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Abstract— This paper introduces 6 new image features to
provide a solution to the open problem of uncalibrated 6D
image-based visual servoing for robot manipulators, where
the goal is to control the 3D position and orientation of the
robot end-effector using visual feedback. One of the main
contributions of this article is a novel stereo camera model
which employs virtual orthogonal cameras to map 6D Cartesian
poses defined in the Task space to 6D visual poses defined
in a Virtual Visual space (Image space). This new model is
used to compute a full-rank square Image Jacobian matrix
(Jimg), which solves several common problems exhibited by the
classical image Jacobians, e.g., Image space singularities and
local minima. This Jacobian is a fundamental key for the image-
based controller design, where a chattering-free adaptive second
order sliding mode is employed to track 6D visual motions for
a robot manipulator. Exponential convergence of errors in both
spaces without local minima are demonstrated. The complete
control system is experimentally evaluated on a real industrial
robot. The robustness of the control scheme is evaluated for
cases where the extrinsic parameters of the uncalibrated stereo
camera system are changed on-line and unknown when the
stereo system is manually moved to obtain a clearer view of
the task.

I. INTRODUCTION

Visual servoing control (VSC) is an approach to control
the motion of a robot manipulator using visual feedback
from a vision system. This has been one of the most active
topics in robotics since the early 1990s [1]. We are concerned
with Image-Based Visual Servoing (IBVS) where the error
function is defined directly in terms of image features.

This work aims to build upon the concepts of image-
based visual servoing and attempt to address some of the
most common problems plaguing conventional approaches
by introducing additional features and behaviors. As pointed
out in [1] and [2], convergence and stability problems may
sometimes occur in IBVS. Local minima in the trajectories
and singularities in the Image Jacobian (also known as
Interaction Matrix) can severely affect the visual servoing
task. In image-based control approach, the ideal case is
to find a particular visual feature where the interaction
matrix has neither local minima nor singularities. During the
last decade, several authors have worked on solving these
problems. In the following section, we will briefly describe
the most important approaches used in IBVS and discuss
about their properties and limitations.
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A. Related work

An IBVS usually employs the image Jacobian matrix
(Jimg) to relate end-effector velocities in the manipulator’s
Task space to the feature parameter velocities in the feature
(image) space. A full and comprehensive survey on Visual
Servoing and image Jacobian definitions can be found in [1],
[3], [4] and more recently in [5]. In general, the classical
image Jacobian is defined using a set of image feature
measurements (usually denoted by s) and it describes how
image features change when the robot manipulator pose
changes ṡ = Jimgv. In Visual Servoing the image Jacobian
needs to be calculated or estimated. Its inverse is used to
map the image feature velocities ṡ into a meaningful state
variable required for the control law (usually the generalized
joint velocities q̇).

In general, the image Jacobian can be computed using
direct depth information (depth-dependent Jacobian) [6],[7],
by approximation via on-line estimation of depth of the fea-
tures (depth-estimation Jacobian) [3], [5], [8], or using depth-
independent image Jacobian matrix [9],[10]. Additionally,
many papers directly estimate on-line the complete image
Jacobian in different ways [11],[12], [13]. However, all these
methods use redundant image point coordinates to define
(as a general rule) a non-square image Jacobian, which is
a differentiable mapping from SE(3) to s ∈ R2p (with p as
the number of feature points). Then, a generalized inverse
of the image Jacobian needs to be computed, which leads to
well-known problems such as the Image space singularities
and local minima.

In our early work [14], we introduced a stereo camera
model based on a virtual composite camera system, that can
provide 3D visual position vector. This visual position vector
generates a 3×3 full-rank Image Jacobian that maps veloc-
ities from the Task space to the Virtual Visual space. Using
this image Jacobian, a visual servo control is implemented
to drive 3 DOF of a real robot to trace time-varying desired
trajectories defined in an uncalibrated Image space. However,
this approach is limited to control only 3D positions, and the
image Jacobian is only suitable for 3 DOF robots.

In this paper, we extend the visual features to control 6D
visual poses in a Virtual Visual space (Image space). This
visual pose is composed of 3D visual position and 3D visual
orientation, which is used to obtain a 6×6 full-rank square
Image Jacobian to map velocities from the Task space to
the 3D Virtual Visual space. Therefore, this work offers a
general solution to control the position and orientation of a
robot end-effector using uncalibrated visual information with



a new full-rank square image Jacobian (Jimg).

B. Organization

This paper is organized as follows: In Section II we high-
light the problems in classical image-based visual servoing
approaches and state the core issues which we tackle in this
work. In Section III we introduce a new Camera Model
and describe how it is used to construct a Virtual Visual
space. This model is used to define the full-rank 6D Visual
Jacobian, which will be used in the Section IV to design an
adaptive image-based 6D visual servoing. Section V presents
two real-world experiments (as illustrated in Fig. 1) and
shows the results obtained in a dynamic environment. Finally,
Section VI draws the conclusions and presents directions for
future work.
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Fig. 1. Description of robotic experimental setup.

II. PROBLEM FORMULATION

A. Classical Image-Based Visual Servoing

Suppose that the robot end-effector is moving with angular
velocity ωc = [ωx,ωy,ωz] and translational velocity vc =
[vx,vy,vz] both w.r.t. the camera frame in a fixed camera
system (eye-to-hand configuration). Let Pc = [x,y,z]T be a
point rigidly attached to the end-effector. The velocity of the
point Pc, expressed relative to the camera frame, is given by

Ṗc = ωc×Pc + vc (1)

where Ṗc = [vx,vy,vz,ωx,ωy,ωz]
T is the relative velocity of

the point in the camera frame.
As described in [1], we can relate image-plane velocity of

a point to the relative velocity of the point with respect to
the camera as

ṡ = LxṖc (2)

in which s = [u,v]T is the image feature parameters, and the
interaction matrix Lx is defined as

Lx =

[
f
z 0 − u

z − uv
f

f 2+u2

f −v

0 f
z − v

z − f 2+v2

f
uv
f u

]
(3)

where f is the focal length of the camera lens.
To control a 6 DOF robot, at least three points are

necessary (i.e., we require k ≥ 6, where k represents the
total number of feature measurements). If we have a vector
Wb = [Xb,θb]

T = [xb,yb,zb,αb,βb,γb]
T ∈ R6×1, which is the

pose of the end-effector in the robot base frame (in this case
we choose Euler angles to represent the orientation of the

end-effector), and a vector s = [u1,v1, ...,up,vp]
T ∈ R2p×1,

which contains p = k/2 image points. Then, the relation
between ṡ and Ẇb is given by

ṡ︸︷︷︸
2p×1

= Jx︸︷︷︸
2p×6

Ẇb︸︷︷︸
6×1

(4)

where Jx = [Lx1, ...,Lxp]
T ·M ∈R2p×6 is known as the image

Jacobian, M ∈ R6×6 is the mapping to transform velocities
expressed in the camera frame to the robot base frame, and
Lxi is given by (3).

B. The problems of Classical IBVS

If we consider ∆Wb as the input to a robot controller, then
we need to compute the inverse mapping of ṡ as

∆Wb = J+x ∆s, (5)

where ∆∗ is an error function defined in the space ∗, J+x ∈
R6×2p is chosen as the Moore-Penrose pseudoinverse of Jx,
which leads to the two characteristic problems of the IBVS
method: the feature (image) space singularities and local
minima. For most IBVS approaches we have 2p > 6. In
this case, the image Jacobian is singular when rank(Jx)< 6,
while the image local minima is defined as the set of image
locations Ωs =

{
s|∆s 6= 0,Ẇb = 0,∀s ∈ R2p×1

}
when using

redundant image features. (A local minimum is reached since
the velocity of the end-effector is zero while the final end-
effector position is far from its desired one). Examples of
the problems generated by the local minima conditions are
illustrated in [2] and [3].

C. Contribution of this Work

In this work, we get a step further towards a general
solution for the problem of the IBVS, by introducing an
intermediate mapping from the classical image features s
to a new visual representation defined as Ws = [Xs,θs]

T =
[xs,ys,zs,αs,βs,γs]

T ∈ R6×1. In this case, Ws is a 6D visual
pose vector defined in a 3D Image space (we call this space
the Virtual Visual space). This visual pose is measured in
pixels and it is composed of 3D visual position and 3D visual
orientation.
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Fig. 2. Algorithm framework: The figure shows the philosophy behind the
algorithm proposed in this work (orange box) and its practical implemen-
tation (green box).
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Fig. 3. Image Projections: a) The figure depicts the different coordinate frames used to obtain a general 3D visual camera model. Xb ∈ R3×1 is the
position in meters [m] of an Object with respect to the world coordinate frame (wcf) denoted by Ob. Rb

Cl
∈ SO(3) represents the orientation of wcf w.r.t

the left camera. OV is a reference frame for the virtual orthogonal cameras Ov1,2 where RCl
V ∈ SO(3) is the orientation of frame OCl with respect to OV .

The vectors pl , pr ∈R2×1 are the projections of the point Xb in the left and right cameras. Finally, pvi ∈R2×1 represents the projection of the Object in the
virtual cameras Ovi . b) Second virtual Camera System, whose reference coordinate frame OV ′ is fixed on the robot end-effector and has the same rotation
as the frame Oe f . And its orientation with respect to the first virtual camera system OV is Rv′

v ∈ SO(3).

The visual representation Ws is related with the feature
points vector s as

Ẇs︸︷︷︸
6×1

= Ji︸︷︷︸
6×2p

ṡ︸︷︷︸
2p×1

(6)

In other words Ws ∈R6×1 can be seen as the decomposition
of the vector s ∈ R2p×1 in its principal components, in such
a way that all the elements of Ws are independent and
orthogonal to each other.

Substituting (4) in to (6) yields a new mapping as

Ẇs = (JiJx) Ẇb (7)[
Ẋs
θ̇s

]
6×1

= Jimg︸︷︷︸
6×6

[
Ẋb
θ̇b

]
6×1

(8)

The advantage of this intermediate mapping is that, a full-
rank square image Jacobian matrix (Jimg ∈ R6×6) can be
obtained, which is nonsingular and without local minima.
This is the core design of our algorithm, and all that remains
is to define the form of Jimg. Fig. 2 depicts our algorithm
framework.

III. 6D IMAGE JACOBIAN

This section shows how we construct the Virtual Visual
space using information generated by the stereo vision sys-
tem. It also explains in detail how to implement the algorithm
to obtain the full-rank image Jacobian matrix (Jimg ∈R6×6).

In this work, the key idea of the 3D visual camera model is
to combine the stereo camera model with a virtual composite
camera model. Fig. 3 (a) denotes our new visual camera
model and the image projections.

A. Image Jacobian for 3D position Jimgpos

We first define the mapping for 3D positions (Jimgpos ∈
R3×3),that shows the relationship between 3D Cartesian

position (meters) and 3D visual position (pixels). The key
idea of this model is to combine the stereo camera model
with a virtual composite camera model to get a full-rank
square image Jacobian to map velocities of a target object
(Ẋb) to velocities of the image features (in our case, pixel
velocities in the 3D visual space, denoted here by Ẋs), see
Fig. 3.

As presented in our earlier paper [14], the relationship
between the pixel velocities (Ẋs) and the object position
velocities (Ẋb) in the robot base frame can be rewritten as

Ẋs = (Jα RCl
V Rb

Cl
)Ẋb = Jimgpos Ẋb (9)

where we define the Jacobian Jimgpos ∈ R3×3 as the posi-
tion image Jacobian and Jα consists of user-defined virtual
camera parameters. Rb

Cl
∈ SO(3) represents the orientation of

wcf w.r.t the left camera and RCl
V ∈ SO(3) is the orientation

of frame OCl with respect to OV ,see Fig. 3.

B. Image Jacobian for 3D Orientation Jimgrot

In order to define orientations in the Virtual Visual Space,
we need to define 4 different points rigidly attached to
the robot end-effector, which can be used to represent the
orientation of the end-effector in a base frame. The 4 points
expressed in the end-effector frame Oe f , are the origin and
the canonical basis of a 3D Euclidean space, which means

origin point: Xee f = [0,0,0]T

x axis: Xe1 = [1,0,0]T

y axis: Xe2 = [0,1,0]T

z axis: Xe3 = [0,0,1]T

(10)

1) Orientation Definition in Virtual Visual Space: In
order to specify 3 orthogonal vectors in the Virtual Visual
space, which can be used to represent visual orientations,
we define a second virtual orthogonal camera system, see



Fig. 3 (b). This virtual coordinate frame OV ′ is fixed to the
robot end-effector coordinate frame Oe f . All parameters in
the second virtual camera system are the same as the first
one, with the exception of the optical center offsets O1 =
O2 = [0,0]T . Then, the mapping from 3D Cartesian position
w.r.t the frame Ov to the 3D image position (check [14] (10))
for the new 3D Virtual Visual space Os′ is written as

Xs′ = diag( f β )


xV ′

−yV ′+λ
yV ′

xV ′+λ
zV ′

xV ′+λ

+
 cx

cx
cy

 (11)

where XV ′ = [xV ′ ,yV ′ ,zV ′ ]
T is the 3D position w.r.t. OV ′ .

Therefore, the 4 points defined in (10) can be represented
in O′s as

XV ′e f = Xee f = [0,0,0]T

XV ′1 = Xe1 = [1,0,0]T

XV ′2 = Xe2 = [0,1,0]T

XV ′3 = Xe3 = [0,0,1]T

⇒


Xs′e f

= [cx,cx,cy]
T

Xs′1 = [cx +
f β

λ
,cx,cy]

T

Xs′2 = [cx,cx +
f β

λ
,cy]

T

Xs′3 = [cx,cx,cy +
f β

λ
]T

(12)
In the same form, using (12), we define a basis of the 3D

Virtual Visual space (expressed in pixels): Vi = Xs′i−Xs′e f

V1 = [
f β

λ
,0,0]T , V2 = [0,

f β

λ
,0]T ,V3 = [0,0,

f β

λ
]T (13)

From (13), it is evident that the rotation of the robot end-
effector in the new 3D Virtual Visual space is represented
as: Re f

s′ =
[

V1
‖V1‖

V2
‖V2‖

V3
‖V3‖

]
= I.

In Section III-A, we mapped the 3D positions to the first
virtual orthogonal camera system, which is attached to the
stereo vision system. Therefore, the visual orientation also
needs to be mapped to the same frame Os. The rotation of
the end-effector with respect to Os can be computed as

Re f
s = Rs′

s Re f
s′ = RV

s RV ′
V Rs′

V ′ = RV ′
V = Re f

V (14)

= (RCl
V Rb

Cl
)Re f

b (15)

where Rs′
V ′ = I and Rs

V = I.
2) Orientation Mapping Jimgrot : Given a rotation matrix

R, the angular velocity of the rotating frame can be repre-
sented as S(ω) = ṘRT

in which S(ω) is a skew symmetric matrix and ω is the
angular velocity.

Therefore, the angular velocity of the end-effector frame
with respect to the robot base frame (ωb) is given by

S(ωb) = Ṙe f
b (Re f

b )T (16)

and using (15)1 the angular velocity of the end-effector frame
with respect to Os (ωs) is given by

S(ωs) =
˙Re f
s (Re f

s )T = (RCl
V Rb

Cl
)

˙Re f
b (Re f

b )T (RCl
V Rb

Cl
)T (17)

= (RCl
V Rb

Cl
)S(ωb)(R

Cl
V Rb

Cl
)T (18)

= S((RCl
V Rb

Cl
)ωb) (19)

1Properties of Skew Symmetric matrices show that: RS(α)RT = S(Rα)
with R ∈ SO(3) and α ∈ R3.

From (19) we can obtain the visual angular velocity

ωs = (RCl
V Rb

Cl
)ωb. (20)

Now, let θ = [α,β ,γ]T be a vector of Euler angles, which
denotes a minimal representation for the orientation of the
end-effector frame relative to the robot base frame. Then, the
definition of the angular velocity ω is given by [15]

ω = T (θ)θ̇ . (21)

If Re f = Rz,γ Ry,β Rx,α is the Euler angle transformation, then

T (θ) =

cos(γ)cos(β ) −sin(γ) 0
sin(γ)cos(β ) cos(γ) 0
−sin(β ) 0 1

 (22)

Singularities of the matrix T (θ) are called representational
singularities. It can easily be shown that T (θ) is invertible
provided cos(β ) 6= 0.

Substituting (21) into (20) we obtain

T (θs)θ̇s = (RCl
V Rb

Cl
)T (θb)θ̇b (23)

Furthermore, this expression can be written as

θ̇s =

α̇s

β̇s
γ̇s

=

Jimgrot︷ ︸︸ ︷
T (θs)

−1(RCl
V Rb

Cl
)T (θb) θ̇b = Jimgrot θ̇b (24)

where the Jacobian Jimgrot ∈R3×3 is defined as the orientation
image Jacobian.

C. Visual Jacobian

In the previous sections, we have defined the mappings
for the 3D visual position and orientation separately as posi-
tion image Jacobian Jimgpos and orientation image Jacobian
Jimgrot . Combining (9) and (24) we have the full expression

Ẇs =

[
Ẋs
θ̇s

]
=

[
Jimgpos 0

0 Jimgrot

][
Ẋb
θ̇b

]
= JimgẆb (25)

where the Jacobian Jimg ∈ R6×6 is defined as the Image
Jacobian.

Substituting the robot Differential Kinematics Ẇb = Ja(q)q̇,
(25) can be rewritten in the form

Ẇs = JimgJa(q)q̇ = Jsq̇ (26)

where Ja(q) ∈ R6×6 is the analytical Jacobian matrix of
the robot manipulator and the Jacobian matrix Js ∈ R6×6 is
defined as the Visual Jacobian.

Then the inverse differential kinematics that relates gener-
alized joint velocities q̇ and 6D visual velocities Ẇs is given
by

q̇ = Js
−1Ẇs = Ja(q)

−1Jimg
−1Ẇs (27)

Remark 1: Singularity-free Jimg. From (25), we can see
that det(Jimg) = det(Jimgpos)det(Jimgrot ), therefore the set of
singular configurations of Jimg is the union of the set of
position configurations satisfying det(Jimgpos) = 0 and the set
of orientation configurations satisfying det(Jimgrot ) = 0.



From [14], we know that a non-singular Jimgpos can be
obtained, and Jimgrot is non-singular provided that T (θ) is
invertible.

Therefore, the singularities of Js in (27) are defined
only by the singularities of Ja(q). Hence, to guarantee a
non-singular visual mapping, an approach to avoid robot
singularities must be implemented. In Section V, we discuss
this issue and propose a solution.

IV. CONTROL LAW

In this section, we describe the design of an adaptive
image-based dynamic control (second order sliding mode
control) which includes the robot dynamics model in its
passivity proof. The proposed second order sliding mode
control is chattering free.

The robot dynamic model and joint velocity nominal
reference are the same as described in our earlier paper [14].
Here the 6D visual nominal reference Ẇsr ∈ R6×1 is used
instead of the Ẋsr ∈ R3×1 as

q̇r = Js
−1Ẇsr . (28)

Details about the control law are shown in the paper [14].
Remark 2: Convergence of ∆Wb without local minima.

Given Jimg is square and full-rank, from (25) it can be seen
that ∆Ws = 0 → ∆Wb = 0 without local minima. This is
the most important impact of designing a full-rank image
Jacobian which, in general, is not obtained with classical
methods.

V. EXPERIMENTS

Two experiments were performed to validate and evaluate
this work on a standard industrial robot. The first experiment
focuses on the 6D visual servoing algorithm as an application
of a teaching interface, where the user defines the pose of
the end-effector using a visual marker and this information
is later used to define the desired visual trajectory. The
second experiment uses the 6D visual servoing algorithm
for real-time tracking of a moving target in a Human-Robot
interaction scenario. In order to make this a practically useful
application, several other features such as singularity avoid-
ance, self-collision avoidance and obstacle detection and
avoidance are implemented, which ensure safety of the robot
and human. This experiment also shows how the orientation
matrix is estimated on line enabling an uncalibrated visual
servoing system, where occlusions due to camera placement
can be handled in a natural and intuitive way by simply
moving manually the camera to a better position.

This system consists of 3 sub-systems: a) the Visual
Stereo Tracker, b) the Robot Control System and c) the 3D
visualization System, see Fig. 1.

A. Experiment 1: 6D Visual Tracking
This scheme has been implemented on a robotic platform

with six degrees of freedom and an eye-to-hand config-
uration. 2D visual (image) features are extracted from a
stereo vision system with AR markers. We use the ArUco
library2 (based on OpenCV) to detect markers. Every marker

2ArUco: http://www.uco.es/investiga/grupos/ava/node/26
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Fig. 4. Snapshot of the 6D visual tracking.

provides 2D image features for 4 corner points. 3D position
and rotation of the robot end-effector with respect to the
camera frame are obtained from the image features of these
4 points. This experiment consists of two phases: teaching
and execution.

1) Teaching Interface: In this phase, we provide a teach-
ing interface for the user, see Fig. 4 (a), where the user
is holding an AR marker, which is detected by the stereo
camera system that provides 2D image features. A red
square and a marker ID (displayed in cyan) on the image
indicates the detection. The user moves the marker, creating
some visual trajectories, such as two orthogonal straight
lines on the table and two smooth curves on the surface
of the Globe. These trajectories include both translation and
rotation motions. During the movement, the 2D features for
4 points of the target in the camera frames are recorded and
saved. At some points, when the marker is lost or can not be
detected, the last available data is saved, which guarantees
that the desired pose can be reached and is safe for robot
execution.

2) Automatic Execution: After the teaching phase, the
robot can automatically execute the recorded visual trajecto-
ries. Another AR marker with the same size is attached to
the robot end-effector to detect the pose of the robot during
execution. In this case, inputs to visual servoing are the 2D
image features which were recorded in the teaching phase.
From these features we extract our new 6D visual pose vector
Ws in the Virtual Visual space, which is used to create the
error function, see Section III.

Experimental results are depicted in Fig. 5. The plots in
the first row (a) show the 3D linear and 3D angular visual
tracking in our Virtual Visual space while the second row
(b) shows the target trajectory tracking in the 3D Task space.
The red lines in the plots are the target trajectories, which
exhibit some noise and chattering due to the unsteady move-
ment of the user. However, the blue lines which illustrate
the trajectories of the robot end-effector, are smooth and
chattering free. This experiment shows that when the errors
in the Virtual Visual space converge to zero, the errors in the
Task space converge to zero without local minima. Therefore
during execution, the AR marker on the robot end-effector
shows identical linear and angular motions as instructed in
the teaching part.
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Fig. 5. Experiment results for 6D visual tracking: (a) 3D position and orientation angles in the Virtual Visual Space, (b) 3D position and orientation
angles in the Task Space.

B. Experiment 2: 6D Uncalibrated Image-based Visual Ser-
voing in a Human-Robot Interaction Scenario
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Fig. 6. 6D adaptive visual servoing including environment constraints.

In this experiment, we integrate the visual servoing system
in a scenario where environment constraints such as: robot
singularities avoidance, (self-/obstacle) collision avoidance
must be included to generate a safe and singularity-free tra-
jectory for the robot. We model the environment constraints
as a total force F , which includes singularity avoidance
force Fr, self-collision avoidance force Fc, obstacle-collision
avoidance force Fo, etc. Fig. 6 shows integration of the
control with these environment constraints.

In this task, we demonstrate real time tracking using AR
markers for identifying the target pose and the current pose
of the robot end-effector. The target is carried by a human,
and the control goal is to make the robot end-effector follow
the target placed in the human’s hand.

1) Interaction results: This experiment demonstrates real
time tracking of both the 3D visual position and 3D orienta-
tion (Fig. 7 (a)). The system proves to be stable and safe even
in situations where the target is lost (due to occlusions by
the robot or the human), 7 (b). In this case, the robot pauses
and the visual tracking is resumed as soon as the target is
visible again.

To demonstrate stability, we test our system under several
environment constraints. Fig. 7 (c) illustrates the results of

singularity avoidance, where the robot does not reach the
singular condition (q3 = 0), even when the user tries to force
it. Fig. 7 (d) depicts table avoidance where the motion of
the robot is constrained in the zb−axis by the height of the
table (the end-effector is not allow to go under the table)
but it can still move in the xb and yb axes, and Fig. 7 (e)
shows how the robot handles self-collisions. Fig.7 (f) shows
obstacle avoidance while continuing to track the target.

One of the key contributions of this paper is the possibility
of handling situations where the target object is occluded,
and the stereo system can be moved to maintain the target in
the field of view. This feature is analyzed in next subsection.

2) On-line Orientation Matrix Estimation: In order to
compute the visual Jacobian, in this work a coarse on-line
estimation of the orientation matrix is computed using the
real-time information generated by the robot. As shown in
our previous work [14], SV D (Singular Value Decomposi-
tion) on two sets of position points defined in each coordinate
frame Ob and OCl is used to estimate the orientation matrix.
The estimation errors for the complete Jacobian Js can be
handled in the controller to some extent.

Object occlusion occurs in Fig. 7 (g), where the stereo
system can then be moved physically to maintain targets
in the field of view. The camera motion is detected by
the system and a process for the coarse estimation of the
orientation matrix between the stereo system and the robot
base frame is started. The robot performs a small motion
and a set of points are collected, shown in Fig. 8 (d). We
compare the actual end-effector position with the recovered
end-effector position using the estimated rotation. Fig. 8 (a)
and (c) depicts these two positions trajectories. It can be
clearly observed that the error between them is close to zero
after on-line rotation matrix estimation, as illustrated in Fig.
8 (b).

A video where more details for all these
experimental results are illustrated can be seen in:
http://youtu.be/arNFrbJ0Lj4

http://youtu.be/arNFrbJ0Lj4
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Fig. 7. System behaviors: (a) Position and orientation tracking, (b) Case when the target is lost, (c) Case with singularity avoidance, (d) Case with table
collision avoidance, (e) Case with self-collision avoidance and (f) Obstacle avoidance. (g) Target occlusion and the user manually moves the stereo system.

0 10 20 30 40 50 60 70
−1

−0.5

0

0.5

Time (s)

P
o

s
it

io
n

(m
)

(a) End−effector Position and Recover EF Position

 

 
EF

x

RecEF
x

EF
y

RecEF
y

 EF
z

RecEF
z

0 10 20 30 40 50 60 70
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

∆
 P

o
s

it
io

n
(m

)

(b) Error of End−effector Position

 

 

∆X

∆Y

∆Z

−0.2

0

0.2

0.4

0.6 −0.05

0

0.05

0.1

0.15
0

1

2

 

Y (m)

(d) The position for Estimation Rotation

X (m)
 

Z
 (

m
)

Xef

Xef
stereo

−1

−0.5

0

0.5 −0.6

−0.4

−0.2

0

0.2−0.5

0

0.5

 

Y (m)

(c) 3D End−effector Position

X (m)
 

Z
 (

m
)

Xef

Xef
rec
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new Virtual Visual space
(measured in pixels) for visual servoing from 4 image
points using an uncalibrated stereo vision system with virtual
orthogonal cameras, in which we define a 6D visual pose
vector. Using this 6D visual pose we obtain a new full-rank
square Image Jacobian, which can avoid the well-known
problems in image-based Visual Servoing such as Image
space singularities and local minima. Then, an adaptive
second order sliding mode visual servo control is designed
to track 6D visual motions using the 6D trajectory errors
defined in the Virtual Visual space. The control was evaluated
on a real industrial robot to experimentally show stability
of the control. Furthermore, to create a practically useful
and safe scenario, environment constraints were integrated
with our 6D visual servoing approach to generate a robot
dynamics control system with a trajectory free of collisions
and singularities.

Experimental results on a robotics platform show the
feasibility of the proposed scheme in a real-world environ-
ment. Future work includes the study of the efficiency and

robustness of the proposed scheme when compared to the
classic and other image-based visual servoing approaches.
We will also try to use an advanced object tracker instead of
using the AR markers. We will implement this approach in
more real world applications, by fusing this technique with
various sensors, e.g. depth-cameras and tactile sensors.

REFERENCES

[1] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 5, pp. 651–670, Oct. 1996.

[2] F. Chaumette, “Potential problems of stability and convergence in
image-based and position-based visual servoing,” in The Confluence
of Vision and Control. LNCIS Series, No 237, Springer-Verlag, 1998,
pp. 66–78.

[3] F. Chaumette and S. Hutchinson, “Visual servo control. I. Basic
approaches,” IEEE Robotics Automation Magazine, vol. 13, no. 4, pp.
82–90, Dec. 2006.

[4] M. Marey and F. Chaumette, “Analysis of classical and new visual
servoing control laws,” in IEEE International Conference on Robotics
and Automation, May 2008, pp. 3244–3249.

[5] F. Janabi-Sharifi, L. Deng, and W. Wilson, “Comparison of basic
visual servoing methods,” IEEE/ASME Transactions on Mechatronics,
vol. 16, no. 5, pp. 967–983, Oct. 2011.

[6] J. Feddema, C. S. G. Lee, and O. Mitchell, “Model-based visual feed-
back control for a hand-eye coordinated robotic system,” Computer,
vol. 25, no. 8, pp. 21–31, Aug. 1992.

[7] Y. Mezouar and F. Chaumette, “Optimal camera trajectory with
image-based control.” The International Journal of Robotics Research,
vol. 22, no. 10, pp. 781–804, 2003.

[8] E. Nematollahi and F. Janabi-Sharifi, “Generalizations to control laws
of image-based visual servoing,” International Journal of Optomecha-
tronics, vol. 3, no. 3, pp. 167–186, 2009.

[9] Y.-H. Liu, H. Wang, C. Wang, and K. K. Lam, “Uncalibrated visual
servoing of robots using a depth-independent interaction matrix,” IEEE
Transactions on Robotics, vol. 22, no. 4, pp. 804–817, Aug. 2006.

[10] H. Wang, Y.-H. Liu, and D. Zhou, “Dynamic Visual Tracking for Ma-
nipulators Using an Uncalibrated Fixed Camera,” IEEE Transactions
on Robotics, vol. 23, no. 3, pp. 610–617, June 2007.

[11] K. Hosoda and M. Asada, “Versatile visual servoing without knowl-
edge of true Jacobian,” in IEEE/RSJ/GI International Conference on
Intelligent Robots and Systems, vol. 1, Sep. 1994, pp. 186–193.

[12] J. Piepmeier, G. McMurray, and H. Lipkin, “Uncalibrated dynamic
visual servoing,” IEEE Transactions on Robotics and Automation,
vol. 20, no. 1, pp. 143–147, Feb. 2004.

[13] S. Azad, Farahmand, Amir-Massoud, and M. Jagersand, “Robust
jacobian estimation for uncalibrated visual servoing,” in Robotics and
Automation (ICRA), 2010 IEEE International Conference on, May
2010, pp. 5564–5569.

[14] C. Cai, E. Dean-Leon, D. Mendoza, N. Somani, and A. Knoll, “Uncal-
ibrated 3D Stereo Image-based Dynamic Visual Servoing for Robot
Manipulators,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Nov. 2013.

[15] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Dynamics
and Control-Second Edition, 2004.


	Introduction
	Related work
	Organization

	Problem Formulation
	Classical Image-Based Visual Servoing
	The problems of Classical IBVS
	Contribution of this Work

	6D Image Jacobian
	Image Jacobian for 3D position Jimgpos
	Image Jacobian for 3D Orientation Jimgrot
	Orientation Definition in Virtual Visual Space
	Orientation Mapping Jimgrot

	Visual Jacobian

	Control Law
	Experiments
	Experiment 1: 6D Visual Tracking
	Teaching Interface
	Automatic Execution

	Experiment 2: 6D Uncalibrated Image-based Visual Servoing in a Human-Robot Interaction Scenario
	Interaction results
	On-line Orientation Matrix Estimation


	Conclusions and Future Work

