
DEBS Grand Challenge: Real time Load Prediction and
Outliers Detection using STORM ∗

Abhinav Sunderrajan
TUM CREATE Limited

1 CREATE Way
#10-02 CREATE Tower

Singapore 138602
abhinav.sunderrajan
@tum-create.edu.sg

Heiko Aydt
TUM CREATE Limited

1 CREATE Way
#10-02 CREATE Tower

Singapore 138602
heiko.aydt@tum-

create.edu.sg

Alois Knoll
TUM CREATE Limited

1 CREATE Way
#10-02 CREATE Tower

Singapore 138602
knoll@in.tum.de

ABSTRACT
In this work we present our solution towards the DEBS
2014 Grand challenge. We also discuss the set of novel and
generic techniques used to enhance the performance of our
STORM [4] based stream-processing platform while imple-
menting the challenge queries.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: General

Keywords
Stream processing engine, Complex event processing, Stream
archive queries

1. INTRODUCTION
The DEBS Grand Challenge 2014 provided recordings

from smart plugs measuring power consumption related val-
ues which are deployed across a number of households [9].
The goal of the challenge is to develop a stream-processing
system for computing short term load-predictions and de-
tecting outliers over this high velocity data stream. We
made use of an open-source distributed stream processing
system called STORM for horizontally scaling our solution.
We employ generic techniques such as archive data streams,
hybrid queries and a novel architecture which combines a
high-level CEP system with STORM for better performance.

The organization of the paper is as follows. In Section
2 we discuss the two queries comprising the challenge. In
Section 3 we discuss the architecture and elaborate upon
the optimizations incorporated to enhance the performance

∗This work was financially supported by the Singapore Na-
tional Research Foundation under its Campus for Research
Excellence And Technological Enterprise (CREATE) pro-
gramme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DEBS’14, May 26-29, 2014, MUMBAI, India.
Copyright 2014 ACM 978-1-4503-2737-4/14/05 ...$15.00.
http://dx.doi.org/10.1145/2611286.2611327.

of our stream-processing system. Section 5 evaluates the
system while executing the challenge queries. The paper
concludes in Section 6.

2. QUERIES

2.1 Query 1
Query 1 involves predicting short term load over time in-

tervals ranging from 1 minute to 60 minutes at the resolu-
tions of individual houses and plugs. The prediction model
though conceptually simple is more of a query processing
problem. The predicted load is the average of current load
(averaged over a time interval) and the median load for the
past ’N’ days at the time slice corresponding to the predic-
tion interval. We employ proactive archive streams discussed
in Section 3.2.2 for efficient retrieval of specific data from a
massive archive consisting of historic load values.

2.2 Query 2
Query 2 involves estimating the outliers in terms of load

consumption by computing the percentage of plugs in each
house having a median load greater than the global median
load for all plugs over a specified time interval. The primary
issue involved in implementing a solution for this query is the
process of computing the global median load over the past 1
hour and the past 24 hours by using a sliding window with
a slide equal to 1 second. The naive approach of storing the
load values for each reading over a high volume data stream
over long periods of time is infeasible. The operation of
computing global median for all plugs is further complicated
by the fact that the operation cannot parallelized making it
non-scalable.

3. ARCHITECTURE & OPTIMIZATIONS
In this section we describe the architecture of our data-

stream processing platform which is implemented in Java.
We also discuss the optimizations incorporated to increase
the performance and scalability of our system.

3.1 Core components

3.1.1 STORM
The data stream processing platform has been built using

STORM as the core framework. STORM is an open-source
distributed real time computation engine which enables a

developer to neatly package the stream-processing logic to
processing units called bolts. Each bolt can be parallelized
by configuring the number of threads it needs to execute.
STORM also defines an abstraction called the spout which
is the source of input data-streams.

A STORM topology represents a network of spouts and
bolts with each bolt subscribing to the output of a spout
or a preceding bolt. The entire topology can be distributed
across a cluster of slave nodes making it scalable. Further,
STORM uses a lock-free ring buffer called the LMAX dis-
ruptor [5] for efficient data transfer between the bolts. We
have leveraged the power of LMAX disruptor in intra bolt
threads for efficiency and to mitigate the effects of stop-the-
world generational garbage collection [2].

3.1.2 Redis
The need for a centralized in-memory data-structure was

necessitated due to the distributed nature of the stream-
processing system where the processing bolts could reside
in any node in the cluster. Redis [3] can be described an
in-memory key-value database. Redis enables the storage
of data-structures such as lists, Maps and Sets in memory
allowing extremely fast retrieval of a value from these data-
structures using an associated key.

3.2 Optimizations
In this subsection we discuss the optimizations made for

enabling our stream-processing system to address the queries
posed in the challenge. The techniques discussed are largely
generic and can be adopted to enhance the performance and
scalability for purposes other than this challenge.

3.2.1 Esper-enriched bolts
Despite STORM enabling the overlying stream processing

platform to be truly scalable, it does provide semantics to
define sliding windows. We have incorporated Esper [1] in
our system to create Esper-enriched bolts where sliding win-
dow and group operations were necessary. Esper is a high-
level event-stream processing engine with Java and .NET
bindings.

Esper also provides a SQL-like language called Esper pro-
cessing language (EPL) to perform operations such as select,
project, filter and join on event streams. EPL defines a va-
riety of sliding and tumbling windows for computing aggre-
gates. Each processing thread of an Esper-enriched bolt is
associated with an unique Esper-engine instance to process
the tuples using an Esper query.

3.2.2 Proactive archive data-streaming
Retrieving historic data from massive archives while pro-

cessing high-velocity live streams is a challenge. Consider-
ing that queries to a massive archives are costly, intelligent
techniques should be employed to avoid bottlenecks. For
the grand challenge, we ensure that the archive data in ap-
propriately sized chunks (which for Query 1 described in
Section 2.1 would equal the defined time slice) are fetched
before the arrival of the live event (i.e. pro-actively) to min-
imize latency to a bare minimum. Considering an example
where the archive load aggregates for the past 3 days are
required, three concurrent database connections from Mon-
day through Wednesday are used to stream per plug load
aggregates between 00:45:00 hours and 01:00:00 hours. It is
assumed that the current time is 00:15:00 hours on a Thurs-

day. The per plug load aggregates for the aforementioned
time interval are computed and sent to the platform through
as many archive stream spouts as the concurrent database
connections.

The load aggregates per plug (and per house) per time-
slice interval are stored in a Redis data-structure. For min-
imal database-query latency the stream-archive table is in-
dexed on time stamp. With knowledge on the approximate
live-stream velocity and time-slice over which prediction is
to be computed, the interval at which archive load aggre-
gates are retrieved can be set to ensure that the values are
stored in memory before the arrival of live-stream tuples. We
refer to this technique as proactive archive streaming since
only the relevant archive records are streamed and stored in
memory for operations such as joining and comparison with
the live-stream tuples prior to their arrival. The technique
is based on the porthole scan approach elaborated in [8].

4. QUERY TOPOLOGIES

4.1 Topology for Query 1

PostgreSQL
Database

Compute
archive median

per plug per
time slice

Compute current average
load per house

Bolt-4
Compute current average

load per plug

Compute
archive median
per house by
computing the

weighted
average

load the of
plugs per house

Predicted
load for plug

Predicted load
for house

Punctuation after every database load per time-slice to enable the aggregate
operator to emit the weighted load average per house from the average load values

per plug.

Bolt-5
Look up archive values
for the prediction time

slice per plug

Bolt-6
Look up archive values
 for the prediction time

slice per house

Live data stream

Bolt-1
Bolt-2

Bolt-3

Filter by
load

property

Redis

Figure 1: STORM topology for query 1

Figure 1 shows the STORM topology for Query 1. The
stream archive is stored in a PostgreSQL database. Con-
current database connections are setup to retrieve historic
load aggregates per plug, per time interval through archive
streams discussed in Section 3.2. The retrieved values per
plug. per time slice, per day are stored in a circular-buffer
of size N. The size of the buffer equals the number of days
in the archive which are required for load prediction. Stor-
ing the archive aggregates in a circular-buffer ensures that
irrespective of the number of archive streams we begin with,
the count reduces to one after 24 hours since the other N-1
values are already present. Bolt-1 shown in Figure 1 is re-
sponsible for computing the per plug archive aggregates be-
fore storing the values to the corresponding circular buffer
in Redis. Concurrently Bolt-2 connected to Bolt-1 computes
the archive aggregates per house, per time slice, per day by

grouping the tuples belonging to a single house and calcu-
lating the weighted-average before storing in Redis.

Computing a weighted average is a blocking operation
which is resolved by using punctuations [7]. Bolt-3 and
Bolt-4 group the live stream tuples per house and per plug
respectively to compute the current load average over the
specified time-interval. Bolt-5 and Bolt-6 look up the Redis
data-structure to retrieve the list storing the archive load
aggregates for computing the archive-median load values for
future load prediction.

4.2 Topology for Query 2

Live stream

Database

Bolt-1
Compute global
median over all
values for 1 hour

Bolt-2
Compute global
median over all
values for 1 day

Filter by
load

property

Filter by
load

property

Bolt-3
Compute

median for all
plugs over 1 hour

Bolt-4
Compute

median for all
plugs over 1 day

Output if
statistics
change

Output if
statistics
change

Bottleneck operators
considering the large window
size and non-parallelizable

operations.

Bolt-5
Compare per plug median

and global median to
update per house outlier statistics

Bolt-6
Compare per plug median and

global median to update per
house outlier statistics

Figure 2: STORM topology for query 2

Figure 2 shows the STORM topology of Query 2. The op-
erators for computing the global median over a sliding time
windows of 60 minutes and 24 hours need to be optimized
for reasons explained in Section 2.2. As outlined, comput-
ing medians over huge sliding windows is challenging if exact
results need to be produced. We thus employ stream sam-
pling techniques to produce approximate median load over
the data-stream. We thus decided to use the priority-sample
algorithm [6] which is specifically suitable for sampling over
time-stamp based sliding windows. The solution though ap-
proximate is quite accurate considering that the individual
load values are repetitive. Priority-sampling is also used to
compute the global median over an hour and over a day.

Bolt-3 computing medians per plug over a sliding window
of an hour computes the exact median while the bolt doing
the same operation over one day uses priority-sampling. A
Redis based in-memory data structure is updated when ever
the percentage of outliers per house changes and the results
are sent to the stream subscribers.

5. EVALUATION
In this section we evaluate the performance of our stream

processing system under the purview of the challenge guide-
lines. The experiments were performed on an HPC cluster
with CentOS 6.4 operating system. The JVM memory allo-
cated to each worker node and a single nimbus i.e. master

node in the STORM cluster was restricted to 2 GB. The
parallelism for all processing bolts (indicating the number
of threads per bolt in a node) in the STORM topology was
constant throughout all evaluations and thus have no bear-
ing on the relative results.

For workload evaluations, we did not split the input CSV
file provided for the challenge into three separate files (as
suggested in the challenge guidelines). Rather we added a
filter at the live stream spout filtering on the house-id. Fi-
nally filtering for load/work and any other property such as
house is performed at the stream processing system. Thus
the parameter live-stream velocity always implies the num-
ber of events sent by the live data-streaming system to the
stream-processing platform per second.

5.1 Evaluation for Query 1
For all readings shown below we have restricted the num-

ber of archive data streams to three. We have not considered
an evaluation which varies the number of archive streams as
it is out scope for this challenge. We refer to Query 1a as
the query which predicts the load per house and Query 1b as
the one which predicts the load per plug. Throughput refers
to the number of tuples received by the stream subscriber
per second.

Number of
slave nodes

Query
Average
latency

(ms)

Average
throughput

1
Query 1a 1071.55 4301.55
Query 1b 1375.245 4392.25

2
Query 1a 458.92 4907.40
Query 1b 289.05 4907.40

3
Query 1a 597.43 5038.02
Query 1b 499.01 5086.04

4
Query 1a 802.65 5156.86
Query 1b 549.84 5196.07

Table 1: Query 1 parameters on varying the number
of processing nodes

Table 1 shows the result of varying the number of pro-
cessing nodes while maintaining a constant workload of 40
houses and restricting the live stream velocity to 10,000 mes-
sages per second. The minimum number of slave nodes re-
quired was found to be two. Lack of sufficient memory (fixed
at 2 GB per node) and restricted parallelism per node was
found to be the main bottleneck while processing the live
tuples using a single slave node.

Table 2 shows the results of varying the time slice over
which future load was predicted. The workload, live stream
velocity and the number of processing nodes were kept con-
stant at 40 houses, 5000 messages per second and two re-
spectively throughout this evaluation. The results indicate
that the throughput and latency are time-slice invariant.
The results are not surprising considering that the operator
computing load averages does not store individual values
and instead computes rolling-averages.

Finally Table 3 shows the results of varying the work-
load while keeping the live-stream velocity (10,000 messages
per second) and the number of processing nodes (one) con-
stant. As expected the performance in terms of latency and
throughput is best when the number of houses processed is
decreased thus reducing the workload.

Time-slice
(minutes)

Query
Average
latency

(ms)

Average
throughput

1 min
Query 1a 423.24 2520.83
Query 1b 328.34 2520.83

5 min
Query 1a 521.51 2520.83
Query 1b 305.57 2520.83

15 min
Query 1a 510.47 2525.21
Query 1b 293.52 2525.21

60 min
Query 1a 547.60 2511.15
Query 1b 361.10 2507.97

120 min
Query 1a 510.62 2512.87
Query 1b 378.78 2512.87

Table 2: Query 1 parameters on varying prediction
time-interval.

Number
of houses
processed

Query
Average
latency

(ms)

Average
throughput

10
Query 1a 64.41 1219.11
Query 1b 4.69 1215.10

20
Query 1a 67.44 2224.08
Query 1b 1.89 2220.36

40
Query 1a 1071.55 4301.55
Query 1b 1375.245 4392.25

Table 3: Query 1 parameters on varying workload

5.2 Evaluation for Query 2
For all evaluations of Query 2, the live-stream velocity was

fixed at 10,000 messages per second. We refer to the query
computing the outliers over a sliding window of 60 minutes
as Query 2a and the query computing outliers over a 24 hour
sliding window as Query 2b. The throughput for Query 2
(both a and b) are not considered given that the output
tuples are emitted only when the percentage of outliers in a
house change.

The results of varying the number of processing nodes
while keeping the workload constant (40 houses) are shown
in Figure 3. The results indicate that a minimum of three
nodes were required for processing the workload. Figure
4 shows the results of varying workload while keeping the
number of processing nodes constant at two.

1 node 2 nodes 3 nodes 4 nodes

0

2,000

4,000

A
v
er

a
g
e

la
te

n
cy

(m
s)

Query 2a Query 1b

Figure 3: Query 2 parameters on varying the num-
ber of processed nodes.

10 houses 20 houses 40 houses

0

1,000

2,000

3,000

4,000

A
v
er

a
g
e

la
te

n
cy

(m
s)

Query 2a Query 1b

Figure 4: Query 2 parameters on varying workload.

6. CONCLUSIONS
In this paper we presented a stream-processing system

to address the queries posed by the DEBS grand challenge
2014. We made use of STORM to enhance the scalability
of our platform. To minimize the latency associated with
accessing a massive archive, we employed archive streams.
Archive streams enabled us to fetch the historic data in
chunks of optimal size pro-actively. Sliding window queries
and grouping operations over the data-streams were imple-
mented using Esper-enriched bolts. Experiments show that
we were able to process data streams at velocities of 10,000
messages per second using just two processing nodes while
keeping memory consumption to a reasonable 2GB per node.

7. REFERENCES
[1] Espertech event series intelligence.

http://esper.codehaus.org/.

[2] Memory Management in the Java Hotspot Virtual
Machine. Sun Microsystems (2006).

[3] Redis data structure server. http://redis.io/.

[4] STORM: Distributed and fault-tolerant real-time
computation. http://storm.incubator.apache.org/.

[5] LMAX Disruptor: High performance alternative to
bounded queues for exchanging data between
concurrent threads.
http://code.google.com/p/disruptor/, 2011.

[6] B. Babcock, M. Datar, and R. Motwani. Sampling from
a moving window over streaming data. In Proceedings
of the thirteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 633–634. Society for
Industrial and Applied Mathematics, 2002.

[7] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras.
Exploiting punctuation semantics in continuous data
streams. Knowledge and Data Engineering, IEEE
Transactions on, 15(3):555–568, 2003.

[8] K. Tufte, J. Li, D. Maier, V. Papadimos, R. L. Bertini,
and J. Rucker. Travel time estimation using niagarast
and latte. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages
1091–1093. ACM, 2007.

[9] H. Ziekow and Z. Jerzak. The DEBS 2014 Grand
Challenge. In Proceedings of the 8th ACM International
Conference on Distributed Event-based Systems, DEBS
’14, New York, NY, USA, 2014. ACM.

