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Abstract— Odometry is important for autonomous vehicle
in scenarios where GPS is either unavailable or only inter-
mittently available. However, in a large scale environment, it
often generalizes unbounded cumulative error when the vehicle
unconsciously moves. This paper analyzes how the cumulative
error grows according to the noisy relative measurements. An
unbounded drift model is proposed to represent the cumulative
error, where its probability distribution is described by the
corresponding expectation and variance. Compared to other
approaches, it presents a recursive cumulative error expression
in absence of the true positions, which has great potentials in
various domains, e. g. path planning, odmetry based localiza-
tion.

Both experiments and cases are conducted to not only verify
the accuracy of the proposed model, but also illustrate the
potentials in related domains.

I. INTRODUCTION

Within the past decade, accurate global localization has

become a hot issue in the intelligent vehicle research domain,

not only for developing advanced driver assistance system,

but also for autonomous driving.

Since GPS is susceptible to interference or even not

fully available (tunnels, indoor environments, mountainous

forested environments), odometry based localization is taken

as a supplement solution to calculate the position of the

vehicle by using e.g. vision based sensors (cameras, LIDARs,

etc) [1], [2], [3], wheel sensors [4] and inertial sensors

(gyroscopes and accelerometers) [5], [6], [7].

Although odometry provides high accuracy localizations,

drift accumulation (cumulative error) is still an issue which is

caused by noisy relative measurements. A number of papers

have claimed, without proof, the cumulative error grows non-

linearly with distance or time [8], [9]. However, a rigorous

analysis of the growth rate is still missing.

Methods which eliminate the drift have been demonstrated

by using terrain maps [10] and visual landmark recognition

[11], where the calibration is executed after following a

suitable trajectory. However, in large scale urban environ-

ments, the computational complexity is a challenge. Vorst

et. al. [12] present a method which uses RFID technique

to improve the precision. In their research, the localization

module is initialized periodically by the RFID, with the goal

of keeping the drift bounded. The proposed approach exhibits

good robustness under various scenarios. However, it gives

no insight about how to optimally distribute the RFID, which

relates to the growth of the cumulative error.
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In this paper, we examine the growth rate of the cu-

mulative error by noisy relative measurements. In addition,

the proposed formulas are also verified numerically through

Monte-Carlo simulation. The contribution is that it provides a

feasible solution to evaluate the cumulative error recursively

without utilizing the true positions, which is either practical

or theoretical significance. Furthermore, we also exhibit

the corresponding potentials in the case of path planning,

odmetry based localization.

An off-the-shelf platform is used to provide data from

real traffic scenarios [13]. The platform is equipped with

sensors to record the relative measurements (velocity and

orientation) at each step. The experimental results indicate

that the proposed method yields precise estimations.

The remainder of this paper is structured as follows: Sec. II

briefly describes the related work. Sec. III introduces more

details about the proposed drift models. Sec. IV presents

experimental results with Monte-Carlo simulation while Sec.

V exploits the error estimations in the related domains.

Finally, the paper is concluded in Sec.VI.

II. RELATED WORK

The work by Smith and Cheesman [14], Su et. al. [15]

and Wang et. al. [16] introduce recursive expressions for the

covariance of the pose estimation error. They utilize the first

order of the BCH (Baker-Cambell-Hausdorff) formula by

assuming that the errors are small. Zhou et. al. [17] describe

the corresponding error by utilizing its probability density

function. Ruyi et. al. [18] utilize an unbounded model to

represent the cumulative error. However, they don’t analyze

asymptotic behavior of the error.

Olson et. al. [19] illustrate that the cumulative error grows

super-linearly. They also exhibit that the cumulative error

grows as O(d3/2), where d is the distance. However, there is

no specific models and parameters. A parametric statistical

model of the cumulative error is proposed in [20], which

provides an exact formula for both expectation and variance

of the cumulative error. It calculates the exact formula from

two special trajectories—straight line and periodic curve,

which is still an issue on representing the real environment.

Calibration based methods are also investigated to elim-

inate the error, which calculates the differences between

the actual point and the estimated point. Borenstein et. al.

analyze the possible source of odometry error [21]. Kelly

proposes a general solution using linearized error equation

for any trajectory and model [22]. Antonelli et. al. present a

calibration method based on the least-squares technique [23].

These methods can be classified into off-line methods since

they are executed after following a suitable test trajectory. On
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Fig. 1. Relationship between the relative measurements and the positions

the other hand, calibration is executed through continuous

steps when a robot is able to estimate the pose. Roy et. al.

suggest an algorithm to recalibrate the robot according to the

probabilistic distribution [24]. This method estimates both

the robot configuration and the parameters simultaneously.

In despite of the merits, there is a significant problem. The

performance depends on the prior information, which is often

unavailable in an unknown environment.

III. CUMULATIVE ERROR ESTIMATION

In this section, we analyze how the cumulative error

grows according to the noisy relative measurements. An

unbounded drift model is also proposed, where its probability

distribution is described by the corresponding expectation

and variance.

A. Problem statement

The vehicle’s position is estimated by accumulating the

relative measurements during the whole process. Fig. 1 il-

lustrates the relationship between the noisy relative measure-

ments (θmn , dmn ) and the corresponding position (xm
n , ymn ),

where n is the time index, m is short acronym for the

measurement. d and θ represents the corresponding velocity

and orientation between consecutive frames. Measurements

θ̄n and d̄n are defined with respect to the true values as

θmn = θ̄n + θ̃n; d
m
n = d̄n + d̃n (1)

where θ̃n and d̃n are assumed to be independent with

zero mean and standard deviations δθ, δd. The trajectory is

calculated by the following equations in practice:

xm
n =

n
∑

i=1

(dmi sin
i

∑

j=1

θmj ); ymn =
n
∑

i=1

(dmi cos
i

∑

j=1

θmj ) (2)

Fig. 2 exhibits the trajectories based on the odometry,

where the real data is calculated with the true values:

x̄n =

n
∑

i=1

(d̄i sin

i
∑

j=1

θ̄j); ȳn =

n
∑

i=1

(d̄i cos

i
∑

j=1

θ̄j) (3)

As illustrated in Fig. 2, the cumulative error grows un-

bounded with time increasing. It is a challenge to estimate

the cumulative error only using the noisy measurements.

However, the corresponding statistical properties are feasible.
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Fig. 2. Odometry result and the real data

In this paper, we estimate both expectation and variance of

the cumulative error by utilizing the statistical properties of

the noises.

B. True Error Statistics

The odometry result can also be represented as a combi-

nation of the true value and the cumulative error :

xm
n = x̄n + x̃n =

n
∑

i=1

[(d̄i + d̃i) sin(

i
∑

j=1

(θ̄j + θ̃j))]

= [

n
∑

i=1

d̄i +

n
∑

i=1

d̃i] · [sin

i
∑

j=1

θ̄j cos

i
∑

j=1

θ̃j + cos

i
∑

j=1

θ̄j

· sin

i
∑

j=1

θ̃j ]

ymn = ȳn + ỹn =

n
∑

i=1

[(d̄i + d̃i) cos(

i
∑

j=1

(θ̄j + θ̃j))]

= [

n
∑

i=1

d̄i +

n
∑

i=1

d̃i] · [cos

i
∑

j=1

θ̄j cos

i
∑

j=1

θ̃j − sin

i
∑

j=1

θ̄j

· sin

i
∑

j=1

θ̃j ]

Rearranging the above equations we can obtain the math-

ematical expression of the cumulative error:

x̃n =

n
∑

i=1

d̄i[sin

i
∑

j=1

θ̄j(cos

i
∑

j=1

θ̃j − 1) + cos

i
∑

j=1

θ̄j sin

i
∑

j=1

θ̃j ]

+

n
∑

i=1

d̃i[sin

i
∑

j=1

θ̄j cos

i
∑

j=1

θ̃j + cos

i
∑

j=1

θ̄j sin

i
∑

j=1

θ̃j ]

ỹn =
n
∑

i=1

d̄i[cos
i

∑

j=1

θ̄j(cos
i

∑

j=1

θ̃j − 1)− sin
i

∑

j=1

θ̄j sin
i

∑

j=1

θ̃j ]

+

n
∑

i=1

d̃i[cos

i
∑

j=1

θ̄j cos

i
∑

j=1

θ̃j − sin

i
∑

j=1

θ̄j sin

i
∑

j=1

θ̃j ]

The cumulative error is dependent and each depends on

the true values. The expectation and variance is estimated

according to the statistical properties of the relative mea-

surements.
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TABLE I

REPRESENTS OF THE PARAMETERS

A

n
∑

i=1

d̄2i [sin
2

i
∑

j=1

θ̄j(0.5e
−2iδ2

θ + 1.5− 2e−
iδ

2

θ

2 ) + 0.5cos2
i

∑

j=1

θ̄j(e
−2iδ2

θ + 1)]

B

2
n−1
∑

i=1

n
∑

p=1+i

d̄id̄p{sin
2

i
∑

j=1

θ̄j cos∆θ̄[−e−0.5iδ2
θ + 0.5(1 + e−2iδ2

θ )e−0.5δ2
θ
(p−i) + 1− e−0.5iδ2

θe−0.5δ2
θ
(p−i)]

+ sin

i
∑

j=1

θ̄j sin∆θ̄ cos

i
∑

j=1

θ̄j [−e−0.5iδ2
θ + 0.5(1 + e−2iδ2

θ )e−0.5δ2
θ
(p−i) + 1− e−0.5iδ2

θe−0.5δ2
θ
(p−i)

− 0.5(1− e−2iδ2
θ )e−0.5δ2

θ
(p−i)] + cos2

i
∑

j=1

θ̄j cos∆θ̄0.5(1− e−2iδ2
θ )e−0.5δ2

θ
(p−i)}

C

n
∑

i=1

[0.5sin2
i

∑

j=1

θ̄j(1 + e−2iδ2
θ ) + 0.5 cos2

i
∑

j=1

θ̄j(1− e−2iδ2
θ )]

D

n
∑

i=1

d̄2i [cos
2

i
∑

j=1

θ̄j(0.5e
−2iδ2

θ + 1.5− 2e−
iδ

2

θ

2 ) + 0.5sin2
i

∑

j=1

θ̄j(−e−2iδ2
θ + 1)]

E

2
n−1
∑

i=1

n
∑

p=1+i

d̄id̄p{cos
2

i
∑

j=1

θ̄j cos∆θ̄[−e−0.5iδ2
θ + 0.5(1 + e−2iδ2

θ )e−0.5δ2
θ
(p−i) + 1− e−0.5iδ2

θe−0.5δ2
θ
(p−i)]

+ sin

i
∑

j=1

θ̄j sin∆θ̄ cos

i
∑

j=1

θ̄j [e
−0.5iδ2

θ + 0.5(1− e−2iδ2
θ )e−0.5δ2

θ
(p−i) − 1 + e−0.5iδ2

θe−0.5δ2
θ
(p−i)

− 0.5(1 + e−2iδ2
θ )e−0.5δ2

θ
(p−i)] + sin2

i
∑

j=1

θ̄j cos∆θ̄0.5(1− e−2iδ2
θ )e−0.5δ2

θ
(p−i)}

F

n
∑

i=1

[0.5cos2
i

∑

j=1

θ̄j(1 + e−2iδ2
θ ) + 0.5 sin2

i
∑

j=1

θ̄j(1− e−2iδ2
θ )]

Proposition 1: The expectation of x̃n and ỹn is calculated

as follows:

µn(θ̄, d̄) =

[

E[x̃n|θ̄, d̄]
E[ỹn|θ̄, d̄]

]

=





∑n
i=1 d̄i[sin

∑i
j=1 θ̄j(e

−

iδ
2

θ

2 − 1)]
∑n

i=1 d̄i[cos
∑i

j=1 θ̄j(e
−

iδ
2

θ

2 − 1)]



 (4)

while the variance is

var(x̃|θ̄, d̄) = E[x̃2|θ̄, d̄]− E2[x̃|θ̄, d̄]

= A+B+C− E2[x̃|θ̄, d̄]

var(ỹ|θ̄, d̄) = E[ỹ2|θ̄, d̄]− E2[ỹ|θ̄, d̄]

= D+E+ F− E2[ỹ|θ̄, d̄] (5)

Table I represents the mathematic expressions of the

variances. Here ∆θ represents the cumulated orientation
∑p

k=i+1 θk.

C. True Error Statistics in Practice

Equations (4) and (5) are explicit expressions for the

cumulative error. They have significant bias depending on the

true value of the relative measurements, which is unavailable

in practice. To make the results useful, the expected values

of the true moments are evaluated conditioned on the noisy

measurements. In this paper, the interest is to calculate the

expected expectations and variances:

E[µn|θ
m, dm] = µm

E[var(x̃n)|θ
m, dm] = var(x̃m

n )

E[var(ỹn)|θ
m, dm] = var(ỹmn ) (6)

Equation (6) is called the average true expectation and the

average true variance.

The proof of proposition 2 is also provided in the Ap-

pendix.
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Fig. 3. The trajectories of the vehicle

Proposition 2: The error’s true expectation and variance

can be estimated as

E[x̃m
n ] =

n
∑

i=1

dmi (e−iδ2
θ − e

−iδ
2

θ

2 )sin

i
∑

j=1

θmj

E[ỹmn ] =

n
∑

i=1

dmi (e−iδ2
θ − e

−iδ
2

θ

2 )cos

i
∑

j=1

θmj

var(x̃m
n ) = A1 +B1 +C1 − E2[x̃m

n ]

var(ỹmn ) = D1 +E1 + F1 − E2[ỹmn ]

Table II also shows the mathematic expressions of the vari-

ances. Therefore, the statistical properties of the cumulative

error are estimated, which has great potentials in practice.

IV. EXPERIMENTS

In this section we estimate both expectation and variance

of the cumulative error by conducting Monte-Carlo simula-

tion. The relative measurements are acquired from the public

dataset [13]. In our experiment, those noisy measurements

are acquired by manually adding Gaussian white noises on

the original data at each step. The distribution of the velocity

noise is with the deviation of 0.1 m while the orientation

noise is considered as an angular deviation of 0.1 rad.

Fig. 3 shows two trajectories including in the experiment

which are measured by the GPS/IMU system.

Fig. 4 illustrates the proposed formulas compared with

1000 times Monte-Carlo simulation. The first row represents

the trajectory in Fig. 3(a) while the second row represents

Fig. 3(b). The first two columns illustrate the expectation

of the cumulative error, where the rests illustrate the cor-

responding variance. As we can see from Fig. 4(a), 4(e),

the expectation of the cumulative error in X direction is

almost zero at beginning. This is caused by the correspond-

ing trajectory. Fig. 3(b) shows that the related trajectory

is only extended in Y direction during the same period.

The influence of the noisy measurements in X direction

is therefore eliminated. The corresponding cumulative error

grows dependent with the vehicle moves, which is also

fitted to the physical models. Since the uncertainties grow

explosively, the corresponding variances in Fig. 4 are quite

huge compared with the first order moments. However,

the proposed model still estimates well compared with the

Monte-Carlo result.

Fig. 4 shows that the proposed model works well with the

noisy measurements, which exhibits the high performance in

the absence of true values.

V. EXPLOITATION OF ERROR ESTIMATION

The proposed model can also be considered as a solution

to the path planning. Fig. 5(a) includes two trajectories on the

ground plane with same lengths. The vehicle starts from the

init point to the end point, executes the instructions at each

step (velocity and orientation, which is pre-calculated by the

planner). However, assuming the movements are distributed

with Gaussian white noises, the position error is therefore

existed (similar to the odometry, the position is localized by

cumulating the movements during the process). The key issue

is to find the minimum expectation of the position error. Fig.

5(b) and Fig. 5(c) illustrates the expectation of the error in X

and Y direction estimated by the proposed model. Fig. 5(d)

represents the position error by calculating the root square

values from both directions. It is obvious that trajectory 2

has the minimum expectation of the position error compared

with trajectory 1, which helps the path planner by introducing

a new cost mechanism.

The proposed model also has great potentials in other

applications. For instance, Combining with the RFID tech-

nique to optimally distribute the RFID sensors in a large

scale environment. As mentioned in Sec. I, Vorst presented a

method by using RFID technique to improve the localization

precision. However, there was no insight about how to

optimally distribute the sensors, which related to the growth

rate of the cumulative errors. Since the proposed model rep-

resents well with the cumulative error’s statistical property,

it becomes a feasible solution to optimally distribute the

references.

In addition, it is a challenge to evaluate various odometry

methods. Different trajectories cause the results deviating

from the real status. However, the proposed model provides

a natural bridge to evaluate the corresponding performances.

Assuming each method’s estimation uncertainty is known,

the proposed formulas can evaluate the corresponding per-

formance in various scenarios.

VI. CONCLUSION

Modeling and analyzing the cumulative error from noisy

relative measurements is either practical or theoretical sig-

nificance. In this paper, we introduce a precise mathematical

model to represent the statistical properties of the error. The

model not only illustrates the corresponding error depending

on the trajectory, but also calculates its expectation and

variance. In comparison to the related work, the proposed ap-

proach recursively estimates the cumulative error in absence

of the true values. Exploited work is also demonstrated to

illustrate the huge potentials in the related domains.

The proposed method has been evaluated by Monte-Carlo

simulation which performs well.

Future work focuses on the real implementation of the

proposed approach.
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TABLE II

REPRESENTS OF THE PARAMETERS

A1

n
∑

i=1

(dmi )2{[0.5(1 + e−2iδθ2

)sin2
i

∑

j=1

θmj + 0.5(1− e−2iδθ2

)cos2
i

∑

j=1

θmj ](0.5e−2iδ2
θ + 1.5− 2e−0.5iδ2

θ )

+ 0.5(1 + e−2iδθ2

)[0.5(1 + e−2iδθ2

)cos2
i

∑

j=1

θmj + 0.5(1− e−2iδθ2

)sin2
i

∑

j=1

θmj ]}

B1

2

n−1
∑

i=1

n
∑

p=1+i

dmi dmp {[0.5(1 + e−2iδθ2

)sin2
i

∑

j=1

θmj + 0.5(1− e−2iδθ2

)cos2
i

∑

j=1

θmj ][cos∆θme−0.5(p−i)δ2
θ ][. . . ]

+ [sin

i
∑

j=1

θmj sin∆θm cos

i
∑

j=1

θmj e−2iδθ2

e−0.5(p−i)δ2
θ ][. . . ] + [0.5(1 + e−2iδθ2

)cos2
i

∑

j=1

θmj

+ 0.5(1− e−2iδθ2

)sin2
i

∑

j=1

θmj ][cos∆θme−0.5(p−i)δ2
θ ][. . . ]}

C1

n
∑

i=1

{0.25(1 + e−2iδ2
θ )[(1 + e−2iδθ2

)sin2
i

∑

j=1

θmj + (1− e−2iδθ2

)cos2
i

∑

j=1

θmj ] + 0.25(1− e−2iδ2
θ )[(1+

e−2iδθ2

)cos2
i

∑

j=1

θmj + (1− e−2iδθ2

)sin2
i

∑

j=1

θmj ]}

D1

n
∑

i=1

(dmi )2{[0.5(1 + e−2iδθ2

)sin2
i

∑

j=1

θmj + 0.5(1− e−2iδθ2

)cos2
i

∑

j=1

θmj ](1− e−2iδθ2

)

+ 0.5(0.5e−2iδ2
θ + 1.5− 2e−0.5iδ2

θ )[0.5(1 + e−2iδθ2

)cos2
i

∑

j=1

θmj + 0.5(1− e−2iδθ2

)sin2
i

∑

j=1

θmj ]}

E1

2
n−1
∑

i=1

n
∑

p=1+i

dmi dmp {[0.5(1 + e−2iδθ2

)cos2
i

∑

j=1

θmj + 0.5(1− e−2iδθ2

)sin2
i

∑

j=1

θmj ][cos∆θme−0.5(p−i)δ2
θ ][. . . ]

+ [sin

i
∑

j=1

θmj sin∆θm cos

i
∑

j=1

θmj e−2iδθ2

e−0.5(p−i)δ2
θ ][. . . ] + [0.5(1 + e−2iδθ2

)sin2
i

∑

j=1

θmj + 0.5(1− e−2iδθ2

)

· cos2
i

∑

j=1

θmj ][cos∆θme−0.5(p−i)δ2
θ ][. . . ]}

F1

n
∑

i=1

{0.25(1 + e−2iδ2
θ )[(1 + e−2iδθ2

)cos2
i

∑

j=1

θmj + (1− e−2iδθ2

)sin2
i

∑

j=1

θmj ] + 0.25(1− e−2iδ2
θ )[(1+

e−2iδθ2

)sin2
i

∑

j=1

θmj + (1− e−2iδθ2

)cos2
i

∑

j=1

θmj ]}
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Fig. 4. Cumulative Error Estimation
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Fig. 5. Error estimation in path planning domain
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APPENDIX

In order to proof the propositions, the following technical

results are needed:

Assuming θ̃ ∼ N(0, δ2θ) and d̃ ∼ N(0, δ2d), we can obtain

i
∑

j=1

θ̃j ∼ N(0, iδ2θ);

n
∑

i=1

d̃i ∼ N(0, nδ2d)

E(cos
i

∑

j=1

θ̃j) = e−i
δ
2

θ

2 , E(sin

i
∑

j=1

θ̃j) = E(sin

i
∑

j=1

2θ̃j) = 0

E(cos2
i

∑

j=1

θ̃j) =
e−2iδ2

θ + 1

2
, E(sin2

i
∑

j=1

θ̃j) =
−e−2iδ2

θ + 1

2

Proof: Proposition 1 and 2

According to the above equations, the expectation is

calculated by

E[x̃n] =

n
∑

i=1

d̄i{sin

i
∑

j=1

θ̄j(E[cos

i
∑

j=1

θ̃j ]− 1) + cos

i
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i

∑

j=1

θ̃j ]}
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The variance is calculated by

var(x̃n) = E[x̃2]− E[x̃]2

where
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Here ∆θ represents the cumulative angle
∑p

k=i+1 θk. The

error’s expectation and variance in y direction can also be

estimated by the same process.

With the same manner, proposition 2 can also be proofed

by arranging the following equations:

d̄ = dm − d̃, θ̄ = θm − θ̃

Due to the page limit, the proof process is omitted here.

978-1-4799-2914-613/$31.00 ©2013 IEEE 1429


