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Abstract— Safety is one of the key issues in the use of

robots, especially when human–robot interaction is targeted.

Although unforeseen environment situations, such as collisions

or unexpected user interaction, can be handled with specially

tailored control algorithms, hard- or software failures typically

lead to situations where too large torques are controlled, which

cause an emergency state: hitting an end stop, exceeding

a torque, and so on—which often halts the robot when it

is too late. No sufficiently fast and reliable methods exist

which can early detect faults in the abundance of sensor and

controller data. This is especially difficult since, in most cases,

no anomaly data are available. In this paper we introduce a new

robot anomaly detection system (RADS) which can cope with

abundant data in which no or very little anomaly information

is present.

I. INTRODUCTION

Reliability and, depending on the task, high accuracy are
critical for the successful application of a robot. Early detec-
tion of faults is crucial to ensure safety and high performance
of the system. Faults can be soft- and hardware-related and
include communication problems, wear-dependent deviation,
and broken sensors. Especially in the early stages of a
disturbance, these faults will not result in a failure or
malfunction as defined by [13] since the control algorithms
are sophisticated enough to handle changes in measurement
and control values.

Besides increasing reliability of the system, utilizing re-
dundant hardware can identify faults by comparing the
outputs of two or more substituting systems. Unfortunately, a
redundant setup increases costs, complexity, required space,
and system weight [19].

Thus, robots often realize fault detection by setting thresh-
olds on sensor data, which should not be exceeded [23]. Yet,
simply applying thresholds disregards dependencies between
different data and requires unacceptably large possible data
ranges to avoid frequent false positives. Especially for robots,
the acceptable data range strongly depends on the particular
configuration.

Moreover, differences to concurrently running simulators
give insight in aberrations. These model-based techniques
vary from comparing the state estimates to the actual states
and only accepting residuals below a predefined threshold
[21], over imprecise models accepting measured values
within a specified bandwith [20], to robot state estimating
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algorithms like particle filters [25]. Some of these approaches
can only recognize faults with known failure patterns [9],
which facilitates an immediate diagnosis of the fault, and
others have a specific state for unmodeled faults [24].

However, all of these approaches have drawbacks. Simula-
tions are merely approximations of the real system; The more
detailed the model, the more cumbersome the generation
and the more expensive the evaluation. Yet, the performance
of model-based fault detection depends on model accuracy.
Besides, using models implicitly defines the detectable faults,
even if no specific fault pattern is required. Only those errors
influencing modeled relations can be detected. E.g. if nothing
but the relationship between desired Cartesian end effector
position and joint position is modeled, a gear slippage forcing
the controller to increase the impelling current will remain
undetected until further damage is caused to the system.

Therefore, we focus on a data-driven approach. A major
challenge is the impracticality to generate and record fault
data. Such data are often caused by hardware failure, which
can hardly be emulated (for instance, deliberate destruction
does not reflect the effects of wear), but is also a combination
of many different states, which cannot be exhaustively em-
ulated. Similarly, the number of valid configurations is very
large, and not all valid data combinations are seen during
normal operation. Depending on the robot the data space
can easily cover several hundreds of dimensions.

We introduce a semi-supervised Robot Anomaly Detection
System (RADS) which incrementally learns valid data during
normal operation, building up a compact representation of
these states. After switching from training to application,
aberrations of these are detected and correspondingly la-
beled. The method is validated with a KUKA/DLR Light-
Weight Robot (LWR) III arm [3], but is applicable to other
input-output systems.

The presented approach is aiming for the recognition of
anomalies not yet prohibiting the proper operation of the
robot, but potentially leading to increasing problems. In
contrast to many fault identification and diagnostic systems,
it does not model distinct fault states allowing for a clear
diagnosis. However, it can detect faults not considered during
modeling or occluded by model assumptions. Moreover, it
is conceivable to employ RADS to recognize improper use
of the robot in tele-operated systems, e.g. deviations from
the common workflow. Thus, it should be considered an
additional tool to ensure system reliability, but not as an
ultimate replacement for current fault detection, isolation,
and identification methods.
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II. STATE OF THE ART

Few publications deal with the problem of anomaly detec-
tion in high-dimensional data while only positive samples are
available. Using the following six requirements for novelty
detection stated by [16] existing methods are assessed (see
Tab. I):

1) robust trade-off: exclude novel samples, yet include
known,

2) generalization: avoid false positives and negatives,
3) adaptability: capable to incorporate new information,
4) minimized complexity: applicable for online evalua-

tion,
5) independence: handle varying dimensions and features,
6) parameter minimization: little input from the user.

Uniform data scaling further requested by [16] is part of pre-
processing [26] rather than the novelty detection algorithm,
and makes the application of many algorithms easier.

Statistical methods as aggregated by [5] evaluate whether
a new data point belongs to the same distribution as the
training data. Presuming the type of distribution is especially
difficult for high-dimensional data, as well as the construc-
tion of hypothesis tests.

Density estimation methods such as Parzen windowing
[4] do not scale with data dimensions. The same holds
for variational Bayesian techniques [4]. Furthermore, the
created clusters span over large, sparse areas, leading to over-
generalization.

Clustering algorithms such as k-means [15] require prior
data space knowledge, e.g. the number of centers that make
up the data model. More elaborate clustering algorithms, e.g.
growing neural gas [17], can adapt the number of cluster
centers but require many equally distributed data.

One-class Support Vector Machines [22] lead to an unman-
ageable number of support vectors, and compel a specified
percentage of the training data to be considered as outliers.
Extreme Learning Machines [12] use single-hidden layer
feed-forward networks to approximate the data distribution,
and are only applicable if counter examples are available.

Other algorithms inherently deal with time series effects,
e.g. Peer Group Analysis [8]. However, these methods com-
pare similarly behaving dimensions against each other, and

TABLE I
ANOMALY DETECTION ALGORITHMS IN THE LIGHT OF REQUIREMENTS

method violated requirements
statistical methods 5, 6
density estimation 4
variational Bayesian techniques 1, 2, 4
clustering 1, 2, 6
one-class Support Vector Machines 1, 3
Extreme Learning Machines 5
Peer Group Analysis 5
genetic algorithms 3, 4
Replicator Neural Networks 1
Sliding window Mahalanobis threshold 1

classify sudden divergence as suspicious. In robot anomaly
detection, many of the dimensions cannot be compared by
common distance metrics as Euclidean distance.

[26] offers an extensive overview of outlier detection
methods especially for high-dimensional data. However, ei-
ther these methods require outliers to be present during
training, or they evaluate test data with respect to all training
points resulting in too slow evaluations, or the approaches
use only selected subspaces of the data. E.g. [2] consider
both high dimensionality and single-class discrimination by
genetic algorithms, which project data onto several lower-
dimensional subspaces. The idea is promising but very time
consuming, and only those faults differing in the selected
subspaces will be identified [26]. [10] use a multi-layer
feed-forward network, called Replicator Neural Network,
to compress and restore the data (similar to the method
introduced in Sec. III-D). However, this technique cannot
detect faults exhibiting a similar intra-data relationship as
the training data.

In 2011 [14] have introduced another model-free approach
to anomaly detection. They learn the distribution of measure-
ments and control commands from the latest data history
and use a similarity threshold on the Mahalanobis distance
to evaluate whether new data points fit into that distribution.
The algorithm has returned very good results in their eval-
uations. However, as this method is based on windows over
the latest history, slinking appearance of errors, like wear,
will not be detected. In the beginning these faults will not
differ enough to be considered an anomaly, but the further
the error proceeds, the more of it will be contained in the
latest history and thus distort the training data. Although the
training step in this algorithm is computationally efficient, it
has to be repeated for each measurement, thus prohibiting too
high update rates—in the paper the assessment is repeated
with a frequency of at most 10 Hz.

None of the available approaches sufficiently considers all
of the six requirements while being able to handle high-
dimensional one-class data and preventing adjustment to
faults (cf. Tab. I). The aim of this paper is to introduce
a system that is capable of detecting anomalies in high-
dimensional data while the robot is operating. First, a robust
detection mechanism is developed. Subsequently, applicabil-
ity to high-dimensional data is ensured. Each concept of
RADS is evaluated according to the fulfillment of the above
listed requirements and the detection capability to prove its
satisfactory performance for anomaly detection.

III. MACHINE LEARNING-BASED ANOMALY DETECTION

We tackle the problem with a multi-stage approach. Our
method starts off by calculating maps of valid and invalid
states from the robot data; inter alia joint torques, motor
torques, currents, temperatures in the joints, and the applied
load. Either of the two maps can identify faults, but lack
computational efficiency. Thus, the maps are used to generate
two labeled classes. These classes are then separated using a
Support Vector Machine (SVM) ensuring a quick decision.
Whenever new information is available, e.g. because the



robot is equipped with a new tool or the robot is operating in
a different area of the workspace, the system can be amended
without requiring the former training data. Finally, dimen-
sionality reduction ensures applicability to high-dimensional
data.

Positive data comprises all areas of the data space accessed
during regular use. Naturally, this space should be maximally
sampled. In contrast, negative data looms in unknown areas
of the data space. Any data point classified thus requires
further investigation: Either the maps are incomplete and
have to be amended or an invalid state is detected.

A. A Map of Positive Data

To test whether a data point is within the positive data
it could be compared against all valid points. However, an
infinite number of test points would be required to cover
all possible measurement variations making training and
evaluation infeasible.

Instead, we approximate the positive data space by sum-
ming K radial basis function kernels. The map assigns each
point x in the data space a function value corresponding to
the probability of belonging to the trained data. If this value
is above a threshold ↵, x is considered known. Otherwise
the data point is an outlier. The probability is evaluated using
the �2 goodness-of-fit test [18].

Each kernel k has a specific center µk and variance ⌃k.
The function value �(x,k) of a data point x in a kernel k

only depends on the Mahalanobis distance,

mk =
q
(x� µk)

T⌃�1

k (x� µk), (1)

to the respective kernel center and the dimensionality d of
the data space:

�(x,k) = Q�2 (mk, d) . (2)

Q�2 (mk, d) is the �2 goodness-of-fit test probability, de-
scribing the likelihood that a point with distance mk to a
kernel belongs to same distribution as the respective kernel
in d-dimensional space.

Combining multiple kernels a multi-modal and multi-
variate distribution can be modeled:

rbf(x) =
KX

i=1

�(x,k). (3)

Although a single kernel might not surpass the threshold at
a specific point, it is possible that the combination of several
kernels still identifies this data space as known.

Training is performed sequentially. Once trained, the data
can be discarded. For each training point rbf(x) is evaluated,
i.e. x is tested against all kernels. If

rbf(x) > ↵, (4)

with ↵ as threshold, x is situated in a known area, otherwise
the data point is considered unknown.

If Eq. (4) rates x unknown, a new kernel 
new

, covering
the area around x, is added to the network. The initial center
µ

new

of the new kernel 
new

is placed at the position of

x. The covariance matrix has to be initialized in a way
that the typical noise variation a, but not more, is covered.
Accepting noise-like divergence establishes a d-dimensional
ellipsoid of recognition around the initial data point. Any
point within its border will be considered known. Assuming a
normal distribution of measurement errors around the actual
value, choosing a Gaussian kernel to include all neighbors is
well suited. This does not imply that the underlying data
distribution has to be Gaussian; indeed, the data can be
arbitrarily distributed.

If x is in a known area, the center and the covariance of
the corresponding kernel are adjusted:

µ

0
i =

⌘iµi + x

⌘i + 1
, (5)

where µi is the center of the kernel at the time of observation,
µ

0
i the updated center, and ⌘i the number of points that

have already contributed. The covariance has to be adjusted
accordingly, ensuring that all points, covered before, will be
covered after the transformation.

To test whether a data point is represented by the map
during the application phase only Eq. (4) applies. If the
probability threshold is surpassed, the point is accepted as
inlier.

In case the map has to be extended, the same process as
for initial training can be applied. The old map is used as
starting point and, where necessary, amended c.q. extended.

B. A Map of Negative Data

A map of the unknown data space can also classify the data
adequately. Instead of modeling a data distribution, owed to
the fact of missing fault data, a geometric description of
the negative space is desired. One way to generate such a
map is Negative Selection (NS) [7]. Any space not covered
by (positive) training data is filled with detectors reacting
once a data point is within their area of influence. If a
detector is activated during the application phase, an anomaly
is detected.

A detector ⌧i is modeled as a sphere with center ci

and radius ri. The detector ⌧i is activated whenever an
observation is within the sphere, i.e. its distance to ci is
smaller than ri.

Since there is no information on how the negative space
is set up, a detector is generated by first drawing its center
ci uniformly from the sample space, determined by the
minimum and maximum values of the positive data in each
dimension. To avoid redundancy a new ci is discarded if
it activates any of the existing detectors. Otherwise, it has
to be ensured that none of the positive data points is too
close: ci must have at least a distance of r

min

+a. The noise
amplitude a ensures that data points differing less from the
training data than the typical noise range will not activate
the detector; r

min

guarantees that ⌧i has a minimum area of
influence. Finally, the radius ri of ⌧i has to be determined.
Since valid assumptions about the structure of the error space
are intangible, a proportional divergence in all directions is
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Fig. 1. NS Update Example: any of the small blue dots, representing
new data, caused the large, pale detector in the back to turn invalid. Two
exemplary replacements (bright orange) have been inserted. The radius of
the smaller one is defined by the minimum distance to the training data, the
larger is bound by size of the old detector. The two green potential detector
centers have been discarded. One is outside of the bounding hull, one is too
close to the hull. More replacement detectors have to be generated until the
detector is sufficiently covered.

assumed and thus ri is set to be the minimum distance to
the training data D shielded by a:

ri = min
x2D

kci � xk � a. (6)

Accepting radii larger than the minimum radius reduces the
number of required detectors to cover the invalid states.
An established detector is not changed anymore. Detector
generation is continued until the desired coverage c of the
data space is reached, i.e. 1/(1� c) potential detectors have
been discarded in a row. Once detector generation completed
the training data can be discarded.

Since NS generally requires all data to be available during
training, map updating cannot be conducted in the same way
as initial training. Instead, the reaction of the detectors to
each data point of a new batch of training data is evaluated.

If none of the detectors react, the point can be discarded
without further processing. Otherwise, each activated de-
tector is treated separately. If the active detector has only
the minimum radius r

min

, no smaller detectors can be
created to replace the old one, thus the detector is removed.
Otherwise replacement detectors are generated. Since the
available information on the space around the detector is
insufficient given only the new batch of training data (the
original training data has been discarded), a new detector
may cover at most the same area as the old detector. Thus,

kc
new

� c

old

k < r
old

� r
min

(7)

with ⌧
new

being a new, valid detector having the center c
new

,
and the old detector ⌧

old

with center c

old

and radius r
old

.
c

new

is drawn uniformly from within the sphere of ⌧
old

(Fig.
1).

Similar to the previously described approach on the orig-
inal data, a newly generated center is compared to the new
training data and maintained if it is not too close to it.
Because the new detector can not exceed the original one,
the maximum radius r

max

the new detector can have is the
difference between the old radius and the distance of the two
centers:

r
max

= r
old

� kc
old

� c

new

k . (8)

The new radius r
new

will be the lower value of r
max

and the
minimum distance to the new training data ri (Eq. (6)).

C. Fast Differentiation Between Two Classes

Both, the RBF-based approach and NS, provide stable
error detection results. However, they are computationally
intensive. While training may take a long time, the decision
whether the actual data represents a fault has to be executed
at a 1 kHz rate (for the LWR). In order to meet the re-
quired decision time frame, but still benefit from considering
positive and negative data, we use the two maps as labled
data to train an SVM, reverting to the standard libsvm [6]
implementation.

We have chosen Gaussian kernels for the SVM and the
parameters—C for misclassification punishment and �2 for
kernel width—are determined by using a grid search together
with cross validation.

D. Upgrade for High-Dimensional Data

The previously defined RADS approach works well for
low-dimensional observations. In order to evaluate complex
behavior over time, the dimensionality increases to several
hundreds of dimensions, leading to two major drawbacks.

On the one hand, calculations in the high-dimensional
data space are expensive, prohibiting online evaluation of
the data points. On the other hand, typical distance metrics
like the Euclidean, respectively Mahalanobis distance have
little meaning in high dimensions [1], [26].

1) Dimensionality Reduction: The simplest way to over-
come the problem of relevance in high dimensionality is to
use a distance metric that is less influenced by the number
of dimensions than the Euclidean distance. [1] introduce
fractional distances as a promising alternative. Switching the
norm may improve the discrimination of data, but it does not
solve the problem of computational complexity.

In contrast, dimensionality reduction can decrease the time
required for testing, as d decreases. However, this introduces
problems of its own. The only data available during training
is valid data, therefore it is unknown how an error will
appear. While projecting the known data onto a lower-
dimensional manifold is straightforward, it is impossible to
predict the projection behavior of errors. Projection might
place a negative sample into the area of positive data,
as depicted in Fig. 2a, making a decision about validity
impossible.

In order to benefit from projection, back projection is
essential. Back projection tries to move the data point back to
its original position in the high-dimensional data space. If the
point is an inlier, back projection will work fine and the point
is returned to a position close to its initial location. However,
an outlier projected onto the manifold will be reprojected to
a part of the space related to inliers (cf. Fig. 2b). During
training the system learns the regular back projection error.
If a test error surpasses the acceptable value, the point is
considered an outlier.



(a) Problems of dimensionality re-
duction: The correlated, blue 2D
data points are projected onto a
single dimension (green). However,
the yellow outlier is also projected
into the same area (red).

typical
error range

alarming
difference

(b) Reprojection overcomes lack of
projection: The green data is repro-
jected into the 2D space. A small
error remains after reconstruction.
The outlier is projected into the
same area.

Fig. 2. Projection vs. Reprojection

2) Linear Projection: One type of dimensionality reduc-
tion is linear projection. The originally many dimensions are
mapped onto a lower-dimensional subset of dimensions, e.g.
through Principal Component Analysis (PCA) [4].

The transformation matrix P, expressing the principal
components in the original data space, is determined from
the training data. Reprojection is achieved using its pseudo-
inverse P†. Since P is constant, P† is calculated offline.

Untrained valid data should behave similarly to training
data. Since projection is capable of projecting untrained, but
comparably behaving data, it decreases the required amount
of training setups and improves generalization.

Linear projection is well-suited to handle direct relations
like the dependency between desired and actual current and
can diminish constant values. However, PCA cannot exploit
non-linear constraints, e.g. between joint angle and Cartesian
position. Thus, a projection covering most of the variance
will need more principal components than latent variables
exist.

However, our initial results using autoencoders and
stacked autoencoders [11] for non-linear projection do not
exhibit any advantage within the data that was available.
Thus, we confine ourselves to linear projection.

3) Combining RADS with Dimensionality Reduction:
Although observing the reconstruction error from dimension-
ality reduction is auspicious, it is not sufficient. If an outlier
is projected to a point outside of the projected training data,
reprojection might locate it close to its original position. The
reconstruction error would be in the acceptable range.

Combining dimensionality reduction with the previously
introduced RADS in RADS for High-Dimensional Data
(HDRADS) merges the advantages of both tools. Dimension-
ality reduction and reprojection decrease the time required
for computation and identify outliers projected into the
training data. The SVM discriminates the space of projected
training data from the unknown projection space. Besides,
projecting the data will reduce the number of required
training samples due to improved generalization. It suffices
to train on a few different configurations of the robot,

NS

Dataflow during training
Dataflow during application

RBF

SVM

PIPII

Fig. 3. Setup of HDRADS: First, projection PI and reprojection PII are
computed. Using PI the data is reduced and the basic RADS is applied. For
evaluations the data is projected, evaluated with the SVM, and reprojected.
If either the SVM or reprojection identify an anomaly, an alarm is issued.

rather than having to learn every possible setup, in addition
reducing the need for retraining. Fig. 3 depicts the combined
setup.

Data generated by the robot is recorded for training. First,
a projection (P

I

) and the corresponding backprojection (P
II

)
are calculated. Afterwards, the training data is reduced using
P
I

. The reduced data set is employed to create the positive
(RBF) and negative (NS) maps, which are used to train the
SVM. During the application, the data is projected with P

I

,
evaluated with the SVM, and reprojection with P

II

. If either
the SVM or reprojection classify the data as outlier an alarm
is issued.

IV. EXPERIMENTS

In the following, all five methods (positive map alone, neg-
ative map alone, RADS, reprojection alone, and HDRADS)
are compared with regard to their anomaly detection perfor-
mance. All tests have been conducted for an LWR [3].

A. Experimental Setup

Initial tests have been conducted running a simulation of
the robot with 71 computed data dimensions. Several point-
to-point trajectories have served as training data. Perturbing
the simulation during test runs (adding constants and sine
waves to single dimensions, or replacing data by constants)
on the same trajectories has clarified, that unusual changes
in a single dimension suffice to cause a RADS alarm while
undisturbed data is recognized as valid—we can achieve true
positive rates of 1, yet keeping the false positive rate at 0.

Although using the simulation facilitates the assessment
according to a ground truth and the exact identification of
false positive and negative rates, it is difficult to introduce
realistic faults. Just to name a few of the necessary consider-
ations: Which data dimensions are affected simultaneously?
How is the correlation between these influences? What is the



a realistic fault behavior? Hence, the evaluations would for-
feit validity and relevance, and we refrained from extending
the simulation-based evaluation.

In order to assess the anomaly detection performance on
authentic data, the data produced by a real robot during the
motion along given trajectories has been recorded. To cover
a wide range of the data space each of the robot joints has
been moved from upper to lower joint limit and vice versa.
The robot has remained at the limits for five seconds, before
backtracing the trajectory.

Testing is performed against different recordings of the
same trajectories. Generating real, yet predictable faults—
to retrieve a ground truth—would require arbitrary damage
to the hardware. However, that is without the bounds of
possibility. Thus, we change hardware specific parameters:
we increase and decrease in the maximum velocity, change
the load applied to the endeffector, or switch the controller
of the robot. Besides, in order to simulate acute and non-
constant faults, collisions have deliberately been induced
during an additional recording of the same trajectories by
gently hitting the robot.

Without supplementary generated dimensions (full state),
the data has 63 dimensions comprising control input and
measurements. In order to observe the relationship between
succeeding data points, the enhanced state set further con-
tains first and second order derivatives of each dimension—
except for quasi-constant dimensions like the currently ap-
plied load—and consists of 176 dimensions. As stated in [14]
using the time derivative is reasonable, as when dealing with
robots often the changes in states are of greater interest than
the actual states. Each method is trained separately with full
and enhanced state data.

B. Results of Basic RADS and its Components

Tab. II displays the percentage of data points that have
been considered anomalous in the full state test data using
the positive and negative map and the SVM, resp. RADS.
The amount of resulting reactions for the enhanced state
data are higher, but cover the same areas. For the validation
set the same randomly selected 30% of the training data
have been withheld from the algorithms during training. The
results on the validation set show that the algorithm has a
low rate of false positives if the trajectory is known, as none
of the validation data points should be unknown. The table

TABLE II
ANOMALY ALARMS IN PERCENT OF THE NUMBER OF DATA POINTS.
PARAMETERS USED FOR THE EVALUATION: POSITIVE MAP: a = 0.2,
↵ = 0.05; NEGATIVE MAP: a = 0.2, rmin = 0.2, c = 0.99; SVM:

C = 1, �2 = 1/d

Test Set RBF NS SVM
validation 0 0.1 0
faster 19.8 15.1 0.001
slower 16.5 27.1 0.01
control 0.2 1.9 0
load 100 100 100
collision 3.2 1.9 1.3
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Fig. 4. Anomaly sensitivity of the different RADS components

further indicates, that an error has to be more pronounced to
be detected by the SVM. The two preliminary stages assume
that the majority of the movements are anomalous when a
different velocity is used since currents, etc. vary from the
trained data. They only accept static positions, which we
expect to have the similar data values as in the training speed.
The SVM, in contrast, fails to identify the comparatively
marginal deviation. Whereas applying a different load to the
endeffector influences the data dimensions more strongly and
thus the entire sequence is considered anomalous. Of course,
the load affects each data point in the test set, and thus
anomalies on the entire sequence are expected.

Fig. 4 depicts a segment of the collision trajectory evalu-
ated with the RBF-based approach, NS, and an SVM. The
orange bars in the background indicate a detected anomaly.
The black graph in front displays the torque in joint one.
Spikes in the graph hint at an induced collision. Even if
the collision is induced at a distal link, it will be apparent
in proximal joints. Thus, all ascertainable collisions of this
setup are visible in these graphs. The positive map and the
SVM detect all collisions. Yet, the positive map shows a
slightly higher amount of false negatives. NS lags behind
the other two algorithms: while the robot is moving, the
rate of false positives is much higher. Solely applying NS, a
sufficient amount of valid training data would have to be
higher. However, the RBF-based version is too computa-
tionally expensive, and the SVM cannot be trained without
NS. Using the information from both preliminary stages, the
SVM is able to differentiate between valid and anomalous
states most accurately.

Using the enhanced state data the algorithm shows a
marginal change of behavior. Due to the filter applied to
smooth the data, the algorithm recognizes errors whenever
they impact the filtered data. Using RADS with both data sets
concurrently, the enhanced state data observation will react
with a slight delay until a sufficient impact of the disturbance
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Fig. 6. Anomaly sensitivity based on the number of retained dimensions

is perceived. It will also notice a stop of the disturbance a
little later than the full state observation because the filter
needs to compensate the error impact.

C. Results using the Reprojection Error

As expected, the reconstruction error increases as fewer
dimensions are retained during projection. Fig. 5 shows the
reconstruction error resulting from PCA depending on the
number of maintained dimensions.

The anomaly detection capabilities of (re-)projection alone
are depicted in Fig. 6. The graph on top results from PCA
with 20 retained dimensions, the one below from retaining 40
dimensions. The fewer dimensions are retained, the higher
the typical error. Thus, to be identified as an error, the data
points have to diverge more leading to smaller areas of
detection. As in RADS, the enhanced state data have resulted
in the same areas of detection—more pronounced due to
filtering.

D. Results of HDRADS

For the evaluation of its generalization capability,
HDRADS is trained with the same trajectory recorded at
two different speeds, 0.2 m/s and 0.4 m/s. For the evaluation a
third velocity, 0.6 m/s, is introduced. Neither reprojection nor
RADS on the reduced data return any anomalies, although
only two of all possible velocities have been used for
training—the false positive rate is at 0.

The generalization of the algorithm improves, as it learns
to generalize between different setups, in turn raising the
alarm less often. Although fewer false positives are detected,
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Fig. 7. Anomaly alarms from HDRADS during collision trajectory

overgeneralization is avoided. Fig. 7 displays the detected
anomalies on a collision trajectory at a trained speed.

E. Evaluation of Experiments

Tab. III assesses HDRADS and its precursors with regard
to the six requirements presented in Sec. II. The RBF-
based approach identifies anomalies well while recognizing
positive data, but is too computationally intensive in the test
phase. NS detects too many anomalies or would require a
higher amount of training data, but is faster at evaluating
test points. Using an SVM, we can further accelerate the
evaluation. However, taken by itself adapting the classifier
is tedious and generalization is limited as we only have
positive training data. Besides, for many training points,
the decision time of SVMs increases with the number of
support vectors, respectively training points. The drawback
of depending on two distinct classes is overcome by training
RADS with the positive and the negative model. This way
we increase robustness and generalization while rendering
model updates easy. Using only the two maps to train the
SVM its complexity is forced to be at most that of the single
maps.

The major problem—little generalization between differ-
ent data parameters—can be overcome by including projec-
tion. Yet, projection and reprojection alone are not fail safe
as anomalies that are not projected to the positive data space
might not be identified as such.

Combining the entire setup the most accurate anomaly
detection even in high-dimensional data is achieved, and the
generalization compares to that of projection. Additionally,
all parts of the algorithm can be improved with subsequent
data using the available positive and negative maps, without
requiring the initial training data. The dimensionality reduc-

TABLE III
FULFILMENT OF THE REQUIREMENTS (R) INTRODUCED IN SEC. II.

1=ROBUSTNESS AND TRADEOFF, 2=GENERALIZATION,
3=ADAPTABILITY, 4=COMPLEXITY, 5=INDEPENDENCE, 6=PARAMETER

MINIMIZATION, ++=FULL COMPLIANCE, +=GOOD, 0=SATISFACTORY,
�=UNSATISFACTORY, ��=DEFICIENT

R RBF NS SVM RADS PCA HDRADS
1 + 0 + ++ + ++
2 + + + + ++ ++
3 ++ ++ � ++ 0 ++
4 �� � + ++ ++ ++
5 + + � + + ++
6 + + + 0 + 0



tion incorporated in HDRADS further ensures fast training
of the single maps. In case dimensionality reduction has
to be improved, the reprojected positive and negative maps
are sufficient to improve the mapping and reestimate the
reconstruction error. Since HDRADS applies dimensionality
reduction and could use both, positive and negative data
for training, it is the most independent algorithm of those
presented. A minor flaw of HDRADS is related to the least
important requirement. Parameters for projection, the posi-
tive and negative map, and the SVM have to be identified.

Concluding, for low-dimensional data depending on few
parameters, RADS performs well. It ensures sufficiently
fast detection of unknown errors to run in parallel to the
test robot. The higher the initial dimensionality, the more
important the application of HDRADS to ensure satisfactory
generalization in the increased parameter space. None of
the basic algorithms can outperform RADS or its enhanced
version.

V. CONCLUSION

By means of its redundant setup HDRADS is capable
of detecting unknown anomalies reliably. While the system
generalizes well enough to classify data points similar to
the training data as known, anomalous divergence from
the training data will cause an alarm. Supported by the
projection and reprojection steps, the algorithm can handle
high-dimensional inputs and can generalize between different
inputs, thereby greatly reducing the number of required
training samples.

The algorithm meets the requirements introduced by [16].
Yet, most testing has been performed on repeating trajec-
tories, ensuring the applicability of RADS especially for
industrial robots. Tracing predefined trajectories containing
critical setups before putting the robot in service can ensure
system operability if training all possible configurations is
infeasible.

Moreover, instead of providing pre-specified derivatives to
the algorithm, it might be helpful to consider other features
calculated on the latest data. Alternatively, investigating the
preformance when providing data of entire time windows
rather than single points in time to the algorithm might
show strong increases in performance. Using HDRADS
on windowed data would automatically account for data
smoothing and identify correlations between time steps that
we are not aware of.

In the following, continuous evaluation of HDRADS in
parallel to state-of-the-art fault detection algorithms has to
demonstrate the performance on subtle and or slinking faults,
while facilitating the assessment of the effective benefit. The
projection mechanisms introduced in Ch. III-D are sufficient
for the test cases. Yet, only a small set of all possible
techniques has been considered. Further investigation could
reveal more suitable methods.
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