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Abstract

Many everyday tasks require the ability of two or more individuals to coordinate their actions with others to increase
efficiency. Such an increase in efficiency can often be observed even after only very few trials. Previous work suggests that
such behavioral adaptation can be explained within a probabilistic framework that integrates sensory input and prior
experience. Even though higher cognitive abilities such as intention recognition have been described as probabilistic
estimation depending on an internal model of the other agent, it is not clear whether much simpler daily interaction is
consistent with a probabilistic framework. Here, we investigate whether the mechanisms underlying efficient coordination
during manual interactions can be understood as probabilistic optimization. For this purpose we studied in several
experiments a simple manual handover task concentrating on the action of the receiver. We found that the duration until
the receiver reacts to the handover decreases over trials, but strongly depends on the position of the handover. We then
replaced the human deliverer by different types of robots to further investigate the influence of the delivering movement
on the reaction of the receiver. Durations were found to depend on movement kinematics and the robot’s joint
configuration. Modeling the task was based on the assumption that the receiver’s decision to act is based on the
accumulated evidence for a specific handover position. The evidence for this handover position is collected from observing
the hand movement of the deliverer over time and, if appropriate, by integrating this sensory likelihood with prior
expectation that is updated over trials. The close match of model simulations and experimental results shows that the
efficiency of handover coordination can be explained by an adaptive probabilistic fusion of a-priori expectation and online
estimation.
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Introduction

The capacity of humans to anticipate and take into account

action goals of co-actors is considered as being fundamental for

successful manual interaction. The ease of action coordination and

remarkably fluent organization of routine joint tasks may be

achieved by planning and executing actions in relation to what we

anticipate from our co-actors [1,2,3]. By continuously monitoring

the actions of our partners we can interpret them in terms of their

outcomes even without any explicit verbal communication. For

example, while sitting at a dinner table, we recognize the intention

of another person to hand over a cup of tea by observation of the

other’s hand movement, but also by contextual cues such as the

state of the cup, and thus are able to initiate a reaching movement

for receiving the cup well before the movement of our partner is

completed.

Reaching and grasping movements have extensively been

investigated in laboratory settings (for review, see [4,5]). Recently,

research has begun to look at their execution in interaction

scenarios involving two or more agents [6,7,8]. Current research

in human-robot interaction illustrates that artificially designing a

cooperative handover mechanism is not as simple as it may seem

[9,10]. During interactions, humans have to response to a co-

actor’s movement within an intentional context. In such exper-

iments, the reaching and grasping movement is embedded in a

continuous chain of meaningfully connected actions, which

seamlessly follow one after the other. In the example above,

reaching for the cup of tea is preceded by the other person taking it

up and is followed by placing the cup in front of us on the table.

This embedding might be fundamentally different from the

separable trial structure of traditional experiments in sensorimotor

control.

In the present study, we aim to elucidate several of the factors

that lead to seamless and efficient dyadic human interaction, using

handover of an object as a representative part of everyday joint

action. The coordination of movements in such a scenario with

physical interaction requires fine-tuned spatiotemporal accuracy;

otherwise considerable time delays are introduced by waiting for

the partner’s action or by correcting the spatiotemporal mismatch.

In the case of handover, the exact position of the handover, but
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also an estimate of the handover time, has to be determined in

order to bring the hand to the right place at approximately the

right time – ready for receiving the cup of tea.

While such cooperative interaction can be triggered and guided

by verbal communication, we explicitly chose to investigate the

non-verbal aspects of successful handover in a natural setting. In

our previous experiments [11,12,13], we observed that the

receiving subject starts reaching for the object considerably in

advance of the deliverer’s hand arriving at its final position. Thus,

the question arises which factors enable subjects to successfully

plan and start executing a reaching movement well ahead of being

able to see its final goal. We have shown that subjects in such a

simple handover scenario tend to choose a spatial position that was

constant with respect to the body frame of reference [12,13]. From

this result we concluded that the spatial position of the handover

was strongly influenced by previous experience or other internal

factors such as implicit knowledge.

In the presented work, we investigated which additional

parameters influence the decision when to move where. Therefore,

we analyzed the reaction times of the receiving subject in several

experimental settings.

We hypothesized that the underlying planning and decision

process utilizes a combination of bottom-up visual information

about the partner’s movement trajectory and prior knowledge

about spatial and kinematic features of the arm movement and

processes this information in a way similar to what has been

proposed for other cases of cue combination and inclusion of prior

information [14,15]. In addition, we assumed that the confidence

in both prior knowledge and online estimation of the handover

position would depend on the type of agent, which acts as partner.

To this end, we replaced the human partner with two types of

robots (cf. [11]), in which we also could modify the kinematic

aspects of the arm movements.

Another factor leading to high efficiency is rapid learning of

context-specific aspects of the task. Indeed, in a previous handover

study [11], we had observed that reaction times improved over the

course of a few trials, suggesting that some aspects of the specific

scenario, e.g., the rhythmic timing of repetitive actions or the exact

location of the handover, have been learned. To minimize the

timing aspect in the present study, we triggered each handover

using randomized inter-stimulus intervals. We expected that

learning and thus improvement would still occur, but less so for

non-human agents.

To test our assumptions, we performed five different experi-

ments. In all experiments we investigated the reaction times of the

receiving subject during handover of six wooden cubes at

randomized time intervals. In the first three experiments we

manipulated the handover position to test its influence on the

initiation of the reaching movement. We expected an increase in

reaction times with unexpected handover positions, which deviate

from the naturally adopted position [13]. In experiment 4, we

explored how kinematic aspects (trajectory of the deliverer’s

movement) influence the reaction time of the receiver by replacing

the human deliverer by a humanoid robot moving with either a

spatial minimum jerk velocity profile [16] or with a trapezoidal

velocity profile in joint coordinates [17]. In experiment 5, an

industrial robot with a non-human joint configuration was used in

order to test the role of the deliverer’s appearance on the reaction

times of the receiver.

Finally, we modeled the observed processes leading to successful

handover in a probabilistic framework [18,19]. We formulated our

assumptions as Bayesian estimation and decision process and

performed simulations with the proposed model. A comparison of

the simulated results with the experiments supports our overall

hypothesis that during handover, the receiver’s ability to predict

the actions of the deliverer and prior knowledge of the task are

crucial for its effectiveness.

Materials and Methods

Participants
The experiments were approved by the ethics committee of the

medical faculty of the LMU, conducted in accordance with the

Declaration of Helsinki, and all participants gave their written

informed consent. All subjects were right-handed university

students (age 20–35, mean age was 24 (SD 3) years).

Experiment 1. 17 pairs of subjects, consisting of a receiver

and a deliverer, were tested. Data from one pair had to be

excluded from the analysis due to the delayed reaction of the

deliverer to the first acoustic signal indicating the start of the

movement.

Experiment 2. 20 subjects participated as receiver. Data of

three subjects has been removed due to hand trajectories that

strongly differed from data obtained from the rest of the subjects.

The deliverer was always the same person.

Experiment 3. 14 subjects were tested. Data of one receiver

were removed from the analysis because this subject started his

movement before the deliverer. As above, the deliverer was always

the same person.

Experiment 4. 12 subjects participated. Data of two subjects

were removed due to technical difficulties (sensor failure) during

the measurements.

Experiment 5. 19 subjects participated. Due to sensor

problems, data of three subjects were discarded in the minimum

jerk velocity condition and data of two subjects were discarded

from the trapezoid velocity profile condition.

Setup and Procedure
Setup. Two subjects were seated opposite of each other at a

75 cm wide table. To avoid so-called end-state effects, which refers

to adjustments of the orientation of the grip depended o the

context of the interaction [3,20], the items to pass were

symmetrical wooden cubes (36363 cm3). Six of those wooden

cubes were placed in a row on pre-defined marks in front of the

deliverer (Fig. 1A). Corresponding marks at the other side of the

table served as targets for placing the cubes after each handover.

The distance between the two opposite rows of marks was 50 cm.

One subject served as deliverer, the other as receiver of the cubes.

The receiving subject was instructed to accept each cube and place

it on the marks. Both, the receiver and the deliverer were

instructed to perform the task in a natural and comfortable way.

No instruction about the task speed was given. The receiving

subject could freely decide when to start his movement. Each

subject received exactly 6 cubes, i.e., there were no repetitions and

no training. The experiment was finished after the 6 handovers.

Procedure Experiment 1. The deliverer was required to

grasp the cubes one after the other and to hand them over to the

receiver. The start of each trial was indicated by an acoustical

signal played to the deliverer via the headphones. The duration of

the inter-trial intervals was randomized and ranged from 1s to 3s

to prevent the delivering subjects from adopting a periodic pattern,

which could be used by the receiver as temporal cue. The receiver

was required to grasp the cubes and put them on the table near

each other at the predefined marks. There was no instruction on

the handover position; the deliverer could freely choose the

handover position.

Procedure Experiment 2. We repeated the previous exper-

iment with the only difference that the handover position was
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shifted 20 cm to the right of the deliverer (see Fig. 2B, position R).

Since the deliverer had to be trained to move his hand to this

unnatural handover position, the same person was used as

delivering partner for all subjects. The receivers were not informed

that deliverer was trained to perform handovers to an unexpected

position.

Procedure Experiment 3. Three different handover posi-

tions were used as seen from the viewpoint of the deliverer: middle

(natural handover position as described above), right (20 cm to the

right) and left (20 cm to the left) (see Fig. 2B). The order of the

positions during the six trials was the same for every subject: 1)

right, 2) left, 3) middle, 4) left, 5) right, 6) middle. Since the deliver

had to be trained to move his hand to the different unnatural

handover positions, the same deliverer was used as a counterpart

for all subjects. The receivers were not informed about the

handover position sequence or that they were acting with a trained

deliverer.

Procedure Experiment 4. The humanoid robot JAST [21]

(see Fig. 3A left side) was programmed to replace the deliverer.

The robot system had to hand over one cube after the other at a

predefined handover position, which was determined as the

natural handover position for the receiving subject [13]. The

duration of the movement of the robotic hand (1.2 s) was

approximately matched to the movement of the human deliverer

determined in the first experiment (1.04 s). An exact match could

not be achieved due to joint velocity limits in the robot system.

The subject’s task was to receive the cubes one after the other from

the robot and put them on the predefined marks on the table.

After each trial, the robot returned its hand to the initial starting

position in the midair. The experiment consisted of two

conditions. In the first condition, the robot moved with a

minimum-jerk trajectory in spatial coordinates [16] (experiment

4a). In the second condition, the robot moved with a trapezoidal

velocity profile in joint coordinates [17] (experiment 4b). Each

subject participated in both conditions with the order of the

conditions being counterbalanced between subjects.

Procedure Experiment 5. The setup was similar to the

previous experiment with the difference that in contrast to the

humanoid robot JAST, the industrial robotic system JAHIR [22]

(see Fig. 3A right side) was used. JAHIR had only one arm without

a torso and a head. The arm was fixed on the table at its basis and

thus did not have a human-like joint configuration and appear-

ance. Experiment 5 again consisted of two conditions: in the first

condition, the robot arm moved with a spatial minimum jerk

velocity profile (experiment 5a) and in the second condition with

trapezoidal velocity profile in joint space (experiment 5b). The

movement duration was equal to the one used in experiment 4.

Data Acquisition
The magnetic-field-based motion tracking system LibertyTM

(Polhemus) was used to record the hand movements during

experiments 1–3. A small sensor (26261.6 cm3) was fixed to the

back of the deliverer’s and receiver’s hand to record their

movement kinematics with an acquisition rate of 240 Hz. For

tracking the hand of the human subject in experiment 4–5 we used

the acoustic-based tracking device IS-600 (Intersense) with a

sampling frequency of 20 Hz. The sensor was again placed at the

back of the subjects’ hands.

Fig. 1B shows an example of the trajectories of the deliverer’s

(black line) and the receiver’s (grey line) hand for one handover.

The corresponding time-velocity plots are shown in Fig. 1C: The

first velocity peak in the deliverer’s movement (Fig. 1C top)

occurred while moving his hand toward the cube (1), the second

while passing over the cube to the receiver (2), and the third (3)

when lowering the hand to put it back on the table. The handover

took place at the time point when the deliverer’s movement

velocity reached its plateau after the second peak. The first velocity

peak of the receiver (Fig. 1C bottom) occurred when he raised his

hand to grasp the cube (1), the second when he placed the cube on

one of the marks on the table (2) and the third, when he returned

to the starting position.

Data Analysis
The data were analyzed in Matlab 7/8 (The Mathworks) and

Statistica 6.1 (Statsoft). A Gaussian low-pass filter was used to filter

the hand-position data. For data recorded with Polhemus Liberty

tracking device, a cut-off frequency of 48 Hz was applied, for data

from the IS-600 tracking device, 10 Hz cut-off was used. The

dependent variable was the reaction time of the receiver, defined

Figure 1. Experimental setup. A) Setup of experiment 1–3. Each
handover started with the deliverer lifting the cube and passing it over
to the receiver. After grasping the cube, the receiver placed it on the
locations marked on the table. B) Hand trajectories in three-dimensional
space for the deliverer (left, black line) and the receiver (right, grey line)
for a single handover. C) The corresponding time-velocity plot shows
the movement velocity of the deliverer (upper graph) and the receiver
(lower graph). The reaction time was defined as time between the
lifting of a cube by the deliverer and the start of the receiver’s reaching
movement. The numbers in the picture correspond to the different
phases of the movement marked in Fig. 1B.
doi:10.1371/journal.pone.0064982.g001
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as the time delay between the start of the deliverer’s movement for

lifting a cube and the start of the receiver’s reaching movement

(see Fig. 1C). The start of the receiving movement was defined as

the time point at which the velocity of the movement reached a

threshold of 0.01m/s. The start of the delivering movement was

defined as the time point at which the absolute velocity was 1)

below 0.3 m/s and 2) reached its first minimum after grasping the

cube.

The normality assumption for the reaction times was checked

using the Lilliefors test. For all conditions, the normality

assumption could not be rejected (all p.0.15). The reaction times

were analyzed using repeated measures ANOVA. For experiments

1–3, the ANOVA had one within-subject factor trial number (6

levels) and one between-subject factor experiment (3 levels for

experiments 1–3). For experiments 4-5, there where two within-

subject factors trial number (6 levels) and velocity profile (2 levels) and

one between-subject factor robot (2 levels). The Greenhouse-Geyser

correction was used to correct for violations of the sphericity

assumption whenever necessary (given as adj.p). Bonferroni

correction was used to account for multiple testing, if required,

by adjusting the p-value accordingly (given as adj.p). Further

analysis of trial-to-trial changes was done using a regression

approach followed by an ANOVA of the regression slopes. A p-

level of p#0.05 was considered significant.

Results

Experiment 1-3
We hypothesized that the receiver’s reaction in a handover task

is based on the evidence for a specific handover position. This

evidence can result 1) from prior expectation gained through

experience either from general experience or from previous

experimental trials and 2) from observing the hand movement of

the deliverer. To test this hypothesis we performed three different

experiments, in which two human participants performed six

consecutive handovers. The experiments are organized as follows:

N In experiment 1, deliverers performed the handover at a

natural position, which turned out to be close to the middle

between their body positions (position M in Fig. 2B)

confirming our previous study [13]. This experiment served

as baseline.

N In experiment 2 we tested whether a violation of the

expectation of a natural handover position would lead to

increased reaction times. This experiment also tested whether

subjects observe the deliverer’s trajectory in order to estimate

the handover position or whether they just react to movement

initiation, but then reach to the expected position without

taking into account the actual movement. The handover

position in this experiment was a predefined position located

20 cm to the right of the deliverer (Fig. 2B, position R).

N In experiment 3, the deliverer changed the handover position

for each trial (Fig. 2B, positions L, M, or R). Thus, in this

experiment, we investigated whether online adaptation seen as

decreasing reaction times in experiments 1 and 2 is caused by

using the preceding trial to build a new expectation of the

handover position.

The resulting mean reaction times for these three experiments

are shown in Fig. 2A. We analyzed the reaction times with

repeated measures ANOVA with one between-subjects factor

(experiment 1,2,3) and one within-subject factor (trial number 1-6).

Both main effects and their interaction became significant

(experiment F(2,43) = 26.1, p,0.0001; trial number

F(5,215) = 3.83, adj.p = 0.005; experiment x trial:

F(10,215) = 3.00, adj.p = 0.004). A post-hoc test (Bonferroni

corrected) revealed that the mean reaction time was significantly

smaller (both p,0.001) in experiment 1 (0.23s, SD 0.14s) than in 2

Figure 2. Reaction times in human-human handover tasks. A) Average reaction times for the six trials in the experiment 1–3. Error bars denote
standard error of the mean. The handover position in experiment 1 was determined by the deliverer and corresponded approximately to position M
in Fig. 2B. For experiment 2, the deliverer was instructed to use position R as handover position. In experiment 3, the handover position was
alternated every trial according to the letters shown above the bar plot. B) Setup showing the different handover positions used the experiments. In
experiment 1 the deliverers chose position M, in experiment 2 the deliverer was instructed to use position R and in experiment 3 the deliverer was
instructed to use the sequence R L M L R M as handover positions.
doi:10.1371/journal.pone.0064982.g002
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(0.53s, SD 0.22s) or 3 (0.43s, SD 0.17s). No difference in mean

reaction time was found between experiments 2 and 3 (p = 0.105).

From Fig. 2A it can be seen that reaction time decreased over

trials for experiments 1 and 2, but not for experiment 3. This

suggests that subjects were able to improve their performance in

experiments 1 and 2, but not in experiment 3. To further analyze

this trial dependence of reaction times, we used linear regression

with trial number as independent variable to fit a line to the

individual data, resulting in one slope per subject. We then

analyzed the slopes. As expected from Fig. 2A, a one-way

ANOVA with experiment as factor showed that slopes differed

significantly between experiments (F(2,43) = 7.5, p = 0.0016).

Mean slopes were -0.0210 s/trial (SD 0.0282), –0.0435 s/trial

(SD 0.0532) and 0.0148 s/trial (SD 0.0353) for the three

experiments respectively. Bonferroni-corrected t-tests showed that

for experiment 1 (adj.p = 0.028) and experiment 2 (adj.p = 0.012),

Figure 3. Reaction times in handover task with robot systems. A) Set up of the handover experiments with the humanoid robot system JAST
used in the experiment 4 (left) and the industrial robot system JAHIR used in the experiment 5 (right). B) Trajectory (projection on XY plane) and
absolute velocity plots for the minimum jerk velocity profile (left) and trapezoidal velocity profile (right). C) Reaction times during the six trials for the
experiment 4 (left) and experiment 5 (right). The first plot for each experiment shows the reaction times for the minimum jerk velocity profile and the
second plot for the trapezoid velocity profile.
doi:10.1371/journal.pone.0064982.g003
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but not experiment 3 (adj.p = 0.47), the mean slope was

significantly different from zero confirming the trial-to-trial

adaptation seen in Fig. 2A.

The averaged trajectories of the receivers’ reaching movements

for all experiments are displayed in Fig. 4 (first column). Note that

in order to visually compare the trajectories and their variability

we normalized all trajectories to a common start- and endpoint for

the figure. The average movement duration of the receiving

subjects was about 1 sec, as shown in Fig. 4 (first column, 2nd to 7th

row). Note also that even in the first trials, the receiver on average

started his movement before the deliverer reached the handover

position (Fig. 4). The averaged trajectories are straight and the

velocity profiles are bell shaped in all cases (Fig. 4). Inspection of

individual trajectories and velocity profiles showed that four

receiving movements (3.92%; three different subjects) in experi-

ment 2 and three movements in experiment 3 (3.85%; three

different subjects) showed properties of an online correction, such

as a longer declaration phase or more than one maximum [23,16].

This indicates that there was hardly any online correction during

the receiving movement in general. The absence of online

correction shows that the receivers could estimate the handover

position well enough from observing the trajectory to be able to

make straight movements to the correct handover position. This

suggests that the receiver’s reaction is triggered by the evidence of

the handover position.

The three experiments taken together show that violating the

expected natural handover position leads to increased reaction

times. The receiving subjects took into account the deliverer’s

movement trajectory, rather than just reacting to movement onset,

and recognized that the movement aimed at a new handover

position. The receiving movement was initiated only when the

future handover position was predicted correctly, as shown by the

almost missing online correction. Experiment 3 showed that online

adaptation of reaction times depends on a consistent handover

position over trials.

Experiment 4 and 5
The first experiment indicated that subjects could estimate the

timing of the handover in order to reach the expected handover

position approximately at the same time as the deliverer (see

velocity profiles in Fig. 4, first column). We assumed that motion

kinematics play a crucial role for this estimation. While the

experimental modification of the position of the handover could

easily be done in the realistic human-human experiment, changing

kinematic aspects of the handover was not possible in such a

setting. Thus, we replaced the human deliverer by two different

robotic systems (Fig. 3A), which allowed us to independently

manipulate the appearance of the robot and the movement

kinematics of the arm motion while keeping all other aspects of the

experiment constant. Varying the appearance of the delivering

agent was necessary, because we expected that appearance plays a

role in how much confidence subjects assigned to their prediction

of the handover position. We implemented two velocity profiles in

the movement of the robotic arm – a human inspired minimum

jerk velocity profile [16] and a trapezoidal velocity profile in joint

coordinates [17], which is widely used in industrial robots. The

latter provides industries with the opportunity to use a constant

maximum acceleration, which is very time efficient. The

experiments consisted thus of two conditions: handing over the

cubes a) using a minimum-jerk trajectory in spatial coordinates,

(displayed in Fig. 3B left side) and b) using a trapezoidal velocity

profile in joint coordinates (displayed in Fig. 3B right side). In

experiment 4, the humanoid robotic system JAST (Joint Action

Science Technology, see Fig. 3A, left side) described in [21] was

used. The industrial robot system JAHIR (Joint Action for

Humans and Industrial Robots, see Fig. 3A, right side) [22] was

used in experiment 5. Preliminary results of experiment 4 were

published in [11].

A repeated measures ANOVA of the reaction times in

experiments 4 and 5 showed significant effects of robot type

(humanoid or industrial) [F(1,23) = 14.21, p = 0.001] and velocity

profile [F(1,23) = 15.74, p,0.001], but no effect of trial or

interactions between the factors (Fig. 3C). The trapezoidal velocity

profile led to an increase of reaction time for the interaction with

both robotic partners. Reaction times for the industrial robot were

longer than for the humanoid robot.

The average reaction times for the humanoid robot (experiment

4) were 0.47s (SD = 0.25s) for the minimum jerk profile (Fig 3C,

experiment 4a) and 0.61s (SD = 0.27s) for the trapezoidal velocity

profile (Fig 3C, experiment 4b). Further, reaction times were

significantly longer than in experiment 1 for both the minimum

jerk (Bonferroni corrected t-test, adj.p ,0.005) and trapezoidal

velocity profile (Bonferroni corrected t-test, adj.p ,0.0005)

conditions. For the industrial robots, reaction times increased to

0.71s (SD = 0.27s) for the minimum jerk velocity profile (Fig. 3C

experiment 5a) and 0.85s (SD = 0.27s) for the trapezoidal velocity

profile (Fig. 3C experiment 5b). Again, reaction times in both the

minimum jerk and trapezoidal velocity conditions were signifi-

cantly longer for the industrial robot than for the human partner

as the deliverer (Bonferroni corrected t-test, both adj.p,0.0005).

These two experiments thus showed that reaction times depend

on the type of agent and on movement kinematics. A movement

profile similar to biological motion allowed faster reaction times

than a ‘robotic’ motion profile despite having exactly the same

durations and start and endpoints. Online adaptation was, on

average, not present for robotic agents as deliverer despite

constant handover positions over trials.

Model
The stereotypic behavior of the subjects in the different

experiments allows us to infer the basic mechanisms of the

handover tasks. We developed a probabilistic formulation

(framework, see Fig. 5: model’s principle structure) that is based

on the assumption that the receiver reacts as soon as the handover

position can be determined with a sufficient degree of confidence

(Fig. 5 ‘‘Decision’’). This requires predicting the handover position

as well as the reliability of the prediction (Fig. 5 ‘‘Causal

Inference’’). For this purpose the receiver has two sources of

information: the predicted handover position based on the

observed movement (hereafter called the ‘‘endpoint estimation’’)

and the assumed prior about the handover position. If the

endpoint estimation is compatible with the prior, the receiving

subject integrates the information to get a fast and accurate

prediction. If the endpoint estimation conflicts with the prior

expectation, the current prior is rejected and changed to a uniform

distribution. Cues for the endpoint estimation could be, e.g., the

velocity profile and trajectory of the delivering movement, which

can be compared to familiar trajectories to infer the possible

endpoint. To estimate the handover position and its evidence a

decision has to be made, whether both sources of information or

just the online estimation of the movement endpoint are taken into

account. This decision can be reached through a Bayesian

inference process (see Fig. 6) similar to causal inference [24] in

multimodal perception.

In the following we define the integration of the handover

position prior and the endpoint estimation as the natural handover

case C = N, while an unexpected handover position is defined as

the unnatural case C = UN. In our framework, an ideal observer is
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Figure 4. Average trajectory and velocity profiles. The first row shows the trajectories for receiver’s hand movement. The shaded area around
trajectory traces represents the standard deviation of the lateral component x. Row 2–7 shows the time-velocity plot for the hand movements of the
deliverer (black line) and the receiver (grey line) for the six trials of experiment 1–3.
doi:10.1371/journal.pone.0064982.g004

Figure 5. A scheme of the model. The model starts with the observation of the deliverer’s movement. The grey box comprises all components
relevant within a single handover trial. The receiver is estimating the endpoint of the movement. Causal inference on the prior handover position and
the endpoint estimation is used to calculate the probability of having a natural or unnatural handover. Depending on this result, the posterior
distribution is calculated and used to determine the most probable handover position. The decision to act and initiate the hand movement is made if
the handover position is determined with a sufficient level of evidence. After the handover the prior is updated by an adaptive learning rule.
doi:10.1371/journal.pone.0064982.g005
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facing the problem of inferring whether the endpoint estimation

and the prior should be integrated or if the prior should be

ignored. This inference is performed by means of statistical

decision theory [25]. Using Bayes’ rule we can calculate the

probabilities of a natural (C = N) or an unnatural (C = UN)

handover for a given handover position. These two probabilities

can simply be compared if we assume that the two possible

misclassification cases are treated equally.

Applying Bayes’ rule to calculate the probability of a natural or

an unnatural handover occurrence, leads to:

P(CjxHO,s)!P(sjC,xHO)P(C,xHO)

!P(sjC,xHO)P(xHOjC)P(C)
ð1Þ

where s represents the estimated handover position based on

sensory data, and xHOis the hypothesized handover position.

P(xHOjC) represents the prior belief about where a handover will

take place given a natural handover. P(C) represents the prior of

the handover case and can be interpreted as the trust of the

receiver that a natural (C = N) or unnatural (C = UN) handover will

occur. In this way, the inference whether a handover is natural or

not is now formulated as a combination of the endpoint estimation

P(sjC,xHO) and the handover position prior P(xHOjC). Since the

endpoint estimation is assumed to be independent from the

handover case, the formula for the endpoint estimation reduces to:

P(sjC~N,xHO)~P(sjC~UN,xHO)~P(sjxHO) ð2Þ

While all factors are assumed to be a Gaussian distribution, the

handover position prior for the unnatural case P(xHOjC~UN) it

is set to a uniform distribution. With our model assumptions

Equation 1 can now be formulated as:

P(C~NjxHO,s)!P(sjxHO)P(xHOjC~N)P(C~N)

P(C~UNjxHO,s)!P(sjxHO)P(C~UN)
ð3Þ

The posterior in equation 3 depends now on whether or not the

handover position prior improves the prediction from the endpoint

estimation.

Since the posterior probabilities P(C~NjxHO,x) and

P(C~UNjxHO,s) add to 1, we assume that the model reports a

natural handover when:

P C~NjxHO,sð Þw 1

2
ð4Þ

For more details about the ‘‘causal inference’’ process please

refer to Text S1. Thus, the estimation of a normal handover

amounts to a Bayesian model selection problem. It is mathemat-

ically similar to a Gaussian mixture model proposed for depth

perception [26].

Since we now know via Equation 4 whether there is a natural or

unnatural handover case, we can estimate the optimal handover

position. Since we assume all distributions to be Gaussians, we can

derive an analytic solution for the most likely handover position by

minimizing the mean squared error, which here is consistent with

the maximum-a-posteriori solution [24]. If the model reports a

natural handover case C = N the most likely handover position can

be calculated by:

Figure 6. Causal Inference model. In the handover experiments the receiver has to determine the handover position before initiating his hand
movement. For this purpose the receiver has to decide whether he combines the prior and the endpoint estimation of the deliverer’s movement (left
side), or whether he neglects information on the prior handover position (right side). Causal inference solves this problem by comparing the
probabilities of the two cases and deriving optimal predictions from this.
doi:10.1371/journal.pone.0064982.g006
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xN~ sTS{1
s zxT

HOS
{1
HO

� �
S{1

HOzS{1
s

� �{1

SN~ S{1
HOzS{1

s

� �{1
ð5Þ

where s and xHO are the expectation values for the endpoint

estimation and the handover position prior and Ss and SHO are

the corresponding covariance matrices.

In case the model reports an unnatural handover C = UN, the

most likely handover position reduces to:

xUN~s

SUN~Ss

ð6Þ

because the prior handover position is set to be uniformly

distributed (see Equation 3).

Using this formulation, we can infer the handover case and the

handover position, given a prior handover position and endpoint

estimation (Fig. 5 ‘‘Causal Inference’’).

The inference of having a natural or unnatural handover

(Equation 4) is continuously updated, because the uncertainty of

the endpoint estimation and its position represented by Ss(t) and s
are time dependent. This is due to the fact that longer observation

of the deliverer’s movements will increase the evidence for the

estimated endpoint. Therefore, the covariance matrix for the

endpoint estimation depends on the observation. Fig. S1 in Text

S1 shows a simulated development of the diagonal elements of the

covariance matrix Ss(t). During a handover, we assume the

covariance matrix of the handover position prior and the mean of

the prior to be constant (xHO,SHO~const). Note that in the

current model implementation the estimate is updated only until

the movement is initiated. To simulate occasional online

corrections, the updating could be continued until reaching the

handover position.

Fig. 7 displays the spatial development of the probability

distributions for prior and estimated endpoint, as well as the

product of the two distributions over the time of one handover

action. Fig. 7A shows the probability distributions for the case

where a handover takes place at a natural position. The

probability of having a natural handover P(C~NjxHO,s) is

displayed in the right column of Fig. 7. If the prior and estimated

distributions lies close to each other the probability of having a

natural handover increases. Fig. 7B shows the probability

distributions for an unnatural handover position, in which the

prior distribution does not correspond to the estimated endpoint

position. In this case the product of the probability distribution

leads to an inaccurate description of the handover position. Thus,

a natural handover becomes unlikely over the course of time.

Up to now, it is still unclear at which point in time the receiver

should decide to initiate his own movement. A simple decision rule

is to apply a criterion to the decision process [27]. In our case it is

reasonable for the receiver to react when the handover position is

determined to a sufficient degree of confidence. If this is not the

case, the receiver has to continue observing the deliverer’s

movement in order to increase the evidence (Fig. 5 ‘‘Decision’’).

Therefore, we introduce a decision value (DV) in the presented

model whose magnitude reflects this confidence. The decision

value is calculated as the mean of the variances along the

eigenvectors of the covariance matrix of the most likely handover

position. Which covariance matrix (SN or SUN ) has to be used

depends on the handover case reported by the causal inference

process (Equation 4). Equation 7 describes the DV, where ln is the

nth eigenvalue and variance of the covariance matrix (SN or SUN ).

The decision value reflects the level of evidence of the handover

position or how sharply the handover position is determined. In

the following we will call the DV the ‘‘averaged variance’’ of the

handover position:

DV~
1

n

Xn

i~1

live ð7Þ

The decision criterion is that the receiver will react when the

decision value falls below a threshold e. For the natural handover

case (N), the integration of the prior and endpoint estimation leads

to a faster decrease of the decision value than in an unnatural case,

where only the endpoint estimation delivers relevant information

(UN). Therefore, the criterion is reached faster than in the

unnatural case, allowing a faster initiation of the reaching

movement. The initiated movement is planned to reach the most

likely handover position xN or xUN , dependent on the determined

handover case.

So far the model is able to explain the general difference in

reaction times for natural and unnatural handover experiments.

The model does not yet explain the decrease of the reaction times

over the consecutive handover trials in experiment 1 and 2. The

adaptation in experiment 1 and 2 can be explained by learning

effects similar to [15,28,29] in which the learning or update of

priors is investigated. The experimentally observed rapid decrease

of reaction time indicates a rapid update of the prior’s mean. A fast

learning rate for the prior’s mean and much slower update of the

variance has also been observed in other experiments [28].

Therefore, to update the prior after each handover we

implemented a two-dimensional version of a previously proposed

adaptive Bayesian model [29] with different learning rates for the

prior’s mean and covariance matrix:

xHO,iz1~(1{bm)xHO,izbmx

SHO,iz1~(1{bS)SHO,izbS(xHO,i{x)(xHO,i{x)T
ð8Þ

where i denotes the i-th handover and bm,S5 0,1½ � are the update

rates for the prior’s mean xHO and covariance matrix SHO. x

represents the real handover position. In the scheme of our model

(Fig. 5) this takes place in ‘‘Adaptive Learning’’.

Model Validation
To validate the model’s predictions about the reaction times of

the receiver, we integrated the model in a simulation framework.

The simulations were performed using the same handover

parameters as in the experiments. The simulation used two planar

dimensions to reduce the complexity. Noisy minimum jerk

trajectories with endpoints corresponding to the experimental

condition and duration of 1 sec were generated and fed into the

framework. For the robot experiment the duration of the

trajectories was adjusted to 1.2 sec to match the experiments.

For the robot experiments 4b and 5b, two-dimensional projections

of the experimental robot trajectories were used.

The model was able to describe the average behavior seen in

our experiments. The implementation of the model for the

simulation required several assumptions. Since we do not know

exactly which cues humans observe when estimating the endpoint

of movements, the implementation of endpoint estimation in the

simulation is a simplified assumption of how this might be

achieved in humans.
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Figure 7. Development of the probability distributions during a handover. A) Natural handover case: The figure displays the probability
distributions of the prior handover position (first column), the estimated endpoint of the deliverer’s movement (second column) and the product of
the prior and estimate (third column) in spatial coordinates. The x is the real handover position; the line towards the x indicates the part of the
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For the simulation we needed to adjust several parameters of the

model to match the size of the reaction times and adaptation:

N P(C~N): the prior probability of having a natural handover,

N e: the threshold of the decision value,

N bm,bS: the learning rates for the mean and covariance of the

prior distribution of the handover position.

The mean and the covariance matrix for the natural-handover

prior were calculated from handover position distributions

collected in [13]. All parameters where adjusted at the beginning

of the simulation and stayed constant in all experiments. Details

about the implementation of the model and the values of the

parameters are given in Text S1.

The simulation successfully captured the differences in reaction

times between the experiments as well as the tendency to adapt.

Fig. 8 recapitulates the simulated reaction times for all exper-

iments.

Experiment 1 showed the shortest reactions times of all

experiments together with a decrease in reaction time over trials.

The simulation using the same handover positions as in

experiment 1 was able to reproduce short reaction times with a

decrease over trials (Fig. 8A left). The integration of prior

handover position and estimated movement endpoint led to a

more precise determination of the most probable handover

position and thus the decision value threshold was reached fast.

Because of the very small error between the handover-position

prior and the actual handover position, there was a decrease of the

covariance matrix of the handover position prior. Thus, in

subsequent handovers the threshold of the decision value was

reached faster.

The simulation of experiment 2 (handovers displaced 20 cm to

the right) resulted in longer reaction times than for experiment 1

(Fig. 8A middle). The first handover was recognized to occur at an

unnatural position so that a uniform prior was used. Thus, the

most likely handover position was determined only through

endpoint estimation and remained uncertain for a longer

observation period. Therefore, the threshold of the decision value

was reached much slower, which led to a longer reaction time than

for the first handover trial in simulation 1. Because of the large

error between the handover-position prior and the actual

handover position, the covariance matrix of the handover-position

prior increased and the mean drifted towards the handover

position. Due to the updated prior the following handovers to the

same positions are classified as compatible with the new prior,

which then leads to a decrease of the reaction times over the trials.

A simulation of experiment 3 with randomized handover

positions leads to an increase in reaction time compared to

simulation 1 (Fig. 8A right). The simulated reaction times show

interesting similarities to the measured reaction times. Like in

simulation 2 the first handover was classified as an unnatural

handover, due to the mismatch of the handover position prior and

the estimated movement endpoint. The large error between the

handover-position prior and the actual handover position led to an

increase of the handover-position prior’s covariance matrix and a

shift of its mean. The updated covariance matrix was large enough

to lead to classification of the subsequent handover to a new

position with a distance of 40 cm to the previous one as ‘natural’

handover. Thus, the prior is used to determine the handover

position, which leads to decrease in reaction time for the second

handover. All subsequent handovers are also classified as natural

handovers. Therefore, update of the handover-position prior’s

mean and covariance matrix according to the different handover

positions determines the length of the simulated reaction times: a

large error between the current handover position and the prior

leads to a large covariance matrix and thus to longer reaction time

for the subsequent handover.

In the robot experiments, where the handover position was

similar to experiment 1, we found longer reaction times for the

humanoid robot using minimum jerk trajectories than for the

human-human experiments. This was captured by the simulations

without the need to change parameters, because it was a direct

consequence of the longer duration of the robot trajectories (1.2 s)

as compared to the human trajectories (approx. 1 sec). For an

accurate estimation of movement endpoint, the time for observing

a movement with longer duration has to be extended, because its

kinematic features, e.g. the acceleration, are not as distinct as for

faster movements. Furthermore, different reaction times were

found between a robot system using a minimum-jerk and an

industrial velocity profile (see Fig. 8). Interestingly, the model also

predicts different reaction times, because curved trajectories, such

as the trajectories generated by the trapezoidal velocity profile,

lead initially to wrong endpoint estimates. Therefore the model

predicts an unnatural handover for a longer observation period,

even if the curved trajectory is ending in a natural handover

position. This results in longer reaction times for the trapezoidal

velocity profile (Fig. 8B, simulations 4b,5b). In contrast, a

minimum-jerk trajectory allows a correct estimation of the

movement endpoint, which results in faster classification for

handover to a natural position and thus a faster reaction.

However, although our model predicts an adaptation for robot

experiments, we did on average not find statistically significant

adaptation in the empirical data. In the model the adaption can be

turned off by setting the learning rates for the prior of the

handover position to bS,m~0. Furthermore, the effect on the robot

type (longer reaction times for the industrial robot system) is not

captured by the model, but can be simulated by adjusting the

decision value threshold to a lower level, i.e., requiring higher

accuracy, for the industrial robot system (cf. Fig. 8B, simulation

5a,b).

Discussion

The present investigation of manual interaction demonstrates

that the mechanisms underlying handover coordination between

human subjects can be understood as an adaptive probabilistic

deliverer’s handover trajectory, which at this time point is observed from the receiver. The rows in the figure display the development in time during
one handover action. The time development of the probability P(C = N|s,xHO) that there will be a natural handover is shown in the column on the right
side. During the handover, the prior probability distribution (first column) stays constant. At the beginning it is not possible to accurately estimate the
movement endpoint, which results in a very large uncertainty. While observing more of the trajectory the estimated probability distribution becomes
sharper and more accurate. If the prior and estimated distribution lie close together P(C = N|s,xHO) converges to 1. B) Unnatural handover case: In this
case the prior probability distribution does not match the real handover position (first column). A longer observation allows a more accurate estimate
of the movement endpoint (second column). The product of both probability distributions leads to a discrepancy of the estimated handover position
(maximum of the probability distribution in column 3) and the real handover position (marked as x). Because of the difference in the estimated
handover position and the prior distributions the posterior probability P(C = N|s,xHO) converges to 0.
doi:10.1371/journal.pone.0064982.g007
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optimization process. We demonstrated that in human-human

handovers at a natural handover position, the receiver’s reaction

times decreased systematically over the course of six trials (see Fig.

2A experiment 1). This decrease also holds if the position of the

handover was unexpected in the first trial, but stayed constant over

the 5 consecutive trials (see Fig. 2A experiment 2). However, when

the handover position changed in every trial, no adaptation of

reaction times could be observed (see Fig. 2A experiment 3).

We explain these results with a Bayesian observer model, in

which two sources of information are available: a prediction about

the handover position, which is estimated over time from

observing the other’s hand movement and a-priori experience

about the handover position. Furthermore, we assume that a

causal inference process is used to decide whether to fuse this

information optimally or to reject the prior and use only the

estimated endpoint of the receiver’s movement. The decision to

move depends on the reliability of the estimate. The decrease in

reaction time is explained by rapid adaptation of the handover

prior.

To further investigate the influence of the endpoint estimation

on the reaction time of subjects, we replaced the human deliverer

by robot systems (see Fig. 3A). By using robot systems, we were

able to measure the reaction times for different movements of the

deliverer. We found that the reaction times depend on the type of

Figure 8. Simulated reaction times for the handover experiments. A) Simulation of the human-human experiments. Simulated reaction times
within the framework outlined in Fig. 5 shows similar behaviors as the reaction times in the human-human handover experiments. Simulation 1 with
natural handovers shows the relatively short reaction times compared to the other experiments and the decrease of the reaction times over the trials.
Simulation 2 shows reaction times with handovers to a position 20 cm to the right. This leads to longer reaction times compared to natural handover
reaction times in general but also shows a decrease of the reaction times over trials. Simulation 3 with handovers at random positions shows also
longer reaction times compared to Simulation 1 but no decrease over trials. The simulation results are qualitatively consistent with the experimental
measurements. B) Simulation of the robot-human experiments. The averaged simulation reaction times of the robot experiments are compared with
the averaged reaction times from the experiments. In simulation 5 the threshold of the decision value is decreased, i.e., the prediction must be more
precise for the receiver to initiate his movement. This leads to longer reaction times in general. The simulations with trajectories generated by
trapezoidal velocity profiles (Simulation 4b and 5b) leads to increased reaction times because the estimated endpoint is not accurate for a longer
observation period.
doi:10.1371/journal.pone.0064982.g008
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robot and on the used velocity profile but not on the trials. For

both robots, reaction times of receivers were longer if the robots

moved with an artificial trapezoidal velocity profile versus a quasi-

biological minimum jerk velocity profile. This can be explained by

an improved capability to predict the movement endpoint when

the handover movement is performed in a familiar manner in

respect to appearance and movement. The suggested principles

were formulated in a probabilistic framework, which combines

causal inference [24], decision [27] and adaptation processes

[28,29]. Simulations of the experiments could successfully capture

the key features of the experimental results.

The comparison of our findings in the human and robot

experiments indicates that certain aspects of human interaction

behavior are highly dependent on our expectations regarding the

co-actor. Hence, our work supports the claim that human

interaction behavior can hardly be understood only from

experiments involving a single human participant, but that the

human partner is essential to uncover the mechanisms underlying

human joint action [30].

The importance of movement prediction
Many behavioral tasks have time constrains, such as catching a

ball in a sports game or turning the steering wheel while driving a

car. Being successful in these tasks requires generating predictions

about the environment, based on sensory information. While a

long observation of the environment reduces the uncertainty of the

prediction, it also increases the motor variance, because less time is

left for the action. Humans are therefore assumed to trade-off

sensory and movement uncertainties in a statistically optimal way

[31].

During a dyadic interaction, the capacity to quickly register the

intention of a teammate and react to it before his/her action

sequence is completed is essential for a fluent team performance

[32]. Therefore, to dynamically adapt their movements to one

another, the co-workers need to take their partner’s movements

into account. It has been shown, that the mere knowledge about

the upcoming movement of the partner is sufficient to excite one’s

own motor system, because it is more advantageous to anticipate

rather than react to the other’s actions [33]. While watching the

actions of others, even human eye movements are predictive

rather than reactive [34]. Accordingly, humans often can predict

how a movement will end just from watching its initiation. For

instance, it has been reported that basketball players are able to

determine whether another player is about to throw the ball or just

mimic a throw [35,36]. This predictive capacity may also be the

reason for our ability to perform during interaction scenarios

different movements simultaneously instead of successively [12].

In our experiments the receiver always reacted before the

deliverer reached the end position of his movement (see Fig. 4).

This indicates that action planning integrates predictions about the

actions of the interacting partner. Such prediction of the handover

position is necessarily based upon observing the initial kinematics

of the deliverer, such as velocity and position of his hand. Despite

ample evidence for the human ability to predict the outcomes of

other people’s movements [35,37] and several computational

theories of how this could be achieved (e.g., [38,39]), detailed

models of how such theoretical mechanisms may operate together

to yield motor action for concrete examples involving action

observation are rare (for an exception see [40]). In our

probabilistic framework we used the observation of the noisy

hand trajectory to estimate the movement endpoint. It is likely that

humans also use additional cues as predictors for the movement

endpoint, e.g., observation of the multi joint movements of the

arm and body or of predictive gaze shifts [34]. However, not only

the estimation of the movement endpoint, but also the reliability of

this estimation is important [41]. This reliability strongly depends

on the amount of time that is available for the observation of the

movement. A longer observation time leads to a more reliable

estimate. In our simulation we solved the problem of time-

dependent estimation reliability by a lookup table built from

Monte-Carlo simulations (for details see Text S1), which assigns

reliability depending on the proportion of the observed trajectory.

While it is not clear how the brain solves the problem of time-

dependent reliability, it could in principle work as in the model.

Accordingly, the reliability would be learned from experience and

be assigned depending on the current estimate of trajectory length.

How prior knowledge influences the effectiveness of the
handover

Several studies have convincingly demonstrated that humans try

to combine information from different cues in an optimal way to

minimize the uncertainty of their predictions and plan their

actions accordingly [18,14,42]. We suppose that the actions of the

receiver in our experiments are also based on such a strategy. The

receiver in our experiments uses the combination of two cues for

estimating the most likely handover position. The first is a prior for

the handover position, which is acquired, for example, during

everyday interaction. The second source of information is the

estimated movement endpoint, derived from the perceived

movement kinematics of the deliverer. The combination of two

cues from different modalities leads to faster and more accurate

reactions than a cue in only one modality, e.g. as in case of

saccades when visual and auditory stimuli are jointly presented as

a target [43].

Our study has shown that the receivers’ reaction times in the

first experiment are the fastest compared to all other experiments.

We suppose that in the first experiment, where the handover

always occurs in the middle between the subjects, the expected

(natural) handover-position (represented by the prior distribution)

and the endpoint estimation from observing the deliverer’s

movement are integrated. The reliability of the estimated

handover position thus becomes a function of the reliability of

the prior and of the observation time. The combination of the two

cues allows the receiver to estimate the most likely handover

position with a sufficient degree of confidence within a relatively

small observation period, thus allowing fast reactions (see Fig. 7A).

However, combining cues does not always make sense. Two

cues may either have a common cause, in which they should be

integrated, or have different, independent causes, in which case

they should be processed separately [44]. In the present case, the

prior distribution may be appropriate, if the handover is planned

at a natural position, but should be rejected, if, for some reason,

the deliverer’s movement aims at a completely different location.

The significantly longer reaction time for displaced handover

positions in the first trial of the second experiment or in the third

experiment suggested that the prior about the handover position

and the estimated endpoint of the movement were treated

separately. A combination of this prior and estimation would

have led to an incorrect prediction because of the big discrepancy

between the prior and the estimated endpoint (see Fig. 7B). We

suggest that a statistical decision process, similar to causal

inference [24], infers whether the current action aims to a position

consistent with the prior, or if it is directed to an unexpected

position. In the latter case the prior is rejected and the estimated

endpoint of the receiver’s movement is used. Hence a longer

observation period is required to achieve a sufficient degree of

confidence to elicit an action. The causal inference process in our

model shows similarities to the responsibility estimation in the
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MOSAIC model [38,45] except that in our case only a single

forward model is applied and the selection determines whether

prior experience is applicable (handover position prior) or not

(uniform prior).

It has been shown that the prior expectation frequently is

acquired over the course of experiments [15,28,29]. An update of

prior expectation has also been proposed to explain why reaction

times to the visual part of an audiovisual stimuli decreases, if

previous audio and visual stimuli were congruent [46]. In our

experiments 1 and 2, where the handover took always place at the

same position, we observed a decrease of reaction times over trials.

In contrast reaction times remained high when the handover

positions where randomized (experiment 3). To explain this

finding, we suggest that the receiver updates the handover-position

prior by taking into account the error between the current

handover-position prior and the real handover position. A small

error leads to a small shift of the prior and to a decrease of its

uncertainty, whereas a large error leads to a large shift towards the

real handover position and an increase of its uncertainty.

Consequently, successive consistent handover positions will lead

to a decrease in reaction time as found experimentally.

In the first experiment the handovers occurred close to the prior

handover position. Therefore the error was small even for the first

trial. In subsequent handovers this resulted in a more accurate

prior. In the second experiment the handover position was always

displaced and the large difference between actual handover

position and prior led to longer reaction times and an increased

variance. In the subsequent trials the deviation decreased, since

the handover position did not change. This allowed the prior to

become more accurate and be combined with the estimated

handover position again. Similar to experiment 1, this led to a

faster estimation of the handover position with a sufficient degree

of confidence, and therefore to shorter reaction times. In the third

experiment, the changing handover positions led to large errors

between the prior and the real handover positions. The large error

increased the uncertainty about the prior, shifted the prior towards

the last handover position, and precluded the fusion of prior and

the estimated handover position. Therefore the lacking adaptation

in experiment 3 can be explained as a result of the errors between

the prior and the real handover position and the attempt to

compensate for this error by readjusting the prior.

In cognitive science a ‘‘shared task representation’’ has been

suggested as basis for joint action tasks. Such a representation can

be used to predict the needs of the co-actor [2]. Similar to our

findings in the handover experiments, a ‘‘shared task representa-

tion’’ might also contain several prior expectations concerning the

co-actor, which are updated during the joint action. Therefore,

extending the present modeling framework to include the actions

of both participants could build the basis for modeling more

complex joint action tasks.

How a sufficient level of evidence triggers the reaction
In interaction tasks people have to face the problem of inferring

the action of a co-actor based on uncertain observations, e.g. when

inferring the co-actor’s goals [40]. But observations change over

time and influence the decision when to make an action. We

hypothesize that the receiver in a handover tasks reacts after

acquiring sufficient evidence about the handover position. Such a

strategy would allow the receiver to react with a movement

straight towards the expected handover position without correc-

tions during the movement. The experimental results support our

hypothesis as we found only in very few cases evidence for online

correction in the recorded arm movement trajectories and velocity

profiles. Typical features of trajectories, which have been corrected

online, are increased movement duration, lower peak velocity, and

a longer deceleration phase [23]. Furthermore, the bell-shaped

velocity profile is no longer preserved. Instead of a single global

velocity maximum, there can be two or more local maxima in the

velocity profile [16]. Such features were generally not observed in

our experiments (see Results, Fig. 4, and Fig. S2 in Text S1 for an

exception).

An alternative strategy, where the receiver starts his movement

as fast as possible towards the prior handover position would

require online correction of the movement to reach unexpected

handover positions [47]. This in turn would increase the

movement duration and length, hence decreasing the efficiency

and fluency in an interaction. Furthermore, during an interaction

such online corrections could be confusing for the counterpart.

Thus, our experimental results indicate that the strategy in

interaction scenarios is optimized towards efficiency and fluency.

In our model, we use an empirically derived fixed criterion on a

value related to the confidence for the most likely handover

position. The exact formulation of the value related to the

evidence for the handover position is not critical for the model’s

principle behavior. We chose the ‘averaged variance’ (equation 7),

i.e. the ‘total variance’ divided by the number of dimensions, of the

handover position distribution. This choice is supported by the

close match of simulations and experimental results. Alternatively,

the determinant of the covariance matrix of the handover position

distribution could be used, which is called ‘generalized variance’,

and which is the product of the eigenvalues.

A possible alternative for the decision to move would be a ‘‘race

model’’ [27,48]. For example, such a race model could implement

two decision values, one based on the estimated handover position

using prior experience, the other one without (uniform prior).

However, since the variance (averaged or generalized) of a fused

estimate is always smaller than that using the uniform prior, such a

model would favor the integration of handover position prior and

endpoint estimation in all handover cases, even when the endpoint

estimation and the handover position prior do not match.

Therefore, this mechanism would predict short reaction times

and online corrections for handover to unexpected positions in

contrast to our experimental results.

Effect of movement kinematics, appearance and joint
configuration on the effectiveness of handover

We hypothesized that short reaction times are mainly a result of

the ability to estimate the partner’s actions both temporally and

spatially. To test how this ability depends on biological movements

and agent appearance we implemented two different velocity

profiles, a typical robotic motion profile (trapezoidal joint

velocity)[17] and a human-like minimum-jerk profile [16], in

two different robotic systems: a mechanoid (JAHIR)[22] and a

humanoid robot (JAST)[21], which replaced the deliverer. The

experiments showed that reaction times were significantly longer

for handovers with the trapezoidal velocity profile than with the

minimum jerk velocity profile. Furthermore, no adaption in the

reaction times could be observed suggesting that subjects were not

updating their handover-position prior. These effects are observed

in both robot systems. The trapezoidal velocity profile with its

sudden transition from zero to full speed and vice versa makes it

difficult to estimate the endpoint and duration of the movement

from partial observation. Our results are consistent with previous

studies on motor interference showing that observation of a

humanoid robot performing incongruent movements based on

prerecording of a human experimenter has a stronger influence on

the own movement (higher variance on the movement trajectory)

than watching the same robot move with a constant-velocity
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profile [49,50]. Further studies have shown that observation of

biological, but not non-biological dot motion caused motor

interference [51,52]. While the differences in reaction times

according to the velocity profiles is consistent with the predictions

of the model, the question why there is no adaption over trials is

unclear. We suppose that the subjects’ lack of experience with

robot system might have prevented a successful update of the

handover position prior and thus adaptation.

In the present study, the presence of humanoid features in the

robotic deliverer had a positive effect on prediction of its

movement, since reaction times were shorter for the humanoid

robot (JAST) [21] than for the industrial robot (JAHIR) [22]

independently of the velocity profile. However, we assume that it is

not so much the appearance but rather similar motility that

accelerated interaction. This assumption is supported by our

recent study on motor interference using the same robots [53].

The necessity of the morphological similarity of observed agent for

easy prediction of its actions might be caused by the "simulation

theory". This theory states that individuals recognize each other’s

intentions and predict each other’s actions by imagining them-

selves in the other’s position, and simulating mental states (beliefs,

desires, intentions) that they would possess if they were in the

other’s ’shoes’ [54,55]. This procedure reduces the possible range

of actors, whose intentions the observer might be able to simulate,

since for simulation the observed actor should have the same

motor constraints and morphological features as the observer (the

"like me" hypothesis [56,53]). Since this assumption is to some

extent true in a humanoid robot but not an industrial one, the

simulation procedure might be effective for attributing goals to

motor actions of JAST, but not of JAHIR. Evidence supporting

this assumption is also presented in a recent study using agents

with a different degree of human likeness (computer, functional

robot, humanoid robot, and human). The study has shown that

the more anthropomorphic a machine looks like, the more the user

will expect it to behave like a human and ascribe mental states to it

[57].

Conclusion

The present investigation of dyadic interaction is a first attempt

to better understand the mechanisms of coordinating sequences of

actions between human subjects. Based on the results of all five

handover experiments, we suggest that the receiver’s behavior in

handover tasks can be explained by different interacting mecha-

nisms. From observation of the movement kinematics during an

attempted handover the endpoint of the movement is estimated.

The estimated endpoint becomes more precise with the increasing

duration of the observation, i.e., evidence for a specific handover

position is accumulated. This estimated endpoint is combined

optimally with a prior for the handover position, which is acquired

during everyday interaction. Comparable to causal inference in

multimodal perception, estimate and prior are either fused or the

prior is rejected depending on the difference between both. A

fusion of prior handover position and estimated endpoint results in

a more precise prediction of the handover position. The reaction

time of the receiver depends on the evidence about the predicted

handover position. Thus, a fusion of prior handover position and

estimated endpoint results in shorter reaction times. The

handover-position prior is iteratively updated after each handover,

which allows adaption to the deliverer.

The similarity of simulation results and experimental data

suggests that simple interaction behavior such as handover can be

well explained by Bayesian estimation and decision processes

combining prior knowledge and sensory input. Our work also

shows that the coordination of actions between humans needs to

be investigated in experiments involving human-human interac-

tion to understand its underlying principles. In other words, even

though the use of a robotic system as interaction partner can be

helpful experimentally (see our experiments 4 and 5), it cannot

replace investigations with a human co-actor.

Supporting Information

Text S1 Detailed description of the model implementation and

example of a movement with online correction.

(DOC)
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