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Abstract. Being able to recognize human activities is essential for several
applications, including social robotics. The recently developed commodity
depth sensors open up new possibilities of dealingwith this problem. Exist-
ing techniques extract hand-tuned features, such as HOG3D or STIP, from
video data. They are not adapting easily to new modalities. In addition, as
the depth video data is low quality due to the noise, we face a problem: does
the depth video data provide extra information for activity recognition? To
address this issue, we propose to use an unsupervised learning approach
generally adapted to RGB and depth video data. we further employ the
multi kernel learning (MKL) classifier to take into account the combina-
tions of different modalities. We show that the low-quality depth video is
discriminative for activity recognition. We also demonstrate that our ap-
proach achieves superior performance to the state-of-the-art approaches
on two challenging RGB-D activity recognition datasets.

Keywords: activity recognition, unsupervised learning, depth video.

1 Introduction

Human action recognition has been widely studied in computer vision. Its ap-
plications include video surveillance, content-based video search, robotics and
a variety of systems that involve interactions between persons and computers.
Traditional research mainly concentrates on learning and recognizing human ac-
tivities from video data captured by a single visible light camera. The video
data is a sequence of 2D frames with RGB or gray channels. There is extensive
literature on action recognition for such video. Most methods for activity recog-
nition with RGB video use hand-designed features like STIP [1], or use the local
features like HOF [2] or HOG [3] to represent the spatio-temporal pattern. In
these methods, human activities can be interpreted by a set of interesting points.
However, there is no universally best hand-designed features for different RGB
video [4]. In addition, it is difficult and time-consuming to extend these features
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Fig. 1. An overview of our model: We randomly sample the subvolumes from RGB
and depth video data. The small subvolumes are given as input to the Bottom ISA
network. The learned bottom ISA model are copied to the Top ISA network. The
stacked ISA learn the final features for each modality. The multi-class multi kernel
learning is employed to learn a combination of different modalities and classify the
activities (best viewed in color).

to other sensor modalities, such as laser scans or depth cameras. The depth cam-
era can record RGB and depth video data has now become affordable and could
be combined with standard vision system in social robot. The depth modality
provides useful extra information to the complex problem of activity recognition
since depth information is invariant to lighting and color variations.However, be-
cause there is no texture in the depth data,the extending hand-designed features
from RGB data to depth modality are not discriminative enough for classifica-
tions. In addition, the depth video data is full of noises. There are large shadows
or holes in the depth data. Hence the discrimination of the low quality depth
video is considered doubtful.

Recently, there is a growing interest in unsupervised feature learning methods
such as Deep Belief Nets [5], Sparse Coding [6, 7], Stacked Autoencoders [8], Inde-
pendent Component Analysis (ICA) and Independent Subspace Analysis (ISA)
[9]. These biologically-inspired learning algorithms show promise in the domain
of the computer vision, such as object recognition with RGB-D images and ac-
tion recognition with RGB video data [10–12]. Although many deep learning
methods exist for learning features from RGB image or video data, none has yet
been investigated for depth video data. In this paper, we provide an unsupervised
learning method inspired by [9, 11]. We learn spatio-temporal features directly
from RGB and depth video data independently. Fig. 1 outlines our approach.
Our model starts with raw RGB and depth video data and extracts unlabeled
space-time subvolumes from each modality. The subvolumes are then given to
the stacked ISA network to learn hierarchical representations for each modality.
We employ the multi kernel learning to combine the learned representations of
different modalities. Our experiments show that although the low quality depth
video data is full of noises, we could learn discriminative spatio-temporal features
from depth data for activity recognition. We also achieve superior performance
on the task of human activity recognition using RGB-D video data. Compared to
other recent activity recognition methods for RGB-D video data [13–17], our ap-
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proach is generalizable, does not need additional input channels such as skeleton
joints and surface normals.

In this paper, we first briefly describe the ISA algorithm. Next we give details
of how deep learning techniques such as convolution and stacking can be used
to obtain hierarchical representations of the different modalities. Then, we learn
the combinations of different modalities by multi kernel learning. The proposed
features and models are evaluated on two RGB-D benchmark datasets: Pioneer-
Activity dataset [13] and UTKinectAction3D dataset [14]. In our experiments,
we show quantitative comparisons of different methods and different modalities.

2 Independent Subspace Analysis

In this section we describe the background of ISA algorithm [9]. ISA is an un-
supervised learning algorithm that learns features from unlabeled subvolumes.
First, random subvolumes are extracted into two sets, one for each modal-
ity(RGB and depth video data). Each set of subvolumes is then normalized
and whitened. The pre-processed subvolumes are feed to ISA networks as in-
put units. An ISA network [9] is described as a two-layer neural network, with
square and square-root nonlinearities in the first and second layers respectively
(see Fig. 1).

We start with any input unit xt ∈ IRn for each random sampled subvolumes.
We split each subvolume into a sequence of image patches and flatten them into
a vector xt with the dimension n. The activation of each second layer unit is

pi(x
t;W,V )=

√∑m
k=1 Vik(

∑n
j=1 Wkjxt

j)
2 (1)

ISA learns parameters W through finding sparse feature representations in
the second layer by solving

min
W

∑T
t=1

∑m
i=1 pi(x

t;W,V )

s.t.WWT = I
(2)

Here, W ∈ IRk×n is the weights connecting the input units to the first layer
units. V ∈ IRm×k is the weights connecting the first layer units to the second
layer units; n, k,m are the input dimension, number of the first layer units and
second layer units respectively. The orthonormal constraint is to ensure the fea-
tures are diverse.

The model so far has been unsupervised. The learned ISA filters for each
modality could be used for activity recognitions. The first layer of our ISA model
learns spatio-temporal features that detect a moving edge in time as shown in
Fig. 2. It shows that the learned feature (each row) is able to group similar
features in a group thereby achieving spatial invariance. When the method is
applied to depth video data, the resulting filters have shaper edges which arise
due to the strong discontinuities at object boundaries. The experiments in section
5.3 show that this property may contribute to a better recognition within depth
video data compared to RGB video data. We also study the sensitivity of the
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Fig. 2. Visualization of 20 ISA filters learned from PioneerActivity dataset. 10 filters
(left) are from RGB video data and 10 filters (right) are from depth video data. These
filters capture a moving edge in time. The filters from the depth video have sharper
edges compared to filters trained on the RGB video data.

learned features to motion and orientation. In a control case, we limit this ability
by using a temporal size of 4 frames instead of 10 frames and the recognition
rate drops by 7.33% for the PioneerActivity dataset. If the temporal size is set
to 2, the recognition rate drops by 2.56% again.

3 Stacked Convolutional ISA

3.1 Convolution and Stacking

In order to scale up to ISA algorithm to large input, we use a convolutional
neural network architecture similar to [11, 18] for each modality. The network
progressively makes use of PCA and ISA as sub-units for unsupervised learning
as shown in Fig. 1.

We train the first layer of the networks with standard ISA algorithm on small
input subvolumes for each modality. We randomly extract larger subvolumes
from each modality. We then copy the learned bottom ISA filters and convolve
with the larger subvolumes of the input video data (see Fig. 3). The responses
of the convolution step are given as the input unit to the next ISA layer. As is
common in neural network, we stack another ISA layer with PCA on top of the
bottom ISA. We use PCA to whiten the data and reduce the dimensions of the
input unit. The model is trained greedily layerwise in the same manner as other
algorithms described in [5, 11, 19].
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Fig. 3. Convolutional step of stacked ISA network. For clarity, the convolutional step
is shown here non-overlapping, but in the experiments, convolution is done with over-
lapping.

3.2 Vector Quantization

As each activity is represented by a RGB video and an depth video, we per-
form the vector quantization by clustering the spatio-temporal features for each
modality. We follow the state-of-the-art bag-of-words(Bow) paradigm. We con-
struct the BoW features based on the dense spatio-temporal features for each
modality.

4 Learning Multi-modality Combination

For each modality represented by the features of stacked convolutional ISA
model, an SVM model on it defines a joint feature map Φ(x, y) on data X and
labels Y as a linear output function fk(x, y) = 〈ωk, Φ(x, y)〉+ bk, parameterized
with the hyperplane normal ωk and bias bk. The predicted class y for x is chosen
to maximize the output fk(x, y).

Multi kernel learning considers a convex combination of n kernels,K(xi, xj) =∑n
k=1 αkKk(xi, xj) where each kernel corresponds to a modality. We consider

the following output function

fcom(x, y)=
n∑

k=1

[αk〈ωk, Φ(x, y)〉+ bk] (3)

MKL learns the coefficient α, the weight ω and the bias b. For a multi class
problem, different α, ω and b are learned for each class. In our case, we choose
one-against-rest to decompose a multi-class problem. As MKL can not give a
posterior class probability P (y = 1|x), we propose approximating the posterior
by a sigmoid function

Pm(y = 1|x) ≈ PAm,Bm(fcom) ≡ 1

1 + exp(Amfcom +Bm)
(4)
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Fig. 4. Some example frames of two datasets. Samples in the top row are from the Pi-
oneerActivity dataset and samples in the bottom row are from the UTKinectAction3D
dataset.

We follow Platt’ method to learn Am and Bm [20]. For each MKL-SVM model
m, we learn a sigmoid function PAm,Bm(fcom). The maximum probability l =
max
m

Pm(y = 1|x) corresponds to the predicted label of x.

5 Experimental Results

We choose PioneerActivity dataset [13] and UTKinectAction3D dataset [14] to
evaluate the proposed human activity recognition approach. Both datasets in-
clude the RGB video data and depth video data. The empirical results show the
low-quality depth data provides more useful information for the task of human
activity recognition. The results also show the proposed framework outperforms
the state of art methods. We first give a brief overview of the datasets, followed
by the detail of our stacked ISA model, and the experimental results.

5.1 Datasets and Experimental Setup

The PioneerActivity dataset is an human activity dataset of RGB and depth
video data captured by a depth camera [13]. The dataset presents several chal-
lenges due to illumination change, dynamic background and variations in human
motions. It contains six types of human activities: lifting (LF), removing (RM),
pushing (PS), waving (WV), walking (WK), signaling (SG). Each activity has 33
samples for each modality. We follow the experimental setup of [13]. We divide
the database into three groups. One group as the training set, and the remaining
groups are used as the testing sets. The experiment results are reported as the
average over 20 runs.

The UTKinectAction3D dataset contains 10 types of human activities in in-
door settings. The 10 actions include: sit down, stand up, walk, pick up, carry,
throw, push, pull, wave and clap hands. Each action was collected from 10 differ-
ent persons for 2 times. We evaluate our approach on this dataset using leaving
one out cross validation. We run the experiment 20 times. Some samples of
activities from the two datasets are shown in Fig. 4.
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5.2 Model Details

We focus on the problem of human activity recognition from RGB and depth
video data. We train stacked ISA model for each modality. For the PioneerAc-
tivity dataset, the input units to the bottom layer are of size 16×16×10, 16, 16,
10 means spatial and temporal size of the subvolumes. The larger subvolumns
to the top layer are of size 20× 20× 14. The model parameters for the RGB and
depth video data are the same. For the UTKinectAction3D dataset, the subvol-
umes to the bottom layer of stacked ISA network are of size 16 × 16 × 6. The
larger subvolumes to the top layer are of the size 20× 20 × 8. Finally, we per-
forms vector quantization by K-means on the learned spatio-temporal features
and classifies by multi-class MKL classifiers by χ2 kernel.

(a) OursRGB-D (b) OursRGB (c) OursDepth

Fig. 5. The confusion matrices for the proposed method on PioneerActivity dataset
with different modalities. Rows represent the actual classes, and columns represent
predicted classes. OursRGB-D, OursRGB, OursD are our proposed method using both
of RGB and depth data, using RGB data only, and using depth data only respectively.
(best viewed in color).

Fig. 6. The comparison between the average accuracy of the proposed method and
4DLSP [13] on the PioneerActivity dataset with different modalities
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Fig. 7. The comparision between the average accuracy of the proposed method and
HOJ3d [14] on the UTKinectAction dataset with different modalities

Table 1. Summary of the experimental results for PioneerActivity dataset and
UTKinectAction3D dataset

Ave. acc on two Datasets OursRGB OursD OursRGB-D 4DLSP [13] HOJ3d [14]

PioneerActivity dataset 96.80 97.17 97.23 91.5 -
UTKinectAction3D dataset 92.55 93.6 93.8 - 90.95

5.3 Experimental Results

We shows the accuracies of our method on the PioneerActivity dataset in Fig.5
and Fig 6. The confusion matrices of our approach using different modalities are
given in Fig. 5. The confusion matrix shows that the largest confusion lies be-
tween “removing”and “lifting”. This is consistent with the bag-of-word paradigm
as it assumes each word is independent of others. In Table 1, we compare our
test results with the state of the art method [13]. Our method significantly out-
performs 4DLSP [13].

We further compare our approach with the best published result on UTKinec-
tAction3D dataset [14] in Fig. 7 and Table 1. The average accuracy of our method
using RGB-D video data is 93.8%. Notice that the work of [14] only uses the
depth video data for activity recognition. Our approach with the depth video
data achieves 93.6% accuracy which is still better than HOJ3D [14].

5.4 Discussion

In the above experiments, we compared our approach using the combination of
the RGB video data and depth video data. This raises some questions: “How
much does the combination help?”and “Does the depth video data provide extra
information for activity recognition? ”. In Table 1, the accuracies of the methods
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using both modalities are just little better than the approach using only one
modality. This result shows that the learned features from different modalities
exhibit some similar patterns. One possible explanation would be the features
learned from RGB video data is trained on gray scale versions of the RGB video
data.

In general, the accuracies of the approach using depth video data are better
than the accuracies of the method using RGB video data. Although the depth
data is full of noise, such as shadows and holes, the result indicates that the
depth video data provides more useful information for the task of human activ-
ity recognition than the RGB video data on our datasets. A possible explanation
is that RBG video data is sensitive to the illumination variations and the dy-
namics background while the depth video data is not. As illustrated in Fig.
4, the computer monitors lead to a dynamic background for the RGB images,
which distract the learned features from capturing useful human motions. But
the depth sensor is not sensitive to the dynamic background. Another explana-
tion would be the learned features by the depth video data capture more edge
informations. Because the edge detectors like Gabor filters show great perfor-
mance in a lot of computer vision domains [21]. This is consistent with Fig.2
that the resulting filters learned by depth data have shaper edges.

6 Conclusion

We introduced a method that learns spatio-temporal features from RGB-D video
data. The stacked ISA network learns the hierarchical representations in an
unsupervised way. The multi-class MKL learns the combinations of different
modalities. This architecture could leverage the plethora of the unlabeled data
and adapt easily to new modalities. The experiment results were carried out with
PioneerActivity and UTKinectAction datasets. We observed that the low-quality
depth video data provides more useful information for the task of human activity
recognition on our datasets. The learned features from RGB and depth video
data exhibit some similar patterns. Our method also outperforms the state-of-
the-art methods for activity recognition.
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