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Abstract— Simulation as a tool for validating the behavior of
an autonomous driving system can include sensor and actuator
errors. A combination of such errors might lead to undesired
behavior not occurring with a single error. In this paper
we present a new concept for efficiently covering these error
combinations. We propose to divide the simulation sequence
into small separately simulated pieces that can be assembled
to cover more patterns of error combinations. This way, parts
of a simulation sequence that are similar for multiple error
patterns are run only once. Our experimental results show that
the concept can find weaknesses of planning and control systems
and is faster than running a separate simulation sequence for
each error pattern.

I. INTRODUCTION

Simulation can help to evaluate planning and control
systems without executing them on the actual car. In a
simulation environment, the developer has full control over
physical failures, can start and stop the test at any time and
can even pause for debugging directly in the source code.
This power can be used to validate planning and control
systems against all expected errors before launching cost
intensive tests on the actual vehicle. Simulation can also
cover error patterns that are relatively unlikely but relevant
for mass-production cars. Such patterns are difficult to cover
using tests on the physical vehicle.

However, an exhaustive test in the simulation would also
require running the simulation for each combination of
errors. Plus, the combination of errors can happen at any
point in time. This would make the number of simulation
runs grow exponentially with the length of the simulation.
Furthermore, testing each error pattern separately wastes
time by running some parts of the simulation many times
although they are very similar. This problem is depicted in
Figure 1. Some parts of the simulation can be nearly equal
for different error patterns. In Figure 1, the upper arrow
represents a simulation run without errors. The lower arrow
shows a simulation run with a position error occurring after
some time. The part of the simulation until the first error
happens would be exactly equal (“same start”). Sometime
after the error happens, the controller will have minimized
the position error and thus the simulation will continue
almost equally for both error patterns (compare “same end”
in Figure 1). In this paper, an approach is presented that takes
advantage of these common simulation parts in order to get
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Fig. 1: Difference of driven paths with two different error
patters: no error and a position error; For covering both paths,
our concept simulated the common start and end only once.

a similarly effective result as simulating exponentially more
combinations of errors.

II. RELATED WORK

While many research teams – in particular of the DARPA
Urban Challenge – highlight the importance of a simula-
tion environment [1][2][3][4][5], most teams do not focus
on the simulation strategy. In [1], the authors describe a
simulation environment that can be defined by a scene file
and changed by a graphical user interface. The authors
of [2] see testing as a “cornerstone of the development
process” and use a simulation to test capabilities required
for the Urban Challenge. Team VictorTango [3] agrees on
the importance of simulation and testing. Their simulation
can be configured by static scene files, too. The Skynet team
[4] shows results of Urban Challenge simulations. The results
do not mention large set of tested combinations; hence the
simulation was probably done linearly. The authors of [5]
describe how to adjust the architecture such that software in
the loop tests are possible. Using their systems, they perform
long linear time test runs. None of the teams mentions
systematically introducing sensor and actuator errors to their
tests or otherwise systematically testing variations of the
scenarios.

In industry “Model-in-the-Loop” (MIL) and “Hardware-
in-the-Loop” (HIL) tests are performed. The authors of [6]
describe MIL tests and present a new method for performing
HIL tests. The goal of these tests is to simulate a physical
test drive as good as possible. The tested scenarios are safety
critical maneuvers including faults. Sensor errors other than
complete failures are not systematically tested.

Systematic testing has been researched by other groups.
The authors of [7][8] present a method for generating test
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cases by evaluating the results of each test run. Using a
heuristic they try to push the test executions towards bad
events. For them, the simulation is only altered by different
starting constellations like the shape of the obstacles. In
[9] a different approach for finding such test cases is used:
symbolic execution. This way, the authors virtually execute
a program using all possible combinations of input values.
The approach presented in our paper also tests combinations
of events and additionally takes advantage of the geometric
structure of path planning and control in order to increase
the efficiency of the computation. Additionally, the research
group of [10] focuses on parallelizing the simulation flows.
The approach presented in our paper is designed for straight
forward parallelization, as each simulated step can be com-
puted on a separate computer.

Using better tools for finding rare undesired behavior also
allows focusing more on the average case quality of a plan-
ning and control system. For this challenge, the authors of
[11] advocate a design procedure for controllers that focuses
on both, average case quality and worst case reliability. In
our paper, we support the idea that controller design should
focus more on average case quality. The analysis presented
in this paper can be used for exploring the worst case events.
It can also be used after a controller upgrade as regarded in
[12]. After such a controller upgrade, the software engineers
can rerun the reliability analyses.

An alternative to simulation are formal approaches as
described by the author of [13]. His concept computes reach-
able states of a system with the example of an autonomous
car. The dissertation uses a simplified model of the car with
some parameters being given as a probability distribution.
For this model, he can prove that certain states are not
reachable. The disadvantage of such a verification technique
is that it checks an abstraction of the system rather than
the software system itself and due to an over approximation
it is not able to show counter examples. Furthermore, the
approach shown in our paper can be extended to a larger set
of possible errors with little effort.

III. BRANCHING AND MERGING SIMULATION STATES

As explained in the previous section, in most research
groups, simulation scenarios are run one by one. Figure 2
shows a possible simulation scenario. The car starts with
some Start configuration and is ordered to park, i.e. move to
a Goal position while avoiding the Obstacles. The long curve
is the path the planning layer produces in this simulation.
In the example, the simulation takes five time steps. The
captions (0t-5t) indicate the positions of the car at different
points in time.

In this paper, we divide the simulation into small time
intervals. Figure 3 shows the first interval of the simulation.
Additionally there is a red line indicating the trajectory
followed by the car with an error occurring: a strong drift
of the position estimation. If the position estimation has a
drift in one direction, the controller will try to move the car
into the opposite direction. Hence the end of the red line is

Start

Goal

Obstacle

0t

1t

2t
3t 4t 5t

Fig. 2: Simulation of a parking scenario. The car drives from
Start to Goal following the curve. The numbers indicate at
which time it is at which position.

0t

1t

Fig. 3: First time interval of the simulation sequence depicted
in Figure 2. The blue line indicates the simulated trajectory
without any errors. The red line indicates the trajectory with
a strong drift of the position error.

off by several centimeters compared to the trajectory without
errors.

In the next time interval, the position error might stay at
its value, decrease back to normal or even increase further.
The resulting possible paths are depicted in Figure 4. The
Figure also visualizes that even with these few error types
the number of possible simulation paths grows exponentially
with the simulation time: There are three possible paths after
one time interval and nine possible paths after two time
intervals. In general, the number of simulation paths is:

|Paths| = |error patterns|path length (1)

where error patters is the set of error patterns that can
be applied to the simulation sequence.

Using conventional simulation methods, each of these
paths would need to be simulated and hence, the computation
time would grow exponentially, too. In order to reduce the
computation time, we propose to:
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Fig. 4: First two simulation seconds. The red tree indicates
the possible trajectories followed for different error patterns.
Two of the red lines lead to very similar states. Our concept
continues only one of these simulation sequences.

• branch the simulation after small time steps using
different error types for each branch and

• merge similar states such that only one of them is
continued in the simulation.

This way, the number of simulated edges is limited by the
resolution of grid used for merging states and the available
space, which typically is some region around the trajectory
without errors. For example, if the car follows a long street
using a stable system that never moves further than 0.1
meters away from the middle of the lane, the simulation will
also produce only states in this narrow corridor eventually
leading to a number of states growing only linearly with the
length of the simulated path.

The approach requires implementing two concepts:
Branching the simulation requires being able to save and load
the state of both, the simulation environment and all software
components involved in trajectory planning and following.
Merging simulation states requires determining if two states
are similar. Our solution to these two tasks is described in
the next section.

As the concept presented in this paper makes no restriction
to the simulation environment, it also allows to model almost
arbitrary error types. For example, these error characteristics
can be applied:

• A delay of the sensor components, for example an
obstacle might only be recognized 0.5 seconds after it
is in sensor range,

• an actuator delay, for example starting to brake might
start only 0.5 seconds after it has been requested,

• errors of the position estimation, like jumps and drifts
of the position and orientation error,

• sensor errors, like obstacles being detected at the wrong
position, being not detected or detected not existing
obstacles,

• actuator errors, like a different acceleration or steering
angle being applied,

• or dynamic obstacles occurring in a bad moment.

SetError,

SaveState,

LoadState

Test Runner
Trajectory Planner 

and Controller

Simulation 

Environment

SaveState

LoadState

Sensors,

Actuators

Fig. 5: The architecture of our planning, control and simu-
lation system; The Test Runner component can instruct the
planning and simulation components to save or load a state.

Each of these error characteristics can be implemented and
integrated into the test environment. The integration only
requires writing a function that alters the transmitted data
accordingly. For the experimental section of this paper we
chose to implement jumps of the position errors.

In general, an engineer observing unexpected behavior
in one specific situation of the real car can trace it down
to sensor and actuator errors, model the behavior for our
framework and quickly find out whether this can cause
serious problems to any of the tested scenarios. For all error
types it can be tested whether the planning and control
system works for the worst possible combination of these
error types.

In contrast, the straight forward approach not using the
concept presented in this paper would be to find the error
and adjust the software parameters such that the error does
not lead to problems in the currently tested scenario. For
example the safety distances could be increased. This activity
would not only lose the advantage of using tests performed
for one scenario for learning facts about another scenario.
Additionally, it might even produce new problems for other
scenarios due to the new parameter sets. For example, an
increased safety distance might make it impossible to drive
through a narrow gate.

IV. IMPLEMENTATION

We implemented the simulation for our trajectory planning
and control system. Figure 5 shows an abstract overview over
the system. There is a Trajectory Planner and Controller
component that consists of all components we implemented
for the physical car. The Simulation Environment includes
components representing all sensors and actuators of the car.
Finally, the Test Runner component manages the execution
of the simulation.

In order to do so, the Test Runner can command the
Trajectory Planner and Controller component to save its
currents state and map it to an id specified by the Test
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Runner. Saving the State is done using Boost Serialization1.
This framework can save the current instance and hence
the state of any component in the Trajectory Planner and
Controller to an archive. Plus, it can restore the state from
an archive. After the state is restored, the Trajectory Planner
and Controller component behaves as it would have done
after saving the state. The same framework is used for the
simulation components.

The second part of the Test Runner component is to decide
when to save the current state and which state to restore.
Figure 6 shows how the Test Runner performs this task. First,
it stores the current simulation state (top most box in Figure
6). This is done by sending the save state command to all
components and store some meta information about the state
inside the Test Runner. Next the current state is compared
to all states currently enqueued for further simulation (top
most diamond in Figure 6). At the beginning this queue is
empty. How the similarity is determined is described in the
next paragraph. If there is no similar state and the current
state is no terminal state, the current state is enqueued for
further simulation. Terminal states are states at the end of
a simulation sequence. In the example illustrated for this
paper this would be standing at the goal position of the
parking lot with a velocity of zero. At this state, our planning
and control system sends a status message indicating that
the maneuver has been completed. If there is no more state
in the simulation queue the whole simulation is finished. If
there are states in the simulation queue, the first state of the
queue is restored without removing the state from the queue.
Restoring the state includes sending the Load command
to all components as depicted in Figure 5. Next an error
characteristic for the simulation environment is specified. For
this task, the Test Runner has a set of error characteristics it
applies to all states. Examples of such error characteristics
have been listed at the end of the previous section. If the
chosen error is the last element of the set, the simulation state
is considered fully expanded and hence removed from the
simulation state queue. If there are still error characteristics
to be applied, the state is left in the simulation queue. With
the state restored and the error set, the simulation is run
for tpart seconds. The cycle time of each component is a
multiple of the cycle time of the simulation environment
tbase cycle. Each tbase cycle we compare the current system
state to the undesired state patterns searched for. In this
paper the undesired states are collisions with obstacles. After
running tpart seconds of the simulation, the system state is
stored again as depicted in the top of 6. In our approach we
use a constant simulation part size of tpart := 1s.

As mentioned above, for this algorithm it is necessary to
decide, whether two states are similar. For this decision, we
use a multi-dimensional grid consisting of the x1, x2-position
of the car and the orientation. We found these variables to
be the most defining properties of a state for the scenarios
analyzed for this paper. For other scenarios, this list of
variables might need to be extended. For each of these state

1http://www.boost.org/libs/serialization
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Fig. 6: Algorithm of the Test Runner for deciding when to
save or load which state with which error characteristic.

variables a grid size is defined. Two states are considered
similar, if they are in the same grid cell. This includes that
the difference of each state variable between these two states
can be at most the grid size. In our implementation we used
the following grid sizes:

x1,grid := 0.1m (2)
x2,grid := 0.1m (3)
θgrid := 0.02radians (4)

In summary, we have implemented a method for loading
and saving states and a managing component comparing
states and using the load and save methods to run the
simulation.

V. EXPERIMENTAL RESULTS

We tested our concept in several scenarios. The first
scenario is driving backwards into a narrow passage as
depicted in Figure 7. The round shape is the outer shape of
the car. The red lines are the walls the car is driving through.
They are 3.2 meters away from each other. The thick black
line in the middle is a bundle of paths that the car travels
in our simulation for different error patterns. The gray box
shows it in an enlarged version. The crosses in the middle
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Fig. 7: A narrow passage plotted in ADTF. The big solid
line is a tree of possible paths, which the grey box shows in
an enlarged version.

are the saved simulation states. The lines are the connections
between simulation states. The nodes appear in clusters, as
each simulation step lasts one second and the error patterns
have no influence on the speed.

In this scenario, the car is ordered to drive through a
narrow passage. The planning layer has found a path that
can be executed and does not violate the configured safety
distances. The pose estimation supplier has specified that
the pose estimation may be off by 0.1 meters and might
change instantaneously. Hence, the error pattern checked
is jumps of the pose estimation by 0.1 meters around the
actual position of the car. The simulation has executed 4414
simulation segments, each consisting of 1 second simulated
time. As continuous replanning was not used and the system
was optimized for a weaker embedded system, the PC (Intel
Xeon W3530, 2.8 GHz) was able to execute the segments in
173 seconds. The pattern searched for in the simulation was a
collision with one of the walls. The result of the analysis was
that the car was colliding while executing state 1572. Figure
8a shows the path leading to this state. At the beginning the
pose estimation is off by 0.1 meters to the left. Hence the car
steers to the right. At some point the pose estimation error
turns to 0.1 meters to the right. Hence the car steers to the
left which results in a sufficiently large orientation error to
collide with the right wall.

This example also shows that it would not suffice to check
with a constant error to the left or to the right, as only the
combination of errors to the left and to the right lead to the
collision. As it checks every combination of error patterns,
the simulation strategy also applies the errors at the right
point in time. Figure 8b shows an example in which the
error needed to be applied at a very specific point in time.
The first four seconds, no error is applied. The following
seconds there is first an offset to the left for several seconds
and next to the right. If the error would have occurred at any
other time, there would not have been a collision.

In these scenarios, the efficiency of the approach presented
in this paper can be demonstrated. Figure 9 shows how many

(a) wall (b) small obstacle

Fig. 8: Paths covered by the car and leading to a collision
with a wall 8a or a small obstacle 8b. They demonstrate
the capability of our concept to apply the error patterns at
exactly the right time leading to a collision.
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Fig. 9: Total number of seconds simulated using saved states
(red solid line) or simulating the whole path every time
(blue dotted line). The x axis shows the duration of a single
simulation sequence.

seconds need to be simulated for the first n seconds of the
scenario. The red solid line shows the approach presented in
this paper ascending to the 4414 seconds mentioned above.
The blue dotted line shows how many seconds would have
been necessary to simulate in an approach using the merging
technique described in this paper, but not using saved states.
That is, instead of loading a simulation state, the whole
simulation until this state would need to be run again. Thus,
the number of seconds ascends to more than 50.000. An
approach not even merging similar states would require more
than one trillion seconds to be simulated which would be
impossible.

Additionally, Figure 10 shows the result of a CPU profile
created by the open source tool “very sleepy”2. It shows

2http://www.codersnotes.com/sleepy
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Fig. 10: Time used for the loading and saving and states
compared to the time used for the actual simulation

Fig. 11: Parking scenario with a curve analyzed with our
concept and similar to the scenario depicted in Figure 2.

that the fraction of time used for loading and saving states is
only about seven percent. The remaining time is used for the
actual simulation environment and the planning and control
system.

As a final example we analyzed a curved parking scenario
as depicted in Figure 11 using the same safety distances
as in the previous scenarios. The simulation expanded 3608
states in 89 seconds. Figure 11 shows the path that lead to
a collision and was detected by our simulation environment.

VI. CONCLUSION AND OUTLOOK

In this paper we presented a new concept for testing
a car planning and control system. We demonstrated that
this concept is more efficient for finding weaknesses of the
planning and control system than sequential simulation. It
also scales well with respect to new error patterns, different
scenarios and the length of the scenarios. The last point is re-
markable, as simulating all error patterns without our concept
would result in an exponentially long computation time. For
sufficiently long simulation times, the computational effort
of our approach grows only linearly with the simulation time.

The concept presented in this paper is the basis for a large
set of possible further research. In this paper we present the
pioneer work for this concept using a path based controller
and a fixed path planning component. The next step would
be to cover a trajectory controller and a continuously replan-
ning layer. Together with considering replanning, changes
to the starting position of the autonomous vehicle could be
addressed as well. Additionally this paper provides the basis
for a set of error patterns. We intend to extend this set of

error patterns in additional systematic experiments on the real
vehicle. Furthermore this paper demonstrates the simulation
concept by searching for the event of a collision of the car
with an obstacle. Other event patterns are possible like high
deceleration or curvature. That is, the comfort of the planning
and control system could be evaluated using our simulation
concept. For example it could be evaluated that given small
errors, the deceleration should never be high.

All in all we presented a new concept for evaluating
planning and control systems for advanced driver assistant
systems, demonstrated that it performs well and can be the
basis for further research.
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