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Abstract

The standard referring-expression generation task involves creating stand-alone descriptions

intended solely to distinguish a target object from its context. However, when an artificial system

refers to objects in the course of interactive, embodied dialogue with a human partner, this is a

very different setting: the references found in situated dialogue are able to take into account

aspects of the physical, interactive, and task-level context, and are therefore unlike those found in

corpora of stand-alone references. Also, the dominant method of evaluating generated references

involves measuring corpus similarity. In an interactive context, though, other extrinsic measures

such as task success and user preference are more relevant—and numerous studies have

repeatedly found little or no correlation between such extrinsic metrics and the predictions of

commonly used corpus-similarity metrics.

To explore these issues, we introduce a humanoid robot designed to co-operate with a

human partner on a joint construction task. We then describe the context-sensitive

reference-generation algorithm that was implemented for use on this robot, which was inspired by

the referring phenomena found in the Joint Communication Task corpus of human-human joint

construction dialogues. The context-sensitive algorithm was evaluated through two user studies

comparing it to a baseline algorithm, using a combination of objective performance measures and

subjective user satisfaction scores. In both studies, the objective task performance and dialogue

quality were found to be the same for both versions of the system; however, in both cases, the

context-sensitive system scored more highly on subjective measures of interaction quality.

Keywords: referring expressions in interactive settings; task-based evaluation; human-robot

dialogue
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Task-based evaluation of context-sensitive referring expressions in human-robot dialogue

The generation of referring expressions (GRE) is one of the most clearly defined sub-tasks

in natural language generation (NLG), and is therefore one of the tasks that has received the most

attention. The classic GRE task involves creating an initial, stand-alone description intended

solely to distinguish the target from any “distractors” in the area, and the dominant method of

evaluating such systems involves measuring the similarity of the generated references to those

drawn from a suitable corpus of human-generated descriptions.

In this paper, we consider referring expressions in the context of joint action in a shared

workspace, where the dialogue takes place between a human and a humanoid robot. The robot

was designed to co-operate with a human partner on a joint construction task, so the referring

expressions which it generates take account of the discourse and physical context in which it

operates, drawing inspiration from the referring phenomena found in a corpus of human-human

dialogues in a similar joint construction scenario.

In this interactive, embodied context, the most important measures of success are extrinsic

measures such as task success and user subjective opinions—and it is known that the predictions

of the typical intrinsic corpus-based evaluation strategies do not tend to correlate with those of

any extrinsic measures. We therefore carried out a task-based evaluation of our context-sensitive

algorithm, comparing it with a baseline algorithm in two user studies using a combination of

objective performance measures and subjective user satisfaction measures. In both studies, the

objective task performance and dialogue quality were found to be the same for both versions of

the system; however, in both cases, the context-sensitive system tended to score more highly on

subjective measures of the robot’s quality as a conversational partner.

Background

The work described in this paper draws on research and techniques from three main areas:

the use of different reference types in human-human dialogue, the automatic generation of

referring expressions, and the evaluation of automatically generated output.
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Reference types in human-human dialogue

The question of how speakers select appropriate referring expressions in human-human

dialogue has been extensively studied in linguistics, and several models have been proposed.

Accessibility models (Ariel, 1991) assume that mental representations have varying levels of

accessibility to addressees, and that speakers choose among referring expressions to mark these

differences. For example, fully specified indefinite descriptions correspond to low accessibility

entities—that is, entities that are deemed to be completely unfamiliar to the audience—while

definite descriptions, deictic expressions, and pronouns correspond to increasing levels of

assumed accessibility.

A similar model is the Givenness Hierarchy of Gundel, Hedberg, and Zacharski (1993),

which also assumes that different determiners and pronominal forms conventionally signal

different cognitive statuses in the mind of the addressee. The hierarchy ranges from In Focus (the

highest status, for which a pronoun such as “it” is appropriate) through Type Identifiable (the

lowest status, for which the only possible reference type is an indefinite noun phrase such as “a

N”). Every status in the hierarchy entails all lower statuses, meaning that a referent with a

particular status can be referred to with the form appropriate to that status or with any lower form.

However, pragmatic concerns such as the Maxim of Quantity (Grice, 1975) constrain the

reference types, since using a lower-status reference for a high-status object may have unwanted

conversational implicatures.

Automatically generating referring expressions

The classic algorithm in GRE—and the one on which most subsequent implementations are

based—is the well-known incremental algorithm of Dale and Reiter (1995), which selects a set of

attributes of a target object to single it out from a set of distractor objects. The algorithm

incrementally selects attributes of the object that at least one object from the distractor set does

not share, using a predefined, domain-specific preference ordering to ensure that the most relevant

attributes are always included. Each selected attribute is then added to the referring expression,
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and the objects without the attribute are removed from the distractor set. This process is executed

repeatedly until only the target object remains in the distractor set. This algorithm was inspired by

psycholinguistic findings on how humans tend to refer to objects.

The basic incremental algorithm makes several assumptions: (a) that the only common

ground between the producer of the referring expression and the audience is a shared knowledge

of the features of all of the objects in the world, (b) that the only goal of the interaction is to

indicate the target object to the hearer, and (c) that the speaker has a complete model of the

listener’s knowledge. Under these assumptions, the only way to refer to the target successfully is

to create a fully-specified linguistic expression.

However, as noted by Krahmer (2010), among others, there is ample evidence from

psycholinguistics that all of these assumptions are unrealistic when it comes to real-world

reference (cf. Clark & Bangerter, 2004). It is known, for example, that speakers tend to adapt to

their conversational partners (Clark & Wilkes-Gibbs, 1986; Garrod & Pickering, 2009), and in

the preceding section we have presented two well-known models of how this adaptation is based

on cognitive status. However, the extent to which speakers are able to model the intended

recipient fully is not entirely clear (e.g., Bard & Aylett, 2004; Horton & Keysar, 1996). Also,

the physical and discourse context in which the reference takes place has a significant effect on its

features: for example, when people work together on a joint task, the referring expressions that

they use appear to take into account the task context (Bard, Hill, & Foster, 2008). Linguistic and

cultural effects also have an impact—e.g., van der Sluis and Luz (2011) found many significant

differences among the attributes selected by individuals from different linguistic groups.

Since the initial description of the incremental algorithm, a number of people have therefore

proposed extensions to take into account various notions of salience and context to deal with the

fact that, in practice, the speaker and the hearer quite often have more context in common.

Krahmer and Theune (2002) implemented an extension which takes previous context into

account, and found that human subjects preferred the extended version when shown written texts.

Kelleher and Kruijff (2006) implemented an algorithm to generate linguistic spatial referring
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expressions in situated dialogue, and extended the incremental algorithm in two ways: by adding

a notion of visual and discourse salience, and by constructing a context model based on a set of

reduced scene models rather than on a single, complex, exhaustive model.

Other studies have added the ability to include non-verbal behaviours into the specification

of the referring expressions. Van der Sluis (2005), for example, presented a graph-based

algorithm that creates multimodal referring acts including deictic pointing by assigning costs to

the verbal and non-verbal components of referring expressions and then selecting the combination

with minimum cost. Similarly, Kranstedt and Wachsmuth (2005) extended the incremental

algorithm by specifying two types of pointing, object-pointing and region-pointing, and gathered

data from empirical studies (Kranstedt, Lücking, Pfeiffer, Rieser, & Wachsmuth, 2006) to

determine the normal use of pointing in multimodal reference. Staudte and Crocker (2009)

investigated the relationship between gaze and referring expressions in human-robot dialogues,

and suggest that gaze is a major factor in the salience of objects in a visual scene, and therefore

can be integrated into the production of referring expressions in systems where robot gaze is

possible.

Evaluating generated output

Evaluating the quality of a generation system is known to be a difficult task: as pointed out

by Mellish and Dale (1998), the issues include defining the input and output, choosing what to

measure, selecting a control or baseline for comparison, obtaining adequate training or test data,

and dealing with disagreement of human judges. All of these problems are more serious than the

corresponding problems in evaluating, for example, a natural-language understanding system:

generation is a more open-ended task, so the criteria for success are therefore more difficult to

define.

Taking into account these difficulties, a range of techniques have been used to examine the

quality of generated output. The most technically demanding form of evaluation—but also in

many ways the most convincing—is a task-based, comparative study: that is, demonstrating that a
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complete system achieves its goals significantly better when the advanced generation components

are enabled than when they are not (Reiter, 2011). This sort of study has been used to show, for

example, that tailoring descriptions to a user’s preferences affected their selection behaviour

(Carenini & Moore, 2006), and that users learned more from object descriptions that employed

aggregation (Karasimos & Isard, 2004).

An alternative, somewhat less demanding form of human evaluation is to elicit subjective

opinions: asking human judges either to assess the quality of the generated output directly, or to

respond to a questionnaire asking for their subjective experience of the whole system. This

technique may be employed alongside a task-based evaluation, as in the two studies mentioned

above; it may also be used on its own, as was done for example by Binsted, Pain, and Ritchie

(1997), who asked children to evaluate generated jokes, and Belz and Reiter (2006), who had

experts and laypeople judge the quality of generated weather forecasts. Note that, while there is

often a correlation, users’ subjective judgements of an interaction do not always agree with task

performance (e.g., Nielsen & Levy, 1994; Oviatt, 1999).

In addition to the human-based techniques listed above, another popular form of evaluation

is to assess the quality of generated output directly using various automated metrics. The most

common form of automated evaluation makes use of a corpus of target outputs: the generated

output is then compared against the corpus using techniques such as cross-validation (e.g., White,

2004). This style of evaluation can be used to test whether a proposed model behaves like the

human speakers it is intended to imitate; it can also be used to predict the interactive performance

of a generation system without needing to recruit participants for a task-based or

subjective-judgement study. In the former case, it suffices to compare the generated output against

the corpus; however, in the latter case, it is necessary to find metrics that not only can be

computed automatically, but that also correlate with human judgements of quality.

The danger in relying purely on corpus-based measures in an interactive setting is that they

are known to penalise output that differs in any way from the exact corpus examples; this tends to

favour “average” outputs that do not make use of the full range of generation possibilities, and
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that are often not preferred by actual users in practice. For example, Belz and Reiter (2006)

compared a set of NLG systems using a wide range of intrinsic and extrinsic metrics: they found

that the correlation was high within each of the two classes of metrics, but that there was almost

no relationship between the two classes. Similarly, when Foster (2008) compared methods for

selecting the non-verbal behaviour for an automated talking head, the majority-selection method

(which always chose the most frequent option) was strongly disliked by the human judges, but

scored the highest on all of the corpus-similarity metrics.

Evaluating reference generation. When it comes to the evaluation of

reference-generation systems, most studies have concentrated on maximising the human-likeness

of the generated references (see Krahmer & van Deemter, 2012), most often in a simplified

domain where the shared information between speaker and hearer is small, and successful

reference is the primary—or only—goal; this mirrors the underlying assumptions of the

incremental algorithm mentioned above. For example, corpus-based similarity was an important

criterion for two recent shared-task evaluation challenges in the area of reference generation: the

TUNA challenges (Gatt & Belz, 2010), which required systems to generate stand-alone

descriptions of individual furniture items or people from a scene containing multiple such entities,

and the GREC challenge (Belz, Kow, Viethen, & Gatt, 2010), which addressed the task of

generating appropriate references in the context of Wikipedia articles. Several recent evaluations

of GRE systems have employed similar corpus-based measures of human-likeness (e.g., van der

Sluis & Luz, 2011; Viethen, Dale, & Guhe, 2011). The classic Dale and Reiter (1995)

incremental algorithm has itself also been recently examined in a corpus-based study (van

Deemter, Gatt, van der Sluis, & Power, 2012) that compared its outputs with those produced by

the humans who produced the references in the TUNA corpus (van Deemter, van der Sluis, &

Gatt, 2006). This study found that the human-likeness of the output of the incremental algorithm

depends crucially on the selection of the domain-dependent preference order, which is difficult to

specify for any particular domain.

Just as in the general case of NLG evaluation, the findings of corpus-based studies of GRE
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do not tend to bear any relation to the predictions of measures such as task performance or

subjective judgements. For example, in addition to measuring corpus similarity, both the TUNA

and the GREC challenges also asked humans directly to judge the quality of a subset of the

generated outputs; and in both cases, no significant correlation was found between the

corpus-based results and the human judgements.

Some GRE evaluation studies have employed other, extrinsic metrics. For example, another

series of shared-task evaluation challenges—the GIVE challenges (Koller et al., 2010)—have

provided what amounts to an indirect, task-based evaluation of reference generation. In those

challenges, users navigate through and interact with a virtual environment, following instructions

generated by one of several competing NLG systems. An important aspect of the GIVE task is to

press a particular sequence of buttons on the walls of various rooms, and to avoid pressing other

buttons which might either do nothing, or else reset the lock on the safe to be opened and require

the user to start again. Reference generation is therefore a core task in the GIVE domain, but one

which is only indirectly evaluated by the evaluation measures used. In a related study, Koller,

Staudte, Garoufi, and Crocker (2012) evaluated a GRE system in the GIVE domain that used an

eye tracker to monitor and respond to the user’s focus of attention, and found that the eye-tracking

system significantly outperformed two baselines on several measures of task success.

Campana, Tanenhaus, Allen, and Remington (2011) have recently carried out a fully

extrinsic evaluation of GRE in which they compared two algorithms: a NATURAL version that

took discourse context into account, and a STANDARDIZED version that generated referring

expressions that were consistent across all conditions. While both systems would use

fully-specified references for all initial mentions (e.g., “the big red triangle”), the NATURAL

version would use reduced references such as “the triangle” or “it” for subsequent mentions,

while the STANDARDIZED version would continue with the full references. The two algorithms

were compared using the dual-task paradigm, which is a general method for investigating how

much of a cognitive resource is consumed by a given task. The primary task in the study was to

move objects around on screen following the spoken directions of the system, while the secondary
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task was to detect flickering lights. While the primary task performance was the same across the

conditions, the subjects’ accuracy and reaction time on the secondary task were better in the

NATURAL condition, indicating that the context-sensitive references reduced cognitive load.

References in the context of joint action in a shared workspace

The goals of the JAST project (“Joint Action Science and Technology”) were to investigate

the cognitive, neural, and communicative aspects of jointly-acting agents, and to build

jointly-acting autonomous systems that communicate and work intelligently on mutual tasks. As

part of this project, a corpus of human-human dialogues was gathered in the domain of joint

construction, and a robot system was also developed that supported similar joint construction

tasks with a human partner.

In this section, we first explore the referring expressions that were found in the corpus of

task-based human-human dialogues where the partners work together in a shared workspace. This

scenario allows for both a richer notion of context and an extended set of referring possibilities:

the referring expressions can make use of the task context and the state of the workspace in

addition to the history of the discourse and the current visual state, and—in particular—the

participants are able to bring entities into focus by manipulating them as part of the joint task.

The distribution of initial mentions in this corpus differ from what would be theoretically

expected, indicating that humans do take this broader notion of context into account when

referring in this domain.

We then introduce the JAST human-robot dialogue system, which was designed to support

similar joint construction tasks together with a human partner. We first give an overview of the

system and the scenarios that it supports; we then give a detailed description of the

context-sensitive reference-generation algorithm that was implemented for use on this robot

system, including examples of its output.
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Referring expressions in human-human joint construction

The Joint Construction Task (JCT) corpus (Bard et al., 2008), which was gathered as part

of the JAST project, is based on the recording and analysis of humans cooperating with one

another, utilising a novel experimental paradigm based around a two-person shared virtual

environment (Carletta et al., 2010). The objective was to collaboratively build tangram models

from a set of geometrical components, doing so as efficiently and as accurately as possible. To

stimulate a range of referring expressions, duplicates were included of most components. The two

subjects were present in the same room, using separate computers. A subject could not see their

partner’s face, but could hear their speech and see their actions in the virtual world. Depending on

the experimental condition, the partner’s mouse and/or gaze location were sometimes also visible

on the screen.

Each linguistic referring expression in the JCT corpus was annotated with its referent in the

world and its degree of accessibility (Ariel, 1991), using a similar scheme to that employed by

Bard and Aylett (2004). Table 1 (adapted from Bard et al. (2008)) shows the distribution of initial

mentions in the JCT corpus across the accessibility levels, ranging from indefinite noun phrases

(the most elaborate expressions, indicating the lowest accessibility) through other forms of noun

phrases, ending with various types of pronouns.

[Table 1 about here.]

Since nearly all of the tangram parts come in identical pairs, an initial reference to any

object would theoretically be expected to be an indefinite expression such as “a purple triangle”

or “one of the pink squares” (Bard et al., 2008). However, as shown in Table 1, the actual

referring behaviour of the corpus speakers differs markedly from this theoretical prediction: only

17% of the first mentions were indefinite, with the remaining mentions distributed across other

categories including definite NPs (“the red bit”), deictic expressions (“this green triangle”), and

pronouns such as “this” and “it.” This suggests that the speakers often considered objects to be

highly accessible even before they are mentioned.
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A particular feature of reference in such a collaborative workspace is that an entity can be

brought into focus (in the centering theory sense described by Grosz, Weinstein, and Joshi

(1995)) by the speaker manipulating it as part of the joint task. Indeed, an analysis of the JCT

mentions found that 36% of the initial mentions in the JCT were accompanied by a concurrent

mouse manipulation, with the percentage rising to 54% for initial deictic references (Foster et al.,

2008). Note that there was no relationship between referring behaviour and task performance:

very accurate tangrams were built in all conditions, and the main factor affecting performance was

the presence or absence of the cross-projected mouse cursor.

Human-robot joint construction

The results described above demonstrate that, in situated dialogue in a joint workspace, the

standard assumptions about GRE do not hold: speakers make use of much more of the task,

physical, and interaction contexts when deciding how to refer to an entity, even when making an

initial reference. In other words, in terms of accessibility models (Ariel, 1991), the speakers are

clearly assuming a higher degree of accessibility on the part of the addressee than would be

expected in theory.

[Figure 1 about here.]

Based on those findings, we have implemented a context-sensitive GRE algorithm for use in

an artificial agent designed to work together with a human partner on a similar joint construction

task. The artificial agent we used was the JAST humanoid robot (Figure 1), consisting of a torso,

a pair of manipulator arms with grippers, mounted in a position to resemble human arms, along

with an animatronic talking head (van Breemen, Yan, & Meerbeek, 2005) capable of producing

facial expressions, rigid head motion, and lip-synchronised synthesised speech. The user and the

robot work together to assemble wooden construction toys on a common workspace, coordinating

their actions through speech, gestures, and facial expressions.

The robot is able to pick up and move objects in the workspace and perform simple

assembly tasks, but relies on the user to do more complex manipulations. To make joint action
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necessary for success in the assembly task, the workspace is divided into two areas—one

belonging to the robot and one to the user—so that the robot must hand over some pieces to the

user to complete the construction task.

[Figure 2 about here.]

[Figure 3 about here.]

The robot supports two different interaction scenarios. In Scenario 1, the task knowledge is

asymmetric: only the robot knows the assembly plan for a particular compound object. It

instructs the user on carrying out the plan, explaining the necessary assembly steps and retrieving

pieces as required, with the user performing the actual assembly actions. A sample dialogue from

Scenario 1 is shown in Figure 2. In Scenario 2, on the other hand, the knowledge of the two

participants is symmetric: both the robot and the user know the assembly plan and jointly execute

it. As an additional feature in Scenario 2, the user’s knowledge is not assumed to be correct:

rather, the user may have been given an incorrect plan for building the target objects. In that case,

the robot must detect and correct any incorrect actions. When interacting in this scenario, the

robot therefore monitors the user’s actions, offering pieces as required, and detects and responds

to any errors in carrying out the plan; this scenario is illustrated in Figure 3.

The robot system incorporates components which use both sub-symbolic and symbolic

processing. It includes a goal inference module based on dynamic neural fields (Bicho, Erlhagen,

Louro, & Costa e Silva, 2011; Bicho, Louro, & Erlhagen, 2010), which is able to select the

robot’s next actions based on the human user’s actions and utterances. Given a particular

assembly plan and the knowledge of which objects the user has picked up, this module can also

determine when the user has made an error. The system also incorporates a dialogue manager

based on the TrindiKit dialogue management toolkit (Larsson & Traum, 2000), which

implements the information-state based approach to dialogue management. Messages from all of

the system’s input channels—speech, object recognition, and gesture recognition—are processed

and combined by a multimodal fusion component (Giuliani & Knoll, 2008), which is the link



EVALUATING REFERENCES IN ROBOT DIALOGUE 15

between the symbolic and the sub-symbolic parts of the system. The fusion component then

communicates with the goal inference module, which calculates the next action instructions for

the robot and also determines if the user made an error. From there, fusion combines the

information from goal inference with the input data and sends unified hypotheses to the dialogue

manager.

When it receives input hypotheses from the fusion system, the dialogue manager uses the

dialogue history along with the physical and task context to choose an appropriate system

response, and sends a high-level specification of the desired response to the presentation planner.

The presentation planner then develops this into a set of commands for each of the output

channels (the talking head and the robot arms). It is the presentation planner that calls the

reference generator to decide how to realise any necessary object references. Finally, the

fully-formed output plan is sent to the output coordinator, which translates it into concrete plans

for the talking head and the robot arms, and also manages the execution of the plans to ensure that

output is coordinated temporally and spatially.

Crucially, reference generation takes place as part of multimodal output planning, so the

module is able to select coordinated verbal and non-verbal actions to realise a reference; that is,

the reference generator can take into account the concurrent robot actions (such as picking up

objects) when selecting a reference type. Also, since the target of all generated references is

known at plan time, the presentation planner can add multimodal behaviours such as looking at a

target object at the same time as a spoken reference is made, which further enhances the

multimodal reference process.

Context-sensitive reference generation in JAST

Two strategies were implemented in the JAST human-robot system for generating

references to objects in the world: a basic version that uses only the standard incremental

algorithm (Dale & Reiter, 1995) to select properties, and a context-sensitive version that uses

more of the physical, dialogue and task context to help select the references, resulting in a wider
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range of references that resemble the phenomena found in the human-human JCT dialogues. The

basic algorithm can produce a definite or indefinite reference, using the most appropriate

combination of attributes according to the incremental algorithm. The context-sensitive algorithm

also generates pronominal and deictic references, in some contexts where the basic algorithm

would always produce a definite reference.

The details of the context-sensitive algorithm were inspired by the findings from the JCT

data in that a wide range of reference types are permitted, and also in that the physical context is

incorporated into the reference-selection process. The particular details of the algorithm were not

directly based on the JCT data, as the context of the JCT corpus—while similar to the

human-robot context at a high level—is sufficiently different that the results could not be directly

applied. In particular, the JCT dialogues are much more symmetrical, both at the task level and at

the linguistic level, meaning that the task contexts were more complex and the possible references

more varied.

The context-sensitive algorithm is similar to the other extensions to the Incremental

Algorithm mentioned above, as well as to the “NATURAL” algorithm studied by Campana et al.

(2011). One novel aspect is in its use of multiple distractor sets depending on the circumstances

under which the reference was being made. We also draw inspiration from centering theory

(Grosz et al., 1995) when determining the appropriate referring expression type, with the goal of

maintaining the coherence of the discourse.

In the sample interaction in Figure 3, the user picks up an incorrect piece, and the robot

detects the error and describes the correct assembly procedure. The underlined references show

the range of output produced by the context-sensitive reference generation module; for the basic

system, the references would all have been “the red cube.”

Context-sensitive reference algorithm. Our reference generation algorithm uses the

dialogue reference history and distractor sets to choose the most appropriate reference. The

algorithm works at a language-independent level: only the final surface-realisation step makes use

of a language-specific grammar to generate text in either German or English. The grammar is
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defined in OpenCCG (White, 2006), an open-source implementation of Combinatory Categorial

Grammar (Steedman, 2000)—a unification-based categorial framework which is both

linguistically and computationally attractive.

We introduce the idea of using different distractor sets depending on the circumstances in

which the current object is being referred to. We use a two-step process to create a referential

expression:

• First, we process the distractor set and select which properties (if any) of the current

object to include in the reference.

• We then use the dialogue history and position of the current object to choose the

reference type.

We will describe each of these steps in turn, and then work through two examples from Figure 3

to illustrate the algorithms.

Choosing properties to include. In this domain there are two types of objects which we

need to refer to: concrete objects in the world (everything which is on the table, or in the robot’s

or user’s hand), and objects which do not yet exist, but are in the process of being created as part

of the collaborative task. Non-existent objects have an empty distractor set. For concrete objects,

we have defined three different types of distractor set:

1. All the concrete objects in the world. This is used if the current object has not been

mentioned before.

2. All the objects referred to since the last mention of the current object. This is used if the

current object has previously been mentioned during this dialogue.

3. All the pieces needed to build a target object. This is a special case which is used if the

current object is a construction piece being used to create a target object, and is being referred to

in a negative statement, e.g. “You don’t need a large slat to build a railway signal.”

Choosing a reference type. When choosing a referring expression, we first process the

distractor set, comparing the properties of the current object with the properties of all distractors.

We start with the distractor object type; if a distractor has a different type from the current object,
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it is removed from the distractor set. We then process each remaining distractor in turn; for each

of its properties, if the distractor has a different value from the current object, the current object’s

property value is added to the list of properties to use, and if any properties differ, it is removed

from the distractor set.

We then choose the type of referring expression. We first check whether the current object

exists, and if it does not, or is part of a negative reference, we use an indefinite reference.

We then look for the previous reference to the current object. If such a previous reference

exists, we also determine whether—in the terminology of centering theory (Grosz et al.,

1995)—that reference was the focus of the discourse. We then use the following algorithm,

illustrated in Table 2, to choose the reference type.

No previous reference.

• If the robot is holding the current object, we use a deictic reference.

• If the current object is concrete and there are no distractors, we use a definite reference.

• If the current object is concrete and there are distractors we use an indefinite reference.

Previous reference was the focus.

• If the previous reference was within the same turn, we use a pronoun.

• If the previous reference was in an earlier turn and the robot is holding the current object

we use a deictic reference

• If the previous reference was in an earlier turn and the robot is not holding the current

object, we use a pronoun.

Previous reference was not the focus.

• If the robot is holding the current object, we make a deictic reference

• if the previous reference was a pronoun, definite, or deictic, we use a definite reference.

• If the previous reference was indefinite and there are no distractors, we use a definite

reference

• if there are distractors, we use an indefinite reference.

If there are any properties in the list, and the reference which has been chosen is not a
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pronoun, we add them.

[Table 2 about here.]

Examples of the reference algorithm. We will illustrate the reference-selection strategy

with two cases from the dialogue in Figure 3.

Utterance 4 “a yellow cube”. This object is going to be referred to in a negative context

as part of a windmill under construction, so the distractor set is the set of objects needed to make

a windmill: {red cube, blue cube, small slat, small slat, green bolt, red bolt}.

We select the properties to use in describing the object under consideration, processing the

distractor set. We first remove all objects which do not share the same type as our object under

consideration, which leaves {red cube, blue cube}. We then compare the other attributes of our

new object with the remaining distractors—in this case “colour.” Since neither cube shares the

colour “yellow” with the target object, both are removed from the distractor set, and “yellow” is

added to the list of properties to use.

There is no previous reference to this object, and since we are making a negative reference,

we automatically choose an indefinite article. We therefore select the reference “a yellow cube.”

Utterance 6 “it” (a green bolt). This object has been referred to before, earlier in the

same utterance, so the distractor set is all the references between the earlier one and this

one—{red cube}. Since this object has a different type from the bolt we want to describe, the

distractor set is now empty, and nothing is added to the list of properties to use.

There is a previous definite reference to the object in the same utterance: “the green bolt.”

This reference was focal, so we are free to use a pronoun if appropriate. Since the previous

reference was definite, and the object being referred to does exist, we choose to use a pronoun.

We therefore select the reference “it.”

Experiments: Evaluating reference strategies in context

In the context of the scenarios supported by the JAST robot, a basic reference

strategy—which always chooses the same reference regardless of context—is sufficient in that it
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always makes it possible for the robot’s partner to know which item is needed. On the other hand,

the varied forms produced by a more complex, context-sensitive mechanism may increase the

naturalness of the system output. It is known that people respond well to reduced expressions like

“this cube” or “it” when they are used by another person (Bard et al., 2008) or by a speech

system (Campana et al., 2011); we need to see if these benefits also apply to a physically

embodied robot system.

To address this question, the human-robot dialogue system was evaluated through a pair of

user studies in which participants interacted with the complete system. Using a

between-participants design, the studies both compared the two reference strategies, measuring

the participants’ subjective reactions to the system along with a range of objective measures of

dialogue efficiency, dialogue quality, and task success. These studies therefore provide a

task-based evaluation of the success of the two reference strategies, along with an indication of

the participants’ opinions of both of the strategies. The first study addressed Scenario 1, where the

robot instructs its partner as illustrated in Figure 2; the second study concentrated on Scenario 2,

which adds the error-monitoring and correction features as in Figure 3.

Participants

[Table 3 about here.]

The details of the participants in the two studies are shown in Table 3. In addition to

gathering basic demographic information, we also asked the participants to rate their knowledge

of computers, of speech-recognition systems, and of human-robot systems, all on a scale of 1–5.

They were also asked to indicate their major area of study (if any); for both experiments, the two

most frequent responses were Informatics and Mathematics. None of this demographic

information had a significant effect on the study results presented below. Participants were

compensated for their participation in both experiments.
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Scenarios

[Figure 4 about here.]

The participants in both studies stood in front of the table facing the robot (as in Figure 1),

equipped with a headset microphone for speech recognition.

Experiment 1 scenario. Each participant built the same three objects in collaboration

with our human-robot interaction system, always in the same order; the interactions were

conducted in German. The first target object was a “windmill” (German: Windmühle) (Figure 4a),

which has a sub-component called a “tower” (Turm) (Figure 4b). After the windmill had been

completed, the system then described how to build an “L shape” (Buchstabe L) (Figure 4c).

Finally, the robot instructed the participant on building a “railway signal” (Bahnsignal)

(Figure 4d), which combines an L shape with a tower. The participant was not given any

instructions in advance on how to build any of the target objects, and had to rely entirely on the

instructions given by the robot.

Before the system explained each target object, the experimenter configured the workspace

with exactly the pieces required to build it. The pieces were always distributed across the two

work areas in the same way to ensure that the robot would always hand over the same pieces to

each participant. For the windmill, the robot handed over one of the cubes and one of the slats; for

the L shape, it handed over both of the required slats; while for the railway signal, it handed over

both cubes and both slats.

For objects requiring more than one assembly operation (i.e., all but the L shape), the

system gave names to all of the intermediate components as they were built. For example, the

windmill was always built by first making a tower and then attaching the slats to the front. When

the railway signal was being built, the system always asked the participant if they remembered

how to build a tower and an L shape. If they did not remember, the robot explained again; if they

did remember, the robot simply asked them to build another one using the pieces on the table.

Experiment 2 scenario. Each participant built two objects in collaboration with the

system, always in the same order. The first target object was the windmill (Figure 4a); after the
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windmill was completed, the robot and human then jointly built a railway signal (Figure 4d). As

in Experiment 1, the interactions took place in German.

For both target objects, the user was given a building plan on paper. To induce an error, both

of the plans given to the participants instructed them to use an incorrect piece: a yellow cube

instead of a red cube for the windmill, and a long (seven-hole) slat instead of a medium

(five-hole) slat for the railway signal. The participants were told in advance that their plan

contained an error and that the robot would correct them when necessary, but did not know the

nature of the error. When the human picked up or requested an incorrect piece during the

interaction, the system would detect the error and explained to the human what to do in order to

assemble the target object correctly.

The pieces required for the target object—plus a set of additional pieces in order to make

the reference task more complex—were placed on the table, using the same layout for every

participant. The layout was chosen to ensure that there would be points in the interaction where

the participants had to ask the robot for building pieces from the robot’s workspace, as well as

situations in which the robot automatically handed over the pieces.

Independent variables

In both of these studies, we manipulated one independent variable—the reference

strategy—which had two possible levels, basic and context-sensitive. The basic algorithm was

an implementation of the Dale and Reiter (1995) incremental algorithm, and in Experiment 1 it

also included pronominal references. The context-sensitive algorithm was as described in the

preceding section. Participants were assigned to conditions using a between-participants design,

so that each participant interacted with the system using a single reference strategy throughout. In

Experiment 1, 22 participants encountered the basic strategy and 21 the context-sensitive one;

Experiment 2 had 19 participants for basic and 22 for context-sensitive.
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Dependent variables

We gathered a wide range of dependent measures: objective measures derived from the

system logs and annotated video recordings, as well as subjective measures based on the

participants’ own ratings of their experience interacting with the system. We also recorded the

distribution of references generated by the system under different conditions to allow the output to

be compared to the referring behaviour found in the JCT corpus.

Objective measures. We collected a range of objective measures from the log files and

videos of the interactions. Like Litman and Pan (2002), we divided our objective measures into

three categories based on those used in the PARADISE framework (Walker, Litman, Kamm, &

Abella, 1997): dialogue efficiency, dialogue quality, and task success.

For Experiment 1, we collected the following measures.

• Three dialogue efficiency measures: the mean duration of the interaction in seconds and

in system turns, and the mean time taken by the system to respond to the participant’s requests.

• Four dialogue quality measures: the number of times that the user asked for instructions

to be repeated, the number of times that the participant failed to take an object that the robot

attempted to hand over, the number of times that the participant looked at the robot, and the

percentage of the total interaction that they spent looking at the robot. We considered the

gaze-based measures to be measures of dialogue quality since participants tend to look at their

partner more often when there is a problem in a physical task-based interaction (Argyle &

Graham, 1976).

• Two task success measures: how many of the (two) target objects were constructed as

intended, judged by the video recordings, and whether the participants learned how to construct

the tower and L-shape sub-components, judged by whether they said yes or no when they were

asked if they remembered these during the construction of the railway signal.

For Experiment 2, we collected a reduced set of measures, leaving out the learning of

sub-components, which was not part of the second scenario, and some of the measures which did

not produce significant results in Experiment 1 and which required significant video analysis
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effort. The measures were as follows:

• Two dialogue efficiency measures: the mean duration of the interaction as measured both

in seconds and in system turns;

• Two dialogue quality measures: the number of times that the robot gave explanations,

and the number of times that the user asked for instructions to be repeated; and

• One task success measure: how many of the (two) target objects were constructed as

intended (i.e., as shown in Figure 4).

Subjective measures. In addition to the above objective measures, we gathered a range of

subjective measures through a questionnaire which the participants filled out after the interaction.

The questionnaire for Experiment 1 was based on the one used in the user evaluation of the

COMIC dialogue system (White, Foster, Oberlander, & Brown, 2005), with modifications to

address specific aspects of the human-robot dialogue system and the experimental manipulation

in this study. There were 47 items in total, each of which requested that the participant choose

their level of agreement with a given statement on a five-point Likert scale.

The items on the second questionnaire were based on those used in Experiment 1, but were

adapted for the features of Scenario 2: the number of questions was reduced, and specific

questions were added addressing the robot’s behaviour when the user made an error. Note that

Experiment 2 formed part of a larger study (Bard et al., 2009) where the emphasis was on error

detection and recovery, and the same usability questionnaire was also used in an evaluation of

another human-robot system performing a similar task (Bicho et al., 2010), so a number of items

specific to the Experiment 1 scenario were removed. The questionnaire was presented using

software that let the participants choose values between 1 and 100 with a slider.

The items were divided into the following categories; in each case, the first number of items

applies to Experiment 1 and the second to Experiment 2:

Perceived intelligence of the robot Fifteen (twelve) items measuring how intelligent the

participant felt the robot was during the interaction;

Quality of the interaction Twelve (nineteen) items measuring how smoothly the participant felt
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the overall interaction went;

Task ease and success Eleven (six) items asking the participant how easy they found the various

assembly tasks and how well they thought they performed; and

User feelings Nine (nine) items asking participants to rate their feelings while using the system.

The full sets of questionnaire items are available on request.

Results

[Table 4 about here.]

[Table 5 about here.]

Objective results. The findings for the objective measures are summarised in Tables 4

and 5. For each measure, we give the following information: the mean and the sample standard

deviation for each of the two groups of participants, along with the significance level obtained on

a two-tailed Mann-Whitney U test comparing the two sets of results. In the Experiment 1 results,

the measures marked with a * were derived from the video recordings, and were therefore

computed on the data from 40 participants, as three did not give permission for recordings; the

remaining Experiment 1 measures were computed on the data from all 43 participants. As can be

seen from the table, the choice of reference strategy had no significant effect on any of the

objective measures considered in this study. A detailed analysis of the Experiment 1 participants’

gaze and object-manipulation behaviour immediately after various forms of generated references

from the robot also failed to find any significant differences between the various reference types.

[Table 6 about here.]

[Table 7 about here.]
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Subjective results. Tables 6 and 7 show the mean response to each group of items from

the user-satisfaction questionnaires, with the responses for negatively-posed questions inverted.

For each group of items, we first computed Cronbach’s alpha to test the internal consistency. As

shown in the first column of the table, the consistency was generally found to be acceptable

(α & 0.7) in Experiment 1, and somewhat lower (α between 0.555 and 0.779) in Experiment 2.

The remainder of the tables show the mean and sample standard deviation for each measure,

grouped by the reference strategy; as with the objective measures, the significance level from a

two-tailed Mann-Whitney U test is shown in the final column. In summary, these tables

demonstrates that the reference strategy had no significant overall effect on any of the classes of

subjective measures.

However, on closer examination, there were some indications of differences between the

reference-generation strategies. On Experiment 1, a sub-set of the “interaction quality” items

referred specifically to the quality of the robot’s instructions. These items are shown in Table 8 (in

the original German and in English translation), along with the mean responses to each item from

the two groups on a 5-point Likert scale. The better score is highlighted for each question; for the

negatively-posed questions (i.e., the third and fourth ones in the list), where a lower score would

actually be better, the scores are inverted in the table. For five of the six questions in this

sub-category, the participants who heard the context-sensitive references scored the system more

highly. As shown in the bottom line of the table, the mean score on these items was 3.89 for the

participants who heard the context-sensitive references, compared to 3.51 for the participants who

heard the basic references. This overall trend resulted in a marginally significant difference

between the two groups on these items: z = −1.88, p = 0.06.1

[Table 8 about here.]

For Experiment 2, a marginal overall effect (p = 0.082) was found on the “Interaction

quality” items of the questionnaire. In this case, a closer examination of the items in this

1With a Bonferroni correction, the required significance level for this test would actually be p = 0.05
4 = 0.0125.
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class—which proved to be quite a heterogeneous set (α = 0.555)—showed that the reference

strategy did have a particularly noticeable effect on responses to two of the items in this class.

The two items are shown in Table 9: both of these items address the user’s feeling of knowing

what they could do at any point in the interaction, and the responses on the two items are

reasonably correlated with each other (α = 0.61). As shown in the bottom line of the table, the

mean score on these items for participants who heard the basic references was 36.2, while the

context-sensitive participants gave a mean response of 56.0; a Mann-Whitney U test found that

this effect was highly significant even with a Bonferroni correction: z = 2.63, p < 0.001.

[Table 9 about here.]

We also carried out a detailed examination of the relationship among the various subjective

and objective measures, using a PARADISE analysis (Walker et al., 1997). For Experiment 1,

this analysis found that the primary predictors of subjective user satisfaction were the dialogue

length, the number of repetition requests, and the participants’ recall of the system instructions

(Foster, Giuliani, & Knoll, 2009); for Experiment 2, the main predictors were the participant’s

performance at the assembly task and the number of times they had to ask for instructions to be

repeated (Giuliani et al., 2010).

[Table 10 about here.]

[Table 11 about here.]

Distribution of generated references. We analysed the logs to determine the distribution

of generated references over the course of the study: we computed the total number of references

of each type, as well as a separate count of initial references only. The results are shown in

Tables 10 and 11. The main difference between the context-sensitive algorithm and the basic

algorithm used in Experiment 1 was that only the context-sensitive version generated deictic

references; it did so for 36% of the initial mentions and 22% of the total references. By design, it

was not possible for either algorithm to generate a pronominal initial reference. In Experiment 2,
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the basic algorithm was further modified to remove the ability to generate pronouns, while the

context-sensitive algorithm generated a similar overall distribution to Experiment 1. We used a χ2

test to compare these counts to the distribution of initial references used by the humans in the JCT

(Table 1). In all cases, the generated frequencies were significantly different to those from the

JCT; in Experiment 1: 65.2 < χ2 < 771, d f = 3, p ≈ 0 and Experiment 2: 90.6 < χ2 < 497,

d f = 3, p ≈ 0.

Discussion

The choice of reference strategy had no significant effect on any of the objective measures

on either study: the results on all measures of dialogue efficiency, dialogue quality, and task

success were indistinguishable. On the other hand, the responses on selected items from the

subjective questionnaires suggest that the choice of reference strategy had a positive effect. On

Experiment 1, the participants tended to rate the robot as a better instruction giver if it used

contextually varied, situationally-appropriate referring expressions; on Experiment 2, they felt

much more confident about the overall flow of the dialogue with context-sensitive references.

This agrees with the findings from the JCT dialogues (where partners used references that would

appear inadequate on the surface) and the recent study of Campana et al. (2011): in both of those

studies, the choice of referring expressions had no impact on primary task performance. In the

simpler task addressed in the current human-robot study, where the task baseline is if anything

even higher than in the JCT, it is therefore not surprising that the primary effect of the reference

strategy was subtle and subjective, rather than large and objective.

Both the basic and the context-sensitive algorithms generated patterns of references that

differed significantly from the initial references found in the JCT corpus. However, despite the

superficial similarity between the JCT task and the JAST robot scenario evaluated, the necessary

technical limitations on the human-robot system mean that the dialogues resulting from this

experiment are quite different than those in the JCT. In particular, the human-robot dialogues are

much shorter and less elaborate, as the objects being constructed were much less complex. Also,
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the situation of the two participants is more asymmetrical than in the human-human condition,

and the possible interactions constrained by the interactive capabilities of the system: only the

robot knows the assembly plan, while only the user carries out the actions, and the user’s possible

spoken contributions are very limited. The difference in overall reference patterns is therefore not

surprising. It is worth noting that, despite the differences, only the context-sensitive system made

use of the full range of reference types that were found in the JCT data.

The subjective questionnaire was modified from Experiment 1 to Experiment 2

because—as noted above—the second experiment formed part of a larger study (Bard et al.,

2009) where the primary emphasis was on error detection and recovery; this unfortunately meant

that the instruction-quality items from Table 8 were removed, so no comparison could be made.

On the other hand, the questionnaire items that were most affected by the reference strategy in

Experiment 2 (Table 9) were also included in the Experiment 1 questionnaire, but there the

reference strategy did not have an impact. This is most likely due to a combination of two factors:

first, from a user standpoint, the interactions in Scenario 2 are much less predictable, as the robot

may intervene at any time with a correction. Second, adding the goal-inference system as an

additional input to the dialogue manager made the system responses significantly slower, which

would also tend to emphasise any unpredictable aspects of the interaction. Given these factors, it

is not surprising that the general decrease in interaction quality produced by the basic references

manifested itself on Experiment 2 in lower responses to these two questions.

In summary, these results suggest that—at least in this scenario—the references generated

by the context-sensitive strategy were perceived to be of at least as good quality than those

generated by the basic strategy, and possibly even of higher quality.

Conclusions

We have described a humanoid robot that is designed to cooperate with a human partner on

a joint construction task. Inspired by the referring phenomena found in the JCT corpus of

human-human dialogues in a similar joint construction domain, we have implemented a
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context-sensitive reference-generation algorithm that takes into account aspects of the physical,

discourse, and task context. We have then compared the context-sensitive algorithm to the basic

Dale and Reiter (1995) incremental algorithm through a pair of task-based evaluations,

considering objective measures of dialogue efficiency, dialogue quality, and task success along

with subjective measures gathered from a usability questionnaire. In both cases, we have found

no difference between the performance of the two algorithms in terms of the objective measures,

but both studies did find a tendency for the context-sensitive references to improve the

participants’ subjective impressions of interacting with the robot system.

The current studies contrast with the state-of-the-art in the evaluation of referring

expressions, where the dominant technique is to generate stand-alone references, and to evaluate

them by comparing against a corpus of human-generated references from a similar null context.

That form of evaluation is appropriate if the goal is simply to model human performance as

accurately as possible; however, if the goal is to generate useful references in the context of an

interactive system, the most important criterion of success is instead the effect of different forms

of reference on the hearer. Since it has been demonstrated repeatedly that, in the context of

natural-language generation, intrinsic corpus-similarity metrics show very little correlation with

any extrinsic task-performance or subjective preference metrics, it is necessary to carry out this

sort of task-based evaluation to assess the performance of referring expressions in a situated,

interactive context. Even though such evaluations are more logistically difficult to run in practice,

due to the necessity of recruiting participants and deploying a robust, fully interactive system,

there is really no alternative: at present, corpus similarity is an inadequate metric for any

evaluation of a reference-generation system intended for use in an interactive context. Note that

Spanger, Iida, Tokunaga, Terai, and Kuriyama (2013) recently came to a similar conclusion

regarding the evaluation of referring expressions in the context of collaborative situated dialogues.

The findings of these studies also confirm that it is worth the effort of developing more

context-sensitive reference-generation algorithms for use in interactive contexts: even if (as here)

the overt impact of the more sophisticated reference strategy is subtle, it is still likely to have an
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overall positive effect on users of the system—even if that is only at the subjective level rather

than at the objective level of task performance or dialogue quality. In future work, it would be

useful to measure the impact of any advanced reference-generation strategy on users’ opinions of

an artificial agent more systematically, using measurement instruments such as the GODSPEED

questionnaire series (Bartneck, Kulić, Croft, & Zoghbi, 2009), which is designed to be a

general-purpose measurement tool for human-robot interaction.

Although the generation algorithm was inspired by the referring phenomena found in the

JCT corpus of human-human joint construction dialogues, the distribution of references generated

by the system were significantly different from the distribution found in the JCT. This was largely

because, even though the high-level task is similar between the two applications, the human-robot

dialogues are much less symmetrical at both the task and the linguistic levels, and—because of the

technical constraints on the robot system—the range of possible utterances is much narrower than

those that were employed by the JCT corpus speakers. However, comparing the automatically

generated referring expressions with those found in a corpus is still worth doing: as noted earlier,

automated evaluations are much easier to perform in practice than evaluations involving human

subjects, as long as some corpus-derived metrics can be found that agree with the human results.

Carrying out such a study would have several requirements. First, it would require a closer

mapping between the corpus scenario and the scenario supported by the artificial system than was

possible here. Also, a proper comparison would require a corpus that is “semantically

transparent” (van Deemter et al., 2006): that is, full contextual information as shown in Table 2

would need to be available for each referring expression in the corpus. As more corpora of

human-generated references in interactive contexts become available—the JCT corpus, along

with other corpora such as REX (Tokunaga, Iida, Terai, & Kuriyama, 2012) and iMap (Guhe &

Bard, 2008)—it may eventually be possible to find automated evaluation metrics that do correlate

with the factors that are relevant when automatically generating output in interactive contexts.
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Table 1

Distribution of initial mentions in the JCT corpus (Bard et al., 2008)

Accessibility Count %

Indefinite NP / Bare N 225 17

Definite NP 488 36

Deictic / Possessive Pronoun 464 35

Other Pronoun 160 12
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Table 2

Reference generation algorithm

previous ref
robot holding distractors reftype

focal same turn indef

N Y - deictic

N N N definite

N N Y indefinite

Y Y - - - pronoun

Y N - Y - deictic

Y N - N - pronoun

N - - Y - deictic

N - - N Y indef

N - - Y - deictic

N - N N - definite

N - Y N N definite

N - Y N Y indefinite
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Table 3

Participants’ demographic information

Experiment 1 Experiment 2

Total n 43 41

n males 27 33

Mean age 24.5 24.5

Min age 14 19

Max age 55 42

Computer knowledge 3.4 4.1

ASR knowledge 2.3 2.0

HRI knowledge 2.0 1.7

n Informatics 12 14

n Mathematics 10 14
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Table 4

Experiment 1: Objective results

Measure Basic (Stdev) Context-Sensitive (Stdev) Mann-Whitney p

Duration (s)* 300.5 (45.7) 310.3 (62.9) 0.82

Duration (turns) 14.45 (2.09) 14.81 (1.97) 0.46

Response time* 2.51 (0.89) 3.11 (1.30) 0.10

Rep requests 1.95 (2.10) 1.76 (1.45) 0.85

Failed gives 1.27 (1.64) 0.86 (0.96) 0.59

Looks at robot* 21.0 (4.84) 26.4 (10.2) 0.11

Look at robot (%)* 28 (9) 27 (9) 0.72

Correct assembly 0.71 (0.28) 0.73 (0.32) 0.64

Recall 0.80 (0.30) 0.79 (0.30) 0.92

*Computed on n = 40 participants; all other measures computed on n = 43 participants.
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Table 5

Experiment 2: Objective results

Measure Basic (Stdev) Context-Sensitive (Stdev) Mann-Whitney p

Duration (s.) 404.3 (62.8) 410.5 (94.6) 0.90

Duration (turns) 29.8 (5.02) 31.2 (5.57) 0.44

Explanations 2.21 (0.63) 2.41 (0.80) 0.44

Rep requests 0.26 (0.45) 0.32 (0.78) 0.68

Successful trials 1.58 (0.61) 1.55 (0.74) 0.93
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Table 6

Experiment 1: Subjective results

Category Cronbach’s α Basic (stdev) Context-Sensitive (stdev) Mann-Whitney p

Perceived intelligence 0.868 3.56 (0.71) 3.54 (0.64) 0.93

Interaction quality 0.848 3.62 (0.71) 3.91 (0.61) 0.22

Task ease/success 0.857 3.98 (0.80) 4.21 (0.50) 0.45

User feelings 0.690 3.57 (0.68) 3.75 (0.52) 0.37
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Table 7

Experiment 2: Subjective results

Category Cronbach’s α Basic (Stdev) Context-Sensitive (Stdev) Mann-Whitney p

Perceived intelligence 0.779 75.8 (14.4) 73.4 (11.7) 0.80

Interaction quality 0.555 66.7 (10.2) 71.7 (10.1) 0.082

Task ease/success 0.610 80.7 (14.0) 81.4 (12.4) 0.53

User feelings 0.687 65.9 (15.9) 65.3 (12.2) 0.80
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Table 8

Experiment 1: Mean responses to questionnaire items addressing the quality of the robot’s

instructions

Question Basic (Stdev) Context-Sensitive (Stdev)

Der Roboter gab mir nützliche Anweisungen. 3.86 (0.91) 3.68 (0.95)

The robot gave me useful instructions.

Es war einfach den Anweisungen des Roboters zu folgen. 3.33 (0.91) 3.68 (0.82)

It was easy to follow the robot’s instructions.

Der Roboter gab zu viele Anweisungen auf einmal. 3.19 (1.36)* 4.16 (1.07)*

The robot gave too many instructions at once.

Die Anweisungen des Roboters waren zu ausführlich. 3.71 (1.15)* 4.32 (0.75)*

The robot’s instructions were too detailed.

Immer wenn der Roboter über Bauteile gesprochen hat,

wusste ich genau, von welchem Bauteil er spricht.

3.29 (1.27) 3.47 (1.35)

When the robot talked about pieces, I always knew exactly

which piece it meant.

Der Roboter gab mir gute Anweisungen 3.67 (0.73) 3.68 (1.16)

The robot gave me good instructions.

3.51 (0.70) 3.89 (0.67)
*Negatively-posed question; value shown is 6 − mean
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Table 9

Experiment 2: User responses to questionnaire items testing the user’s confidence in the

interaction

Item Basic (Stdev) Context-Sensitive (Stdev)

Wenn der Roboter mich nicht verstand, dann war mir klar,

wie ich reagieren musste.

34.7 (23.7) 50.4 (28.8)

When the robot did not understand me, it was clear what I

had to do.

Ich wusste zu jedem Zeitpunkt der Unterhaltung, was ich

machen oder sagen konnte.

37.6 (25.1) 61.6 (29.6)

At each point in the conversation, I knew what I could do

or say.

36.2 (19.5) 56.0 (24.6)
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Table 10

Experiment 1: Distribution of generated references

Basic Context-Sensitive

Initial % All % Initial % All %

Indefinite 91 18 560 32 84 18 516 33

Definite 414 82 1044 60 218 46 586 37

Deictic 0 0 0 0 173 36 350 22

Pronoun 0 0 136 8 0 0 121 8
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Table 11

Experiment 2: Distribution of generated references

Basic Context-Sensitive

Initial % All % Initial % All %

Indefinite 148 42 320 48 123 30 236 27

Definite 201 58 351 52 179 44 416 48

Deictic 0 0 0 0 102 25 146 17

Pronoun 0 0 0 0 0 0 68 8
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Figure 1. The JAST dialogue robot
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1. System First we will build a windmill. Okay?

2. User Okay.

3. System To make a windmill, we must make a tower.

4. System [picking up and holding out red cube] To make a tower, insert the green bolt through

the end of this red cube and screw it into the blue cube.

5. User [takes cube, performs action] Okay.

Figure 2. Scenario 1: robot instructing user (context-sensitive reference highlighted)
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1. System First we will build a windmill.

2. User Okay.

3. User {picks up a yellow cube, unnecessary piece for a windmill}

4. System You don’t need a yellow cube to build a windmill.

5. System To build a windmill, you first need to build a tower.

6. System [picking up and holding out red cube] To build the tower, insert the green bolt through

the end of this red cube and screw it into the blue cube.

7. User [takes cube, performs action] Okay.

Figure 3. Scenario 2: robot and user jointly executing plan, with error detection (context-sensitive

references highlighted)
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(a) Windmill (b) Tower

(c) L Shape (d) Railway signal

Figure 4. The target objects used in the experiments
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