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Abstract—In this work, we focus on the improvement of 

human-machine interaction inside the automobile by reducing 

the complexity of involved context management. A contribution 

in the form of a context processing engine named probabilistic 

application layer (PAL) is provided, which addresses following 

issues: Guarantees for time bounds in performing safety-critical 

exact inference, standardized application interface towards 

application space, dynamic changes on the structure of the belief 

networks by adding or removing nodes while retaining time 

guarantees. By addressing these issues, we take the context 

processing away from the application developer and ease the 

development of the situation-aware human-machine interaction. 

Additionally, we present a prototypical implementation of PAL, 

implemented natively on an embedded platform and connected to 
the human-machine interface of our project vehicle prototype. 

Keywords—situation awareness; knowledge modeling; human-

machine interaction; human-machine interface; driver assistance 

I.  INTRODUCTION 

The human-machine interaction in a current road vehicle 
can be divided into three categories: active control of the 
vehicle’s dynamics, control of various safety-relevant vehicle 
functions (e.g. direction indicators) and, finally, control over 
the non-safety-relevant infotainment functions [5]. During the 
interaction with the vehicle throughout all three categories, the 
driver might inadvertently perform different kinds of errors 
affecting the vehicle control. Such human errors are party 
responsible for 95% of all accidents. Human behavior is the 
sole responsible cause in 75% of all the cases, showing a clear 
mismatch between driver skills and situation and task 
complexity [4]. 

The work by [11] and [15] suggests further division of 
driver errors into cognitive, judgment and operation errors, 
which are mapped onto the corresponding human processes of 
observation, assessment and action. So-called assisting 
assessment applications are called upon, which analyze all the 
in-vehicle information sources, detect hazardous situations and 
inform the driver. Such applications should be uniformly 
present throughout the three human-machine interaction 
categories, in order to provide a consistent user experience. 

Work by Müller in [3] presents multiple possibilities of 
restricting the control over infotainment functions in order to 
avoid lowered driver performance in vehicle control and the 
associated safety risks. Rule-based priorization of feedback 

data is found to be relevant for avoiding driver distraction, but 
it can only take place after the current driving situation has 
been correctly assessed. Thus, situation awareness precedes the 
rule-based approach of preparing the driver feedback. 

Situation awareness is defined as the perception of 
environmental elements with respect to time and/or space, the 
comprehension of their meaning, and the projection of their 
status after some variable has changed. It can be recognized as 
an important enabler of decision making in the field of artificial 
intelligence. In the case of the man-machine interaction, and 
drawing a comparison to human-human interaction, situation 
awareness additionally has the potential to improve the 
interaction by following means: 

 The amount of data which has to be exchanged between 
the human and the machine to perform a specific task or 
come to a common understanding is reduced 

 The feedback which is provided by the machine can be 
affected by user workload and information relevancy 

 Users can be modeled based on the previous and current 
interactions and an assessment of the mental or physical 
state or overall proficiency for a given task can be 
performed 

In this work, we present an enabling technology for 
development of assisting assessment applications in the area of 
human-machine interaction and driver assistance, as defined by 
[11], and demonstrate the first implementation thereof. 

This work is organized as follows. Section II gives an 
overview of the project Diesel Reloaded, which set the 
framework for the presented research. Section III focuses on 
current methods for knowledge modeling and related work in 
the area of driver assistance. Section IV presents the 
approaches for inference on the chosen knowledge model. 
Section V presents our contribution, the Probabilistic 
Application Layer (PAL). Section VI explains the PAL 
prototype design, focusing on the current software 
implementation. Finally, we conclude and provide an overview 
of future work in the section VII. 

II. PROJECT DIESEL RELOADED 

In the scope of the interdisciplinary project “Diesel 
Reloaded”, research is performed in the fields of system 
architecture, energy management, human-machine interfaces 
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and driver assistance. The project is hosted at the International 
Graduate School for Science and Engineering (IGSSE) of the 
Technische Universität München. The project leader is Prof. 
Dr.-Ing. Gernot Spiegelberg, a Rudolf-Diesel-Industry Senior 
Fellow at the Institute for Advanced Study (IAS) of the 
Technische Universität München and the leader of the E-
mobility initiative in Siemens Corporate Technology. During 
the first two project years, a serial plug-in diesel-electric truck 
has been constructed, the Innotruck. It has been successfully 
test-driven with a fully functional drive-by-wire system. The 
human-machine interface consists of a touchscreen-based 
central console and two redundant sidesticks integrated into the 
driver’s seat. 

 

Fig. 1.  Innotruck on the left, a photo of vehicle’s cockpit on the right. 

A driving simulator developed by the company VIRES, the 
Virtual Test Drive (VTD), has been used for development 
purposes, testing and data collection. The simulator has been 
equipped with a sidestick and connected to the PAL over a 
standard VTD software interface. 

III. KNOWLEDGE MODELING 

In order to implement a reasoning method which achieves 
situation awareness, one has to represent all the known data 
about the user, the vehicle and the outside world. When 
considering related work regarding descriptions of dynamic 
systems with varying degrees of knowledge uncertainty, with 
the final purpose of inferring a small and changeable subset of 
questions regarding to the current situation, several probability 
frameworks come into consideration. 

The Bayesian networks (BN) represent joint probabilities 
of a set of random variables and their conditional independence 
relation [8]. Dynamic BNs (DBN) work with multiple time 
slices, which are interconnected into a larger single network. 
The connections can be understood as Hidden Markov Models. 
DBNs therefore present a generalization of a system for 
modeling dynamic events [13].  

Bayesian and Markov networks (MN) are a very popular 
method of choice for uncertainty management in artificial 
intelligence. A BN, represented by an acyclic directed graph, 
can be converted into the MN through moralization and 
triangulation. A MN is represented by an acyclic hypergraph, 
which is a chordal undirected graph in which each maximal 
clique corresponds to a hyperedge [12]. DBNs have already 
been used for intelligent user-assistance systems, to model 
multimodal sensory observations, changing state of the user 
and various constraints regarding available resources. The 
DBN manages sensor measurement ambiguity, evolvement of 
user’s affective state over time and decisions about the user’s 
needs.  

Situation-aware driver assistance systems have already 
been implemented with DBNs in the, for this work very 
relevant, publication [11]. The importance of fusion of human-
machine interfaces, machine-machine interfaces and driver 
assistance systems has been thoroughly analyzed and a model 
for generating probability of hazards has been presented. Main 
components of the required architecture are a knowledge 
broker, a utility-based knowledge exchange and a reasoner. 
The authors recognize that the interaction with the driver can 
benefit from situational awareness through an intelligent 
information feedback management. The main contribution is 
the identification of major architectural components of a 
situation-aware driver assistance system, with a focus on 
sensor-based knowledge derivation and vehicle-to-vehicle and 
vehicle-to-infrastructure connectivity. In comparison to this 
work, we place focus on the management of the knowledge 
stored in the probability network and efficient and intuitive 
querying of this knowledge by the application space. 

Identified challenges in machine learning for user 
modeling, according to [6], are the need for large data sets, the 
need for labeled data, concept drift and computational 
complexity. The need for large data sets amplifies the issue of 
computational complexity of inference, and is addressed by 
query optimization in PAL. The issue of data labeling is 
delegated to the applications on the one side and the data 
sources inside the vehicle on the other and is not addressed by 
this work. Same can be said for the concept drift, since this 
issue affects knowledge models which feature non-mutable 
user attributes. Adding and removing of new knowledge 
models i.e. probability networks is a task handled by PAL, but 
the network training and machine learning is out of its scope. 

Proactive driver assistance with Dynamic Bayesian 
Networks has been analyzed by [14], pointing out the problems 
with erroneous assistance or the one which annoys the user by 
false positives. Setting up correct thresholds for proactive 
assistance would be a task for the higher-level applications. 

BN is used to model and predict driver’s behavior by 
analyzing the entire driving context in the work of [1]. A 
suggestion is given on the high-level model containing vehicle, 
environment and driver information, with the knowledge on the 
system history. 

The work by Cou [2] has shown how BN can perform 
multi-sensor data fusion and emphasized the ability to 
explicitly model key problem features, like sensors’ 
performance. 

The work done in [10] describes, in another very relevant 
work on standard platform for sensor fusion, how conditional 
probability density functions inside a BN can be a standardized 
output format for all sensors and recognition algorithms. The 
addition of new sensors and recognition algorithms is done by 
manipulating a limited set of nodes, not affecting the entire 
system. Calculation performance has been identified as the 
main disadvantage, partially alleviated by modular network 
design. As the result of this overview of state-of-the-art, we 
have chosen the Dynamic Bayesian Networks as the 
underlying knowledge representation for PAL. 
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IV. INFERENCE METHOD 

Inference on the knowledge stored inside the Bayesian 
probability network can be performed by exact methods, such 
as the Junction Tree algorithm, or approximate methods such 
as Markov Chain Monte Carlo (MCMC). An overview of 
MCMC inference is given in [9]. The chosen method for 
context processing uses exact inference and avoids heuristics 
and approximation taking into account the safety-critical nature 
of tasks in a road vehicle. Knowledge uncertainty is handled 
with a mathematically consistent toolset, which provides 
repeatability of inference provided that the knowledge stays the 
same. Since exact inference in BNs is NP-hard, we construct 
the so-called Junction Tree (JT) structure around the BN. The 
construction of the JT is NP hard, but it is theoretically done 
only in two cases – when the system is initializing for the first 
time and when a node gets added or removed. A Junction Tree 
T is a tree on G constrained by three properties: 

A. Family Property 

For each node V in graph G there is a cluster C of T which 
contains the family of V. 

B. Tree Property 

There exists only one path between any pair of clusters in 
T. 

C. Junction Tree Property 

For any two clusters A and B of T any for every cluster C 
on the path in between A and B, the following property holds: 

  A ∩ B ⊆ C    (1) 

A Junction Tree can be constructed from the Bayesian 
Network in five steps, as explained in [7]: 

1) Moralization 
The original edges in BN are made to be undirected and 

additional edges are added between the parents of each node 

2) Triangulation 
Edges are added to the graph until it becomes chordal, 

meaning that every cycle with four and more nodes has a chord 
– an edge joining two non-adjacent nodes in a cycle. 

3) Construction of the Junction Graph 
Maximal cliques are found and marked as clusters for the 

next step. 

4) Forming the Junction Tree 
A tree is created by removing the redundant links in the 

cluster graph from the previous step. Every link between two 
clusters is assigned a separator.  

5) Creating clique potentials 
The original potential tables are used to calculate the initial 

clique potentials, forming the inconsistent JT. After message 
passing, the JT is made consistent. 

V. PROBABILISTIC APPLICATION LAYER 

Our contribution presented in this section builds upon the 
DBNs for knowledge representation and extends the Junction 

Tree algorithm in order to support dynamic removal and 
addition of nodes together with strict time guarantees on exact 
inference. Furthermore, we provide an application interface to 
the PAL which enables the HMI and ADAS applications to 
place complex queries while being context-processing-
agnostic. The name probabilistic application layer therefore 
denotes the created separation layer between probabilistic 
reasoning and high-level application space. 

A need for a separation layer between our vehicle ICT 
architecture on the one side, and the higher-level HMI and 
DAS applications on the other, arose from the project start. The 
HMI and ADAS applications ought to be able to place context-
related queries to the vehicle with specific quality-of-service 
(QoS) requirements. The QoS requirements in this sense define 
the allowed worst-case latencies and/or data update frequencies 
for the query answering. This might be relevant to the ADAS 
applications operating with safety-critical queries, such as the 
ones related to pre-conditioning of the passive safety systems 
in a case of a known time-to-crash. 

An example of such continuous and safety-relevant ADAS 
application query might be “Is the frontal crash imminent?”, 
which has to be incorporated as a hypothesis into the 
knowledge model. Such hypothesis has to be continuously 
checked for truth and the result of inference has to be delivered 
to the application in a timely manner. In the rest of this work, 
we will often switch between the wording “query” and 
“hypothesis” when we describe the questions placed by the 
applications to PAL. The reason for this interchanging of terms 
is that an initial query, placed by an application, transforms 
into a node called hypothesis node once it becomes a part of 
the probability network. The hypothesis node can take a value 
between 0 (the answer to the question is 100% false) and 1 (the 
answer to the question is 100% true). To recap, when a query 
gets added to PAL, it becomes a hypothesis which is assigned a 
certain probability of being true. 

An HMI application, for example, could use PAL to adapt 
the head unit or infotainment display to the user’s proficiency 
(power user / novice) or his assessed level of tiredness. The 
suggested data flow for such customization of feedback, which 
can be directly implemented in our vehicle prototype, is given 
in Figure 2. 

 

Fig. 2. Context processing can be an integral part of vehicle feedback. 

Taking both examples into account, the operation of PAL 
and its level of abstraction inside the vehicle are shown in 
Figure 3. 



Science and Information Conference 2013 
October 7-9, 2013, London, U.K 

 

982 | P a g e  
www.conference.thesai.org 

 

Fig. 3. PAL builds upon the vehicle ICT architecture and provides an 

interface to the application space. 

Usage of Junction Tree for exact inference indirectly 
defines the JT message passing algorithm as the basis for 
global conditional probability tables’ (CPT) normalization. We 
implement an extended message passing protocol (EMPP), 
which contains semantic description of a node, the description 
of the computing complexity of associated inference, as well as 
classical CPT data from the JT message passing protocol. The 
semantic description is important for the application interface, 
reconfiguration manager and so-called modal separation. 

The nodes are internally organized into PAL modality 
groups, based upon the a priori knowledge of their conditional 
independence. As an example, a pair of feature extraction 
networks based on camera data might be affected by sunlight 
or another shared hidden variable. Even though this 
dependence is not captured as a dependency inside the 
individual feature extraction network (as it is not be important 
for its operation), a higher-level network can use the semantic 
description of nodes to take common hidden variables into 
account. PAL provides the description of such dependencies. 

Every new data source has to be ordered into higher level 
clusters based on the low level ontology description. In 
addition, a subjective specification sheet is included. Each 
sensor has a specific probability of detecting an object in its 
field of view, depending on a set of known parameters, like the 
angle and distance of the object. On the higher level, however, 
more data is known in the system, such as weather conditions 
and time of day, and this data can be used to further modify the 
plausibility of a sensor measurement. In essence, this type of 
reasoning is similar to the previously described modal 
grouping, but it focuses on the plausibility of inferred 
knowledge and not on the cross-dependence. 

Inner workings of PAL are shown in Figure 4 and are 
explained in the following. 

 

Fig. 4. Inner workings of PAL.  

A. Application Interface 

The interface towards the application space is based on 
XML and heavily leaned on a standard used for semantic 
sensor web – Open Geospatial Consortium (OGC) Sensor Web 
Enablement (SWE). An application can request the currently 
active set of hypotheses (what the PAL is already answering), 
the potential set of hypotheses (what the PAL knows how to 
answer but isn’t doing it yet) and suggest new methods of 
combining data (new feature extraction networks). As 
mentione before, it can also request an answer from PAL with 
a fixed quality-of-service requirement and/or continuous 
updates. 

B. Main Knowledge Model 

The main knowledge model contains all the probability 
networks inside the vehicle, whose nodes can be divided into 
three layers: 

1) Hypothesis Layer 

2) Feature Extraction Layer 

3) Modality Groups 

The hypothesis layer (HL), as mentioned before, contains 
all the to-be-answered queries placed by HMI and ADAS 
applications. Inference on these top-level nodes propagates 
throughout the lower layers with certain degree of 
computational overlap, which is harnessed via JT-based 
dynamic programming. Answering the queries is the sole 
purpose of PAL, so the entire underlying structure is chosen in 
order to facilitate the inference. 

Feature extraction layer (FEL) layer contains all the 
classical probability networks inside the vehicle. An example is 
a network for driver assessment based on camera data, or a 
network which stores driver’s personal profile for infotainment 
system. This layer can be interpreted as a set of different object 
classification networks which are fed by underlying data 
sources. 
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Fig. 5. Data flow through the main knowledge model 

Newly acquired knowledge from the vehicle ICT 
architecture enters the PAL in the modality groups (MG) layer 
and propagates towards the hypotheses. This layer contains all 
the data source nodes, grouped into clusters according to their a 
priori assumed conditional dependence. For example, all the 
data sources which are stemming from camera systems would 
be grouped into the visual sensor group. The term modality is 
used here exclusively to denote a common sensor modality. 
Since the inference is performed on the JT query-specific sub-
models, this grouping inside the DBN only becomes relevant if 
the group gets included into a JT sub-model.  

C. Query-Based Sub-Models 

One of the main tasks of PAL is to optimize the application 
queries i.e. to reduce the involved computational complexity of 
exact inference on large probability networks. If there are, 
however, no applications placing queries on the inference 
engine, DBNs in the main knowledge model remain the sole 
knowledge representation inside PAL. Only after the first 
query is placed (and the hypothesis layer contains at least one 
node) does the PAL construct a query-based sub-model in 
order to optimize the inference. Apart from the JT algorithm 
and lazy inference, PAL also references the overlapping node 
clusters from different JTs to reuse already inferred knowledge 
and accelerate propagation of new knowledge. 

D. Inference Scheduler 

The hypothesis layer can contain application queries with 
different criticalities. The driver assistance applications might 
perform time-critical inference, while the human-machine 
interface applications might be interested in periodical updates 
about the driver’s assessed fatigue level. Multiple factors 
determine the time required to perform the exact inference, 
assuming equal processing power: 

 Data update rate bounded by the vehicle ICT 
architecture 

 Time to perform the knowledge normalization in the JT 

 Time to perform variable elimination in the node cluster 
of interest 

Time for knowledge normalization is mostly determined by 
the time necessary for upwards knowledge propagation, since 
the HL is located near the query-based JT root. Inference 
scheduler is responsible for checking the time bounds of 
inference on the hypothesis layer and guaranteeing that the 
safety-critical hypotheses are within bounds. It is priority 
based, with earliest deadline first within the same priority level. 

E. Reconfiguration Manager 

Apart from the continuous updating of the knowledge 
inside the PAL, it is possible to dynamically add or remove a 
certain data source, hypothesis or the in-between located 
feature extraction networks. The adding process has two steps: 
Semantic identification (what exactly is being added and how 
can it be used?) and performing structural changes on the 
DBN. Adding of a new element can be rejected, if it conflicts 
with the QoS requirements of existing HL, by increasing the 
inference time beyond the allowed margin. 

F. ICT Connector 

This component is responsible for fetching the data from 
the vehicle ICT architecture and pushing it into the PAL. It 
contains the correlations between the lowest layer of nodes in 
modality groups and real data inside the vehicle. In its current 
form, this component produces simulated data or connects to 
the Vires VTD simulator. In its fully developed form it should 
subscribe to the relevant data over the Innotrucks data-centric 
architecture. 

VI. IMPLEMENTATION 

The first version of PAL presented in this work has been 
implemented with the Digia C++ QT Software Development 
Kit and deployed on the Intel Atom based embedded computer. 

 

Fig. 6. Demonstrator components. 

For our demonstration, we use the PAL to evaluate two 
hypotheses: 

1) The driver is tired 

2) Crash is imminent 

The first hypothesis tries to determine a trend based on a 
longer amount of measurements; the second relies on rapid 
data acquisition. In addition, the first hypothesis is not bounded 
in time, i.e. it can be answered with best effort. The second 
hypothesis has a time bound t which is determined by the time 
necessary to react to the upcoming crash and reduce the 
consequences (e.g. initiate emergency braking). 
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The demonstrator has two modes of operation, as shown in 
Figure 6. 

In the first mode, the user drives a vehicle in the VIRES 
Virtual Test Drive simulation, which also provides simulated 
vehicle data to PAL. A virtual dashboard is with two apps is 
displayed to the user. The first one analyzes driver tiredness 
and displays an assessment thereof. The other issues a warning 
if a crash is imminent. Another display provides an insight into 
the PAL core, in particularly visualizing the dynamic 
reconfiguration. 

In the second mode, the user can only operate the virtual 
dashboard and the driving itself is fully automated and non-
controllable. This is a “minimal package” of the demonstrator, 
used to focus only on the inner workings of PAL. 

VII. CONCLUSION AND FUTURE WORK 

We provide an approach for separating the context 
processing from the application space and focus on inference 
optimization and inference real-time guarantees for 
dynamically changing probability networks. The approach is 
based on Bayesian networks which are optimized for queries 
over sets of hypotheses through the modified Junction Tree 
algorithm. We keep the structure of the tree and the time 
guarantees intact during addition and removal of nodes. The 
message passing algorithm is extended to accommodate for 
node description. 

Future work will focus on further development of PAL as 
well as on knowledge exchange with other vehicles and with 
higher-order intelligent transport systems. 
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