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Abstract—Shared cache in modern multi-core systems has
been considered as one of the major factors that degrade
system predictability and performance. How to manage the
shared cache for real-time multi-core systems in order to
optimize the system performance while guaranteeing the system
predictability is still an open issue. In this paper, we present
a framework that can exploit cache management for real-time
MPSoCs. The framework supports dynamic way-based cache
partitioning at hardware level, building task-level time-triggered
reconfigurable-cache MPSoCs. It automatically determines time-
triggered schedule and cache configuration for each task to
improve the system performance while guarantee the real-
time constraints. We evaluate the proposed framework with
respect to different numbers of cores and cache modules and
prototype the constructed MPSoCs on FPGA. Experiment results
based on FPGA implementation demonstrate the effectiveness
of the proposed framework over the state-of-the-art cache
management strategies when tested 27 benchmark programs on
the constructed MPSoCs.

I. INTRODUCTION

Computing systems are increasingly moving towards multi-
core platforms. To alleviate the high latency of the off-chip
memory, multi-processor system-on-chip (MPSoC) architec-
tures are typically equipped with hierarchical cache subsys-
tems. For instance, ARM Cortex-A15 series [4] use small L1
caches for individual cores and a relatively large L2 cache
shared among different cores. Due to this inherent complex
cache hierarchy, the analysis of shared cache subsystem has
received much attention [14], [17], [31], in recent years.

The main problem of cache hierarchy is that the behavior
of shared cache is hard to predict and analyze statically [1],
[14] in MPSoCs. For instance, a task running on one core
may evict useful L2 cache space, which is used by another
task in another core. These inter-core cache interferences
will cause an increase in the miss rate [34], leading to a
corresponding decrease in performance. In addition, inter-
core cache interferences are extremely difficult to analyze
accurately [14], thus resulting in difficulty of estimating
the worst-case execution time (WCET) of the application
program. Therefore, how to tackle the shared cache in the
context of real-time systems is still an open issue [1], [34]
and the difficulty actually prohibits an efficient use of the
MPSoCs for real-time systems. For instance, to resolve the
predictability problem for MPSoCs, avionics manufacturers
usually turn off all cores but one for their highly safety-critical
subsystems [31]. The work in [17] also report that inter-core
cache interferences on a state-of-the-art quad-core processor
increased the task completion time by up to 40%, compared
to when it runs alone in the system. Being aware of this, this
paper studies the problem of how to use the shared cache in a
predictable and efficient manner under real-time requirements
with the existence of cache interference.
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To address this problem, most of the state-of-the-art tech-
niques [17], [27], [31] on the multi-core cache management
for real-time systems use page-coloring, i.e., a software cache
partitioning approach in the OS level, to partition the cache
by sets. The problem for page-coloring based techniques
is the significantly large timing overhead when performing
recoloring. This timing overhead on the one hand prohibits
a frequent change of the colors of pages [18], on the
other hand makes color changes of tasks whose execution
time is less than the page-change overhead not worthy. To
tackle these problems, we consider task-level schedule-aware
cache partitioning and implement cache partitioning in our
customized reconfigurable cache hardware component with
minimal timing overhead.

Combining real-time task scheduling and cache size alloca-
tion is however more involved. On the one hand, the WCET
of a task depends on the allocated cache size. On the other
hand, the maximal cache budget that can be assigned to a task
depends on the cache sizes occupied by other tasks that are
currently running on the other cores, i.e., depending on the
scheduler. Furthermore, the performance of tasks may have
different sensitivity to the assigned cache size. In principle,
the task scheduling and the cache size allocation interrelate
to each other with respect to the system performance, such
as cache misses and energy consumption [30]. Therefore, a
sophisticated framework is needed to find the best trade-off
between them in order to improve the system performance.

This paper tackles schedule-aware cache managment
scheme for real-time MPSoCs. We present an integrated
framework to exploit and verify the interactions between the
task scheduling and the shared L2 cache interference. For a
given set of tasks and a mapping of the tasks on an MPSoC,
our approach can generate a fully deterministic time-triggered
non-preemptive schedule and a set of cache configurations
during the compilation time. During runtime, the cache is
reconfigured according to offline computed configurations.
The generated schedule and the cache configurations together
minimize the cache miss of the cache subsystem while
preventing deadline misses and cache overflows. With a
customized reconfigurable cache component and share-clock
multi-port timer component, our framework can generate
MPSoCs with different numbers of cores and different cache
modules (different cache configurations with respect to cache
lines, size, and associativity) and prototype on Altera FPGA.
The contributions of our work are as follows:

e We proposed an integrated cache management frame-
work that improves the execution predictability for real-
time MPSoCs. The proposed framework can automat-
ically generate fully deterministic time-triggered non-
preemptive schedule and cache configurations to optimize
system performance under real-time constraints.

e We developed a parameterized reconfigurable cache



memory and prototyped it on FPGA. The cache size,
line size, and associativity of the cache memory can be
parameterized during compile time while the partition of
the cache can be reconfigured in flexible manner during
runtime. We also design a complete set of APIs with
atomic operation, such that the application tasks can
reconfigure their cache sizes during runtime.

o We developed a share-clock multi-port timer component
that enables the time-triggered schedule to be imple-
mented on the MPSoCs generated from our framework.

o We prototyped and evaluated the generated MPSoCs on
Altera Statrix V FPGA using 27 real-time benchmarks.
We also analyze and discuss the experiment results
under different hardware environment with respect to the
number of cores and cache settings.

II. RELATED WORK

Real-Time Cache Partitioning: Shared cache interference in
a multi-core system has been recognized as one of major
factors that degrade the average performance [18], as well
as predictability of a system [31], [14]. Many works have
been done in general-purpose computing to optimize differ-
ent performance objectives by cleverly partitioning shared
cache, including cache performance [23], [24] and energy
consumption [33]. In the context of real-time systems, cache
partitioning technique have been explored mostly by using
software-based solution [32], [20], [31], [17], [27]. In [32],
[20], the off-chip memory mapping of the tasks is altered to
guarantee the spatial isolation in the cache by using compiler
technology. However, altering tasks’s mapping in the off-
chip memory is far from trivial, which requires significant
modifications of the compilation tool chain. In addition, the
partitioning of the task can only be statically suppressed
in fixed cache set regions due to the pre-decided memory
mapping, which also prevents the efficient usage of the limited
cache resource. Recently, the techniques [31], [17], [27] on
the multi-core cache management in the context of real-time
systems have been proposed by using page-coloring, which
partitions the cache by sets at OS-level. However, page-
coloring based techniques usually suffer from a significant
timing overhead inherent to changing the color of a page,
which results in that making decision of changing the color
of a page cannot be frequent. The authors in [18] report that
the observed overhead of page-coloring based dynamic cache
partitioning reaches 7% of the total execution time even after
conducting the optimization to reduce the recoloring times.
Distinct to above set-based cache partitioning techniques, we
present a reconfigurable cache architecture to execute dynamic
way-based cache partitioning in hardware level. Our approach
can dynamically change the cache size with minimal overhead
(scaling to cycles). Besides, compared to set-based cache
partitioning techniques, our way-based reconfigurable cache
can turn off the whole unused ways to save static energy [3],
[33]. Therefore, our way-based reconfigurable cache can also
bring benefits for low-power design.

Reconfigurable Cache: Numbers of reconfigurable cache
architectures have been proposed in the literature. Most of
them [3], [26], [8] are devoted to the analysis of theoretical
proposals and the simulation of reconfigurable caches, only
a few are devoted to the physical implementation of the

proposed cache models. Zhang et al. [33] proposed a reconfig-
urable cache architecture where the cache ways configuration
could be tuned via the combination of configuration register
and physical address bits. In this architecture, the cache
ways selection during the reconfiguration is related to the
address bits of the application, which cannot guarantee the
strict cache isolation among real-time applications. In addition,
the number of cache ways can only be configured to be
a power of two, which prevents the efficient usage of the
limited cache ways. Gil et al. [12] presented one general-
purpose reconfigurable cache design only for uni-processor
systems, which was implemented on FPGA. It cannot be
easily extended to multi-core system. In this paper, we
propose a parametrized reconfigurable cache architecture for
real-time multi-core system and physically implement it on
FPGA. In this architecture, cache ways can be tuned without
constraints and can be efficiently and dynamically partitioned
and allocated to applications, which can guarantee the cache
resource is strictly isolated among real-time applications to
prevent the cache interference. This will serve us a real (not
simulation) reconfigurable cache for studying and validating
cache management strategies on the real-time multi-core
system under different cache settings.

III. BACKGROUND
A. Way-based Cache Partitioning

Our cache management scheme implements dynamic way-
based cache partitioning on FPGA. As shown in Fig. 1,
the shared cache is partitioned in the ways. Each core can
dynamically tune the number of selective-ways. For example,
core 2 can select the 3rd and 6th way by calling the
cache reconfiguration APIs. In this work, we implement
cache partitioning on our customized reconfigurable cache
component and dynamically assign cache ways to tasks.
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Fig. 1.
B. Task Model

We consider the functionality of the entire system as
a task set = = {T1,...,T,}, which consists of a set of
independent periodic tasks. We use w;; to denote the worst
case execution time (WCET) of task T; € 7 with j ways
shared cache allocated and W; = {w;1, w2, ..., Wiy, } to denote
the WCET profile of task 7;, where u is the total number
of ways in the shared cache (cache capacity). In this paper,
a measurement-based WCET estimate technique is used to
determine the worst case execution time. Timing predictability
is highly desirable for safety-related applications. We consider
a periodic time-triggered non-preemptive scheduling policy,
which can offer a fully deterministic real-time behavior for
safety-critical systems. Note that we consider non-preemptive
scheduling as it is widely used in industry practice, especially
in the case of hard real-time system [13]. Furthermore, non-
preemptive scheduling eliminates the cache-related preemption
delays (CPRDs), and thus alleviates the need for complex and
pessimistic CRPD estimation methods. We use R to denote

Way-based Cache Partitioning.



the set of the profiles for all tasks in task set 7. A task profile
r; € R is defined as a tuple r; =< W, s;, h;, d; >, where
si,» hi, d; are respectively the start time, period, and deadline
of the task 7;. The deadline d; of the task 7; is equal to its
period h;.
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Fig. 2. System Design Framework.

IV. FRAMEWORK OVERVIEW

In this section, we give an overview of our system design
framework depicted in Fig. 2, which takes both real-time
scheduling and cache partitioning into consideration to study
and verify the interactions between the multi-core real-time
scheduling and shared cache management. As shown in Fig. 2,
the input specifications of the proposed framework consists of
the following three parts.

1) Platform Specification describes the settings of a mul-
tiprocessor platform, such as the number of cores, the
settings of L2 cache with respect to cache size, line size
and associativity.

2) Mapping Specification describes the relation between
all tasks in the task specification and all cores in the
platform specification. The mapping specifications can
be written by hand or automatically generated by design
space exploration tools.

3) Task Specification describes task timing requirements,
i.e., period and deadline, and task profile information,
i.e., the WCETSs and cache miss number under different
cache size. We describe the details about how to profile
each task in Section VII.

As output, the synthesis approach can generate cache size
allocation and time-triggered scheduling for each task accord-
ing to the input specification, by which the total cache miss
number is minimized. Based on this optimal schedule and
cache allocation, tasks can be scheduled with insertion of
cache size allocation instructions. Task code can be generated
by integrating this optimal approach into real-time scheduler.
At the same time, parameterized reconfigurable cache IP and
share-clock mutli-port timer IP can be generated according to
the settings in platform specification.

V. SYNTHESIS APPROACH FOR SCHEDULING AND CACHE
MANAGEMENT

This section presents the synthesis approach for timing
schedule and cache management. We reuse the approach in [6]
to model the scheduling and cache interference, and formulate

the problem as integer linear programming (ILP) to minimize
the cache miss of the system. With this formulation, the cache
size allocation and time-triggered scheduling for each task can
be generated automatically, which could avoid deadline miss
and cache overflow.

A. Time-Triggered Task Scheduling

Time-triggered non-preemptive schedule is considered in
this paper to achieve full predictability of the system. For each
task 7; with the profile < W;, s;, h;, d; >, the k-th instance
of task T; starts at s; + k - h;. WW; contains the WCETSs of the
task with different cache configurations. We use a set of binary
variables c;; to describe the amount of cache allocated to the
task T;: ¢;; = 1 if exactly j cache ways are allocated to T; and
cij = 0 otherwise. In this case, the actual WCET of T; can
be obtained as >, ¢;;jw;;, where u is the total number of
ways of the shared cache. To formulate the scheduling problem
by means of ILP, we have to gurantee the following timing

constraints.
For deadline constraint, task 7’ has to finish no later than
its deadline:

si+ Z Cikwik < d;
k=1

The non-preemptive constraint requires that any two tasks
mapped to the same core must not overlap in time. Let binary
variable denote the execution order of task T; and T};: z”}7 =1
if the i-th instance of task T, finishes before the start of j-th
instance of T, and O otherwise. H,. and H 5 denote the hyper-
period of all tasks and the hyper-period of only task 7}, and
Ty (i.e., LCM of periods of T}, and T}), respectively. T'S(7,)
denotes the set of tasks that are mapped to the same core
as T}, does. £ denotes the overhead of task switch. The non-
preemption constraint can thereby be expressed as follows.

1 5 — Hpp _ L Hpp _ .
VT, Ty € TS(T3),i = 0,y (322 = 1),5 = 0, (32 — 1):

iyt sp+ Y cppwpr — (L— 2/ )Hy + €< j-hs+s5 (1)

k=1
j'hﬁ-l-slg-i-ZCﬁk’wﬁk—Z;%HT+§Si~hp+Sp (2)
k=1

The constraints (1) and (2) ensure that either the instance of
T, runs strictly before the instance of T%, or vice verse.

B. Cache Management Constraints

The next step is to add the cache management constraints,
which guarantee the feasibility of cache management, i.e., at
any point in time, the sum of cache ways allocated to the tasks
currently being executed does not exceed the cache capacity.
To avoid cache overflow, we recall the following lemma in [6],
which indicates that a finite number of time instants, i.e., at
the start of any task, should be checked for the cache overflow.

Lem. 1: If the cache does not overflow at the start instant of
any task within one hyper-period, the cache never overflows.

According to features of time-triggered scheduling, we can
use periodical square wave function (PSWF) to indicate if the
task is running at the specific time instance. For task 7}, with
start time s, and execution time e, the cache demand at the
instant ¢ can be defined as:

PSWE(t,T,) = V - s”J +1- [“777‘3?}
P P




According to Lem. 1, we can guarantee to avoid cache
overflow by checking the start instant of any task within
one hyper-period. Thus, we can formulate cache management

constraints as f}({)llows.
vT,,i=0,.., (ﬁ —1):

Sew ki ¥
k=1

TH¢TS(Tp)
The term of PSW F(s, +i - hy, T5) > i Cji. - k represents
cache requirements of the task 7% at the start time of 7,. One
may notice it is non-linear term. We can transform this non-
linear term into a set of linear constraints using the approach
presented in [6]. Besides, each task must have exactly one
cache configuration.
k=1

To minimize the cache miss number in one hyper-period, the
following objective function is used:

Hr = ij
VT; j=1
where u and CMziche represent the cache capacity (in the
number of ways) and the cache miss of task T; under j-way
cache configuration, respectively.

PSWF(sy+i-hy,T5) Y cpr -k <u

k=1

VI. PROPOSED HARDWARE INFRASTRUCTURE

In this section, we present the FPGA-based multi-core
system which supports dynamic cache partitioning and time-
triggered scheduling. A major benefit of choosing FPGA for
prototyping our multi-core system is the high configurability
of the processor. This allows us to evaluate the proposed
integrated scheduling and cache management framework under
various hardware configurations with different cache sizes and
varied arithmetic units. Fig. 3 illustrates the proposed multi-
core system on FPGA, where the L2 cache is shared among
cores. We adopt the NIOS II fast core in the system. Modules
highlighted with white color in Fig. 3 indicate the hardware
components specifically designed and implemented for our
framework. The system consists of several NIOS II cores
with private L1 cache (both instruction and data cache), along
with reconfigurable cache IP which supports dynamic cache
partitioning and share-tick timer IP for the time-triggered
scheduling.
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Fig. 3. System Architecture.

A. Design Consideration and Challenge

Cache coherency problem is one of critical design con-
siderations for the dynamic way-based cache partition infras-
tructure. According to the Altera NIOS II datasheet [22], the
current NIOS architecture does not provide hardware cache

coherency. When creating multiprocessor systems, software
for each processor is required to locate in its own unique
region of off-chip memory to avoid to implement cache
coherency [22]. NIOS II SBT provides a simple scheme of
memory partitioning that allows multiple processors to run
their software from different regions of the same off-chip
memory [22]. In this paper, we mainly focus on studying the
interaction between scheduling and cache management, and
follow this official design from Altera to create our multi-core
system. Actually, this kind of memory architecture known as
Partitioned Global Address Space (PGAS) has been widely
accepted in the embedded community for efficiency reasons
and real-life examples come from Adapteva Parallella multi-
core chip E16G301 and E64G401 [2]. Note that inter-core
cache interference still exists although software on each core
runs in different regions of the same off-chip memory. Besides,
the proposed shared cache architecture is multi-port cache,
which allows NIOS cores to access the cache concurrently.

Another important part that should be carefully considered
is atomic operations. In general, to adaptively change the
cache size, one core needs a two-phase operation, i.e., inquiry
and allocation. In the inquiry phase, the core needs to check
which ways are available at the current moment. Then, based
on the inquiry results, the core can acquire cache resource
in the allocation phase. Normally, this procedure works
well in a uni-processor system due to no core interference.
However, in multi-core systems, when one core is checking
the cache resource state, the cache management logic might
be conducting cache allocation for other cores. This may lead
to the fallacious cache resource state inquiry, because the
results of the on-going cache allocation fail to be synchronized
to the current cache resource state. Therefore, in a multi-
core system, the APIs for adjusting the cache size should
be guaranteed to be atomic for implementing synchronization
primitives. Hence, we develop a component, called cache ways
management unit (CWMU) to execute cache ways allocation
and release, which grantees the offered APIs atomicity.

The implementation of the replacement policy for the
way-based partitioning cache is another design challenge. To
efficiently use the limited cache resource, the proposed cache
architecture allows each core to dynamically tune its cache
ways without any constraints. This will result in that the cache
ways occupied by one core might not be adjacent to each other.
As shown in Fig. 1, the 3rd and 6th ways are occupied by core
2. Therefore, standard replacement policies cannot be applied.
In this paper, we develop block reference field logic (BRFL)
to maintain this discontinuous cache ways distribution.

B. Reconfigurable Cache Architecture

This section presents an overview of the proposed re-
configurable shared cache architecture. The reconfigurable
shared cache component allows cores to dynamically change
the number of owned cache ways. As depicted in Fig. 4,
the proposed reconfigurable shared cache consists of cache
ways management unit (CWMU), cache control unit (CCU),
core to cache switch (CCS), and cache ways block (CWB).
In the proposed architecture, cache ways management unit
(CWMU) controls the cache ways allocation according to the
reconfiguration request of the cores. The reconfiguration port
of CWMU is shared by all cores. Cache control unit (CCU)
manages the cache memory accesses by instantiating N cache
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Fig. 4. Reconfigurable Cache Architecture.

controllers for N-core system. Core to cache switch (CCS) can
dynamically connect cores to cache ways blocks according
to ways mask register of each core, which is maintained by
CWMU. Cache ways blocks (CWB) are memory blocks used
for tag and data storage.

C. Cache Ways Management Unit (CWMU)

The cache ways management unit (CWMU) is used to
manage cache ways in a centralized manner, by which
each core can send reconfiguration command to dynamically
regulate its cache ways. CWMU is connected to N NIOS cores
by avalon slave interface (ASI) and a round-robin arbiter is
automatically created between N NIOS cores and CWMU
by Altera SOPC builder. As shown in Fig. 5, when CWMU
receives one command from one NIOS core, the CMD decoder
component can distinguish the core ID (i.e., identity which
core sends this command) and its command type (i.e., identity
command types in Tab. I). If it is allocation ways command,
ways IDs will be fetched from the global ways pool. Then,
the fetched ways IDs are put into the cache ways pool of
the distinguished core. Then, Core to cache switch (CCS) is
controlled to connect cache ways to the distinguished core
according to the cache ways pool. Before fetching ways IDs
from global ways pool, the logic will check whether there
are enough ways in the pool. If not enough ways exist in the
pool, cache overflow error will be returned to the distinguished
core. Note that our synthesis approach depicted in Section V
can guarantee that cache overflow error will never occur.
In contrast to the procedure of allocation ways command,
release ways command will fetch ways IDs from the cache
ways pool of the distinguished core to the global ways pool.
Ways occupied by the distinguished core and replacement
information are correspondingly updated at this point. Note
that due to this centralized management scheme, cores do not
need to inquiry the cache state any more before the allocation
operation. Therefore, the APIs for cache reconfigurations are
atomic.

Allocation Ways Core0 Ways Pool
CMD output
a K— Global Ways Pool
= Decoder input
Release Ways CoreN Ways Pool

Fig. 5. Cache Ways Managment Unit (CWMU).

D. Cache Control Unit (CCU)

Cache control unit (CCU) instantiates N cache controllers
for an N-core system, where each core owns one cache
controller. Cache controller is used to maintain the access
for its corresponding NIOS core. Thus, this shared cache
allows NIOS cores to access the cache concurrently. For
cache controller, we employ a write-through cache owing
to its simplicity. Fig. 6 depicts the block diagram of cache
controller. Transactions from L1 cache of NIOS core are
injected through L2 cache port, which is instantiated as avalon
slave interface (ASI). Evictions, refills and write-through are
asserted from off-chip memory port, which is instantiated as
avalon master interface (AMI). The data-width of both ASI
and AMI in our case is 32 bit. The supported maximum burst
of both ports depends on the L1 and L2 cache line size,
respectively. Thus, muxs and demuxs in ASI and AMI are used
to packet and de-packet bytes in the corresponding cache line
size. The control logic performs hit/miss check, returns the
read data, and asserts evictions and refills. The victim cache
line is selected by the block reference field logic (BRFL)
during the refill phase. The implementation of the partitioned
replacement policy is presented in Section VI-E.

Ways Pool

12 Cache Port
0Off-chip Memory

Fig. 6. Cache Controller (CC).
E. Implementation of Partitioned FIFO Replacement Policy

When a new data must be stored in a cache memory and
all cache ways have been occupied, one of the existing cache
line must be selected for replacement. Standard replacement
policies include LRU, FIFO, etc. As the cache with the FIFO
replacement policy could support accurate quantitative WCET
estimations compared to LRU replacement policy [15], we
consider FIFO cache replacement policy in this paper. In
addition, the FIFO replacement policy has been widely used
in ARM 11 processor and Intel X86 processor [15].

As mentioned in Section VI-A, dynamic cache partitioning
may result in that cache ways occupied by one core might not
be adjacent to each other. To maintain the discontinuous cache
ways distribution, the block reference field logic (BRFL),
shown in Fig. 7, is proposed to perform victim selection for
cache write operations. The reference field contains selection
reference memory (SRM) and valid bits memory (VBM). The
references of the next selection of victim cache lines are
stored in the selection reference memory (SRM). SRM can be
instantiated by one FPGA dual port memory block with the
depth @ and width Logs(u), where Q and u denote cache
depth and cache associativity, respectively. When the core
release ways, all the contents of SRM should be cleared to
initial reference in one clock. Unfortunately, no FPGA can
support this feature. In this paper, we propose one solution to
reset SRM by using VBM, which can be instantiated as Q-
bit register and be cleared in one clock. By using this similar
approach, the cache ways can be flushed in one clock when the



core release the ways. We use one bit valid register to associate
with each reference in SRM. When we read a reference from
one location of SRM, the valid bit register acts as the toggle
to determine output. Based on the current reference, the write
control logic (WCL) updates the write data for reference field
on each cache write operation and write the next selection
to reference field into SRM and VBM, making that ways are
selected in FIFO replacement manner. Note that write control
logic (WCL) can also be easily extended for other replacement
policies, e.g., LRU. BRFL outputs a valid reference and the
victim can be referred from the ways pool.
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Fig. 7. Block Reference Field Logic (BRFL).

FE. Share-clock Multi-port Timer IP

To support the dynamic timekeeping functionality in the
time-triggered scheduling, a free-running counter and timers
per processor are required. For the single processor system,
this role is adequately served by the NIOS timer peripheral.
While this is sufficient for a single core system, it does not
work well with multiple processors due to a synchronization
problem. In a multi-core system, we should guarantee that
all the cores in the system are triggered in one global timer.
Only in that way, the tasks on different cores can be precisely
triggered and well synchronized.
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Fig. 8. Share-clock Timer IP.

Fig. 8 shows the block diagram of the share-clock multi-
port timer, in which each port is connected to one NIOS core
by avalon slave interface (ASI). The share-clock multi-port
timer provides each core with a dedicated 32-bit decrementer,
which decrements based on the shared global timer. Here,
the shared global timer expires every constant time (e.g.,
Ims), which triggers each decrementer to decrement once.
When one decrementer expires, an interrupt is generated to
the corresponding core. Each core can dynamically control
the period by setting its register, which triggers the task in
different point. The global register is used to synchronize the
cores to be launched at the same point. Only when all cores
call the APISs to start timer, the global register is set to 1. Each
core keeps waiting until this global register is active.

VII. TASK PROFILING AND SOFTWARE IMPLEMENTATION

The aim of the task profiling is to identify the worst-case
execution time (WCET) and cache miss number with different
cache size for a given task set. According to the system
architecture shown in Fig. 3, the bus for accessing the off-
chip memory is shared by all cores via the round-robin arbiter.
This shared bus interference under the round-robin arbiter can
be efficiently analyzed by techniques in [25] to estimate the
WCET of a task. In this paper, we use measurement-based
approach in [17] to estimate the WCET of a task. Regarding
cache miss, we can obtain it from the customized performance
counter by calling the related APIs in Tab. L.

TABLE I
APIS SUPPORTED BY RECONFIGURABLE CACHE

allo_ways(way_num)
rel_ways(way_num)
cle_perf_cnt()
get_hit_cnt()
get_miss_cnt()
get_state()

Tab. I lists all the atomic APIs currently supported by
reconfigurable cache IP. We refer to the implementation of
time-triggered scheduler in [11] and implement the time-
triggered scheduler with the share-clock multi-port timer on
the NIOS-based multi-core system. To minimize the cache
miss of the system, the synthesis approach in Section V can
generate the task-level cache size configurations and time-
triggered scheduler. According to the generated configurations,
tasks can be scheduled with inserting cache configuration
instructions (see Tab. I) in each task invocation. High
performance code can be generated by this approach.

Allocate cache ways to cores
Release cache ways from cores
Clear the performance counter

Get the value of cache hit counter
Get the value of cache miss counter
Return ways state, error state

VIII. EXPERIMENTAL EVALUATIONS

In this section, we present the results obtained with an
implementation of the proposed framework, as well as the
performance of the proposed hardware platform. In our
framework, the CPLEX [9] solver is used to solve the ILP
problems for our synthesis approach. We set the overhead of
the task switch to 0.1ms by experiments, which is big enough
to execute the task switch.

A. Experimental Setup

We implement the proposed time-triggered cache reconfig-
urable multi-core system on the Altera DES board equipped
with Statrix V FPGA, which is based on the NIOS II multi-
core architecture. In the multi-core architecture, we adopt
the fast NIOS II core equipped with 512 bytes private
L1 instruction cache and 512 bytes private L1 data cache.
All cores are shared with the unified L2 cache, which is
an instance of the proposed reconfigurable cache IP. By
cooperating with the proposed share-clock mutli-port timer,
we implement the partitioned time-triggered scheduling on
each core according to [11]. The global tick of the shared
clock timer is Ims. To guarantee the predictability of the
implementation of the scheduler, we reserve 1 fixed way for
each core for the scheduler implementation (e.g., task switch).

To evaluate the effectiveness of our framework and
hardware platform, we use 27 benchmark programs
selected from MiBench [16] (Qsort, Dijkstra, Pbmsrch,
FFT), CHStone [7] (Adpcm, Aes, Gsm, Sha, Mpeg2),
DSPstone [10] (Dot_product, Fir2dim, Fir, Biquad, Lms,



TABLE III
BENCHMARK SETS FOR FOUR-CORE SYSTEM

Core T Core 2 Core 3 Core 4
Set 1 Lms, FFT Fir2dim, Pbmsrch Matrix1, N_complex_update Fir, Biquad
Set 2 Fir, Mpeg2, Histogram Biquad, Qurt Lms, Qsort, Gsm Fdct, Sobel, Dijkstra, Aes
Set 3 Matrix,Spectral_estimation, FFT Fir2dim,Sobel Biquad, Decode Beamformer,Histogram
Set 4 Corner_turn,Dotproduct Fir,Sha Histogram, Nsichneu Lms, Nsichneu
Set 5 Fdct,Fir2dim, Lpc, Histogram,Sobel, Sha,decode Corner_turn,FFT,Adpcm Fir,Blackscholes,
TABLE II 13.433% 10"
BENCHMARK SETS FOR TWO-CORE SYSTEM : - Miss -
12.313 = Execution Time
Core 1 Core 2
Set 1 Sobel, Fir Histogram, Lms gy 114048 z
Set 2 Fir2dim, Pbmsrch Blackscholes, Fir Z 106754 E
Set 3 Lms, FFT Nsichneu, Sobel £ ossez =
Set 4 Lms, Histogram, FFT Fir, Aes, Sobel c_“g %
Set 5 Lms, Histogram FFT, Sobel g 90 =
Corner_turn,Pbmsrch Nsichneu, Fir Y s2178 =
7.3986
Matrix, N_complex_update), PARSEC [5] (Blackscholes), 65794 2 PR T 6 75
UTDSP  [28 Histogram, Spectral, Lpc, Decode ) ) -
1g. Y. ache 1SS an Xecution lime Ior memory reuse code.
Verabench [ [2]9] ((Bear%lforn’ler pCorne’r turr?) , and som)e: Fig. 9. # Cache M d Execution Time Y d

other research works [21], [19] (Sobel,Nsichneu,Qurt,Fdct).
The input scales of some benchmarks used in this study are
too small to be memory-intensive tasks for the specified cache
size. To avoid the selected task to saturate fast, we made some
adaptations to the input scales of some benchmarks, such that
they comply with the specified cache size. Tab. II and Tab. III
respectively list the task sets used in our experiments for two
cores system and four-core system, which are combinations
of the selected benchmarks. According to [30], we specify
the task mappings based on the rule that the total execution
time of each core is comparable.

B. Speed and Area Measurements

First of all, we compare the different types of caches with
respect to their maximum operating frequency and area in
terms of logic and memory usage. Different types of caches
are synthesized to Altera Stratix V FPGA with Quartus II
(version 13.0) to obtain area and critical path delay (maximum
operating frequency F),,,) numbers. The effect of increased
cache depth, associativity, line size, and port number will be
examined for all cache types. Tab. IV summarizes the results
for different types of caches. The ’cache settings’ column is
organized as form of associativity/depth/line size. For example,
4/128/256 indicates 4-ways cache architecture with 128 cache
depth and 256-bit line size. F),,, indicates the maximum
frequency that the constructed multi-core system can run on.

TABLE IV
SPEED AND AREA MEASUREMENTS ON STRATIX V FPGA
Port Cache Combinational Total Fmax
Number Settings ALUTs Registers (MHz)
4/256/256 11510 8899 168.41
Two Core 475127256 14453 11461 159.41
872567256 17619 10506 I5T.170
875127256 21609 14604 152,14
8/256/256 29809 18683 140.29
Four Core 8/512/256 36074 24831 13434
16/256/256 39821 22014 126.90
16/512/256 49225 31234 12583

For increase in depth address and ways number, the number
of combinational ALUTSs and registers also increases. As
explained in Section VI-E, to flush cache ways and reset
the replacement reference in one cycle, we separate the valid
bit of each line from memory block and implement it in
customized memory block which supports clearing contents
globally. Thus, the increment of address depth will result in the

increment of the number of valid bit, which leads to more logic
resource in combinational ALUTs and registers. Regarding
the ways number, the contributing factors are the core-cache-
switch circuitry, FIFO replacement policy circuitry, and wide
logical OR, all of which grow with the increased ways number.
Regarding the maximum operating frequency F,,,,,, we notice
that 2-core cache is faster than 4-core cache and the cache
architecture with less associativity is faster than the one with
more associativity.
Listing 1. The Code for Functionality Verification

unsigned int b[Cache_Depth*Ways_ Num][ Line_Size];

unsigned int i,temp;

// Load data into cache

for (i=0;i<Cache_Depth*Ways_Num; i++){
temp=b[i][0];

//start to reuse cache
while (i >0){
temp=b[i][0];

i

}
C. Functionality Verification

5

We implemented a functional test to verify the correctness
of the reconfigurable cache prototype implementation. This
verification is based on memory reuse code, as shown in
Listing 1, which can mimic the behavior of L2 cache. This
functional test is conducted on the two-core system with 2MB
reconfigurable shared L2 cache (8 ways, 8192 cache depth,
256 bit line size). By calling cache reconfiguration listed in
Tab. I, we implement memory reuse code under different cache
ways. Fig. 9 shows cache miss numbers and execution times
under different cache ways. We can see that both cache miss
numbers and execution times predictably decrease linearly
with reconfigured cache ways. By increasing one way, cache
miss numbers decrease linearly with step 8192 (i.e., cache
depth). This is expected since 8192 more cache lines are
buffered for memory reuse when increasing one way.

D. Runtime Performance

Finally, we evaluate the effectiveness of the proposed
automatic cache management framework under timing pre-
dictability requirement. In this experiment, we implement the
cache management scheme and scheduling on two hardware
platforms: two-core system with 256KB shared unified L2
cache (8 ways with 32KB size for each way, 256 bit line size)
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and four-core system with 256KB shared unified L2 cache
(16 ways with 16KB size for each way, 256 bit line size). In
the two hardware platforms, each NIOS core runs at 125Mhz.
Tab. II and Tab. III list the task sets used in our experiments
and the task mapping information for the two-core system
and the four-core system, respectively. We compared the cache
miss numbers with the following technique:

e EQUAL: Equal partitioning cache on cores.

e CORE-OPT: According to the cache reservation tech-
nique in the state-of-the-art work [17], a portion of cache
partitions are statically reserved for each core to prevent
inter-core cache interference. For fairness comparison,
we integrate this cache reservation technique [17] into
our framework to generate optimal cache reservations for
each core.

e TASK-OPT: Our synthesis approach.

Fig. 10 shows the total cache miss number in one hyper-
period of the approaches normalized w.r.t EQUAL. All results
are collected by implementing the cache management scheme
and scheduling obtained from the corresponding approach on
the proposed multi-core system. From the result measured
by real hardware, we can see cache reservation technique
(CORE-OPT) fails to improve system performance of most
benchmark sets. This is because tasks assigned on the same
core might have different requirements and sensitivity to
the allocated cache amount, and a designed region with a
constant size to individual cores cannot fully meet the features
of the tasks. In contrast to the cache reservation technique
(CORE-OPT), our synthesis approach (TASK-OPT) partitions
the cache in task level and integrates cache partitioning
globally with scheduling. We can observe that our synthesis
approach (TASK-OPT) outperforms the cache reservation
technique (CORE-OPT). Our approach (TASK-OPT) can on
average reduce 14.93% (up to 22.03%) and 12.56% (up to
18.6%) cache miss with respect to CORE-OPT on 2-core and
4-core architectures, respectively.

IX. CONCLUSION

This paper presents a cache management framework for
real-time MPSoCs. The framework optimally integrates time-
triggered scheduling and cache partitioning such that the

shared cache can be used in a predictable and efficient manner.
In contrast to software-based cache partitioning techniques in
the literature, we conduct cache partitioning at hardware level
and prototyped an implementation on FPGA. Experimental
results in the FPGA using a diverse set of applications
demonstrate the effectiveness of the proposed framework.
For the next step, we are interested in integrating cache
coherency protocol in our cache architecture. Furthermore,
another interesting future work would be to extend the
proposed cache to support mixed-critical real-time system.
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