of a noise vector can then be com-
puted by the expectation of its tensor product, Γx =E

(
δxδ T

x
)
,

considering only the first order errors with zero mean.
The following theorem will be used in several steps of the

derivations.
Theorem: Let A=H diag(λ1, . . . ,λn) HT be an n× n sym-
metric matrix where diag() denotes a diagonal matrix with
the eigenvalues λ1, . . . ,λn as entries and H is an orthonormal
matrix consisting of the eigenvectors h1, . . . ,hn. The pertur-
bation of a scaled eigenvector x=khi, with scaling factor k∈
R, can then be described up to first order by the perturbation
in A, denoted as ∆A, according to δ x∼=HDiHT ∆Ax with Di=

diag(l1, . . . , ln) and l j =

{
0 if i = j
1

λi−λ j
else . Proof : See [14].

III. Z∞ ALGORITHM

The Z∞ algorithm uses the generally undesirable quantiza-
tion effect of digital cameras to separate translation-invariant
from translation-dependent landmarks [8]. Landmarks, which
are far enough that the actual translation is not measurable,
are projected on the same pixel location before and after
translation. Such feature correspondences represent only
the rotational component of the motion. This enables the
Z∞ algorithm to determine the rotational component of the
motion without ever considering the translational one. Hence,
the solution space has less dimensions, which simplifies the
computation and the suppression of outliers significantly.
The key problem, namely to identify translation-invariant
landmarks for rotation estimation, is solved in a RANSAC
framework [3]. Of course, the approach is only applicable
if enough features have a camera and translation dependent
minimum distance, which is in general the case for outdoor
or slow indoor applications with wide angle cameras.

A. Rotation Estimation

The rotation estimation of the Z∞ algorithm is based
on the direction vectors to different landmarks and uses
the Umeyama algorithm described in [13] to compute the
DCM based on a SVD. The corresponding unit-length im-
age rays used for rotation estimation belong all to the set
of translation-invariant points, Rinl =

{
(ri,r′i) | r̄′i=RT r̄i

}
.

Thus, following least squares problem for an initially un-
known set S has to be solved

R(S ) : R = argmin
R

 ∑
(r̄i,r̄′i)∈S

∥∥RT r̄i− r̄′i
∥∥ . (3)

For that, the origin of the coordinate frame has to be moved
to the center of the point cloud, resulting in

r∗i = r̄i− c | c =
1
|S | ∑

r̄i∈S
r̄i (4)

and r′∗i respectively. The non-scaled sample cross-covariance
matrix M=∑r′∗i r∗i

T for these point clouds is calculated from
the set S ∗={(r∗i ,r′∗i )}, such that

R=VMWUT
M with W =diag

(
1,1,det

(
VMUT

M

))
(5)

and SVD(M)=UMΣMV T
M , while the function det() computes

the determinant.

B. Translation Estimation

All the remaining feature correspondences in the outlier
set Routl are rotated back by R and are then only affected
by the translational part of the motion

r̊′ = Rr′ = RRT (r− t) = r− t (6)

with t
!
6= 0 because only translation-dependent features are

used. Projecting the rays on the unit focal image plane we get
ř′= r̊′

zr̊′
. The back-rotated optical flow vectors {(riř′i)} should

all meet in the epipole q, which means that the epipole is the
intersection of all the lines defined by the translational flow
vectors. This constraint defines the following linear system
of equations

Aq = d ⇒
(
A d

)( q
−1

)
= 0

de f
= Bg (7)

with d =
(

nT
1 r1;1:2 . . . nT

|Rout|r|Rout|;1:2

)T
, A =(

n1 . . . n|Rout|
)T and ni=

(
yř′i
− yri xri − xř′i

)T
.

Thus, the direction of translation up to sign t̃ can be
computed by

t̃ =
t̃ ′∥∥t̃ ′
∥∥ with t̃ ′ =

(
q
1

)
, q = −

V B;1:2,3

V B;3,3
(8)

and SVD(B) = UBΣBV T
B . The ambiguity of sign of the

translation vector can be resolved by

t=
{
−t̃ if ∑i (ri× ř′i)

T (t̃× ri) < 0
t̃ else

. (9)



C. Error Propagation of the Rotation Estimation

The first order accuracy analysis of the orthogonal Pro-
crustes problem, which determines the rotation between
two corresponding point clouds, has been presented and
discussed in [2]. We adapt this approach to provide a first
order error propagation for the Z∞ rotation estimation.

Using the rotation error definition as introduced in Eq. 2,
the column vector δ R of the matrix ∆R can be computed
from [d ′R]× by

δ R = col
[
[−R−,i]×

]3
i=1 d ′R

de f
= GR d ′R (10)

with col [·] representing the vertical concatenation. As de-
rived in [2] the covariance matrix for d ′R can be estimated
by

Γd ′R
= −L

(
N

∑
i=1

(
[Rr∗i ]×Γr′∗i

[Rr∗i ]×
)
+

N

∑
i=1

([
r′∗i
]
×RΓr∗i

RT [r′∗i ]×)
)

L

(11)

with L=RHRT and H=(tr(S) I−S)−1 where S=VMΣMV T
M

according to Eq. 5. The vectors r∗i and r′∗i were introduced
in Eq. 4 and Γr∗i

and Γr′∗i
are the corresponding covariance

matrices. These can be computed by weighting the feature
detector variance σ2 by the feature ray lengths, such that

Γr∗i
=
(

zri
f

)2
Γr̃ and Γr′∗i

=
( zr′i

f

)2
Γr̃′ with f being the focal

length in pixels and Γr̃ =Γr̃′=diag
(
σ2,σ2,0

)
. The shift of

the origin to the centroid does not affect the variance. Finally,
putting together Eq. 10 and 11 we get ΓR=GR Γd ′R

GT
R .

D. Error Propagation of the Translation Estimation

The error in the translation estimation has to be propagated
through Eq. 7. The initial error ∆B of B can be estimated
according to ∆B=

(
∆A δ d

)
with ∆A=

(
δ n1 . . . δ n|Rout|

)T

and δ d∼=
(

δd1 . . . δd|Rout|

)T
where

n+δ n =

 (
yř′i +δyř′i

)
−
(

yri +δyri

)(
xri +δxri

)
−
(

xř′i
+δxř′i

) ⇒
δ n =

(
δyř′i
−δyri

δxri
−δxř′i

)
and

(12)

d +δd = (n+δ n)
T
(

xr +δxr

yr +δyr

)
⇒

δd ∼= xnδxr + xδ nxr + ynδyr + yδ nyr .

(13)

The error propagation from the feature-error to δ BT can

be computed by following transition matrices:

δ r,n = (δ r1 δ n1 . . . δ r|Rout |
δ n|Rout |)

T

=

I|Rout|⊗

1 0 0 0
0 1 0 0
0 −1 0 1
1 0 −1 0





δ r1

δ ř′1
...

δ r|Rout |
δ ř′|Rout |


de f
= Gr,n δ r,ř′ and

(14)

δ BT ∼= Diag
(
P1,P2, . . . ,P|Rout|

)
δ r,n

de f
= GBT δ r,n

with Pi =

(
0 0 1 0
0 0 0 1

xni yni xr̃i yr̃i

)
(15)

and Diag() denoting a block-diagonal matrix. The error of
t̃, which is derived from the least-squares solution of Eq. 7
according to Eq. 8, can be propagated using the theorem
introduced in Section II. Thus, we first need to compute the
transition matrix from the error vector δ BT to δ BTB

δ BT B
∼=
(

row
[
I3⊗BT

i,−
]|Rout|

i=1 +BT ⊗ I3

)
δ B

de f
= GBTB δ BT

(16)

with row [·] representing the horizontal concatenation. Now,
the perturbation of the eigenvector can be propagated by

δ q̄ ∼= V BDBTB;3V T
B∆BTB

(
q
−1

)
= V BDBTB;3V T

B

((
q
−1

)T

⊗ I3

)
δ BTB

de f
= Gq̄ δ BTB ,

(17)

where q has been introduced in Eq. 8. According to those
equations, the error of δt̃ of the translation axis t̃ can be

estimated from δq̄ by δ t̃ =

(
δq̄

‖t̃ ′‖
0

)
and, thus, δ t̃ =Gt δq̄ with

Gt = diag(zt̃ ,zt̃ ,0). The error for t and t̃ varies only in the
sign and, hence, results in the same covariance propagation
matrix.

It remains to compute the initial covariance matrix
Γr,ř′ =E

(
δ r,ř′δ

T
r,ř′

)
, with δ ri,ř′i

= σ

f I4, which yields Γr,ř′ =(
σ

f

)2
I(4·|Rout|).

Putting together the pieces we can compute the covariance
matrix of the direction of translation vector, Γt , such that

Γt ∼= Ht Γr,ř′H
T
t (18)

with Ht = Gt Gq̄ GBTB GBT Gr,n.

IV. EIGHTPOINT ALGORITHM

The 8-point algorithm is a closed-form solution which
computes the Essential matrix E by solving a linear system of
equations [7], defined as Ae = 0 where e is the vectorization
of E, e=vec(E), and A∈RN×9 is a stack of N row vectors,
where N denotes the number of features.



A. Essential Matrix Estimation

The least-squares solution for e=argmine (‖Ae‖) is found
by the last column of VA corresponding to the smallest
singular value, such that

e =VA;−,9 where SVD(A) = UAΣAV T
A , (19)

and the indices are denoted by the succeeding subscript. A
major improvement of the conditioning of the eight-point
algorithm was first proposed by Hartley [4]. Introducing two
transformation matrices, S and S′, we are able to manipulate
the input of the algorithm, which improves the computational
condition for estimating E:

r′T Er =
(
S′r′
)T S′−T ES−1 Sr = r̂′T Êr̂ = 0 . (20)

The matrix E can then be retrieved by E =S′T ÊS. In order
to make the computation as robust as possible according to
total least squares estimation, the following matrices for S
and S′ are proposed by Mühlich [9]. S provides an anisotropic
normalization of r and is defined as

S = chol(M)−1 with M =
1
N

N

∑
i=1

rirT
i , (21)

where the Cholesky decomposition is denoted by chol(M)=
K with K being an upper triangular matrix such that M =
KKT . S′ describes a shift of the origin and an isotropic
scaling for r′, such that

S′ =

(
s 0 −sc1
0 s −sc2
0 0 1

)
with

c =
1
N

∑
N
i=1 r′i;1:2 and s =

√
2

1
N ∑

N
i=1 ‖r′i;1:2− c‖

.

(22)

Thus, c denotes the centroid and s an isotropic scaling
factor averaging the length of each point to the length of(
1 1 1

)T .
Next, we enforce the constraint of the Essential Matrix,

such that

Ē = UEΣĒV T
E = UE diag(1,1,0)V T

E (23)

with SVD(E) =UEΣEV T
E .

B. Decomposition of the Essential Matrix

Once the Essential matrix has been computed, it can be
decomposed into translation and rotation. By modifying the
polar decomposition of Ē we yield

Ē = UEΣĒV T
E

= UEΣĒ WZUT
E UEZW V T

E

= [t]×R with

W =

(
1 0 0
0 1 0
0 0 det

(
UEV T

E
)
)

, Z̃ =

(
0 −1 0
1 0 0
0 0 1

)
and Z =

{
Z̃T if

(
∑i A+

i t
)T 12 < 0

Z̃ else
,

(24)
where Ai=

(
−Rri r′i

)
and A+

i denotes the pseudoinverse of
Ai.

The translation vector can be found as the unit vector
minimizing t̃=argmint

(
‖ĒT t‖

)
which corresponds to find-

ing the unit eigenvector of ĒĒT associated with the smallest
eigenvalue t̃=UE;−,3.

It remains to solve for the ambiguity of sign by

t=
{
−t̃ if ∑i

(
Rri× r′i

)T Ēri < 0
t̃ else

. (25)

C. Error Propagation of the Essential Matrix Estimation

The first order perturbation analysis of the 8-point algo-
rithm is adapted from [14]. However, in our derivation we
take also into consideration the modifications proposed by
Hartley and Mühlich and the computation of the DCM at
the decomposition of the Essential matrix as well as the error
axis representation, which allows for geometric insights.

Let us assume a measurement matrix Ã, which is the sum
of the matrix A denoting the true value and the perturbation
matrix ∆A. According to [14], the first-order error of the
non-normalized Essential matrix Ê can be computed from
the transposed of the perturbation matrix δAT =vec

(
∆

T
A
)

by

δ ê ∼=VADATA;9V T
A
(
êT ⊗ I9

)
δATA

de f
= GÊδATA

(26)

with SVD(A)=UAΣAV T
A and ê being the vectorization of Ê,

whereas

δATA
∼=
(

AT ⊗ I9 + row
[
I9⊗ (Ai,−)

T
]N

i=1

)
δAT

de f
= GATA δAT .

(27)

The result for the non-normalized features can then be
recovered by E = S′T

(
Ê +∆Ê

)
S which leads to ∆E =S′T ∆ÊS

and, finally, to

δ e =

(
ST ⊗

(
1 0 0
0 1 0
1 1 1

))
◦

((
1 0 0
1 1 0
1 1 1

)
⊗S′T

)
δ ê

de f
= GE δ ê .

(28)
Knowing the propagation of the error from the input ma-

trix A to the Essential matrix, we can estimate the covariance
matrix of e by

ΓE = HE ΓAT HT
E with HE = GEGÊGATA . (29)

To consider the normalization effect of the 8-point derivatives
we need to adapt the measurement error for each feature,

such that Γr̂ =
(

diag
(

1
f Sδ r̃

))2
and Γr̂′=

(
diag

(
1
f S′δ r̃′

))2
.

This results in Γ
ÂT =Diag

(
P̂1, P̂2, . . . , P̂N

)
, with f being the

focal length used to scale the error and P̂i =
(
r̂r̂T )⊗Γr̂′ +

Γr̂⊗
(
r̂′r̂′T

)
. In Eq. 23 the Frobenius norm of the Essential

matrix is set to 2. This step is approximated by adjusting the
Frobenius norm of the covariance matrix to the Frobenius
norm of Ē which yields

ΓĒ ≈ HEΓ
Â

T HT
E

2

∑
3
i=1 σ2

Â;i

(30)

with SVD
(
Â
)
=U Â diag

(
σÂ;1,σÂ;2,σÂ;3

)
V T

Â
and Â denoting

the matrix resulting from the normalized features, r̂ and



r̂′. Please note that this is only an approximation and does
actually not correspond to Eq. 23, because it is not assured
that the singular values of Ē are diag(1,1,0) but only that
the Frobenius norm is 2.

D. Error Propagation of the Essential Matrix Decomposition

According to Eq. 24, the rotation matrix is estimated by
R = UEZWV T

E . Consequently the error of R propagates as
follows

R+∆R = (UE +∆UE )ZW (VE +∆V E )
T ⇒

∆R ∼= ∆UE ZWV T
E +UEZW∆

T
VE

.

Hence, we need to propagate the error for ∆UE and ∆V E .
The vectors of UE and VE are eigenvectors of ĒĒT and ĒTĒ
respectively. Thus, we first need to compute the transition
matrix GĒĒT and GĒTĒ by

δ ĒĒT ∼=
(

row [I3⊗ Ē−,i]
3
i=1 + Ē⊗ I3

)
δ e

de f
= GĒĒT δ e and

(31)

δ ĒTĒ
∼=
(

col
[
I3⊗ (Ē−,i)

T
]3

i=1
+ I3⊗ ĒT

)
δ e

de f
= GĒTĒ δ e .

(32)

Now, the error in UE and VE can be computed using again
the theorem introduced in Section II

δU Ē
∼= col

[
UE DĒĒT;i U

T
E

(
(UE;−,i)

T ⊗ I3

)]3

i=1
δĒĒT

de f
= GUĒ

δ ĒĒT and (33)

δVĒ
∼= col

[
VE DĒTĒ;i V

T
E

(
(V E;−,i)

T ⊗ I3

)]3

i=1
δ ĒTĒ

de f
= GVĒ

δ ĒTĒ , where (34)

DĒĒT;1=DĒĒT;2=DĒTĒ;1=DĒTĒ;2=diag(0,0,1) as proposed
by [5], to avoid a division by zero.

Finally, the perturbation in the rotation matrix can be
computed by

δ R =
(
GRU GRV

)(δU Ē
δV Ē

)
de f
= GR

(
δU Ē
δV Ē

)
with

GRU = col
[(

Z1,2V E;i,2 Z2,1V E;i,1

det
(
UEV T

E
)

V E;i,3⊗ I3
)]3

i=1 and

GRV =
(
I3⊗Z2,1UE;i,2 I3⊗Z1,2UE;i,1

I3⊗det
(
UEV T

E
)

UE;i,3
)
.

(35)

This yields the following covariance for the rotation matrix

ΓR =
(
GRU GU Ē

GRV GV Ē

)(GĒĒT

GĒTĒ

)
ΓĒ(

GT
ĒĒT GT

ĒTĒ

)(GT
U Ē

GT
RU

GT
V Ē

GT
RV

)
.

(36)

Geometric insights of the rotation error can be gained
computing the error rotation axis d ′R. It can be derived
as the eigenvector of ∆

′
R corresponding to the smallest

eigenvalue of Q=∆
′
R∆
′T
R =∆R∆

T
R weighted by the mean of

the square roots of the two largest singular values, σm =
0.5
(√

σQ;1 +
√

σQ;2
)
, resulting in d ′R =σm UQ;−,3, whereas

SVD(Q) =UQ diag(σQ;1,σQ;2,σQ;3)V T
Q and Q = ΓR;1:3,1:3 +

ΓR;4:6,4:6 +ΓR;7:9,7:9.
The translation vector equals up to sign to the eigenvector

corresponding to the smallest eigenvalue of ĒĒT . Analogue
to Eq. 26, the first order perturbation propagation of t̃ can
then be computed using Eq. 31 by

δ t̃
∼= UEDĒĒT;3UT

E

(
t̃T ⊗ I3

)
δ ĒĒT

de f
= Gt̃ δ ĒĒT (37)

with SVD(Ē) = UEΣĒV T
E . This yields the following covari-

ance matrix, which is equal to the one for t because the
transition matrix Gt̃ is applied twice:

Γt = Γt̃ = Gt̃ GĒĒT ΓĒ GT
ĒĒT GT

t̃ . (38)

V. EXPERIMENTS

In the following experiments we evaluate the accuracy
of the presented first-order error propagation and compare
the performance of the Z∞ and the 8-point algorithm. We
implemented three 8-point variants, which we named accord-
ing to their inventors. The original 8-point (Longuet-Higgins
variant) consists of the unmodified image rays and, thus,
uses the non-normalized A-matrix. The Hartley variant uses
isotropic scaling for both sets of image rays, S and S′, as
denoted in Eq. 22. The Mühlich variant provides anisotropic
scaling for the first image rays and isotropic scaling for the
rays of the second image as introduced in Eq. 21 and 22. We
are not showing any results for the fixed-column perturbation
estimation also introduced by Mühlich, which only leads to
notable performance improvements in the case of error free
features in the reference image.

Unfortunately, in practice we can only use the error-
corrupted Ã for the error propagation analysis, because it
is the value we measure. However, from a slightly different
point of view, we can regard A as noise-corrupted matrix by
adding −∆A to the matrix Ã. Thus, the error is the deviation
of the true solution from the noise-corrupted one. This
observation justifies the use of Ã to estimate the errors [14].

To compare the real and the estimated error as a scalar
we compute the errors of the estimates fE , fR, ft and the
propagated errors f̂E , f̂R, f̂t by normalizing the Frobenius
norm of the error by the Frobenius norm of the respective
matrix

fE =
1√
2
‖ES−Ē‖F , fR=

1√
3
‖RS−R‖F , ft =‖tS−t‖F (39)

with the subscript S denoting the simulated values. Further-
more, an equivalent to the normalized Frobenius norm can
be computed from the covariance matrices by

f̂E =

√
tr(ΓE)

2
, f̂R =

√
tr(ΓR)

3
and f̂t =

√
tr(Γt) . (40)

Similar results were achieved by comparing the simulated
and estimated absolute error angles ‖d ′R‖.

In order to provide an exact ground truth which allows
to evaluate the first-order approximation accuracy for the
algorithms, we simulated landmarks and camera motions.



The simulated camera had a resolution of 600× 600 pixel,
the rotation was 5◦ about a random axis, the translational
distance along an arbitrary direction was 5 m and the land-
marks were randomly distributed in the field of view within a
distance of up to 50 m. We chose 100 random combinations
of aperture angle, number of features and noise-level of
the features in the image, which is related to the accuracy
of the feature detection method. The number of feature
correspondences was in the range of 10 to 500, the noise was
from 0.01 to 2 pixels and the aperture angle was between
10◦ and 170◦. Assuming tracking-by-matching techniques,
like in PTAM [6], we simulated noise for the features in
both images. For each of these combinations, we ran 10
cycles with randomly chosen landmark locations, yielding
1000 runs in total.
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Fig. 1. These plots depict the Z∞ estimation and propagation error for
both motion components. Clippings containing small errors are enlarged to
show also the correlations at lower error scales.

Fig. 1 and 2 show the median error for each of the 100
parameter combinations and for both algorithms. Both, the
error of the motion estimation and the estimated error by
the presented uncertainty propagation are shown. The plots
prove that the estimated errors correlate, even at smaller
scales. However, in some runs, the propagation differs clearly
from the effective error, which can be explained by the
first-order approximation in the propagation. Furthermore,
the uncertainty in the feature locations is only known by
the noise variance, but the effective error of each individual
landmark projection in the simulation is picked randomly
from the corresponding normal distribution.
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Fig. 2. These plots show the estimation error and the propagated error for
the rotation and the translation estimation of the 8-point algorithm variants.
Please note the different scales of the y-axes in the Z∞ and 8-point diagrams.
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Fig. 3. The boxplots in these two figures describe the distribution of the
differences between the estimation and the propagation error, computed by
Eq. 41 for all 1000 simulation runs.



The correlation between the estimation and the propaga-
tion error is summarized in the boxplots of Fig. 3. These
illustrate the distribution of the differences in all 1000
runs. The differences, dx, were computed according to the
following equation:

dx =


f̂x− fx

fx
if fx > f̂x

f̂x− fx
f̂x

else
|x ∈ {R, t} . (41)

The Hartley and the Mühlich variation overestimates the
error more than the other methods, which can be explained
by the additional approximation in Eq. 30. However, an
overestimation of the error is less problematic than its
underestimation in terms of the fusion with other sensor
information. The boxplots also show that the error prop-
agation can fail sometimes. However, it is still favorable
to use an uncertainty measure which correlates with the
effective error rather than to use the same uncertainty value
for all estimates – especially considering that the errors
of the visual motion estimation can vary by several orders
of magnitude depending on the camera parameters and the
landmark locations, as Fig. 1 and 2 reveal.
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Fig. 4. This diagrams show the correlation of the 8-point error propagation
for a varying aperture angle, where 10 features and pixel accurate feature
tracking were simulated.

We also evaluated the accuracy of the error propagation
separately for each of the parameters: aperture angle, number
of features and tracking accuracy. The results prove a proper
correlation of the error propagation for all parameters. For the
sake of space, we show only two plots based on the 8-point
algorithm (similar results were achieved with the Z∞ algo-
rithm), which illustrate some interesting insights. In Fig. 4
the variation of the aperture angle for all 8-point variations is
plotted. We took the median value of 100 runs with random
landmark locations for each aperture angle, where all the
other parameters were considered constant. Interestingly, the
plot reveals that the conditioning of the motion estimation
does not increase continuously with the aperture angle, but

it has a flat optimum around 100◦. This can be explained
by the fact, that the uncertainty of a feature based pose
estimation is composed by the number of features, the
tracking accuracy and the location of the landmarks in the
image, which affects the conditioning of the computation.
In the aforementioned experiment we varied the aperture
angle, while keeping the number of pixels constant. Hence,
a shorter focal length does not only change the tracking
accuracy, due to a lower angular resolution, but allows also
for an improved conditioning of the pose computation. For
really small aperture angles, the bad conditioning outweighs
the high accuracy in the feature locations. If the field of
view increases, the feature accuracy gets reduced, but the
conditioning improves. The latter effect has more impact
and, hence, the error of the estimate decreases. However,
as soon as the landmark rays intersect perpendicularly, the
conditioning of the pose calculation saturates and at some
point only the reduction of the angular resolution has some
effect. This results in the aforementioned flat optimum for
the pose estimation accuracy. At this point we want to
emphasize, that while the accuracy has a sweet spot, the
robustness of the image based pose computation, in general,
continuously improves by increasing the field of view.
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Fig. 5. This plot shows the correlation of the pose estimation accuracy with
the tracking accuracy and the number of features for the Mühlich-variant
of the 8-point algorithm. We simulated noise in both images and 250 pixels
focal length (∼ 100◦ aperture angle).

The tracking accuracy linearly correlates with the esti-



mation uncertainty, while the number of features has an
inverse relationship1. Fig. 5 visualizes these correlations. It
becomes apparent that for a small number of features (<100)
any change of this number yields a significant impact on
the performance of the motion computation. Nevertheless,
if really high accuracies want to be achieved, it is not
sufficient to solely increase the number of features, but a
highly accurate tracking has to be used.

If we compare the errors of the different methods, as done
by the error boxplots in Fig. 6, we can clearly see that the
modified 8-point algorithms outperform the original one, as
it is well known in literature. The original 8-point algorithm
seems to be more outlier prone, as Fig. 2(a) and 2(b) reveal.
We can further see that the separation of the rotation and
translation estimation, as done in the Z∞ algorithm, improves
the motion estimation significantly. Hence, if it is possible
to split these two motion components, e.g. by other sensor
information or due to some assumptions on the environment,
they should be estimated separately.
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Fig. 6. These boxplots show the estimation error of the rotation matrix
and the translation vector for the 8-point variants and the Z∞ algorithm.

VI. CONCLUSION

We have derived a first-order error propagation for the
Z∞ algorithm and extended the one for the 8-point algorithm
to allow for feature normalization as well as the estimation
of the rotation matrix and the error rotation vector. An
uncertainty measure is crucial if, e.g., the pose estimation
needs to be fused with other information, especially because
the uncertainty can vary by several orders of magnitude, as
the experiments show. We have evaluated the correlation of
the error propagation with the effective estimation error on

1The standard deviation of an estimate, σe, which is based on N same
uncorrelated measurements with standard deviation σ , can be computed by
σe =

σ√
N

.

synthetic data, where the results prove a clear correlation.
The resulting equations can be used as reference for any
application which requires efficient visual pose estimation
and its uncertainty evaluation.

We also discussed the influence of aperture angle, tracking
accuracy and number of features on the pose estimation
accuracy. A larger number of features can quickly improve
the pose estimation accuracy up to a certain point, after
which it is more efficient to increase the tracking accuracy
for further improvements. We have also shown that there is
a flat accuracy optimum for the choice of the aperture angle,
which is reached as soon as the landmark rays are able to
perpendicularly intersect.

Furthermore, the experiments have shown that a separation
of the rotation and the translation estimation, as it is done by
the Z∞ algorithm, is strongly recommended if applicable. In
case of the 8-point algorithm the rotation and the translation
are estimated simultaneously. A lateral translation can be
easily misinterpreted as rotation using a camera with a
narrow field of view. An open question in literature is still
how the rotation and the translation estimation correlates and
how these correlations can be taken into account for the
uncertainty propagation. Such studies could also give useful
insights how to prevent aforementioned misinterpretations.
Another interesting work would be the impact analysis of
higher order error terms on the uncertainty propagation.
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