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ABSTRACT
We address the question of whether service robots that interact with
humans in public spaces must express socially appropriate behaviour.
To do so, we implemented a robot bartender which is able to take
drink orders from humans and serve drinks to them. By using a high-
level automated planner, we explore two different robot interaction
styles: in the task only setting, the robot simply fulfils its goal of
asking customers for drink orders and serving them drinks; in the
socially intelligent setting, the robot additionally acts in a manner so-
cially appropriate to the bartender scenario, based on the behaviour
of humans observed in natural bar interactions. The results of a
user study show that the interactions with the socially intelligent
robot were somewhat more efficient, but the two implemented be-
haviour settings had only a small influence on the subjective ratings.
However, there were objective factors that influenced participant
ratings: the overall duration of the interaction had a positive influ-
ence on the ratings, while the number of system order requests had
a negative influence. We also found a cultural difference: German
participants gave the system higher pre-test ratings than participants
who interacted in English, although the post-test scores were similar.

Categories and Subject Descriptors: H.5.1 [Information Inter-
faces and Presentation]: Multimedia Information Systems – Evalua-
tion/methodology; I.2.9 [Artificial intelligence]: Robotics – Operator
interfaces

Keywords: Social robotics; Multi-party interaction

1. INTRODUCTION
The market for service robotics is constantly growing and is pro-

jected to increase substantially in the next 20 years [21, 22]. Since
the objective of many service robots is to interact with multiple
humans, often in dynamic public spaces, it is essential that they
possess the appropriate capabilities that are needed for fulfilling
their assigned tasks: they need to be able to recognise human speech
and non-verbal signals from audio and visual sensors, they need
to be able to interpret these input signals to plan their actions, and
they need to be able to execute these actions in a safe way to guar-
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Figure 1: Robot bartender

antee that their human interaction partners are not in any danger.
But is that enough? Is it sufficient for a service robot to execute
its assigned task as efficiently as possible, or should it also act in a
socially appropriate manner with its human interaction partners?

In this work, we address these questions using a robot bartender
(Figure 1) which has all of the technical abilities listed above: the
robot is able to recognise humans as customers, take their drink
orders, and serve the ordered drinks, making use of multimodal input
and output (Section 3). Moreover, by using a high-level automated
planner to control the robot’s behaviour (Section 4), we consider
two different interaction styles in the bartender setting: on the one
hand, we can set the robot to a task only setting, where the robot
simply asks humans in front of the bar for their drink orders and then
serves them their drinks; on the other hand, in the socially intelligent
setting, the robot also exhibits social behaviour that is derived from
the observation of natural bartender interactions. In a user study
(Section 5), we tested how experiment participants respond to the
two different versions of the robot bartender.

2. RELATED WORK
In recent years, robot bartenders have been used to demonstrate a

number of aspects of human-robot interaction. For example, Wosch
et al. [36] showed an efficient motion planner that guaranteed safe
motions of a robot bartender that worked closely with humans; Ma-
suda and Misaki [19] presented “T-Bartender,” a robot that was able
to serve green tea in a traditional Japanese way; Limbu et al. [17] im-
plemented “FusionBot,” a mobile robot bartender that served drinks
in homes; while Grigore et al. [15] used a robot bartender as an
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Figure 2: System architecture
example of a human-robot interaction scenario in which the safety
of the human could be guaranteed by using verification techniques.

In contrast to the above robot bartenders, which concentrated
mainly on the task-based aspects of the bartending scenario, our
work fits into the active research area of social robotics, which
Ge and Matarić [14] define as “the study of robots that interact
and communicate with themselves, with humans, and with their
environment, within the social and cultural structure attached to
their roles.” Most current social robots play the role of a companion,
often in a long-term, one-on-one relationship with the user—e.g.,
the systems described by Breazeal [5], Castellano et al. [6], and
Dautenhahn [7]. In this context, the primary goal of the robot is to
build a relationship with the user through social interaction: the robot
is primarily an interactive partner, and any task-based behaviour is
secondary to this overall goal. Even for social robots that deal with
multiple partners—e.g., those of Matsusaka et al. [20] and Mutlu
et al. [23]—social interaction is still the primary goal.

In this work, we address a different style of interaction: the robot
bartender—a service robot operating in a public space—interacts
with multiple persons over short time spans, with social commu-
nication that takes place in the context of cooperative, physically
grounded, task-based interaction. This is similar to the multimodal
information kiosk of Bohus and Horvitz [4], but with the addition of
physical (as opposed to virtual) embodiment, which has been shown
to have a large effect on social interaction [e.g., 1, 18].

3. ROBOT HARDWARE AND SOFTWARE
In this work, we use the robot bartender shown in Figure 1. The

robot hardware consists of two 6-degrees-of-freedom industrial ma-
nipulator arms with grippers, mounted to resemble human arms. Sit-
ting on the main robot torso is an animatronic talking head capable
of producing facial expressions, rigid head motion, and synthesised
speech. The robot is equipped with two stereo cameras and two
Kinect sensors: we use the depth sensor of one of the Kinects to
support stereo camera-based vision processing, and the microphone
array of the other Kinect for automatic speech recognition (ASR).

Figure 2 shows the software architecture of the robot. The robot
senses events in its surroundings by a speech recognition and a
visual processing module. The parsing component processes the
output from speech recognition. The state manager takes the output
from visual processing and parsing and transforms it into symbolic
representations for the planner / execution monitor module. The
planner then selects high-level actions for the robot, which are pro-
cessed by the output planner for execution as concrete actions by
the talking-head controller and the robot motion planner.

The initial version of the robot bartender [10] supported simple
interactions with up to two customers where the only thing that a

customer could do was order a drink. An initial study confirmed that
the system performed successfully in this simple scenario. Since that
initial version, the software components of the robot bartender have
been extended in all areas, as described in the following sections.

3.1 Visual Processing
The vision system [24] is responsible for tracking multiple hu-

mans entering and leaving the bar area in front of the robot. To do so,
we use a tracking and classification algorithm for hands and faces
[2], to track multiple objects and people in a common framework
and provide support for the detection of groups of humans in front
of the robot. The algorithm periodically invokes a GPU implementa-
tion of an appearance-based face detector [33] in order to update the
appearance models of existing hypotheses, making the vision system
more robust against illumination changes in the environment.

A second task of the vision system is to detect the torso orientation
and head pose of all human users in a scene, as this information
forms the basis for determining a user’s focus of attention. We detect
torso orientation through a tracking approach, which uses depth
information and extracts the full body pose in 3D. This method
removes the need for an initialisation phase, while also exhibiting
robustness in dynamic settings. In the previous version of the system
[10], a Hidden Markov Model tracked the orientation of the human
torso in the 1D space of all possible orientations [31]. Although
adequate for simple cases, this method could not effectively cope
with the problems of a real time scenario. Instead, we employ a data-
driven model-based method for 3D torso pose estimation from RGB-
D image sequences, using 3D geometric primitives to approximate
the shoulder joints and the user’s torso, and to derive the 3D body
pose via a global optimisation scheme [24]. Shoulder joints are
modelled as spheres, while the torso is modelled as an ellipsoid. The
models exhibit features that guarantee robust adaptation on RGB-D
data, unaffected by scale, pose, or body type variations across users.

The employed methodology consists of three major steps: (i)
agent segmentation, where robust face identification triggers detec-
tion and segmentation of the human body silhouette, (ii) shoulder
joint approximation, where sets of points on the RGB silhouette are
selected, given the location of the face, delineating possible shoulder
or armpit areas, and (iii) body pose estimation, where a set of 3D
points, approximately along the user’s upper-body, is selected and
used for torso approximation via an ellipsoid, driven by the detection
of the shoulder joints.

3.2 Linguistic Interaction
The linguistic interaction system consists of two parts: on the

one hand, there are components to recognise and understand spoken
utterances (the speech recogniser and parser); on the other hand,
there is a dedicated module for generating embodied natural lan-
guage (the output planner). All of the linguistic components are
able to handle natural language in English and German, using a
common core grammar to allow the rest of the system to operate
in a language-independent manner. For speech recognition we use
Microsoft Kinect and the associated Microsoft Speech API. The
current system uses minimum confidence thresholds for speech to
avoid processing incorrectly recognised speech; based on testing in
the robot lab environment, the thresholds are currently set to 50%
for English and 30% for German.

The output planner coordinates the movements of the robot’s head
and arms with aligned speech, using the animatronic head to generate
embodied speech. For language parsing and language generation,
we use a bi-directional, bilingual OpenCCG grammar [35]. On the
input side, the parsed input is passed to the state manager along with
an estimate of the source angle from the Kinect microphone array;



on the output side, the language generation component receives an
XML representation from the planner which contains instructions
for the multimodal output [28]. In addition to the basic task-based
utterances, the system supports a number of additional utterances
on the input and output sides to deal with the extra interactions
necessary for social behaviour, such as group drink ordering.

3.3 State Management
The primary role of the state manager is to turn the continuous

stream of messages produced by the low-level input and output
components of the system into a discrete representation of the world,
the robot, and all entities in the scene, integrating social, interaction-
based, and task-based properties. The state is modelled as a set of
relations such as facePos(A)=(x,y,z) or closeToBar(A) [27].
The state manager provides a query interface to allow other system
components access to the relations stored in the state, and also
publishes an updated state report every time there is a change which
might require a response from the system (e.g., a customer appears,
begins seeking attention, or makes a drink order).

In addition to storing all of the low-level sensor information, the
state manager also infers additional relations that are not directly re-
ported by the sensors. For example, it fuses information from vision
and speech to determine which user should be assigned a recognised
spoken contribution, and estimates which customers are in a group.
Most importantly in the current social domain, the state manager
also provides a constant estimate of whether each customer is cur-
rently seeking attention from the bartender (seeksAttention(A)).
While the initial version of this estimator used a simple, hand-coded
rule based on the observation of human behaviour in real bars [16],
the current version [11] instead makes use of a supervised learning
classifier trained on labelled recordings of humans interacting with
the first version of the robot bartender.

3.4 High-level Planning and Monitoring
The high-level automated planner is responsible for managing

interactions with customers, tracking multiple drink orders, and gath-
ering additional information as needed with follow-up questions [27].
To do this, the planner takes state reports from the state manager
and selects actions to be executed on the robot. Plans are generated
using PKS (Planning with Knowledge and Sensing) [25, 26], a con-
ditional planner that works with incomplete information and sensing
actions. Unlike many general-purpose planners, PKS operates at
the knowledge level and reasons about how its knowledge, rather
than the world, changes due to action. PKS’s knowledge state is
represented symbolically by a set of five databases, each of which
models a particular type of information, interpreted in a modal logic
of knowledge. To ensure efficient reasoning, PKS restricts the knowl-
edge it can represent while ensuring it is expressive enough to model
many types of information that arise in common planning scenarios.

Actions in PKS are described by a set of preconditions which
define the conditions that must be true for an action to be applied,
and a set of effects that capture the changes an action makes to
the planner’s knowledge state. Preconditions ask simple questions
about the planner’s knowledge state, while effects modify the plan-
ner’s databases in a STRIPS-like [9] manner, through additions and
deletions which correspond to changes to the knowledge state. PKS
constructs plans by reasoning about actions using a forward-chaining
search process, and can build contingent plans by considering the
potential outcomes arising from certain kinds of knowledge.

PKS is also aided by an execution monitor which controls replan-
ning. The monitor takes as input a PKS plan and a description of the
sensed state provided by the state manager. The task of the monitor
is to assess how close an expected, planned state is to a sensed state

in order to determine whether the current plan should continue to
be executed. To do this, it tries to verify that the current state still
permits the next action (or set of actions) in the plan to be executed.
In the case such a test fails, the planner is directed to build a new
plan, using the sensed state as its initial state.

3.5 Robot Behaviours
The robot motion planner communicates with the output planner

to control the manipulation of bottles. In particular, an internal grasp
planner works with arbitrary locations at run time, allowing drinks
to be served to each customer’s location. To calculate possible grasp
configurations at run time, a numerical inverse kinematics algorithm
is used, that includes task-space constraints, as implemented in the
Robotics Library [29]. This allows us to define a degree-of-freedom
around the axis of rotation of a bottle to obtain the full null space
of solutions. In this null space, the solution with maximum distance
from robot joint boundaries is found in order to achieve a good pos-
ture far away from the workspace boundaries. The trajectory to this
grasping pose is then generated by quintic polynomial interpolation
in joint space to generate very smooth robot motions.

A real-time collision detection layer works with the grasp planner
to support dynamic locations at run time. A convex decomposition
procedure is applied to store the robot geometry and its environment
model as a small set of convex polyhedra, including a small offset for
safety [13]. Using this representation, run-time collision checking
only needs to process convex-convex checks, which are of linear
complexity in the number of vertices. In our system, all collision
checks can be run in less than a millisecond. Furthermore, all robot
trajectories are verified within the hardware real-time control loop
and a safe distance to all static obstacles is maintained, even if the
robot is commanded to move to an invalid position.

In response to messages from the output planner, the animatronic
robot head also generates synthesised embodied speech together
with facial expressions and gestures such as nods. In addition, the
robot head is able to look directly at defined positions, and can be
turned towards customers while the robot is talking to them; the
coordinates are derived from the locations reported by the vision
system via the state manager.

4. PLANNING DOMAINS
As mentioned in Section 3.4, the high-level behaviour of the robot

bartender is controlled by the PKS planner, which is guided by a
symbolic domain model that includes a specification of the physical,
sensory, and linguistic actions available to the planner. To allow us
to assess the impact of social behaviour on the robot bartender’s
interactions, we have created two dfferent PKS planning domains:
one that implements a purely task-based view of the bartending
scenario, and one that also incorporates a range of social behaviours
as observed in data collected from a study of real bartenders.

4.1 A Task-Based Bartender
At a purely task-based level, the behaviour of a bartender can in

general be summarised by the following two rules:

• If the bartender does not know a customer’s drink order, ask
them what they want.

• If a customer with a known drink order has not been served,
serve them their drink.

At the planning level, we can model similar behaviour for the robot
bartender by using the following PKS actions, included in the task-
based version of the domain:



ask-drink(?a) Ask customer ?a for a drink order,
serve(?a,?d) Serve drink ?d to customer ?a.

Using these actions, the planner could construct the following plan
for serving three customers (A1, A2, A3) in a bar:

ask-drink(A1), [Ask A1 for drink order]
ask-drink(A2), [Ask A2 for drink order]
serve(A2,request(A2)), [Give the drink to A2]
ask-drink(A3), [Ask A3 for drink order]
serve(A3,request(A3)), [Give the drink to A3]
serve(A1,request(A1)). [Give the drink to A1]

In the above plan, each customer’s drink order is taken and the
drink is served. (The term request(A) acts as a placeholder for the
actual drink ordered by customer A.) However, the domain places no
constraints on the order in which customer transactions take place.
In particular, a customer whose drink order is taken early in the
plan (e.g., A1) may not necessarily be served until much later, and
possibly after all other customers have been served.

4.2 A Socially Intelligent Bartender
While the above domain captures the core task-based aspects of

bartending, it fails to include many of the behaviours real bartenders
exhibit in a natural context. In particular, observations of real bar-
tenders interacting with customers [16] indicate that they also made
use of a range of social behaviours, including the following:

• Only customers who are seeking to engage with the bartender
are addressed.

• Customers are dealt with in the order that they arrive.

• The bartender acknowledges all drink orders as soon as they
are given.

• If a group of customers approaches the bar, the bartender takes
all of their drink orders in sequence and then serves all of the
requested drinks.

• If a new customer appears while the bartender is engaged in
a transaction, the customer is acknowledged with a nod, and
then served after the current transaction is completed.

These additional social behaviours have been formalised in a
second PKS planning domain that includes the following actions:

greet(?a,?g) Greet customer ?a in group ?g,
ask-drink(?a,?g) Ask ?a in group ?g for a drink order,
serve(?a,?d,?g) Serve drink ?d to ?a in group ?g,
bye(?a,?g) End an interaction with ?a in group ?g,
wait(?a,?g) Tell ?a in group ?g to wait (e.g., nod),
ack-order(?a,?g) Acknowledge ?a’s order in group ?g,
ack-wait(?a,?g) Thank ?a in group ?g for waiting.

In addition to ask-drink and serve from the task-based domain,
this domain includes actions for controlling particular aspects of a
transaction (e.g., greet, wait), as well as actions for acknowledging
certain customer behaviours (e.g., ack-order, ack-wait). Most
notably, all actions are modelled around the idea that customers may
be part of groups, which affects how individual customers are served.
For instance, consider the situation where there are three customers
in the bar: A1 and A2 are part of a group denoted by G1, and A3 is
in a singleton group G2. In this case, the planner might build the
following plan for serving drinks to all customers:

wait(A3,G2), [Tell G2 to wait]
greet(A1,G1), [Greet group G1]
ask-drink(A1,G1), [Ask A1 for drink order]
ack-order(A1,G1), [Acknowledge A1’s order]
ask-drink(A2,G1), [Ask A2 for drink order]
ack-order(A2,G1), [Acknowledge A2’s order]
serve(A1,request(A1),G1), [Give the drink to A1]
serve(A2,request(A2),G1), [Give the drink to A2]
bye(A2,G1), [End G1’s transaction]
ack-wait(A3,G2), [Acknowledge G2’s waiting]
ask-drink(A3,G2), [Ask A3 for drink order]
ack-order(A3,G2), [Acknowledge A3’s order]
serve(A3,request(A3),G2), [Give the drink to A3]
bye(A3,G2). [End G2’s transaction]

The plan first directs the robot to tell group G2 to wait before trans-
acting with group G1. The robot then collects drink orders from
all customers in G1 before serving their drinks and completing the
transaction. After that, the robot thanks group G2 (i.e., customer A3)
for waiting before taking the final drink order and serving the drink.

5. USER EVALUATION
The two planning domains described above can result in very

different interactive behaviour from the robot bartender in practice.
For example, Figure 3 shows how each version of the bartender
deals with three customers. At the end of both interactions, all three
customers have received their desired drink. However, unlike in
Interaction 1, the customers in Interaction 2 are served in the same
sequence that they arrive at the bar; each customer’s drink order is
acknowledged after it is given; and the bartender takes into account
that A1 and A2 are together by serving them as a group. The robot
in Interaction 2 also deals with customer A3 more appropriately:
it acknowledges A3’s arrival with a nod, and then completes the
current transaction before thanking A3 for waiting and serving A3.

To assess the practical impact of the two planning domains, we
carried out an experiment in which human experiment participants
enacted the scenario shown in Figure 3. Before and after the study,
the participants answered a questionnaire regarding their experience
of interacting with the robot bartender. Half of the participants in-
teracted with the purely task-based bartender, which served drinks
without social actions as in Interaction 1, while the other half inter-
acted with the socially intelligent bartender, which included extra
actions as in Interaction 2. In addition to the questionnaire, we
also gathered a range of other measures assessing the quality of the
interaction based on data gathered from system log files.

Interaction 1 Interaction 2
(Task-based) (Socially intelligent)

Two people, A1 and A2, approach the bar together
Robot (to A1): How can I help you? Robot (to A1): How can I help you?
A1: A pint of cider, please. A1: A pint of cider, please.

Robot (to A1): Okay
A third person, A3, approaches the bar
Robot (to A3): How can I help you? Robot: (Nods at A3)
A3: I’d like a pint of beer. Robot: (to A2) And you?
Robot: (Serves A3) A2: A glass of white wine.
Robot: (To A2) What would you like? Robot (to A2): Okay.
A2: A glass of white wine. Robot: (Serves A1 and A2)
Robot: (Serves A2) Robot (to A3): Thanks for waiting.
Robot: (Serves A1) How can I help you?

A3: I’d like a pint of beer.
Robot (to A3): Okay.
Robot: (Serves A3)

Figure 3: Example interactions in a bar setting



5.1 Participants
40 participants (28 male), drawn from university departments

outside the robotics group involved in developing the bartender,
took part in this experiment. The mean age of the participants was
27.9 (range 16–50), and their mean self-rating of experience with
human-robot interaction systems was 2.50 on a scale of 1–5. Each
participant could choose whether to interact with the robot in English
or German; in total, 26 chose German, while 14 chose English.

5.2 Procedure
Before the experiment, we told participants that their task would

be to go to the robot bartender to order a drink. Without showing
the robot to the participants, we then asked them to rate their ex-
pectations in the interaction on a computer-based questionnaire.
After filling out the questionnaire, we introduced the participants
to the robot. The only instructions that we gave to the participants
were that they should order a drink from the robot and that they
should use specific names when referring to the drinks the robot had
to offer: Coke, blue lemonade, or green lemonade (or the German
equivalents). After the instructions, each participant carried out the
three-person drink-ordering transaction shown in Figure 3, along
with two confederates: the participant acted as customer A1, while
customers A2 and A3 were played by the confederates. After the
experiment, the participants completed the same questionnaire as at
the start of the experiment.

5.3 Independent measures
We manipulated one feature of the robot bartender during this

study: half of the participants interacted with a bartender that reacted
at a purely task-based level, and half with a system making use
of all of the social behaviours described in Section 4. We used a
between-participants design in this experiment, which means that
each participant interacted with one version of the robot. Participants
were assigned alternately to the two versions of the system: in total,
20 participants ordered drinks from the task-based robot, and 20
participants interacted with the socially intelligent robot.

5.4 Dependent measures
We gathered two classes of dependent measures: objective mea-

sures derived from the system logs, as well as subjective measures
computed from the pre- and post-experiment questionnaires.

5.4.1 Objective measures
Using the interaction logs, we gathered a set of general objec-

tive measures about the recorded interactions, which were based on
the dimensions proposed by the PARADISE dialogue evaluation
framework [34]. Task success was assessed by counting how many
drinks were served by the system; dialogue quality was measured
by counting how many of the user’s attempted contributions fell be-
low the confidence threshold of the speech-recognition system, how
many times a time-out expired while waiting for a user response, and
how many times the robot had to ask for a customer’s drink order;
while for dialogue efficiency, we computed the mean time between
a customer’s initial appearance and the time that the bartender ac-
knowledged that customer (verbally or non-verbally), the time taken
to serve the first drink in a trial, as well as the total duration of the
trial as measured both in seconds and in system turns.

In addition, we counted the number of times that the fully social
bartender employed two specific behaviours only included in that
domain: dealing with customers as a group (as opposed to individ-
ually), and explicitly acknowledging a customer that arrived while
the bartender was already serving another. As shown in Figure 3,
the target scenario should have included both of these behaviours.

Measure Mean Median Min Max

Drinks served 2.63 3 1 3

Low ASR turns 6.25 6 1 14
Timeouts 1.05 0 0 12
Order requests 7.10 6 1 22

Response time 14.7 12.9 1.8 52.8
Time to first drink 51.0 46.1 33.0 110.1
Total time (s) 111.6 109.0 41.7 214.5
Total system turns 13.2 13 6 35

Group orders 0.75 1 0 2
Acknowledgements 2.55 2 1 7

Table 1: Summary objective results

5.4.2 Subjective measures
We measured participants’ subjective experiences via a question-

naire based on the GODSPEED questionnaire series [3]. The GOD-
SPEED questionnaire is designed to be a standard user measurement
tool for human-robot interaction, and includes items asking the par-
ticipant to assess the robot on five scales: anthropomorphism (five
items), animacy (six items), likeability (six items), perceived intelli-
gence (five items), and perceived safety (three items) All responses
were given on a six-point semantic differential scale, with lower
scores corresponding in each case to a more negative assessment of
the robot or the interaction; for each question, the participant could
also choose “no answer” if they could not or did not want to respond.

We administered the GODSPEED questionnaire before the ex-
periment to measure user expectations, and then again after the
experiment to test any changes in user opinions. That is, before the
study, one of the survey items was as follows:

I expect the robot to be:
human-like 1 2 3 4 5 6 machine-like

After the study, the corresponding question was posed as follows:

The robot was:
human-like 1 2 3 4 5 6 machine-like

This pre-test/post-test strategy was chosen to allow us to assess the
impact of the two interaction styles more directly, controlling for user
expectations [8]. The GODSPEED questionnaire has successfully
been used in a pre-test/post-test context in other studies, e.g., [32].

5.5 Results

5.5.1 Objective results
Table 1 shows the overall results on the general objective mea-

sures. In general, the task success was reasonably high, with nearly
all customers receiving a drink (a mean value of 2.63 out of a maxi-
mum possible value of 3). However, dialogue quality was affected
by the number of attempted user turns that fell below the ASR con-
fidence threshold, and the system often had to repeat its request
for a drink order several times. Regarding efficiency, users were
acknowledged on average about 15 seconds after they first became
visible, the first drink was generally served about 50 seconds after
the interaction began (which included approximately 20 seconds
for the robot arm to physically grasp and hand over the drink), and
the whole interaction took an average of about two minutes, or 13
system turns. The interactions with a very large number of ASR
failures, timeouts, and system turns generally indicate either that
the speech recogniser had particular difficulty with the speech of a
participant, or—in some cases—that the customers stood in such
a way that the vision system had difficulty tracking them. The bot-
tom two rows of the table show the counts for the two additional



Measure Task-only (sd) Full social (sd)

Time to first drink 55.6 (17.0) 46.3 (15.5)
Total system turns 11.0 (4.8) 15.5 (5.8)

Measure Male (sd) Female (sd)

Order requests 6.4 (3.8) 9.2 (6.4)
Time to first drink 48.4 (12.3) 58.5 (24.2)
Total system turns 11.6 (4.6) 17.2 (6.9)

Table 2: Influence of planning domain and gender

social actions. In general, about three-quarters of the interactions
with the fully social system involved the system treating customers
as a group, and the system acknowledged newly-arrived customers
an average of twice in an interaction. The trials with a very high
number of acknowledgements (e.g., 7) indicate an issue with the
vision system tracking one of the customers, who therefore would
have been repeatedly treated as a new customer. This was only an
issue in three of the 20 social trials.

To assess the impact on these results of the experimental manipu-
lation (task-based vs. socially intelligent) and the four demographic
factors of the participants (age, gender, HRI experience, interaction
language), we carried out a multiple regression analysis. This analy-
sis found that two factors had a significant impact on the objective
results: the interaction domain used by the robot, and the partic-
ipants’ gender. In particular, when the robot used the task-based
planning domain, the robot required significantly fewer system turns
overall (β = −0.33, p < 0.05 in the regression model) and took
significantly longer to serve the first drink (β = 0.37, p < 0.05).
On the other hand, when the participant was male, the robot had to
make significantly fewer drink-order requests (β = −0.36, p < 0.05),
took fewer system turns overall (β = −0.42, p < 0.01), and served
the first drink more quickly (β = −0.35, p < 0.05). Table 2 shows
the per-group means for these objective measures. We carried out
an ANOVA analysis to check for interactions between the factors,
and found no significant interaction: F(1, 35) = 0.14, p = 0.71 for
system turns, and F(1, 35) = 1.36, p = 0.25 for the first drink time.

5.5.2 Subjective results
In order to analyse the questionnaire results, we first processed

the responses to replace any non-answers with the mean response
for that item. For each of the five groups on the GODSPEED ques-
tionnaire (anthropomorphism, animacy, likeability, perceived intelli-
gence, perceived safety), we then computed the mean pre-test and
post-test scores for each participant, and also then computed the
mean score change for each category. These summary results are
shown in bold in Table 3: in general, the scores decreased in all
categories from the pre-test to the post-test to varying degrees.

Table 3 also breaks down the GODSPEED scores by interaction
language. In general, the German participants gave systematically
lower pre-test scores (M = 3.35, SD = 0.73) than did the English
participants (M = 3.96, SD = 0.60), while the post-test scores are
more similar (German M = 2.94, SD = 0.64; English M = 2.74,
SD = 0.72). When we assessed this difference with a T test, the
difference in pre-test scores was indeed found to be significant,
(t(31.5) = 2.83, p < 0.001), as was the difference in the overall
score change (t(28.9) = −3.67, p < 0.001), while the post-test
means did not differ significantly (t(23.9) = −0.87, p = 0.40).

As with the objective factors, we again used a multiple regression
analysis to assess the impact of the experimental manipulation and
the demographic features. Based on the above analysis, we used the
post-test scores as our response variable, as the variance of those
scores was less than that of the pre-test/post-test change. In the

Category Pre (sd) Post (sd) Change (sd)

Anthropomorphism 2.74 (0.95) 2.02 (0.64) -0.73 (0.90)
German 2.34 (0.78) 1.90 (0.60) -0.43 (0.86)
English 3.51 (0.76) 2.24 (0.65) -1.27 (0.71)

Animacy 3.04 (0.90) 2.30 (0.70) -0.73 (0.96)
German 2.83 (0.97) 2.25 (0.66) -0.59 (1.01)
English 3.43 (0.59) 2.42 (0.78) -1.01 (0.82)

Likeability 4.43 (1.01) 3.70 (1.17) -0.74 (1.34)
German 4.27 (1.03) 4.05 (0.96) -0.22 (1.01)
English 4.74 (0.92) 3.04 (1.27) -1.70 (1.38)

Perc. Intelligence 3.77 (0.80) 2.87 (0.83) -0.90 (0.86)
German 3.52 (0.78) 2.92 (0.90) -0.60 (0.81)
English 4.22 (0.65) 2.76 (0.70) -1.46 (0.64)

Perc. Safety 4.15 (1.10) 3.97 (1.12) -0.18 (1.20)
German 4.12 (1.11) 4.17 (1.08) +0.05 (0.82)
English 4.22 (1.12) 3.62 (1.14) -0.60 (1.65)

Table 3: Summary of GODSPEED scores

initial regression analysis, neither the planning domain nor any of
the demographic factors had any significant effect on any of the
GODSPEED categories. We then carried out an ANOVA analysis to
test for interactions between the language and the planning domain
on each of the GODSPEED categories. This analysis found that
neither the planning domain nor the language had a main effect on
the responses in any category. However, a significant interaction
was found on the animacy scores (F(1, 36) = 4.19, p < 0.05), with
marginal effects for liking (F(1, 36) = 4.06, p ≈ 0.05) and perceived
intelligence (F(1, 36) = 3.00, p ≈ 0.09): in all cases, the effect was
that the scores for the German participants for the task-only planning
domain were lower than those for the fully social domain.

5.5.3 Comparing objective and subjective measures
We considered a number of objective and subjective measures, all

of which varied widely across participants and across trials. We there-
fore investigated which of the objective measures had the largest
effect on users’ subjective judgements, using stepwise multiple lin-
ear regression as suggested by the PARADISE evaluation framework
[34]. This process produces coefficients describing the relative con-
tribution of each objective predictor to subjective user satisfaction.
If a predictor does not contribute significantly, its coefficient is zero
after the stepwise process, so only significant predictors remain.

Table 4 shows the results of the PARADISE procedure on the data
from this study. Each column corresponds to a possible predictor,
while the cells indicate how each factor contributes to the post-test
score in each of the GODSPEED categories. The sign (+ or −)
indicates the direction of influence, while the number of symbols
indicates the strength of the influence: three for p < 0.001, two
for p < 0.01, and one for p < 0.05. For example, for likeability,
the number of order requests made by the system had an extremely
negative impact (p < 0.001), while the duration had a moderately
positive impact (p < 0.01). The R2 column indicates the percentage
of variance explained by each predictor function.

5.6 Discussion
The overall objective results of this study indicate that the robot

bartender system was generally successful at its core task of serving
drinks. Despite the minimal instructions given to the participants,
the objective success rate was very high across the conditions; how-
ever, interactions with the system were affected by the hard-coded
threshold of the speech recogniser, which led to attempted user
contributions being discarded. In the trials with the fully social bar-
tender, the first drink was served more quickly on average: this is



Category NumDrinks OrderReq FirstDrink Duration SysTurn GroupO Ack R2

Anthropomorphism − − 0.10
Animacy na
Likeability − − − ++ 0.24
Perc. Intelligence + −− ++ 0.24
Perc. Safety − −− + − 0.34

NumDrinks: number of drinks served; OrderReq: number of system order requests; FirstDrink: time to serve first drink;
Duration: total length in seconds; SysTurn: total length in system turns; GroupO: number of group order requests;

Ack: number of customer acknowledgements

Table 4: Significant objective predictors of GODSPEED post-test scores

likely a reflection of the stronger ordering imposed on order-taking
and serving by the additional social constraints. Also, while those
fully social trials took more system turns to complete, there was
no significant difference in the overall interaction time, indicating
that the additional system turns required to implement the social
behaviour did not affect the overall efficiency of the dialogue.

The objective dialogue efficiency was also significantly affected
by the gender of the participants: in the interactions involving male
participants, the first drink was served more quickly, and the interac-
tion was also shorter overall and involved fewer system turns. There
was no difference in the number of timeouts or low-ASR turns,
indicating that the problem was probably not to do with speech
recognition. Instead, this finding suggests that the issue with the
female participants may have been at least partly due to the perfor-
mance of the vision system, which was trained primarily on males:
if vision has difficulty detecting or tracking a customer, then the
interaction will proceed less smoothly.

The scores on the subjective questionnaire generally decreased
from the pre-test to the post-test. The score decrease was generally
larger for the participants who interacted in English: the pre-test
scores were significantly higher for the English participants, while
the post-test scores were more similar. It is worth noting that on a
recent study involving participants from 142 countries worldwide
[12], Germans had the fourth-lowest level of optimism as measured
by the expected difference between current and future quality of life:
so the difference in pre-test scores may well be related to cultural
differences. Also, this experiment was carried out in Germany, so
the participants who chose to use German were primarily native
Germans, while the participants who chose English were mainly
international students whose first language was neither German nor
English. This mixture of native and non-native speakers may also
have affected the experimental results; for example, [30] also found
differences between native speakers and non-native speakers on
both subjective and objective measures in their dialogue system
evaluation. Although the interaction style had no main effect on the
subjective scores, there was an interaction between language and
interaction style: the post-test scores from the German participants
on animacy, liking, and perceived intelligence were generally lower
for the task-based system than for the fully social system.

In a PARADISE-style stepwise regression analysis, we found that
the objective factors that had the greatest impact on the subjective
responses were the number of system order requests and the overall
duration of the trials: other factors that had some impact included the
number of system turns and the presence of social behaviours such
as group ordering and asking customers to wait. Some predictors
have an unexpected or even contradictory effect—e.g., the scores
for perceived safety were actually negatively correlated with objec-
tive task success—and the R2 values for the PARADISE predictor
functions, while in line with those from similar studies [e.g., 10, 30],
were generally quite low. This suggests that the users’ subjective
judgements were also affected by factors other than the log-based
objective measures considered here.

Note that all of the objective measures are currently based only on
the data from the log files, along with some underlying assumptions
about user behaviour based on the scenario given to the participants
(Figure 3): for example, we assume that all customers were seeking
to engage with the bartender, and that customers A1 and A2 were in
a group together while A3 was isolated. We do not yet have ground-
truth data as to the actual verbal and non-verbal behaviour of the
customers in the scene, such as their actual spoken utterances or their
true attention-seeking and group behaviour. For this reason, we are
currently annotating the videos resulting from this study to add that
information, which should allow a more detailed objective analysis
of the interactions: for example, we can assess the performance of
the vision system, and also compute additional measures such as the
word error rate from the speech synthesiser. Such additional mea-
sures will allow the interactions to be compared more closely, and
may also shed more light on the influence of the demographic factors
on the results; we also expect that adding them to the PARADISE
analysis will increase the R2 values of the predictor functions.

6. CONCLUSION
Our guiding research question in this work was whether a service

robot needs to show social behaviour when it interacts with humans
in a task-based context. To address this question, we used a high-
level automated planner to implement two different behaviours on a
robot bartender that could serve drinks to human customers. In a user
study in which the robot served drinks to multiple humans, the robot
interacted in one of two ways: either it executed only task-relevant
actions, or it also executed socially intelligent actions in addition to
the actions necessary to complete the task. The socially intelligent
system served the first drink more quickly than it did in the purely
task-based system; and while the socially intelligent version used
more system turns to complete an interaction, this did not affect the
overall time taken. Interactions involving a male participant were
also found to be somewhat more efficient: we hypothesise that this
was due at least in part to the vision system having more difficulty
tracking the female participants. The biggest effect on the subjective
questionnaire was the interaction language: participants who did
the experiment in German gave significantly lower scores on the
GODSPEED pre-test, although their scores on the post-test were
similar to those of the English participants. An analysis of the post-
test scores found an interaction between language and interaction
style: the German participants tended to give the task-only system
lower scores on animacy, liking, and perceived intelligence. We were
also able to show that certain objective experiment measurements
had an influence on participant ratings: interactions that required
more system turns and more order requests generally resulted in
lower satisfaction, while longer interactions and those that included
specific social behaviours tended to be rated more highly.

It was surprising that the different robot behaviours had such a
subtle influence on the ratings of the experiment participants: intu-
itively, comparing the two interactions from Figure 3, one would



expect that a socially intelligent bartender would be perceived as a
clearly better interaction partner. Therefore, we plan to refine our
methodology in the future to analyse this question in more depth.
First, we will annotate the videos of the human-robot interactions
from our experiments in order to have ground truth data about the
participants’ actions. This data cannot be obtained from the robot log
files, and will allow the experiment to be analysed in more detail; it
should also shed more light on the demographic factors that emerged
from the analysis. Second, we will conduct an experiment in which
we compare an even less social domain to the socially intelligent
domain. The robot could, for example, just act as a soda machine,
and only serve a drink to a predefined position when explicitly told
to do so, without any reference to specific customers. For subsequent
studies, we will recruit a demographically balanced selection of par-
ticipants, particularly with respect to gender and native language, to
ensure that the effects of any individual differences are minimised.
Finally, we will enhance all components of the robot to improve dia-
logue quality. In particular, we will fine-tune the speech recognition
thresholds, and we will also implement an improved clarification
strategy to deal with lower-confidence recognised utterances.
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