
Estimating finger grip force from an image of the hand using
Convolutional Neural Networks and Gaussian Processes

Nutan Chen, Sebastian Urban, Christian Osendorfer, Justin Bayer, and Patrick van der Smagt

Abstract— Estimating human fingertip forces is required to
understand force distribution in grasping and manipulation.
Human grasping behavior can then be used to develop force-
and impedance-based grasping and manipulation strategies for
robotic hands. However, estimating human grip force naturally
is only possible with instrumented objects or unnatural gloves,
thus greatly limiting the type of objects used.

In this paper we describe an approach which uses images of
the human fingertip to reconstruct grip force and torque at the
finger. Our approach does not use finger-mounted equipment,
but instead a steady camera observing the fingers of the hand
from a distance. This allows for finger force estimation without
any physical interference with the hand or object itself, and is
therefore universally applicable.

We construct a 3-dimensional finger model from 2D images.
Convolutional Neural Networks (CNN) are used to predict the
2D image to a 3D model transformation matrix. Two methods
of CNN are designed for separate and combined outputs of
orientation and position. After learning, our system shows an
alignment accuracy over 98% on unknown data.

In the final step, a Gaussian process estimates finger force
and torque from the aligned images based on color changes and
deformations of the nail and its surrounding skin. Experimental
results shows that the accuracy achieves about 95% in the force
estimation and 90% in the torque.

I. INTRODUCTION

To fully exploit grip stability, manipulation capabilities,
and grip force and stiffness of dexterous robotic hands, the
human hand often serves as an example. Detailed studies of
finger positions during grasping (e.g., [1]–[4]) give key in-
formation of the position of the fingers during grasp, but not
on the forces and torques exerted. Studies with instrumented
objects (e.g., [5], [6]) can give some information, but only
limited: in many cases, simple force-sensitive resistors are
used which can only estimate surface normal forces, or a
very limited number (1 or 2) of load cells can estimate full
force and torque but at only one predefined location.

We use a different approach to estimate grip force and
torque. For our method, we exploit the fact that finger tip
depression causes nail (bed) color change related to that
pressure. Through this, full estimation of grip and torque
is possible at any interaction point.

Our method does not require mounting a sensor at the fin-
ger or the object; instead, we localize the finger in an image
and estimate from there. A crucial aspect therefore is image
alignment. Prior methods of fingernail image registration are
2D-to-3D registration with a grid pattern and fiducial markers

The authors are with the Faculty for Informatics, Technical
University Munich, 80333 Germany nutan(at)in.tum.de,

surban(at)tum.de, osendorf(at)in.tum.de,

bayer.justin(at)gmail.com. PvdS is also with fortiss.

Fig. 1: Setup: a fixed camera observes the fingers to estimate
finger grip force and torque.

onto the finger [7], rigid body transformation including the
Harris feature point based method [8], Canny edge detection
[9], template matching using markers [10], non-rigid reg-
istration fitting a finger model [8], and Active Appearance
Models (AAM) [11]. Other methods use sensors mounted on
the finger [10], [12] or require restrictions such as a bracket
to support the hand [7] or the finger [9], [11].

We argue that, for human grasping, a more robust and
generally applicable system is required, which does not
obstruct movement or interferes with experiments otherwise.
To address this challenge, we learn a 3D model of a finger
and match 2D images using Convolutional Neural Networks
(CNNs) to estimate grip force. The images can be aligned
robustly without distortion as non-rigid registration, even
when they are partially blocked. 2D–3D alignment was also
used in [7] but needs special markers on the finger and a laser
grid pattern. In contrast, our method just needs a designed
marker pasted on the finger nail without calibration, since
the marker is designed to add features for the finger but no
position requirement. Our setup is depicted in Fig. 1. The
calibration method for a single finger is shown in Fig. 2.

Following preprocessing, various methods have been de-
veloped to estimate the force. Model-based methods [11]
contain linearized sigmoid models, EigenNail models [13],
and linearized sigmoid models. In [10] we previously esti-
mated force and torque using Gaussian processes (GP) and
neural networks. Following the high accuracy obtained there,
here we use Gaussian processes to estimate force from the
aligned images.

II. METHODOLOGY

In this section we describe the data acquisition setup and
the methods used to extract the nail from the video data and
estimate the forces.

A. Hardware Setup

The recording system is shown in Fig. 3. A stationary
IMAGINGSOURCE camera captures video data at 15 fps
with a resolution of 1024 ⇥ 768 pixels. Additionally, an

Patrick van der Smagt
2014 IEEE International Conference on Robotics and Automation
Hong Kong Convention and Exhibition Centre
May 31-June 7, 2014, Hong Kong, China

Fig. 2: Calibration setup. A force-torque sensor (FTS) mea-
sures the real forces and torques exerted by the finger, while
being observed by the camera.

ATI Nano-17 force/torque sensor records force/torque data
from a finger pad at 100 Hz. Green LEDs are used to
synchronize the timing of the visual and force/torque data
through blinking at the beginning and end of a recording
sequence. The experiments take place with a mini lighting
studio (40⇥ 40⇥ 40 cm3) with diffuse white lamp light.

force/torque
transducer (FTS)
(ATI, Nano 17)green LED

video camera
(IMAGINGSOURCE)

PC

force
sampling

force
display

video/imagevideo
grabbing display

force/torque & visual
 data synchronizing

Arduino

Fig. 3: Recording system. The stationary camera records
visual data of the finger which applies pressure on the force-
torque sensor.

B. Image alignment using convolutional neural networks

In the video stream the finger position and orientation
vary with time. To reduce the effect of these variations
we use a convolutional neural network (CNN) to predict
and correct for the finger position and orientation before
estimating forces and torques.

1) 3D model construction: To train the CNN we need a
3D model of the finger. Thus, before the actual experiments
take place, we construct a triangular, textured mesh 3D
model from between 12 and 15 images of a finger using
the commercially available Agisoft Photoscan 0.9.1 software.
This process lasts a few tens of seconds.

2) Finger detection and tracking: Since the video stream
contains not only the finger but also an arbitrary background
we first need to extract the finger from the image. We employ
tresholding in the YCbCr color space, which is a nonlinear
RGB signal often used for skin detection, to segment the
finger. We then use the mean shift algorithm [14] to track
the finger in the video stream.

But the “raw” 2D image of a finger cannot, when the finger
is tilted, be perfectly mapped on the original image. Using
the image of a tilted finger would lead to considerable data
loss. To resolve this problem, we transform tilted images
back to the original, as follows.

3) Transformation matrix estimation using convolutional
neural networks: Let the position of the finger in world
coordinates be given by the tuple x, y, z and the orientation
by the angles ↵, � and �, which refer to the yaw, pitch, and
roll, respectively. We set x = y = z = ↵ = � = � = 0 to be
the front view of the 3D finger model. The world coordinate
p1 of a point p0 on the finger surface is given by p1 = V p0

with the affine transformation matrix V given by

V =

R q

0 1

�
, (1)

where

R = Rot

z

(↵) · Rot
y

(�) · Rot
x

(�), (2)
q = (x y z)T , (3)

and Rot

w

(✓) denotes the rotation matrix for a rotation about
the w-axis by angle ✓.

To simplify the alignment task and reduce environment
ambiguities such as lighting and reflection we place a marker
(see Fig. 4) on each nail. The method is not sensitive to the
placement of the marker, as long as the marker is located
at the same place of the fingernail for the training and
testing data. The design of the marker is chosen so that the
four lines identify the orientation of the nail, while the x
and y coordinates of the nail can be estimated by locating
the red point in the 2D image. The black line on the left
unambiguously distinguishes the lines from each other.

x

y

yaw

roll

pitch

Fig. 4: Marker. The left picture shows the design of the
marker. The right picture shows the marker image from a
finger image. The middle image shows the marker coordi-
nate.

We render about 40,000 two-dimensional training images
from the 3D model created in step 1 with varying values
for the finger position z and orientation ↵, �, �. z is in a
range of [�2, 3] with a step of 0.5 virtual distance in the
model coordinate, while ↵ 2 [�25, 30], � 2 [�15, 35] and
� 2 [�23, 37] with a step of 3.5 degrees each. The virtual
distance is the distance in the z direction with respect to the
3D model. The unit of the virtual distance depends on the
size ratio from the human finger to the 3D finger model.
The points making up the marker in the rendered image are
extracted and resized to 81 ⇥ 88 pixels. For testing we use
real finger images captured with the camera.

A convolutional neural network [15] is a neural network
architecture for regression and classification that is relatively

robust to shifts, scales and distortions of the input data
and can be trained efficiently on large data sets. Therefore,
CNNs can detect the transformation parameters between
a mis-aligned image and a reference image. We compare
two approaches: one with separate orientation and position
outputs through two CNNs, and one combining outputs
through one CNN.

Fig. 5 illustrates the architecture of the proposed network
for the combined output method. It contains six layers: a
first convolutional layer followed by a first max-pooling
layer, another convolutional layer followed by a second
max-pooling layer, and two fully connected layers. In our
experiments, both convolutional layers have 5⇥5 sized filters.
The first convolutional layer employs 8 kernels, while the
second makes use of 25 kernels.

We now describe convolutional neural networks more
formally. Typically, a CNN is designed as subsequent stages
of convolution and max-pooling. The top layers are usually
ordinary multi-layer perceptrons.

The convolution of a 2D image for a feature map h is

h(m,n) =

l

xX

u=0

l

yX

v=0

w(u, v) g(u+m, v + n) + b, (4)

where g is the input map, w the kernel weights, and b the
bias. (l

x

, l
y

) is the size of the filter. (m,n) is the pixel
position on the feature map.

The max-pooling activation can be computed as

p(m,n) = max

r1
i=1

⇣
max

r2
j=1 h(r1m+ i, r2n+ j)

⌘
, (5)

where (r1, r2) is the pooling size and p is the feature map
in the max-pooling layer.

Max-pooling, a non-linear down-sampling method, de-
creases the computational complexity. These layers take
the output of convolutional layers as input, and reduce the
resolution of the input. In our case, that is a reduction from
77⇥ 84 to 38⇥ 42 and from 34⇥ 38 to 17⇥ 19.

The fully-connected MLP contains 50 hidden units. The
last layer is linear and has 7 outputs O1, O2, . . . , O7. We
identify the first of those outputs as z = O1 while the remain-
ing 6 contribute to the three orientations. The orientations
✓ 2 {↵,�, �} are calculated as follows:

✓ = arccos

O

iq
O2

i

+O2
i+1

!
� ⇡

2

, (6)

where i 2 {2, 4, 6}. Note that since this form of encoding
of angles is differentiable, we can use the chain rule to
backpropagate error gradients back into the network.

Assuming that the output1 y and input x are related
linearly, i.e., y(x) = w

T

x+ ✏ where w refers to the weight
vector and the residual error ✏ is the difference between
predictions and true values.

1In the sequel we assume the output y to be one-dimensional for
notational simplicity, but the general equations generalize.

Convolution ConvolutionPooling Pooling
Fully-

Connected
MLP

Linear
regression

1×81×88 8×77×84 8×38×42 25×34×38 25×17×19 50 7

α

γ
β

z

Fig. 5: Architecture of the proposed CNNs with combined
orientation and position output.

With a conditional probability density, the linear regression
model [16] is denoted by

p(y | x, ⇠) = N
�
y | µ(x),�2

�
, (7)

where N is the normal distribution, ⇠ = (w,�2
) are the

parameters, and �2 is the variance. The expected output is
µ(x) = w

T

x. In our model, x is the output of the MLP and
the input of linear regression, and y := (O1, O2, . . . , O7)

T

is the output of linear regression.
The training data is assumed as independent and identi-

cally distributed (iid). To determine optimal values for the
weights w, we minimize the negative log likelihood (NLL)

NLL(⇠)
�
= �

NX

i=1

log p(y
i

| x
i

, ⇠)

=

�1

2�2
SSE(w)� N

2

log(2⇡�2
), (8)

where the sum of squared errors (SSE) is defined by

SSE(w)
�
=

NX

i=1

(y
i

�w

T

x

i

)

2, (9)

with N the number of data points that we optimize on.
Since the orientations are periodic, we investigated using

a von Mises distribution [17] to calculate the log likelihood
function. However, experimental evidence showed that using
a straightforward L2 norm leads to better results. Therefore
the cost function f is denoted by

f(✓) =

NX

n=1

(✓
n

� ✓0)
2. (10)

Through minimizing the cost function of ↵, �, and � and
the negative log likelihood of z, we can update the weights
of the CNN.

Observation from the training process of the combined
output CNNs model, the position and orientation variables
converge separately at the beginning. More specifically, z
convergence occurs almost after the ↵, � and � are stable;
therefore, with the assumption that z is independent of ↵,
� and �, we design CNNs as Fig. 6 for the comparison
of combined and separate training. In contrast to the com-
bined method, this method trains position and orientation
separately with the only connection that the trained output
of orientation is set as the bias of the linear regression layer

α

γ
β

z

Fig. 6: CNNs of separate orientation and position output.
The prediction of the orientation is the bias of of last layer
for position.

of the position CNNs model. Thus, the expected outputs of
z is given by

µ(x) = w
↵

↵+ w
�

� + w
�

� + w1x1 + · · ·+ w
n

x
n

.

4) Texture Mapping: Given the estimated transformation
matrix from the CNN, the image can be aligned using texture
mapping [18]. This is an efficient method [19] to create
the appearance from a source image without the tedious
processes such as modeling or rendering a 3D surface for
every detail. It allows “glueing” the source 2D frame onto the
3D finger surface in the estimated position and orientation.
The mapped 3D finger model is then drawn to the destination
image through the perspective projection in the reference
position and orientation.

The source image is in a texture space labeled by (u, v);
the 3D model is in an object space labeled by (x

w

, y
w

, z
w

),
and the aligned image is in a screen space labeled by (x

s

, y
s

).
Fig. 7 shows the texture mapping process and the spaces.

3D mesh
(Object Space)

2D image
(Texture Space)

Model projected
by the image

(Object Space)

Aligned image
(Screen Space)

Fig. 7: Texture mapping.

5) Nail and Skin Extraction: In the aligned images, the
edges of the fingers may not be the same, because different
images may have different occluded areas during the move-
ment. However, the common visible areas have the same
appearance in the aligned images which contain the pressure
information in the form of colour changes. To reduce the
noise induced by the finger edges and the environment the
intersection of all visible areas over the whole video stream
is extracted.

C. Image Estimates Force/Torque–Gaussian Process
The aligned images are divided into a training and test set

with about 82% of the data is used for training. The testing
samples are selected from time-continuous blocks of data.

A Gaussian Process (GP) [20] is a stochastic process given
by its mean m(x) and covariance k(x,x0

),

m(x) = E[f(x)], (11)

k(x,x0
) = E

h�
f(x)�m(x)

��
f(x0

)�m(x

0
)

�i
. (12)

Assuming the GP has a zero mean function, the squared
exponential covariance (SE) is derived as

k(x,x0
) = �2

f

exp

⇣
� 1

2l2
kx� x

0k22
⌘
. (13)

The length-scale l and the signal variance �2
f

are the hyper
parameters. Points that have distances to each other smaller
than l can be considered to have similar values.

The inputs of training points are (x1,x2, . . . ,xN). xi is an
aligned image after being reshaped to a 1D vector. In addi-
tion, the estimated force and torque, y := (y1, y2, . . . , yN)

T

is the corresponding target. Thus, the target value f(x⇤
) for

x

⇤ is distributed as

E[f⇤
] = k

⇤T
(K + �2

n

I)�1
y, (14)

Var[f⇤
] = k(x⇤,x⇤

)� k

⇤T
(K + �2

n

I)�1
k

⇤, (15)

where K
ij

= k(xi,xj), k⇤
i

= k(xi,x
⇤
), I is the identity

matrix and �
n

the noise variance hyper parameter.
We maximize the log likelihood function

log p(y|X) =� 1

2

y

T

(K + �2
n

I)�1
y

� 1

2

log

��K + �2
n

I
��� n

2

log 2⇡, (16)

and consequently obtain the optimal values for the three
hyper parameters using the training set.

III. EXPERIMENTS AND RESULTS

Experiments are carried out to evaluate the proposed
approaches. There are 3 subjects denoted by S1, S2, and
S3 respectively. The subjects are trained separately using
different models. The accuracy

p
R2 for both CNNs and GP

is given by

R2
= 1�

P
N

i=1(yi � d
i

)

2

P
N

i=1(yi � y)2
, (17)

where d
i

is the target value, y
i

the estimation value, and y
the mean value of the test set.

A. Alignment Result
The training and validation data sets are generated from

the 3D model as stated in the previous section. For one finger
model, with different position and orientation, it generates
about 40,000 images, 80% of which is randomly chosen to
be the training set and the rest is validation set. The test set
is made from real images captured by the camera.

Table I shows the validation results for CNNs alignment.
Since the testing data has no labels, only validation data

TABLE I: Accuracy (
p
R2) of combined and separate outputs

of the CNN. t represents the training time of the implemen-
tation in Theano.

z ↵ � � t/min

S1
Combined 0.988 0.999 0.999 1.000 352
Separate 0.973 0.999 0.999 1.000 323

S2
Combined 0.986 0.998 0.999 1.000 360
Separate 0.971 0.998 0.999 1.000 333

S3
Combined 0.985 0.997 0.997 1.000 372
Separate 0.981 0.996 0.996 1.000 339

avg Combined 0.986 0.998 0.998 1.000 362
Separate 0.975 0.998 0.998 1.000 332

is quantified in this process. The combined method and
separate method achieve high accuracy and have almost the
same accuracy for ↵, �, and �, while 1.14% difference on
z. It indicates that z is approximately independent of the
orientation. Further results are explained in the next section.

In terms of the training time, training two separate CNNs
is more effective, reducing training time from 6 hours to
5.5. Once the system is trained, the CNN runs in realtime,
predicting one image after 4 ms on a GPU.

−2 0 2 4
−2

−1

0

1

2

3

z target

z
pr

ed
ic

tio
n

−20 0 20

−20

−10

0

10

20

α target [degree]

α
pr

ed
ic

tio
n

[d
eg

re
e]

−20 0 20 40

−10

0

10

20

30

β target [degree]

β
pr

ed
ic

tio
n

[d
eg

re
e]

−20 0 20
−20

−10

0

10

20

γ target [degree]

γ p
re

di
ct

io
n

[d
eg

re
e]

Fig. 8: Validation result of alignment for S1 by Convolutional
Neural Networks

As an example, some detailed results are shown in Fig. 8
for S1. The other two subjects are similar. The prediction
error is shown for z and for the three rotation angles. The
reduced accuracy in z is related to the small range that
z has. One can see that there are systematic errors—the
model overestimates for low, and underestimates for high
orientations/positions. We hypothesize that it can be tackled
with either more data and/or more powerful models, e.g.
more hidden layers and units.

Fig. 9 shows three different testing images before and after
alignment. The aligned images have the same appearance in
the interested areas, but different colors in the same pixel.

Fig. 9: Alignment result of a finger. The top row are the
images before alignment, the bottom row pictures are the
images after alignment.

TABLE II: Accuracy (
p
R2) of combined and separate

outputs of Force Estimation by Gaussian process
Combined Separate

x y z x y z

S1
f 0.936 0.929 0.956 0.939 0.929 0.957
⌧ 0.927 0.941 0.886 0.914 0.943 0.888

S2
f 0.933 0.913 0.970 0.930 0.915 0.966
⌧ 0.914 0.917 0.785 0.913 0.925 0.815

S3
f 0.942 0.946 0.947 0.950 0.952 0.944
⌧ 0.766 0.934 0.873 0.751 0.942 0.886

Avg. f 0.937 0.934 0.958 0.940 0.932 0.956
⌧ 0.869 0.937 0.848 0.859 0.937 0.863

B. Force/torque Estimation Result

After obtaining the aligned images, the force and torque
can be estimated through the GP method we used before
[10]. Both of the training and testing inputs are from the
aligned frames of the video camera. There are about 1500
frames for each subject.

Finger rotation was not restricted. The rotation ranges
estimated by the CNN is up to about 30�, 25� and 20� for
↵, � and �.

We evaluate the force (f) / torque (⌧) effects for all 3
subjects in Table II. The negative z-coordinate with respect
to the transducer is the downward movement in direction to
the pressure transducer. The accuracy of f

z

reaches about
95.8% with the range up to 10 N, while f

x

and f
y

achieve
over 93%. Some results of the torque are not as accurate as
the rest, which is caused by the recording data. The contact
point of the finger and the sensor is not fixed, especially, to
prove the robust alignment, the subjects rotate the finger in a
relative large range without support for the arm or the finger;
therefore, the estimation sifts according to the contact point.
Fig. 10 exemplarily illustrates the results for S1.

The accuracy of force estimation using the aligned images
from two CNNs methods have no more than 1% difference.
Thus, we can deduce that the orientation and position are
independent for all practical reasons. Based on the effective
training, the separate method is better than the combined
method.

0 50 100 150

−5
0

5

F X

truth
estimation

0 50 100 150

−5
0

5

F Y

0 50 100 150

−5
0

5

F Z

0 50 100 150
−100

0

100

τ X

0 50 100 150
−100

0

100

τ Y

0 50 100 150
−100

0

100

frame no

τ Z

0 50 100 150
−10

0

10

∆
F X

0 50 100 150
−10

0

10

∆
F Y

0 50 100 150
−10

0

10
∆

F Z

0 50 100 150
−50

0

50

∆
τ X

0 50 100 150
−50

0

50

∆
τ Y

0 50 100 150
−50

0

50

frame no

∆
τ Z

Fig. 10: Test result of force/torque estimation for S1 by
Gaussian process. The left pictures show the true value and
estimation value of the force/torque. The right pictures show
the estimation and true value difference. The shadow is the
95% confidence interval of the predictor.

IV. CONCLUSIONS

This paper has presented a new approach to align 2D finger
images to a 3D model using machine learning approaches,
in order to deduce accurate grip force from nail coloration
with a steady camera. Our approach, based on Convolutional
Neural Networks, predicts the rotation with an accuracy
of 97.47% to 99.97%. We compare two approaches, by
learning learning rotation and translation in one CNN or in
two separate CNNs. Both approaches obtain similar results,
except that the separated approach is computationally more
efficient (and would allow for additional parallelization)
during learning. Both methods need only 4 ms to evaluate
one image during use.

The proposed alignment approach obtains as much as
information of the nail and its surrounding skin without
distortion as non-rigid registration. It does not require any
special lighting conditions.

With the robust alignment system, the force and torque
estimation of a finger is about 95% cq. 90%, allowing for

unrestricted movement of the hand and a placement-free
camera.

V. ACKNOWLEDGEMENT

Part of this work has been supported in part by the TAC-
MAN project, EC Grant agreement no. 610967, within the
FP7 framework programme. This work has been supported in
part by the Swedish Research Council, VR 2011-3128. The
authors kindly thank Benoni Ben Edin and Göran Westling,
Umeå University for their active support of this work.

REFERENCES

[1] J. N. Ingram, K. P. Körding, I. S. Howard, and D. M. Wolpert, “The
statistics of natural hand movements,” Experimental Brain Research,
vol. 188, no. 2, pp. 223–236, Mar. 2008.

[2] A. Gustus, G. Stillfried, J. Visser, H. Jörntell, and P. van der Smagt,
“Human hand modelling: kinematics, dynamics, applications,” Biolog-
ical cybernetics, vol. 106, no. 11-12, pp. 741–755, Nov. 2012.

[3] N. Fligge, H. Urbanek, and P. van der Smagt, “Relation between
object properties and emg during reaching to grasp,” Journal of
Electromyography and Kinesiology, vol. 23, no. 2, pp. 402–410, 2013.

[4] H. Höppner, J. McIntyre, and P. van der Smagt, “Task dependency
of grip stiffness—a study of human grip force and grip stiffness
dependency during two different tasks with same grip forces,” PLOS
ONE, vol. 8, no. 12, p. e80889, 2013.

[5] B. B. Edin, G. Westling, and R. S. Johansson, “Independent control of
human finger-tip forces at individual digits during precision lifting,”
The Journal of Physiology, vol. 450, pp. 547–564, May 1992.

[6] J. R. de Gruijl, P. van der Smagt, and C. I. de Zeeuw, “Anticipatory
grip force control using a cerebellar model,” Neuroscience, 2009.

[7] Y. Sun, J. Hollerbach, and S. Mascaro, “Predicting fingertip forces by
imaging coloration changes in the fingernail and surrounding skin,”
IEEE Tr Biomed Eng, vol. 55, no. 10, pp. 2363–2371, 2008.

[8] ——, “Estimation of fingertip force direction with computer vision,”
IEEE Tr Robotics, vol. 25, no. 6, pp. 1356–1369, 2009.

[9] T. Grieve, L. Lincoln, Y. Sun, J. Hollerbach, and S. Mascaro, “3d
force prediction using fingernail imaging with automated calibration,”
in IEEE Haptics Symposium, 2010, pp. 113–120.

[10] S. Urban, J. Bayer, C. Osendorfer, G. Westling, B. B. Edin, and P. van
der Smagt, “Computing grip force and torque from finger nail images
using gaussian processes,” in IROS, 2013.

[11] T. R. Grieve, J. M. Hollerbach, and S. A. Mascaro, “Force prediction
by fingernail imaging using active appearance models,” in World
Haptics Conference (WHC), 2013, 2013, pp. 181–186.

[12] S. A. Mascaro and H. H. Asada, “Measurement of finger posture
and three-axis fingertip touch force using fingernail sensors,” IEEE
Tr Robotics and Automation, vol. 20, no. 1, pp. 26–35, Jan. 2004.

[13] Y. Sun, J. Hollerbach, and S. Mascaro, “EigenNail for finger force
direction recognition,” in ICRA, 2007, pp. 3251–3256.

[14] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-
rigid objects using mean shift,” 2000, pp. 142–149.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” in Proc IEEE, vol. 86,
no. 11, 1998, pp. 2278–2324.

[16] K. Murphy, Machine Learning: A Probabilistic Perspective. The MIT
Press, 2012.

[17] C. M. Bishop, Pattern Recognition and Machine Learning. Springer-
Verlag, 2006.

[18] T. Yu, H. Wang, N. Ahuja, and W.-C. Chen, “Sparse lumigraph
relighting by illumination and reflectance estimation from multi-view
images,” in ACM SIGGRAPH 2006 Sketches, 2006.

[19] P. S. Heckbert, “Survey of texture mapping,” IEEE Comput. Graph.
Appl., vol. 6, no. 11, pp. 56–67, Nov. 1986.

[20] C. Rasmussen and C. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

	Introduction
	Methodology
	Hardware Setup
	Image alignment using convolutional neural networks
	3D model construction
	Finger detection and tracking
	Transformation matrix estimation using convolutional neural networks
	Texture Mapping
	Nail and Skin Extraction

	Image Estimates Force/Torque–Gaussian Process

	Experiments and results
	Alignment Result
	Force/torque Estimation Result

	Conclusions
	Acknowledgement
	References

