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Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihen-
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Abstract

Studying the behavior of single cells with time-lapse microscopy allows to detect hetero-

geneities that would be masked in conventional population-based experiments. Recently,

several studies have shown that morphology and motility can be used as a readout for a

cells present or future state in such experiments. However, to quantify and analyze the

information in the large amounts of images that are generated in a typical time-lapse ex-

periment, customized computational methods from image processing and machine learning

are required.

In this thesis, we developed processing pipelines that identify cells in the brightfield or

fluorescence channel of a time-lapse experiment and quantify their morphology. By link-

ing these measurements with the temporal information of automatic or manual tracking

approaches, we were able to describe the morphodynamics and motility of single cells

but also whole genealogies. In particular we contributed to two biological applications.

First, we analyzed the migration behavior of T-lymphocytes under changing environmen-

tal influences. Applying a variational Bayesian algorithm that fitted a Gaussian mixture

model to the derived cell speeds, we could identify groups of motile and non-motile cells.

Our model allowed to exactly determine the mean movement as well as the variance of

every group. Also, a regression model of the total morphology space was able to pre-

dict a cells future speed. Second, we assessed whether cell morphology and motility can

be used as a predictor of hematopoietic lineage choice. To this end, we quantified dif-

ferentiating hematopoietic stem and progenitor cells in long-term time-lapse microscopy.

Following, we developed an artificial neural network that correctly predicted the com-

mitment of a hematopoietic stem and progenitor cell to the megakaryocytic/erythroid or

mono-/granulocytic lineage up to three generations before conventional molecular markers

were detected.

If complemented with single cell sequencing techniques, our methods could be used to

identify novel molecular factors that are involved in hematopoietic differentiation. In

the future, our methods could be transferred to other lineage decisions and cell types,

which would allow the detailed analysis of cellular features over entire lifetimes and even

genealogies and thus, may contribute to the development of novel diagnostic tools for e.g.

leukemia or immune system deficiencies.
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Zeitraffermikroskopie ermöglicht die Untersuchung von Verhaltensmustern einzelner Zellen in ei-

ner Population, welche in konventionellen Populationsstudien nicht detektierbar wären. Eine Reihe

von Puplikationen zeigte kürzlich, dass Morphologie und Bewegung der Zellen in solchen Expe-

rimenten als Indikatoren für deren momentanen aber auch zukünftigen Status verwendet werden

können. Um die große Menge an Bildern aus der Zeitraffermikroskopie automatisch quantifizieren

und analysieren zu können, werden computergestützte Methoden der Bildprozessierung und des

maschinellen Lernens benötigt, die an die jeweilige Anwendung angepasst sind.

In der vorliegenden Arbeit haben wir Prozessierungspipelines entwickelt, die einzelne Zellen im

Durchlicht- oder Fluoreszenzkanal von Zeitrafferfilmen mit hoher Robustheit erkennen und deren

Morphologie quantifizieren. Die Verknüpfung dieser Messungen mit automatischen und manuel-

len Zellverfolgungsmethoden ermöglichte uns, die Morphodynamik und Bewegung von Einzelzellen

über mehrere Generationen zu beschreiben. So analysierten wir konkret das Migrationsverhal-

ten von T-Lymphozyten unter unterschiedlichen Umwelteinflüssen. Hier konnten wir durch einen

variationellen Bayesianischen Algorithmus ein Gausssches Mischmodell an die gemessenen Zell-

geschwindigkeiten anpassen, woraufhin wir Gruppen migrierender und nicht-migrierender Zellen

identifizieren konnten. Zusätzlich ermöglichte unser Modell die genaue Bestimmung der mittle-

ren Geschwindigkeit beider Gruppen, sowie deren Varianz. Wir konnten keine Korrelation der

Zellbewegung mit einer bestimmten Morphologie nachweisen, jedoch war ein von uns auf den

vollständigen Morphologieraum trainiertes Regressionsmodell in der Lage, die zukünftige Ge-

schwindigkeit einer Zelle vorherzusagen. Zum anderen untersuchten wir, ob Zellmorphologie und

-bewegung verwendet werden können, um hämatopoetische Linienentscheidungen während der

Blutbildung vorherzusagen. Hierfür quantifizierten wir differenzierende hämatopoetische Stamm-

und Vorläuferzellen in Langzeit-Zeitraffermikroskopie. Basierend auf diesem Datensatz entwickel-

ten wir ein künstliches neuronales Netz, welches bis zu drei Generationen vor der Nachweisbarkeit

von molekularen Markern vorhersagt, ob eine hematopoietische Stamm- oder Vorläuferzelle zur

megakaryozytischen/erythroiden oder mono-/granulozytischen Linie ausdifferenziert.

Die Verbindung unserer Methodik mit Techniken zur Einzelzellsequenzierung könnte verwendet

werden, um bisher unbekannte molekulare Faktoren zu identifizieren welche die hämatopoetische

Linienentscheidung beeinflussen. Unsere Methoden können in Zukunft verallgemeinert und für die

Analyse weiterer Linienentscheidungen oder Zelltypen angepasst werden, was die detaillierte Ana-

lyse zellulärer Eigenschaften über volle Lebenszyklen und sogar mehrere Generationen ermöglicht.

Hierdurch könnte zum Beispiel ein Beitrag zu der Entwicklung neuartiger Methoden in der Er-

forschung und Behandlung von Leukämie und anderen Erkrankungen des Immunsystems geleistet

werden.
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Chapter 1

Introduction

The study of biological cells is a century-old discipline that is crucial for a comprehensive

understanding of living organisms. It originated from the invention of the first light mi-

croscope by Zacharias Janssen in 1590. This instrument allowed to examine the structural

makeup of plants and animals and led to the foundation of cell biology as a discipline

in 1838 by Matthias Jacob Schleiden, who realized that plants consist of single cells. In

1839 Theodor Schwann found this theory to be also true for animals. Nowadays, the cell

is defined as the smallest living entity of an organism, where one differentiates between

unicellular and multicellular species. In the latter case, different cell types in an organism

are connected to functional units that serve a specialized purpose, the so-called tissue.

For example, the human body consists of several hundreds of different tissues and cells,

that form a complex network of interactions contributing to the body’s vital functions.

The identification of new cell types, their role in the organism and especially their in-

teraction with each other is crucial to better understand multifactorial diseases such as

cancer (Singh et al., 2004) and to develop specific clinical treatments (Chattopadhyay

et al., 2014). Yet, research in cell biology is a great challenge due to its high complexity

and nowadays requires the involvement of different disciplines of the life sciences. In the

following sections we will introduce these subfields and highlight some of the key findings

in recent years.



2 CHAPTER 1. INTRODUCTION

1.1 Biological processes at different levels of resolution

The function of a cell is in large parts determined by its molecular makeup (Alberts et al.,

2007). Every cell bears a full copy of DNA, a complex molecule that contains all the infor-

mation that is necessary to build an organism. Its structure was first described byWatson

and Crick (1953) and led to the formulation of the central dogma of biology (Crick, 1970).

It states that the information on the double-stranded DNA is transcribed into single-

stranded RNA, which in turn is translated to proteins. The latter are large biological

molecules that consist of one or more chains of amino acids. They perform a multitude of

different functions such as catalyzation of metabolic reactions, the replication and repair

of the DNA or the formation of canals and pumps that connect different compartments

of a cell. DNA, RNA and proteins build a huge and very complex network with a vast

array of regulatory pathways. The exhaustive study of all the interactions recently became

possible through the complete description of an organism’s DNA, the genome. The most

important contribution in this context was the full sequencing of the human genome in

2001 (Venter et al., 2001; Lander et al., 2001). It opened up the possibility to analyze the

DNA in its entirety, thereby deciphering for example which parts are coding for functional

proteins and how many types of different proteins exist (Bernstein et al., 2012). Yet, it

has also been found that there are several other intermediate layers of regulation that add

to the complexity of an organisms regulatory network, such as miRNAs (Ruvkun, 2001)

or alternative splicing (Chow et al., 1977). The challenge still is to assign all functions

and regulatory interactions to all the different molecular players, for which a wide variety

of methods have been developed.

To study the function of a gene or protein, one approach is to measure its abundance in

a specific system or process. A classical and still extensively used technique is western

blotting (Towbin et al., 1979; Burnette, 1981). A population of cells is lysed and the lysate

is separated by gel-electrophoresis. The proteins of interest are then detected by staining

them with antibodies, while the rough quantification of absolute abundance is also possible.

Yet, as typically ∼ 105 cells are required to conduct the method and a high amount of

manual labor is involved in the protocol, the applicaction of western blotting is limited to

small-scale analyses. A method to analyze the expression of thousands of proteins at the

same time is the Protein-microarray (Chattopadhyay et al., 2014). Here, antibodies that

are known to bind specific proteins are placed on a glas slide in a small-scaled grid. A

mixture of proteins is then extracted from a population of cells and put on the slide, which

are then bound by their specific antibody. After washing all unbound proteins from the

slide, another set of antibodies is added that are labeled by fluorescence dyes. Eventually,
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the expression of all proteins that have been bound by antibodies can be identified by

scanning the fluorescence over the grid coordinates. Typically, microarrays have been

used to measure gene expression from mRNA transcripts by reversely transcribing them

as cDNA and using primers on the glas slide instead of antibodies (Schena et al., 1995).

To apply the methods discussed above, a large number of cells is required for a single

experiment, and the measured protein expression only reflects an average over all cells

in the population. Recently however, there is increasing evidence that measuring the

population average leads to biased or even incorrect results, as most single cells behave

heterogeneously even if they belong to the same cell type (Anselmetti, 2009). In 2002,

the Swain lab showed that clonal single cells from E. coli bacteria exhibit a strongly

heterogeneous expression of a single gene, an effect that is explainable by stochastic noise

(Elowitz et al., 2002). In addition, Weinberger et al. (2005) found that protein translation

underlies a high level of variation between cells that also has effects on higher levels of

regulation. Thus, measuring the expression of genes and proteins in single cells allows

to derive population statistics and correctly account for heterogeneity. This approach

thereby provides a more precise description of the analyzed system.

Plenty of different techniques have been developed over the past decades to quantify molec-

ular processes on the single-cell level (Hoppe et al., 2014). A technique that finds broad

application is flow cytometry, where single cells are analyzed by the detection of fluores-

cently stained proteins (Dittrich and Göhde, 1969). The method operates by channeling

tens of thousands of cells through a very thin water stream separately and non-invasively.

The cells are passing a set of lasers, which can excite the fluorophores in the cell. De-

pending on the application, flow cytometry can be used to sort cells in different categories

(fluorescent activated cell sorting, FACS), or to analyze gene expression on the single-cell

level (Herzenberg and Sweet, 1976). For example, FACS was successfully used to analyze

stem cells with heterogeneous expression levels of the pluripotency factor Nanog (Cham-

bers et al., 2007). The study completely altered the view of the role of Nanog during

embryogenesis, an insight that would not have been possible by population studies.

Due to its dependence on the spectrum of visible light, the number of fluorescent dyes that

can be analyzed in parallel via state-of-the-art flow cytometers is restricted to 18 channels

(Perfetto et al., 2004). Also, as the cells of interest are labeled by antibodies, FACS

is restricted to cell types for which the necessary surface proteins have been described.

A more involved technique to measure transcriptional abundance is single-cell real time

quantitative polymerase chain reaction (RT-qPCR), where the mRNA of up to 96 selected

genes of a single cell is reversely transcribed into cDNA and then amplified until sequencing
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becomes possible (Bustin, 2000). The method is able to report absolute numbers of mRNA

transcripts, which is of great importance to derive bio-mathematical models. Yet the cell

is destroyed during the process, hindering a subsequent analysis of the same cell at a later

time point. Recent publications that involved single-cell RT-qPCR are e.g. Guo et al.

(2010), who analyzed the differential expression of 42 genes in cells of the three germ

layers during early development of the mouse blastocyst. More recently, Moignard et al.

(2015) deciphered parts of the transcriptional programs that are involved in organogenesis

by analyzing 40 genes in more than 3000 single cells with blood-forming potential.

Flow cytometry and single-cell RT-qPCR are applicable if the players that are involved

in the studied system are known a priori and the set of genes that is to be analyzed can

be narrowed down to a few candidates. In order to analyze the full transcriptome of a

single cell to identify unknown genes or non-coding RNAs, single-cell RNA sequencing

(scRNA-seq) can be used (Mortazavi et al., 2008). The method became feasible with the

advent of next generation sequencing, a group of techniques that improved throughput

and precision of DNA squencing, accompanied by a great reduction of costs (Wu et al.,

2014). The protocol involves the isolation of a single cell, for example by FACS. The RNA

is then extracted and reversely transcribed into cDNA. The cDNA is amplified via PCR

and a sequencing library is generated, which can then be sequenced by a next-generation

sequencing technique. RNA-seq of single cells has been used to describe the transcriptional

differences of coding and non-coding RNAs on a genome-wide scale (Shalek et al., 2013;

Saliba et al., 2014). In addition, it was found that splicing patterns (Shalek et al., 2013)

and allelic random expression (Deng et al., 2014) are widely variable between cells.

It is worth noting that most of the mentioned studies in this section would not have been

feasible without the support of computational methods during data postprocessing and

analysis. All high-throughput techniques generate huge datasets with high dimensionality

(with regard to the number of cells as well as the number of measured dimensions) that

have to be processed with appropriate methods to reveal the information of interest.

Beside the algorithms that reconstruct the genome from the short reads of next-generation

sequencing (Li and Homer, 2010), several algorithms and tools for data assessment have

been developed. This includes for example t-SNE that performs a nonlinear dimension

reduction, thus revealing structures and patterns in the data that were hidden before

(van der Maaten and Hinton, 2008). Along this line, Buettner et al. (2015) proposed

scLVM, a method that accounts for the heterogeneity in gene expression of single cells.

Another method called diffusion maps added the possibility to assign a pseudotemporal

ordering to samples in high-dimensional datasets (Haghverdi et al., 2015).
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1.2 Time-lapse microscopy allows to study spatio-temporal

dynamics of single cells

The aforementioned methods are useful to study the molecular makeup of single cells

at a single time point. However, many biological systems show spatial and temporal

variations that cannot be uncovered by analyzing snapshot data alone (see Figure 1.1). A

well established method to study the spatio-temporal dynamics of single cells in vitro is

time-lapse microscopy (Muzzey and van Oudenaarden, 2009). The technique is based on

Étienne-Jules Marey’s work in 1891, who analyzed a moving object by taking photographs

at evenly spaced temporal intervals (Landecker, 2006). In 1910, Jean Comandon used time-

lapse experiments to study the motility of syphilis bacteria under the “ultramicroscope”,

the only machine at that time that was able to visualize this type of bacteria (Landecker,

2005). The observation of cells from more complex eukaryotic organisms was made possible

by the invention of cell culturing techniques by Ross Granville Harrison in 1910. Around

the same time, August Koehler and Henry Siedentopf found a way to visualize distinct

parts of single cells like the nucleus or cytoplasm by staining them with fluorochromes. The

staining of subcellular structures in living cells such as specific proteins became possible

by the discovery of the green fluorescent protein, which was first described by Osamu

Shomura in 1962 and made usable in molecular biology by Martin Chalfie and Roger Tsien

around 1994 (Chalfie et al., 2007). Nowadays, a multitude of fluorescent dyes that span

the full spectrum of visible light allow the staining of several genes of interest at the same

time (Lichtman and Conchello, 2005). Powerful time-lapse microscopes are commercially

available that continuously image hundreds of thousands of single cells and allow to study

a broad range of biological processes. This includes cell-cycle dependent drug response

(Tung et al., 2011) or the change of morphology after whole-genome knockout experiments

(Neumann et al., 2006). In the last decade, the invention of high-throughput long-term

time-lapse microscopy made it possible to follow single cells over periods of more than two

weeks, a time span that is necessary to observe for example the differentiation of stem

cells into mature cells (Schroeder, 2008).

A typical time-lapse microscope comprises several modules (Khodjakov and Rieder, 2006).

The cells are illuminated by a system consisting of a light source (i.e. a mercury lamp or

LEDs) together with a set of spectral filters that allow to excite fluorophores of different

colors. The light passes through the growth chamber, i.e. a plastic or glass slide with

several wells or channels, that are filled with culturing medium in which the cells are

resolved. The light beam then passes through the objective which is magnifying the image

to make the cells visible (typical magnifications are 10x, 20x or 63x). Due to the limited
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Figure 1.1: Only the analysis of time-resolved expression profiles can reveal temporal
dependencies in a biological system. (a) Western blotting only allows to measure mean
expression levels of a cell population and involves high amounts of manual labor. (b) If
the same protein is quantified at the single-cell level e.g. by flow cytometry or single-cell
RT-qPCR, an intricate pattern can be revealed by correlations between two cell types.
Yet, the temporal dynamics remain unknown. (b) By continuous single-cell analysis such
as time-lapse microscopy the protein expression dynamics can be observed to e.g. figure
out whether a bimodal distribution in expression arises from two stable subpopulations
of cells or whether all cells start at an intermediate expression level and then increase or
decrease expression. Image adapted from Hoppe et al. (2014)

field of view of most microscopes, a single well cannot be covered by a single image. Thus,

the growth chamber is moved beneath the objective by a motorized plate to image a grid

of overlapping tiles consecutively. Eventually, the image is recorded by a digital camera

and stored on the computer. See Figure 1.3 for a general overview.

Depending on the application and experimental setup, modern light microscopes generally

produce brightfield and fluorescence images. While the acquisition of brightfield images

is less detrimental to cell health, they provide a limited flexibility as only the full cell

body can be imaged. In addition, this type of images suffers from a low signal to noise

ratio and a bad contrast, which renders an automated analysis very difficult. Fluorescence

images on the other hand allow the user to observe only the parts of the cell that are of

interest by staining them with specific fluorophores, e.g. the nucleus or a certain protein

(see Figure 1.2). They feature a much higher signal to noise ratio and higher contrast than

brightfield images, which is of great help for the analysis of detailed cell structures. Also,

the application of automated computational quantification pipelines is less challenging on
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Figure 1.2: Staining of cells with fluorophores, shown for a T-lymphocyte in 20x resolution.
(a) Brightfield image of the cell without any staining. (b) Staining of the actin network
with LiefAct-GFP. (c) Staining of the nucleus with Hoechst405. (d) Merged image showing
all color channels together. Scale bars correspond to 10 µm.

this type of images (see Section 1.4 for a detailed discussion).

There is no single optimal setup for time-lapse microscopy that performs best for every

application at hand (Schroeder, 2011). Tuning the multitude of parameter settings that

are involved in time-lapse imaging requires a thorough understanding of optics, physics

as well as molecular and cell biology, and is always a trade-off between cell health and

image quality. For example, a single well of a growth chamber with a coated surface

and high volumes of medium might be beneficial for cell health. Yet, the coating and

the high medium level can hinder a proper illumination of the sample, thus leading to

noisy images that are not suitable for later analysis. Another decision has to be made for

light exposure times during image acquisition. While high exposures may lead to clear

fluorescence signals that are easily analyzable, the repeated illumination in a time-lapse

experiment might lead to increased cell death due to phototoxicity. Also, an objective that

provides higher magnification might be helpful to discover specific details, but the limited

field of view of the camera then requires to capture several images as a tiled grid in order

to cover the full specimen (or well). Last but not least, every part of the microscope has

to be of high quality to minimize the probability of one module failing during experiment

conduction.

Despite these challenges, time-lapse microscopy is used extensively to gain novel insights

into biological processes that were previously only studied in snapshot data. For example,

the noise in the timing of meiotic stages in budding yeast was quantified (Nachman et al.,

2007). Furthermore, the Elowitz lab conducted time-lapse experiments with sub-cellular

resolution and monitored the activation status of the calcium-response reporter Crz1 by

localizing the expression of the tagged GFP molecule (Cai et al., 2008). There is also

increased effort to study the dynamics of molecules inside single cells. For example the
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Figure 1.3: Time-lapse microscopy
protocol. (a) A population of cells is
extracted from the host or a cell line.
(b,c) Cells of interest (e.g. blood
stem cells or immune cells) are pu-
rified by fluorescence activated cell
sorting (FACS) and cultivated on a
plastic slide. (d) Cells are imaged
in short intervals (60-120 seconds
are typical) for 1 hour to 8 days.
Depending on the application and
magnification, the area to be ob-
served can be covered by a single im-
age (single tile of the depicted rect-
angle), or a grid of several images
(all tiles of the depicted rectangle).
(e) After the experiment is stopped,
single cells or whole genealogies can
be followed over time by automated
or manual tracking (see Sections 1.4,
2.5.6 and 2.5.2).

Dinger lab developed methods to analyse mRNA localization in neurons (Buxbaum et al.,

2015) or the nuclear accessibility of ß-actin via real-time tracking (Smith et al., 2015a). In

the blood context, high-throughput long-term microscopy was used to show the existence

of the hemogenic endothelium (Eilken et al., 2009) and to proof the instructive potential

of cytokines on hematopoietic lineage choice (Rieger et al., 2009) in murine cells.

The insights that were gained by studying the dynamics of single cells on the molecular

level also renewed the question to which extent a cell’s morphometry is contributing to

its function. In the last years several groups have extended their efforts to elucidate

the contribution of a cell’s shape to its molecular state, also with the help of time-lapse

microscopy.
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1.3 Cell morphology and motility as a readout of molecular

states

The alteration of a cell’s shape is a complex process that is regulated by a network of

intracellular mechanisms, but also extracellular stimuli (Paluch and Heisenberg, 2009). It

was already used as a readout by Rámon y Cajal (1960) to define the function of different

cell and tissue types in classical light microscopy studies. The ability of cells to adopt

specific shapes is important in a wide range of biological processes. For example, during

embryogenesis the cells have to align in different conformations to form various tissues (Yin

et al., 2014). Immune cells such as lymphocytes need to elongate their cell body in order to

migrate from blood vessels to inflammatory sites (Girard et al., 2012). With the advent of

fluorescence microscopy and appropriate markers it became possible to visualize distinct

compartments of the cell like the nucleus, the cytoskeleton, or membranes. More recently,

processes like spindle formation during mitosis (Held et al., 2010) or the concentration of

actin, a protein that is a crucial part of cytoskeleton formation, can be visualized (Riedl

et al., 2008). Also, the analysis of cell morphology finds application in cancer diagnostics,

as mutated cells often have unnatural shapes and are thus identifiable in histology images

(Diamond et al., 1982).

At a first glance, a researcher that visually assesses the morphological phenotypes a cell can

adopt under the microscope would describe hundreds of different conformations. However,

several studies have shown that the variability can be reduced to a small number of clearly

defined classes (Yin et al., 2014). For example the Bakal lab analyzed cell lines from D.

melanogaster as well as humans and found that generally two to seven classes of distinct

cell shapes exist (see Fig. 1.4). Also, Keren et al. (2008) showed that migrating fish

keratocytes adopt a small number of different shapes. These findings support the theory

that through evolution some genes like actin and tubulin were involved in the emergence

of a defined number of advantageous shapes that was most likely driven by biophysical

constraints (Yin et al., 2014). In addition, it was found in RNA interference experiments

that certain cell populations showed an increase of shape classes that were less abundant

in wild type cells.

Many cell types alter their shape dynamically and with regard to their actual program. For

example, proliferating hematopoietic progenitor cells stop their locomotion and become

perfectly round during mitosis, while they show an elongated drop-like shape and high

motility otherwise. Also, fish keratocytes switch their shapes during different migration

programs (Keren et al., 2008). In 2010, the Ellenberg lab conducted a genome-scale
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Figure 1.4: Morphological complexity in different cell lines. a) Shapes adopted by wild-
type D. melanogaster hemocytes. Five shape classes (round, elongated, spread, teardrop,
ruffled) could be identified. Scale bars represent 20 µm. b) D. melanogaster BG-2 neuronal
cells showed six distinguishable shape classes as described in Sailem et al. (2014). Scale
bar represents 20 µm. c) WM266.4 melanoma cells adopt only two shape classes, round
and elongated. Scale bar represents 50 µm. d) Different cell types can adopt similar
shapes. Although the shape space explored by different cell types is diverse, some shapes,
such as the rounded or large/flattened shape, are routinely observed. These findings led
to the hypothesis that certain cell shapes are, similarly to genes or proteins, conserved
throughout evolution. Figure taken with permission from Yin et al. (2014).

high-throughput RNAi screening study of living human cells using time-lapse imaging

that allowed the authors to assign novel functions to many genes, such as cell division,

migration and survival, by classifying their shape (Neumann et al., 2006, 2010). Recently,

Sero et al. (2015) demonstrated in breast epithelial and tumor cells that a cell’s shape can

also determine its molecular state. The authors found that among other environmental

and morphological factors, cell-cell contact, cell area and protrusiveness had an impact

on the localization of NF-κB inside the cell. They hypothesized that mechanical and

environmental factors can influence molecular signaling pathways and that this finding

could partially explain the heterogenous reactions of cells under same chemical conditions.
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The discussed findings show that the study of cell morphology in the context of a cell’s

molecular state becomes more and more important for a full understanding of behavior.

Yet, the multitude of shapes that cells can exhibit in time-lapse experiments requires the

development of measures that allow to derive meaningful statistics to study the shape

space. Most of the discussed examples in this section - morphological analyses as well

as molecular studies - have made extensive use of computerized analysis pipelines and

quantifications to analyze the huge amounts of data, which we will discuss in the next

section.

1.4 Bioimage informatic processing and

computational modeling

One bottleneck in the analysis of high-throughput microscopy data is the availability of

suitable automatic processing tools. Only with the aid of computational processing it

becomes possible to make the huge amount of information that is hidden in the data ac-

cessible (Schroeder, 2008). Consider an experimental setup that features a growth chamber

that is divided into 80 tiles, where every tile is imaged in intervals of 60 seconds in a sin-

gle color channel over 10 days. The resulting dataset would consist of over one million

images that occupy over one terabyte of hard drive space (assumed a single image saved

in tiff-format is around 1 megabyte). Depending of the observed cell type and the amount

of cells that were plated out at the beginning of the experiment, the number of single-

cell measurements can easily exceed 300 million datapoints (Buggenthin et al., 2013). A

trained expert would spend already one working day to postprocess and analyze only a

single time point of the experiment, e.g. correcting image illumination, subtracting the

background, identifying single cells and quantifying the cellwise fluorescence intensity or

shape information (assumed this quantification procedure of a single image takes 6 min-

utes and the scientist is working 8 hours a day). Also, the manual assessment will most

likely introduce a bias into the results (Held et al., 2010). In addition, the high level of

customization of experimental setups leads to a great variability of images, even in similar

experiments. All these challenges render a proper manual analysis of the acquired data

extremely difficult or - in some cases - impossible. Computerized quantification pipelines

on the other hand generate reproducible results and can run 24/7 (Swedlow et al., 2009).

The same task can be executed in parallel on several machines, which reduces the amount

of time that is needed to analyze a full high-throughput experiment.

To automatically process, quantify and analyze the huge amounts of biological imaging
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Figure 1.5: Overview of
the tasks that are part
of bioimage informatics.
The discipline covers the
development of automated
methods from the acquisi-
tion of a high-throughput
time-lapse experiment,
starting from adequate
data storage to the full
processing, quantification
and eventual analysis of
all images. Figure adapted
from Shariff et al. (2010)

data that are constantly generated, not only for time-lapse microscopy but for all high-

throughput imaging data in biology, the discipline of bioimage informatics has recently

emerged (Peng, 2008). Residing at the intersection of medical informatics and bioinformat-

ics, it strives to provide methods to derive meaningful information from unstructured im-
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age data, but also to conduct statistical analyses that may lead to new biological insights.

Contrary to its parent disciplines, bioimage informatics has to cope with the challenges

that the high customization in bioimaging brings up. While in classical bioinformatics

most methods generate readouts that are structured and stored in a few standardized

data formats (e.g. FASTA for DNA sequences or PDB for protein structures), a multi-

tude of different imaging methods exist that are tailored to their own proprietary datasets

(Swedlow et al., 2009). In addition, changing one module in a microscope installation can

lead to completely different readouts, which renders the development of versatile methods

extremely challenging. As a consequence, most algorithms and frameworks in bioimage

informatics are to date heavily adapted to their particular application (Murphy, 2014).

A typical analysis pipeline in bioimage informatics consists of several steps (see Figure

1.5. For details about the discussed algorithms and concepts, see Chapter 2). First, all

images of an experiment have to be normalized to a level that allows processing of the full

dataset without continuous parameter adjustments. This can involve illumination correc-

tion methods or noise reduction. Next, the regions of interest like single cells or colonies

have to be identified in the image. This is carried out by e.g. segmentation algorithms

that group every pixel in the image into foreground and background. The identified re-

gions may then be quantified by different measures that describe shape or texture. If

the temporal dynamics have to be be quantified, an automated or semi-automated track-

ing algorithm can be applied to connect single cells or colonies in adjacent frames of a

time-lapse experiment. On the extracted features, basic statistics such as histogram or

correlation analyses can be derived. Often more sophisticated machine-learning algorithms

are applied to leverage the high-dimensional data, or the data is used to define theoretical

models.

Over the last decade, several frameworks and programs for bioimage informatic analy-

ses have been developed that try to tackle non-standardized experimental setups and the

problems that arise thereof. Fiji and Icy are powerful java-based image viewers that allow

to interactively filter and normalize images from biological experiments (Schindelin et al.,

2012; de Chaumont et al., 2012). Especially in Fiji plenty of state-of-the-art methods are

available as plugins, also it features a fully featured scripting language. Yet, its depen-

dence on a graphical user interface makes it of limited use to process large amounts of

time-lapse data. Examples for applications of Fiji are the reconstruction of huge three-

dimensional image stacks (often larger than one terabyte) from light sheet microscopy

(Preibisch et al., 2014), or the identification of neuronal lineages in D. melanogaster by

axon tracing (Cardona et al., 2010).
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CellProfiler was built for the easy assembly of parallelizable processing pipelines that

can also derive statistical analyses (Carpenter et al., 2006). However, more advanced or

very recent algorithms are not covered by the available modules and it provides limited

functionality to implement self-written code for the analysis. A success story of CellProfiler

is for example the identification of therapeutic targets within human macrophages to stop

Ebola virus infections (Sakurai et al., 2015). Also, CellProfiler was used to create a fully

automatic quantification toolbox to classify the morphological phenotypes of C.elegans

worms in brightfield time-lapse microscopy (Wählby et al., 2012).

On the commercial side, Bitplane Imaris is a fully featured software suite that has a semi-

automated tracking module and interfaces to include self-written scripts in an analysis

pipeline, but is lacking full parallelization and server-based batch processing capabilities.

It was for example used in a study to determine a functional hematopoietic stem cell niche

via real-time imaging (Xie et al., 2009). A full high-content screening platform named

Operetta is available from PerkinElmer. It allows to observe large amounts of cells over

time, yet the analysis is limited to the capabilities of the machine, which is for example not

able to conduct high-throughput long-term time-lapse imaging. Operetta was for example

used to conduct a high-throughput screening study of drugs to decrease the growth of

breast cancer tumors in a 3-dimensional environment (Lovitt et al., 2015).

In summary, to analyze modern bioimaging experiments, the involvement of bioimage in-

formatic analyses is nearly always necessary (Myers, 2012). The unbiased quantification

of features for the objects of interest allows to conduct robust statistics and greatly in-

creases reproducibility by reducing the amount of time that is needed for a full analysis

to a reasonable amount. Several platforms exist that allow to conduct high-throughput

experiments, yet every method has their strengths and weakenesses and is thus not always

applicable. The importance of bioimage informatics is also reflected by the amounts of

papers that were published with this term. In the year 2008, a search with google scholar

returned 203 hits, while this number doubled to 467 for a search for publications in the year

2014. However this number does not reflect the numerous specialized analysis pipelines

and programs that are published in the supplement of papers describing the biological

findings.

Despite the direct biological conclusions that can be drawn from the data that is derived

by bioimage informatics, the typically highly quantitative datasets are also used in image-

based systems biology and computational modeling. The discipline of systems biology

tries to understand an organism in its entirety (Berger et al., 2013). The goal is to gen-

erate an integrated view of all regulatory processes over all levels of abstraction, from the
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interactions of all genes over proteins to organelles and eventually to organismic behavior

and biomechanics (Wolkenhauer and Klingmueller, 2004). High-throughput imaging is a

way to include the complexity layer of single cells into systems biology. For example, in

RNA-mediated interference (RNAi) experiments, libraries of knock-out cell-lines can be

generated to conduct genome-wide screens that identify all possible regulators of a gen-

eral biological process (Sharma and Rao, 2009). The resulting datasets often comprise

microscopic images of several hundred wells with different knockout lines that need to

be automatically analyzed via bioimage informatics. For example, Knapp et al. (2011)

proposed a method to include the population context of a single cell into the analysis of

RNAi-screens by identifying the spatial position of every cell in an image and calculating

cell densities. The authors thereby improved the performance in measuring virus infection

effectivity.

Another way to make use of the wealth of image-based data is to build in silico mathemat-

ical models and simulations that help to better understand the spatiotemporal dynamics

and interactions of single cells (Sbalzarini, 2013). A model can be derived in two different

directions. The “bottom-up” approach reproduces cell behavior (like shape changes or

movement) from an underlying molecular regulatory network by measuring e.g. protein

abundance. This approach was used by Zinzen et al. (2006), who measured the gene ex-

pression of transcription factors involved in the development of D. melanogaster embryos

and defined a model that allowed to analyze the key rate-limiting factor that is involved

in localized patterns of gene expression that can be observed in fluorescence microscopy.

In contrast, the “top-down” approach seeks to infer a regulatory process by observing cell

behavior. For example, Keren et al. (2008) derived a model of the actin network from the

shape and speed of fish keratocytes. Once a model is defined and evaluated, it can be used

to e.g. test new hypotheses (Chickarmane et al., 2010) or identify previously unknown

interactions in regulatory networks (Nakae et al., 2014).

1.5 Biological applications

While the image-based analysis of single cells over time is useful in many biological dis-

ciplines (Muzzey and van Oudenaarden, 2009), in this work we focused on two specific

applications in the blood context where time-lapse microscopy experiments have a long

tradition and led to numerous impactful findings. On the one hand, fluorescence time-

lapse microscopy is extensively used to study the migration behavior of T-lymphocytes,

a subclass of immune cells (Lämmermann and Germain, 2014). On the other hand, long-

term high-throughput time-lapse microscopy is well suited to observe the differentiation of
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hematopoietic stem cells to mature blood cells (Schroeder, 2008; Hoppe et al., 2014). In

the following paragraphs, we will discuss the biological background of both applications

in more detail.

1.5.1 The role of T-lymphocytes in the immune system

T-lymphocytes are a subgroup of white blood cells, where they build the adaptive immune

response together with B-lymphocytes (Alberts et al., 2002). The “T” in the name is an

abbreviation for thymus, their place of maturation, while B-lymphocytes are maturating

in the bone marrow. Lymphocytes comprise 20% to 40% of the white blood cells in hu-

mans and are playing a fundamental role in the immune system, where their abundance

can vary in dependence of an inflammation of the host. Their function is the detection of

cell-bound antigens, i.e. foreign substances or microorganisms that could be detrimental

for the host. T-lymphocytes bear receptors on their surface that can bind antigens. A

large number of T-lymphocyte subpopulations exist, which are characterized by different

receptor combinations that are specialized to specific antigens. An exhaustive character-

ization of the function, behavior and molecular makeup of T-lymphocytes is thus crucial

for the treatment of inflammatory and autoimmune diseases (Nourshargh et al., 2010).

T-lymphocyte migration

Throughout their lifetime, T-lymphocytes are scanning the host for cell-bound antigens.

They perform this task by constantly migrating from the blood stream to the surrounding

tissue, where they stay for a short time and then re-enter the blood through lymphatic

vessels (Girard et al., 2012). The varying environments from the suspension-like blood to

porous confined tissues that the T-lymphocytes are passing throughout this process require

them to switch between different motility strategies, a behavior that is known as “amoeboid

migration” (Renkawitz and Sixt, 2010). One hallmark of this behavior is speed. In contrast

to e.g. mesenchymal cells that typically migrate with a speed of 0.5 µm/min, lymphocytes

can reach velocities up to 20 µm/min (Friedl et al., 2012). Another characteristic for

amoeboid migration is that the cells can move autonomously from their environment.

Similarly to metastatic tumor cells, lymphocytes are anchorage-independent, meaning

that they can survive without being attached to other cells (Renkawitz and Sixt, 2010).

T-Lymphocytes can adopt several migration strategies in response to different environ-

mental signals. A typical observation is a morphological change from a circular to a

more complex and often polarized and elongated shape (see Figure 1.6). Among others,
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Figure 1.6: Overview of T-lymphocyte migration strategies. T-lymphocytes react to dif-
ferent stimuli with complex intracellular signaling cascades to induce changes in shape
or migration. In a homogeneous field of soluble ligands, leukocytes can (a) increase the
cytoskeletal activity, leading to morphological shape changes without cell motility or (b)
induce self-polarization as prerequisite for non-directed cell migration (chemokinesis). (c)
Soluble gradients of external ligands can polarize cells along the gradient and stimu-
late directed migration (chemotaxis). (d) Upon perceiving homogeneous surface-bound
chemokines, lymphocytes can increase cell adhesion, self-polarize, and confine their mi-
gration in a non-directed manner along the surface (haptokinesis). Lymphocytes can
migrate by two forms of haptotaxis: (e) along a gradient of extracellular matrix and cel-
lular adhesion sites and (f) along a gradient of substrate-bound chemoattractants. Figure
taken with permission from Lämmermann and Germain (2014).

these environmental signals consist of cytokines or chemokines, but also growth factors

and unconventional stimuli like hydrogen peroxide or electrical fields. A motility program

called chemokinesis can be observed if the cell is residing in a homogeneous field of soluble

chemokines. There, the cell polarizes in a front-back axis with a broader leading edge and

a contractile trailing edge, that is also called uropod (see Figure 1.6b). If the cell is mi-

grating along an external soluble gradient of a chemoattractant in a directed fashion, this

is called chemotaxis (see Figure 1.6c). A different set of motility strategies is needed when

lymphocytes perceive chemoattractants that are bound to cell surfaces. In this scenario,

the cells migrate along the cell membrane in an undirected or directed manner, which is

called haptokinesis (see Figure 1.6d) and haptotaxis (see Figure 1.6e,f), respectively.
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The role of actin in T-lymphocyte migration

Actin is a structural protein that is part of the cytoskeleton and represents one of the

most abundant proteins in eukaryotic cells. Actin proteins are the building blocks of actin

filaments, a structure that functions as a scaffold in the cell soma, thereby defining its

shape. The cell can change the structure of the actin network rapidly, which results in

morphological changes and directed migration, but also intracellular reorganisation (Al-

berts et al., 2007). Actin has a key role in the execution and switching between different

motility programs by contributing to the formation of protrusive cell structures, pseu-

dopods, and leading edges at the cell front (Lämmermann and Germain, 2014). During

migration, a cell first builds a protrusion at the intended direction, mediated by actin

branches that are built on existing actin filaments (Pollard and Cooper, 2009). Regulated

by a network of molecular factors, migration is then achieved by simultaneous assembly

and disassembly of actin at the leading and rear edge, respectively (Ridley et al., 2003).

The importance of actin is also stressed by its involvement in many diseases. Mutations

that affect the proper production of actin proteins can lead to muscular diseases (Olson,

1998) or deafness (Procaccio et al., 2006). Thus, understanding the regulatory network

that controls actin production and degradation, but also the effect of changes in the actin

filament network is crucial to understand the migration behavior of T-lymphocytes.

Confinement setups to study lymphocyte migration in vitro

Due to their rapid migration and constant transition from the blood stream to tissue, fol-

lowing T-lymphocytes in vivo is challenging. Despite increasing efforts to establish imaging

techniques that allow to observe inflammatory responses in a living organism (Germain

et al., 2012), most insights into T-lymphocyte behavior have been achieved through in vitro

experiments (Lämmermann and Germain, 2014). A technique that is widely used to mimic

T-lymphocyte behavior in 3-dimensional environments is to confine the cells between two

planar surfaces at a distance that is smaller than the typical diameter of a single cell and

conduct time-lapse microscopy (Malawista and de Boisfleury Chevance, 1997). The setups

can be varied in the height of the confinement by custom-made micropillars (2-8 µm are

typical) and the migration behavior as well as morphological differences can be observed.

Studies with T-lymphocytes in such microchannels of various sizes demonstrated the ex-

istence of a confinement optimum for migration. T-lymphocytes migrated the fastest at

confinement heights of 7–9 µm, while their speed was significantly decreased in a smaller

confinement of 4–5 µm or larger confinement of 12–20 µm (Jacobelli et al., 2010). Also
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the cell speed was found to be independent of the specific channel coating like integrin

ligands, fibronectin or ICAM-1.

Bioimage informatic analysis and computational modeling

To fully understand the different modes of T-lymphocyte migration, the molecular factors

that are involved in this process and the environmental dependence, a detailed quantitative

analysis of their migration behavior on the cellular and molecular level is necessary. For

example, it has been shown in fish keratocytes that a cell’s speed can be predicted by its

shape and the underlying actin dynamics (Keren et al., 2008). After manually extracting

single cell bodies from every frame of a time-lapse experiment the authors quantified the

shape and the distribution of actin at the leading edge and built a mathematical model

based on these measurements. Similar to this study by Keren et al. (2008), most of our

recent understanding of T-lymphocyte migration has been derived from in vitro time-lapse

microscopy experiments. Yet as typically hundreds of cells have to be analyzed in differ-

ent environmental conditions (e.g. confinement depths or channel coatings), the manual

analysis of these datasets is tedious and does not allow a full quantification of the shape

and motility space. Generic software packages for automatic tracking and quantification

exist, but are either not well suited for manual postprocessing, lack proper strategies to

identify cell shapes or do not scale sufficiently to process large amounts of data (see Section

1.4). Thus, to fully quantify the migration behavior and contribution of molecular players

such as actin in thousands of cells in time-lapse microscopy experiments, novel processing

and analysis strategies have to be developed that can provide continuous measurements

without human interaction.

1.5.2 Hematopoietic lineage choice

The hierarchical differentiation system of hematopoiesis

Studying the phenotypical behavior and molecular mechanisms of T-lymphocytes might

provide information for the treatment of inflammatory diseases. However, if the whole

immune system is malfunctioning, which is the case in leukemia, other cell types and

molecular methods have to be scrutinized. Leukemia is caused by errors in the blood

building system, the hematopoiesis (Orkin and Zon, 2008). The most common forms

of the disease (i.e. chronic lymphoid leukemia and acute lymphoid leukemia) typically

leads to a huge increase of non-functioning white blood cells, with T-lymphocytes being
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Figure 1.7: Current hierarchical differentiation model of the murine hematopoietic sys-
tem. The hematopoietic stem cell (HSC) resides at the top of a hierarchy, is able to
self-renew but also to give rise to all hematopoietic lineages (i.e. differentiation). HSCs
first differentiate into multipotent progenitors (MPPs), i.e. cells that have lost the ability
to self-renew but retain multipotency. MPPs are capable of giving rise to common myeloid
progenitors (CMPs) and common lymphoid progenitors (CLPs), although recent evidence
suggests that MPPs are also able to directly differentiate into megakaryocyte/erythrocyte
progenitors (MEPs, dashed gray line) Seita and Weissman (2010). CMPs differentiate
into megakarycyte/erythroid progenitors (MEPs) and granulocyte/macrophage progeni-
tors (GMPs). The MEP then differentiates into unipotent progenitors, namely megakary-
ocytes (MkPs) and erythrocytes (EPs). GMPS differentiate into unipotent granulocyte
progenitors (GPs) and macrophage progenitors (MacP). CLPs directly differentiate into
unipotent progenitors of mature leukocytes, i.e. dendritic cells (DCs), natural killer cells
(NK), B-lymphocytes or T-lymphocytes. Image adapted from (Seita and Weissman, 2010)
and Hermann (2009). Dotted gray box: T-lymphocytes play an important role in the in-
nert immune answer. We contributed to better understand the behavior of this cell type
in Chapter 3. Dashed gray box: Myeloid lineage choice: A HSC can differentiate into
either an MEP or GMP. We contributed to this question in Chapters 4 and 5.

a subpopulation thereof. To date, many molecular causes (e.g. gene mutations that are

involved in the process) of different leukemias are not known in detail (Hutter, 2010).

Healthy hematopoiesis is structured hierarchically, with the hematopoietic stem cell (HSC)
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residing at the top of this hierarchy (Orkin and Zon, 2008). Similar to other stem cells,

the HSC is characterized by two exclusive key attributes. On the one hand, a HSC is

multipotent, i.e. it is able to give rise to all mature blood cell types throughout several

rounds of cell divisions and intermediate cell types, a process called differentiation. On the

other hand, HSCs can maintain their population indefinitely by dividing into two daughter

cells that posses identical properties, which is called self-renewal. These attributes were

first identified by Becker et al. (1963), who studied the effect of freshly implanted bone

marrow cells in irradiated mice and later specified for the hematopoietic system by Wu

et al. (1968). The hematopoietic system is one of the most extensively studied stem

cell systems and the hierarchical differentiation model, i.e. the graph-structured pathways

of lineage decisions a HSC can take until differentiating into a mature blood cells, has

undergone several revisions over the last decades (Eaves, 2015). While the hierarchical

nature of hematopoiesis persisted in most models, the initial concept only accounted for a

myeloid and lymphoid lineage that directly emerged from a HSC. Out of these progenitors,

the mature cell types were thought to maturate over several cell division rounds. The

identification of several subtypes of progenitor cells were lead the current model of the

murine hematopoietic system as shown in Figure 1.7.

Current evidence suggests that differentiation of a HSC to mature blood cells arises

through a series of cell divisions, where one or both daughters represent a more specialized

subtype from the previous one (Seita and Weissman, 2010). First, the progenitors of a HSC

lose their ability to self-renew but retain multipotency (multipotent progenitors, MPPs).

MPPs differentiate into progenitors either of the myeloid lineage (common myeloid pro-

genitor, CMP) or the lymphoid lineage (common lymphoid progenitor, CLP). CMPs give

rise to progenitors of either the MegE lineage (megakaryocyte/erytrocyte progenitor) or

the GM lineage (granulocyte/macrophage progenitor, GMP). CLPs differentiate into all

lymphocytes, i.e. dentritic cells (DCs), B-lymphocytes, T-lymphocytes, natural killer cells

(NK-cells) and all their unipotent progenitors. MEPs are evenutally differentiating into

erythrocytes (red blood cells) or megakaryocytes, whereas progeny of GMPs differentiate

into the three types of granulocytes as well as macrophages. The process of differentiation

in the adult organism primarily takes place in the bone marrow of pelvis, cranium, ver-

tebrae, and sternum, where stem cells are residing in a microenvironment (the so-called

niche), that maintains the amount of stem cells and triggers lineage commitment (Orkin

and Zon, 2008). Recent studies suggest that HSCs leave their niche and dissolve in the

blood stream only if already committed to a lineage. Their abundance is very low, only

one in 200, 000 cells that are found is an uncommitted HSC (NIH, 2006).

A hematopoietic stem or progenitor cell (HSPC) is identified by analyzing whether the cell
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expresses combinations of surface proteins, typically by FACS (see Section 1.1 and Seita

and Weissman (2010)). For example, HSCs can be identified by the marker combination

Lin− cKit+ Sca1+ Flk2− CD34− Slamf1+ (a “+” denotes marker expression, a “-”

denotes the contrary), while a MEP can be identified by Lin− cKit+ Sca1+ CD34−

FcgR− and a GMP is determined by Lin− cKit+ Sca1+ CD34+ FcgR+ Seita and

Weissman (2010). Thus the FcgR receptor (also called FC gamma, FCγ or CD16/32) can

be used to decide if a HSC has differentiated into either the MegE or the GM lineage.

Myeloid lineage choice

Despite the progress in refining the hematopoietic hierarchy and the function of mature

blood cells, the molecular mechanisms driving the hematopoietic lineage choice are widely

unknown (Hoppe et al., 2016). Hematopoietic differentiation is a highly regulated process

where a variety of factors, such as cell to cell signaling or environmental changes, as well

as gene regulation through transcription factors are involved Hoppe et al. (2014). For

example, it was found that signaling glycoproteins (i.e. cytokines) that are involved in cell

growth and differentiation are also playing a role in the regulation of hematopoiesis (Zhu

and Emerson, 2002; Rieger et al., 2009; Hoppe, 2008). In addition, certain transcription

factors are key intrinsic regulators of fate decisions (Göttgens, 2015).

Two factors that are believed to be involved in the myeloid lineage choice (i.e. commitment

of a HSC to either MegE or GM lineage) are PU.1 and GATA1 (see Figure 1.8 and (Hoppe

et al., 2016)). Previous studies suggested that these proteins have a cross-antagonistic rela-

tionship, resulting in an increase of GATA1 and simultaneous decrease of PU.1 expression

in cells of the MegE lineage, whereas the opposite can be observed in GM-committed cells

(Back et al., 2005; Nutt et al., 2005). Also, several mathematical models were created that

tried to explain the hematopoietic lineage choice (Roeder and Glauche, 2006; Huang et al.,

2007; Chickarmane et al., 2009). A recent model proposed by Strasser et al. (2012) used

a probabilistic toggle-switch model to study the lineage choice of HSPCs and found that

high protein numbers or long-term modifications (e.g. chromatin remodeling) are needed

to maintain a stable commitment. Yet, all these findings were made on snapshot or pop-

ulation analyses on the transcription level, thus alternative models could not be ruled out

(Hoppe et al., 2016).

To analyze the relationship of PU.1 and GATA1 during differentiation in more detail,

Hoppe et al. (2016) used long-term high-throughput time-lapse microscopy as described

in Section 1.2. This technique is a powerful tool to study differentiation processes of

single cells in unprecedented temporal resolution in vitro, as a high frequency of bright-
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Figure 1.8: Hematopoietic stem and progenitor cells (HSPCs, gray cells) can be annotated
as committed by observing cells stained by CD16/32 antibody (GM lineage) or GATA1
expression (MegE lineage). As markers typically identify more specialized cell types,
early identification of committed cells is not possible (gray box). However, morphological
differences might occur before changes in marker expression.

field imaging (typically on the scale of a few minutes) ensures that moving single cells

and cell divisions can be accurately tracked and used for the generation of cellular ge-

nealogies. Additionally, fluorescent imaging (due to toxicity typically done on the scale

of hours, see Schroeder (2011)) allows the identification of molecular lineage markers or

other fluorescent readouts such as transcription factor expression. Using CD16/32 as a

marker for GM-committed cells and high GATA1 expression for MegE-committed cells,

the authors found that the expression dynamics of PU.1 and GATA1 did not fit to the re-

cent cross-antagonistic model. The authors thus proposed that the “physical PU.1/Gata1

interaction and antagonism is not the core mechanism of GM versus MegE lineage deci-

sion making, but rather serves as an execution and/or lock-down mechanism that makes

terminal differentiation irreversible” (Hoppe et al., 2016).

Early identification of myeloid lineage choice by morphological differences

The gradual change of PU.1/GATA1 expression before the upregulation of lineage mark-

ers such as CD16/32 and GATA1 suggests that the commitment between MegE or GM

lineage could happen in any HSPC state, from the HSC over MPPs to CMPs. Yet, the

lack of suitable markers makes it impossible to narrow down the time point of lineage

commitment any further. However, a rich source of information that is available through-

out the full observation of a differentiating cell is its morphological and motility behavior

that can be derived directly from brightfield images without the use of molecular markers.

The general feasibility of this approach has been shown by Cohen et al. (2010). The au-

thors conducted time-lapse experiments to observe differentiating retinal progenitor cells
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(RPCs) and built a bioimage informatic processing pipeline to derive descriptive features,

i.e. a cell’s speed and morphology over time. Based on this data a classification algorithm

(a support vector machine) was trained, revealing that RPCs show distinctive behavior

depending on which combination of daughter cell types they were about to generate. This

approach achieved a prediction accuracy of 95%. Yet, conducting a similar approach on

long-term high-throughput time-lapse experiments holds several challenges. While Cohen

et al. (2010) studied RPCs that underwent one division and were barely migrating, dif-

ferentiating HSPCs divide several times and migrate over the full coverslip at high speeds

(Schroeder, 2010). In addition, RPCs show diverse morphodynamics before division, while

HSPCs mostly show ellipsoid shapes that are hard to distinguish. Thus, the develop-

ment of fully automated image processing pipelines that can deal with high-throughput

time-lapse microscopy data, but also sophisticated algorithms that can detect even subtle

morphological differences between differentially committed cells becomes necessary.

1.6 Research questions and thesis overview

To fully understand complex biological mechanisms of T-lymphocyte migration and hema-

topoietic lineage choice, the analysis of single cells is crucial. Time-lapse microscopy is a

powerful tool to study spatio-temporal dynamics of biological systems on the single-cell

level. Yet, to analyze the abundant, often high-dimensional data that is generated in these

experiments customized bioimage informatic processing pipelines and statistical methods

are required.

The goal of this thesis is to contribute to the question, to which extend the morphodynam-

ics of a single cell allows conclusions about its current or future molecular state. To this

end, our task is the development of adequate computational methods to identify single

cells in (i) fluorescence time-lapse microscopy experiments observing T-lymphocyte migra-

tion and (ii) high-throughput time-lapse microscopy experiments observing differentiating

hematopoietic stem cells and to quantify their behavior. This involves the adjustment of

experimental setups to generate images that are optimal for automated processing, the

filtering of different types of noise, and the correction of background intensities. Further-

more, we need to extract all cell bodies from the images and apply adequate measures to

derive the morphology and motility information. Eventually, we have to apply statistical

analyses and machine learning models to the derived data in order to detect patterns that

allow novel biological insights.

In Chapter 2 we introduce methods and algorithms that we applied or extended to process
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images from time-lapse microscopy. We also define morphological and motility measures

that we have used to quantify the dynamics of single cells. Furthermore, we explain the

statistical measures, machine learning techniques and software tools that we have applied

to analyze our datasets.

In Chapter 3 we describe the development of an automated tracking and segmentation

pipeline to quantify and analyze the morphodynamics and migration behavior of T-

lymphocytes in fluorescence time-lapse microscopy experiments with different confinement

depths. The challenge in this project was to create a framework that allows to (i) auto-

matically track single cells over the full time-lapse experiment, (ii) derive morphological

information in several fluorescence channels and (iii) quantify and statistically analyze the

migration behavior of T-lymphocytes and the dependence to shape changes. We apply

a variational Bayesian approach to fit a Gaussian mixture model and find two groups of

non-migrating and migrating cells in every confinement depth. In addition, we use the

quantified shape information to train a nonlinear regression model that predicts a cell’s

speed at every frame. The developed framework will be an important tool for future anal-

yses within this project, as the multitude of different environmental influences that have

to be analyzed in separate experiments demands an automated quantification and anal-

ysis. We established the project together with the group of Prof. Michael Sixt from the

Intitute of Science and Technology in Vienna, while the author of this thesis established

the full image processing pipeline, statistically analyzed the data and built the regression

model. A manuscript is currently prepared for publication. It is entitled “A. Reversat*,

F. Buggenthin*, J. Merrin, A. Leithner, I. de Vries, F. J. Theis, C. Marr and M. Sixt.

Morphodynamic analysis of T lymphocyte migration in confined microenvironments.”

In Chapter 4 we discuss a fully automated and generally applicable segmentation method

for brightfield images from long-term high-throughput time-lapse microscopy. The chal-

lenge in this project was to create a procedure that detects single cells in brightfield images

without user interaction as accurate and fast as possible, as available methods are not able

to produce satisfying results on this type of data. The project led to a publication where we

demonstrated the robustness and high accuracy in the detection of single cells in hundreds

of thousands of brightfield images by predicting population doubling times. The author

of this thesis was involved in the change of image acquisition protocol, designed the full

segmentation method and conducted the statistical analyses that demonstrated the high

performance of the proposed algorithm. The paper is entitled: F. Buggenthin, C. Marr,

M. Schwarzfischer, P. S. Hoppe, O. Hilsenbeck, T. Schroeder, F. J. Theis. An automatic

method for robust and fast cell detection in bright field images from high-throughput

microscopy. BMC Bioinformatics, 2013.
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In Chapter 5 we embed the segmentation algorithm for brightfield images in a fully par-

allelized and automatized framework that identifies single cells in millions of images from

brightfield microscopy and quantifies their morphology and motility. Furthermore, we im-

plement a convolutional neuronal network to predict the differentiation of hematopoietic

stem cells into different lineages, based only on the raw pixel information of derived cell

patches and a cell’s speed. We apply our framework to a set of three long-term high-

throughput time-lapse experiments of differentiating hematopoietic stem cells and show

that our method predicts the correct lineage choice with high accuracy up to three divi-

sions before molecular markers become detectable, even if the predictions are carried out

on a fresh experiment. This project was a joint effort. The author of this thesis created

the parallelized and automatized image processing framework and derived the morpholog-

ical information, performed extensive data cleaning and annotation, parts of the manual

tracking and trained the conventional machine learning methods. Florian Buettner de-

signed, implemented, trained and tested the convolutional neural network. This chapter

is based on and in parts identical with “F. Buggenthin*, F. Buettner* , P. S. Hoppe,

M. Kroiss, M. Strasser, M. Schwarzfischer, D. Loeffler, K. D. Kokkaliaris, O. Hilsenbeck,

T. Schroeder, F. J. Theis and C. Marr, Prospective identification of hematopoietic lineage

choice by deep learning. Under review at Nature Methods”.

In Chapter 6 we summarize the methods and biological insights that arose during the

preparation of this dissertation and put it into context of recent publications in the field.

We also discuss possible extensions of our methods and suggest new experiments that will

build upon our contributions.

1.7 Further scientific contributions

In addition to the publications mentioned above, the author of this dissertation partici-

pated in the preparation and publication of several other projects. The contributions were

not directly related to the main research questions discussed above, yet resulted in the

following co-authorships:

• S. Bardehle, M. Krüger, F. Buggenthin, J. Schwausch, J. Ninkovic, H. Clevers,

H. J. Snippert, F. J. Theis, M. Meyer-Luehmann, I. Bechmann, L. Dimou and

Magdalena Götz. Live imaging of astrocyte responses to acute injury reveals selective

juxtavascular proliferation. Nature Neuroscience, 2013.
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• O. Hilsenbeck*, M. Schwarzfischer*, S. Skylaki, B. Schauberger, P. S. Hoppe, D.

Loeffler, K. D. Kokkaliaris, S. Hastreiter, E. Skylaki, A. Filipczyk, M. Strasser, F.

Buggenthin, J. S. Feigelman, J. Krumsiek, A. J. J. van den Berg, M. Endele, M.

Etzrodt, C. Marr, F. J. Theis, T. Schroeder. Software tools for single-cell tracking

and quantification of cellular and molecular properties. Nature Biotechnology, 2016.

• A. von Streitberg, C. Straube, F. Buggenthin, S. Schneider, C. Marr and L. Dimou.

Transient loss of NG2-glia homeostasis after acute brain injury. Under review at

Nature Communications.

• V. Lupperger, F. Buggenthin, P. Chapouton, C. Marr, Identification of single

neural stem cells in the zebrafish brain. Submitted to ISBI’16.

• D. Dragoi, A. Krattenmacher, V. K. Mishra, J. M. Schmidt, U. J. Kloos, L. K.

Meixner, H. S. Bartsch, K. Sotlar, S. Hauck, F. Buggenthin, D. C. Marr, S. A.

Johnsen and C. H. Scheel. Twist1 induces distinct cell states depending on TGFBR1-

activation. Oncotarget, 2016.
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Chapter 2

General methods and definitions

In this chapter we provide formal definitions and background information to all methods

and algorithms used in the subsequent chapters 3, 4 and 5. We start by explaining

basic concepts of image processing algorithms that are necessary for noise reduction and

normalization, followed by algorithms to extract objects from images. We continue by

defining measures to quantify morphology and motility of cells. In the last part of this

chapter, we discuss how to derive patterns of cell behavior from multidimensional datasets

with machine-learning algorithms. We close the chapter by providing an overview of the

software and tools that we used in the studies.

2.1 Image processing

In order to derive meaningful information from an image, it is necessary to filter noise and

normalize for batch effects. This is especially important when dealing with images from

high-throughput or time-lapse microscopy, where the quality can strongly vary throughout

the - typically very large - dataset. In this section we introduce mathematical concepts

and algorithms from the field of image processing that we used in our projects. If not

stated differently, formal definitions and pseudocode descriptions are adapted from Young

et al. (1998) and Nixon and Aguado (2012).
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2.1.1 Principles of digital imaging

Definition of a digital image

In general, an image can be defined as a continuous two-dimensional function I(x, y)

with x and y being two independent variables. A digital image is a sampled and thus

discretized representation of I, where x ∈ {1, 2, ..., Nx} and y ∈ {1, 2, ..., Ny} are indices

of a two-dimensional matrix D. The entries Dx,y of D are termed pixels. The range G of

discrete values g ∈ 0, 1, ..., G (here: color or brightness) that the pixels of D can attain is

determined by the data format, which is typically 8-bit (255 values), 16-bit (65536 values)

or 32-bit(232 values). As most algorithms in image processing are designed for digital

images, we will define all concepts for the discretized case. D can be assumed to be a

monochromatic (i.e. gray-scale) image of ∼ 1000 × 1000 pixels with a depth of 8 bit, as

this was the predominant type of image we analyzed in our projects. Note that extended

formulations of D exist to describe three-dimensional and/or polychromatic images, or

even n-dimensional images with multiple color channels, time points and three spatial

dimensions, which were not used in this study.

Noise and artifacts in digital imaging

In digital photography, several parts of an imaging system can contribute to unwanted

variations of the brightness or color level in the acquired image that were not part of the

original signal. For example, CCD cameras that are typically used in digital microscopy

count the number of photons that are hitting the cells of an array of light-sensitive capaci-

tors, where the cells of the array correspond to the pixels of the resulting image (Tompsett

et al., 1971). Due to the stochastic processes that are involved in photon production, it

cannot be guaranteed that in a given pixel for two consecutive but independent observa-

tion intervals, the same number of photons is counted. In addition to stochastic noise,

digital imaging systems often suffer from systematic artifacts. This could be dead pixels

in CCD cameras or optical distortions due to distracted light beams in a system of lenses.

The degree of noise in an image can range from small specks that are almost not visible

(e.g. photos taken with digital cameras under good illumination conditions), to extremely

distorted images where the original information that should be recorded is nearly im-

possible to retrieve (e.g. radioastronomical images). In the following paragraphs we will

introduce the most common types of noise and image artifacts that we found in our data
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Figure 2.1: Impact of different types of noise or artifacts on image quality. (a) 8-bit gray-
scale image without noise. The background is evenly colored, details such as contours
of the coins are clearly visible (b) Gaussian noise, e.g. caused by heterogeneous photon
counts on CCD chips. A stained pattern is covered all over the image. (c) Salt and Pepper
noise, typically caused by e.g. dead CCD pixels or bad shielding of the transmission cable.
Single pixels or small areas of the image are highly over- or underexposed. (d) Vignetting.
Optical aberration causes a uneven, spherical illumination, where the corners of an image
appear darker than the center.

sets. See Figure 2.1 for an overview. Methods to correct for the different noise terms are

explained in Section 2.1.2.

• Gaussian noise: The number of photons that are collected by a CCD at every

pixel typically follows a Poisson distribution (Schottky, 1918). Yet, as a high-quality

digital camera counts 106 photons per pixel per second (Llull et al., 2013), and the

Poisson distribution can be approximated by a normal distribution for high photon

numbers, the noise can be modeled by a Gaussian distribution p(g), with g being

the intensity value. For an 8-bit digital image D with g ∈ [0, 255] the Gaussian noise
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term is defined as

p(g) =
1

σ
√

2π
e−

(g−µ)2

2σ2 (2.1)

where µ is the mean and σ the standard deviation of the Gaussian. Typically,

Gaussian noise is regarded as an additive effect to the original signal. Thus it can

be simulated by adding an image DGauss with i.i.d pixel intensities drawn from a

Gaussian distribution to the original image D.

• Salt-and-pepper noise: Salt and pepper noise results in single, randomly dis-

tributed pixels in an image that are set to the maximum or minimum value of the

data format (i.e. 255 or 0 in an 8-bit image). It occurs as the result of defective

pixels in a CCD camera or errors in the transmission system, for example a broken

or badly shielded transmission cable.

• Vignetting: Vignetting is an optical distortion of an image that results in a gradual

and circular decrease of the pixel intensities from the center of an image to its borders.

While there are different sources of this effect, in microscopy vignetting mostly occurs

due to the round lenses that are used in the imaging system. The optical light path

illuminates a round area of the specimen, while the CCD records a rectangular image.

Vignetting can be circumvented at acquisition by Koehler illumination (Koehler,

1894). However especially in high-throughput long-term time-lapse microscopy this

effect occurs frequently.

Signal to noise ratio

The quality of an image is a subjective value that is highly application-dependent. While

an extremely noisy radioastronomical image could be sufficient to detect brighter groups

of pixels that could represent stars, the same level of noise would destroy an image with

an high amount of details, such as a digital photograph. However, a way to quantify

the amount of noise that is contributing to a digital image Dnoise by comparing it to an

undistorted ground truth image Dorg with dimensions N × N . This measure is called

Signal-to-noise ratio (SNR). It is defined as follows:

SNR(Dnoise,Dorg) = 10 · log10


N∑
x=1

N∑
y=1

(Dnoise
x,y )2

N∑
x=1

N∑
y=1

(Dnoise
x,y −Dorg

x,y)2

 dB (2.2)
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2.1.2 Image filtering

Several methods exist to enhance the signal to noise ratio of a digital image D or to filter

noise. These steps are necessary in order to derive unbiased measures from images in

an experiment that were taken at different time points or locations, but also to compare

images between different experiments. In this section we introduce algorithms that we

used to filter different types of noise, as well as the basic mathematical concepts that are

needed for their formulation.

Convolution

One of the fundamental operations in image processing is to change the pixel values of

an image by applying a locally dependent kernel K. The kernel usually is a very small

squared image with odd spatial dimensions to ensure a proper positioning. This operation

is termed convolution. For a digital image D and a kernel K with dimensions H × H,

convolution is defined as:

Dconv
x,y = D ∗K =

H−1∑
i=0

H−1∑
j=0

Ki,j ·Dx−i,y−j , (2.3)

i.e. the operation is applied on every pixel Dx,y of D. Depending of the entries (or co-

efficients) of K, different operations such as smoothing or sharpening can be achieved.

Convolution makes it possible to implement operators where the output pixel values rep-

resent simple linear combinations of two or more input pixel values. Typical dimensions

of K are 3 × 3, 5 × 5 or 7 × 7, while larger kernel sizes result in slower execution of the

operation. In this thesis, we used convolution to build the Gaussian smoothing filter (see

Section 2.1.2) and the convolutional layers in neural networks (see Section 2.4.2).

Discrete Fourier transform

The Fourier transform is a method to dissect a signal into its frequency components. This

allows to examine the contribution of every frequency to the original signal, for example

to filter out noise that often resides in higher frequency ranges. The original formulation

of the Fourier transform is referring to a continuous and infinite one-dimensional signal.

For digital images that are discrete and non-infinte, the discrete Fourier transform (DCT)
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has been formulated. For a digital image D with spatial dimensions N ×N , the DCT is

written as:

F(D) =
1

N

N−1∑
x=0

N−1∑
y=0

Dx,ye
−i( 2π

N
)(ux+vy), (2.4)

where u, v are the respective horizontal and vertical frequencies and i =
√
−1 is the com-

plex variable. Consequently, the reverse operation to reconstruct an image from Fourier

space is defined as follows:

D = F−1(F(D)) =
N−1∑
u=0

N−1∑
v=0

F(D)u,ve
i( 2π
N

)(ux+vy). (2.5)

One of the most important properties of the Fourier transform with respect to image pro-

cessing is that the convolution of two images D1 and D2 corresponds to the multiplication

of both images in the Fourier space:

Dconv = D1 ∗D2 = F-1(F(D1) · F(D2)) (2.6)

This relationship and the resulting improvement in computation speeds allows for example

to apply kernels with larger sizes. Also, the DCT, or more precisely the fast Fourier

transform (FFT) was used to realize fast implementations of various image processing

algorithms, for example frequency filters (Almeida, 1994) or registration operations (Reddy

and Chatterji, 1996). In this dissertation the FFT is found in the implementation of the

Gaussian filter as described in section 2.1.2.

Contrast stretching

Depending on the experimental setups, images acquired by digital microscopy often feature

pixel intensity distributions that do not span the full range of available values (0-255

in an 8-bit image). A simple technique to enhance the dynamic range of an image is

constrast stretching. Given an image D we can rescale the intensity of every Pixel Dx,y

in accoradance to a minimum intensity threshold τmin and a maximum intensity threshold
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τmax:

Dnorm
x,y = (Dx,y − τmin)

(255− 0)

(τmax − τmin)
+ 255, ∀ Dx,y ∈ D,

with

Dnorm
x,y =

0, if Dnorm
x,y < 0

255, if Dnorm
x,y > 255.

(2.7)

The thresholds τmin and τmax could be the minimum and maximum intensity of D, yet

this often leads to pixels with outlier intensities. A more robust approach is to use the e.g.

5% and 95% quantiles as the tresholds. The result of this operation is a contrasted image

where foreground objects such as cell bodies should be better identifiable. A disadvantage

of this method is that it also enhances noise, thus it is important to apply suitable filtering

methods to the image before enhancing its contrast.

Gaussian filter

A standard filtering method in image processing is Gaussian blurring, e.g. convolving an

image D with a Gaussian kernel Kgauss. The values of the pixels Kx,y are determined by

a two-dimensional Gaussian, which is defined as

g(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (2.8)

where µ is the mean and σ is the standard deviation of the Gaussian. The convolution is

then written as

Dblurred = D ∗Kgauss. (2.9)

The result of this operation is a smoothed version of the input image, where the level of

blurring depends on the dimensions of Kgauss and the standard deviation σ. Low values

of σ result in a reduction of stochastic noise (see section 2.1.1), but retain local details of

the image. Higher values of σ and larger kernels can be used to remove all details from an

image, so that only the background illumination pattern remains. The latter will be useful

in background correction approaches of brightfield images. The size of Kgauss typically

depends on σ and is computed as 2 ∗ ceil(2 ∗ σ) + 1.

As discussed in section 2.1.2, computing a convolution for large images D and large kernels

K can be very slow. Yet, a Gaussian function has the property that it stays a Gaussian in

the frequency space. This can be used to implement a much faster version of the Gaussian
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filter by first transforming D into the Fourier space and then multiplying the resulting

frequency image F(D) with the kernel Kgauss:

Dblurred = F−1(F(D) ·Kgauss). (2.10)

Median filter

A disadvantage of a Gaussian filter is that it’s not useful for non-stochastic noise such

as salt-and-pepper noise. A method that better preserves edges while still effectively

removing distortions in images is the median filter. The algorithm changes the intensity

value of every pixel in an image D by the median intensity of a neighborhood O. O

is related to the kernel K, yet as the median filter is a nonlinear operation it cannot

be expressed by a convolution. The size of O determines the level of blurring, where

dimensions of 3× 3, 5× 5 or 7× 7 are common. It is written as:

Dblurred = median([Dx−n/2,y−n/2, ...,Dx+n/2,y+n/2]). (2.11)

Similar to convolution, the above operation is applied to every pixel Dx,y of D.

Sobel filter

To analyze an image it is often useful to figure out regions of pixels with homogeneous

intensity levels. Typically the border of such a region can be detected by searching for

sharp changes of intensity from one pixel to its neighbors, which is called an edge. The

sobel filter detects these edges by convolving an image D with two kernels Khorizontal and

Kvertical:

Khorizontal =

−1 −2 −1

0 0 0

+1 +2 +1

 and Kvertical =

−1 0 +1

−2 0 +2

−1 0 +1

 . (2.12)

The resulting images can be regarded as an approximation for the derivative of D in

horizontal and vertical direction. The gradient magnitude can then be computed by

combining both gradient images:

Dedge =
√

(D ∗Khorizontal)2 + (D ∗Kvertical)2. (2.13)
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Laplace of Gaussian filter

In contrast to the sobel filter which detects edges, the Laplace of Gaussian filter (LoG)

is a method to detect blobs in images, i.e. regions of pixels that have intensities that are

constant or approximately constant. It can for example be used to detect circular objects

such as stained nuclei in fluorescence images. An input image D is first convolved by a

Gaussian kernel G:

G =
1

2πs2
e−

x2+y2

2s2 , and

Dblurred = D ∗G

(2.14)

The difference to a normal Gaussian filter is the scale parameter s ≥ 0, that determines the

level of blurring and is used to create a scale space representation of the image. Afterwards

the Laplacian operator is applied, which results in a representation of the image where

blobs with an extent of
√

2t appear as strongly positive values or strongly negative values,

depending on their brightness relative to the mean intensity of D. It is defined as the

second derivative of D in horizontal and vertical direction:

∇2D =
δ2D

δx2
+
δ2D

δy2
. (2.15)

The blobs are then detected in D by a minimum/maximum search.

2.1.3 Illumination correction

In applications where it is necessary to accurately quantify e.g. the fluorescence signal of a

given image, simple filtering methods often do not suffice to normalize the different sources

of noise (Smith et al., 2015b). In this thesis we adapted and applied a method developed

for fluorescence time-lapse microscopy by Schwarzfischer et al. (2011) that estimates and

corrects the background of a given image.

Machine-learning-based background estimation

The sources of noise affecting a digital image D at spatial coordinates x and y (i.e. pixels

Dx,y) at a time point t of a time-lapse experiment can be formalized as follows:

Dx,y,t = Dsignal
x,y,t · g(x, y) + b(t) · g(x, y) + o(x, y), (2.16)



38 CHAPTER 2. GENERAL METHODS AND DEFINITIONS

a

j

d e

b c

f g h i

x y

x y

x y

x y x y x y x y



2.1. IMAGE PROCESSING 39

where Dsignal
x,y,t is the pure fluorescence signal at a single pixel without any noise, b(t)

is a constantly decreasing homogeneous background signal (e.g. autofluorescence of the

medium that is affected by photobleaching), g(x, y) is a spatially dependent illumination

function (also called gain) and o(x, y) is the camera offset, which is constant over time.

This formula can be reordered to reveal the influences of noise to the cell signal at a pixel:

Dsignal
x,y,t =

Dx,y,t − b(t) · g(x, y)− o(x, y)

g(x, y)
. (2.17)

We define Dbg
x,y,t = b(t) · g(x, y) + o(x, y) as the illuminated background signal including

the offset at a pixel Dx,y. To estimate Dbg
x,y,t, the algorithm from Schwarzfischer et al.

(2011) first divides a given digital image D into overlapping windows (tiles) of a fixed size

J × J . For each tile the intensity distribution is then analyzed and statistical moments

are computed. Using the supervised machine-learning method random forest (see Section

2.4.2) or the unsupervised clustering method DBscan (see Section 2.4.1), every rectangle is

then classified into either covering exclusively background pixels or also foreground pixels

(i.e. pixels belonging to cell bodies). All foreground rectangles are discarded. At the center

coordinates of every background tile, its respective mean intensity is used as a seed point

in a grid to intra- and extrapolate the full background image Dbg
x,y,t. This step is applied

to every image independently. To infer the gain the pixel intensities of a single image are

analyzed over time and approximated by linear regression:

g′(x, y) = c · g(x, y), (2.18)

where c is the ordinate intercept that represents o(x, y). In a last step, the corrected

Figure 2.2 (facing page): Overview of the machine-learning-based background correction.
(a) A graycale fluorescence image D. The background intensity is constantly higher than
zero (offset) and peaks in the plot denote cellular signals, obscured by noise. (b) The
image is divided into small overlapping image patches (tiles). (c) For each tile, statistical
moments of the intensity distribution are calculated. (d) The tiles are classified with
regard to showing cell signal (foreground) or only background information. (e) The full
background image Dbg is reconstructed by intra- and extrapolation, using the background
tiles as seed points. (f,g) Analyzing the temporal change of single pixels (red,blue and green
dot in (f)) over time reveals a constant decrease in intensity (bleaching, red blue and green
curve in (g), black dashed line indicates mean intensity of the full image). (h,i) By linear
regression, the gain g′t(x, y) and offset o(x, y) are approximated. (j) Final correction of the
original image Dcorr. The estimated brackground image Dbg is subtracted and the result
is normalized by the approximated gain and offset. Figure adapted from Schwarzfischer
et al. (2011).
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relative cellular signal Dcorr
x,y,t is calculated by subtracting the estimated background image

at every pixel Dbg
x,y,t, followed by a normalization with the approximated gain g′(x, y):

Dcorr
x,y,t =

Dx,y,t −Dbg
x,y,t

g′(x, y)
, (2.19)

with

Dcorr
x,y,t = Dsignal

x,y,t · c−1. (2.20)

This normalization leads to a cell signal that is comparable over all images of a time-lapse

experiment. Furthermore, the equalized illumination over single images leads to a huge

increase in the robustness of segmentation algorithms, as we will show in chapter 4.

Supervised active learning for background estimation

The manual creation of a training set of labeled image patches for background estimation

is inherently biased and very time consuming. An approach to reduce these issues is

active learning, where a classification model is initialized with a very small training set

(Settles, 2009). In our case, a graphical user interface then presents additional unlabeled

image patches with borderline classification scores and asks to manually provide a class

label. This approach minimizes the manual workload, as the samples that are added to

the training set are most informative and thus less samples are needed to derive a well

generalizing classifier. In this thesis we are using stochastic query-by-forest, a method

proposed by Borisov et al. (2011). The following formulation of the algorithm is adapted

from Schwarzfischer (2013). For implementation details, see Borisov et al. (2011).

Algorithm 1: Query-by-forest active learning

1. Build a random forest classifier (see section 2.4.2

2. For each unlabeled data sample x, compute the ensemble disagreement q(x) and
sort all remaining nu unlabeled instances with respect to q(x).

3. Sample the next batch from x1, ..., xαnu using the sample probabilities with the

following utility scores L(x) = q(x)−q0
q(x1)−q0 , where q0 = q(xαnu). By normalizing with

the sum of L we get the sample probabilites ps(x) = L(x)∑
x L(x)

4. Gather the labels of the newly sampled batch, rebuild the random forest and
return to step 2
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The ensemble disagreement q(x) for a sample x is defined as the standard deviation of the

weighted rare class probabilities for all trees i in the random forest ensemble among the

random forest model:

q(x) = std

(
pi,c(x)/pc∑
c pi,c(x)/pc

)
, (2.21)

where c ∈ [1, 2] is the class label of a two-class dataset and pc = Nc/N is the counts of the

target classes in the labeled data.

2.1.4 Image segmentation

In many image processing applications one is interested in informative regions of an image

that can be further analyzed. An example for this could be the extraction of human faces

in surveillance videos or cells on a microscope slide. The process of subdividing an image

into foreground regions of interest (ROI) and background regions is called segmentation

(Nixon and Aguado, 2012). The difference to the filter methods discussed in Section 2.1.2

is that the resulting image Dseg is a binary representation of the original image where

pixels Dfg
x,y belonging to ROIs have the value one and all background pixels Dbg

x,y are zero.

One simple and yet very effective approach in this field is segmentation by thresholding

of pixel intensities.

Otsu thresholding algorithm

The Otsu algorithm relies on the assumption that foreground regions (fg) in an image are

always brighter (or darker) than the background (bg), leading to a bimodal distribution

of intensity values. The algorithm tries to build two clusters of pixels - foreground and

background - by finding an optimal threshold τ that minimizes the variance σ2 of pixel

intensities inside one cluster but maximizes the variance between both clusters. While

computing the within-class variance of the two classes and all possible thresholds τ is

computationally expensive, the author showed that maximizing the between-class variance

leads to the same result (Otsu, 1975). Thus, the algorithm solves the following equation:

σ2
between(τ) = σ2 − σ2

within(τ) = ωfg(τ)ωbg(τ)
(
µfg(τ)− µbg(τ)

)2
(2.22)

where µ1(τ) =
(∑τ

0 p(i)h(i)
)

represents the mean intensity of all pixels in each class, with

h(i) being value at the center of the i-th value of the intensity histogram. ω1(τ) =
∑τ

0 p(i)

is the class probability. µ2 and ω2 are computed in by using all intensities above τ . For
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a given intensity histogram from an image D with an intensity range [0,255], The Otsu

algorithm performs the following steps:

Algorithm 2: Otsu thresholding algorithm

1. Compute probabilities p(i) for all intensities i

2. Initilize ω1(0), ω2(0) and µ1(0), µ2(0).

3. For every threshold τ = [0..255]

• Compute ωfg(τ), ωbg(τ) and µfg(τ), µbg(τ).

• Compute σ2
between(τ).

4. Derive the value of τ where σ2
between(τ) is maximal.

5. Output the binarized image Dseg, where all pixels with intensities < τ are zero and
all pixels with intensities ≥ τ are one.

Maximally stable extremal regions algorithm

The Maximally Stable Extremal Regions (MSER) algorithm is a feature detector, origi-

nally designed to find informative regions (descriptors) in two images that show the same

object but from different angles or distances (Matas et al., 2004). For a given image D

the algorithm returns a list of nested extremal regions R. A region r ∈ R in an image

is a contiguous subset of pixels which are 4-neighborhood connected. Two pixels are 4-

neighborhood connected if both pixels share one edge. A region rextremal is an extremal

region if the intensities of the pixels belonging to the boundary of the region are lower

than any intensity inside of the region. The algorithm outputs those extremal regions

that are maximally stable. The term maximally stable indicates that a region rextremal
i is

satisfying a stability criterion q(i), defined as

q(i) =
|rextremal
i−∆ · rextremal

i+∆ |
|rextremal
i |

− (2.23)

rextremal
i is maximally stable if q(i) has a local minimum at i. The stability of an extremal

region r is the relative area variation of the region R when the intensity level is increased

by the parameter ∆. More concrete, an extremal region is maximally stable if the area of

the region varies only little when the intensity threshold is increased or decreased by ∆,

respectively. Thus, ∆ determines how big the contrast between foreground objects and
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background is. The algorithm performs the following steps to detect MSERs in an 8-bit

image D:

Algorithm 3: Maximally stable extremal regions algorithm

1. Group all pixels in D in accordance to their intensities (results in 256 bins)

2. Sort all bins in descending order

3. Create an empty binary image Dtemp with all pixels set to False

4. Set the pixels in Dtemp that belong to the bin with intensity 1 to True

5. Save all resulting connected regions r in a list R

6. For every intensity bin [2..255]:

(a) Set the pixels in Dtemp that belong to the bin to True

(b) Update growing regions in R

(c) Evaluate q(i) on every region r ∈ R to find MSERs

7. Return Dseg with all MSERs

Watershed algorithm

The segmentation algorithms discussed above are useful to identify foreground regions of

interest (ROI), however if two or more distinct objects (in our case cells) are clumped

together this results in a single foreground region. To split these regions and retrieve the

objects of interest, we used the watershedding algorithm as described in Meyer (1994).

Here, an image can be interpreted as a landscape, where pixels with high intensity comprise

hills and pixels with low complexity are valleys. This landscape is then inverted and

sources of water are placed in each valley (which is now a region of maximum intensity in

the original image). The water level is raised, until water of two different sources touches

each other or the boundaries of the image are reached. At these watersheds a line is drawn

that separates one valley from another.

To assign a seed point (i.e. the valley floor) for the watershed algorithm to a digital image

D, two different methods exist. The first approach uses distance transformation, where the

euclidean distance to the nearest pixel whose intensity value belongs to the background

is assigned to each nonzero valued pixel of a binary image. The result is inverted and

watershedding is applied. A second approach is called marker based watershedding. This
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method enhances the fraction of pixels in the original image with maximum intensity

to islands, building so-called markers. If the image is inverted the valleys where water

sources are put originate in these markers. Note that the marker-based approach can also

be applied by detecting ROIs in one image (e.g. stained nuclei) and use the centers of

these ROIs as seed points for the watershedding in another image (e.g. the cell soma). In

Meyer (1994), the algorithm for watershadding is defined as follows:

Algorithm 4: Watershed algorithm

1. Choose a set of seed pixels Dseed
x,y and uniquely label them.

2. For each seed pixel, order neighboring pixels in a priority queue in accordance to
ther intensity value g.

3. Extract the pixel Dlp
x,y with the lowest priority level from the queue. If the

neighbors of Dlp
x,y that have already been labeled all have the same label, then the

pixel is labeled with their label.

4. Update the priority queue by adding all non-labeled pixels to the priority queue
with the adjacent label.

5. Redo step 3 until the priority queue is empty.

Evaluation of segmentation quality

To evaluate if an algorithm correctly identified all foreground regions, one approach is

to compare the overlap of true-valued pixels in a binary image Dseg with another binary

image Dgt, that represents the perfect segmentation result, i.e. ground truth. A measure

for this is the jaccard coefficient, defined as the ratio of the size of the intersection and

the union of the pixels in both images (Jaccard, 1912):

J(Dseg,Dgt) =
|Dseg

⋂
Dgt|

|Dseg
⋃

Dgt|
, (2.24)

so J(Dseg,Dgt) ∈ [0, 1], where a value of 0 denotes zero overlap of the segmentated regions

and 1 denotes a perfect overlap.
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2.1.5 Mathematical morphology operations

Depending on the quality of a given image D, the segmented objects in a binary image

Dseg often show rough or fuzzy edges, for example due to insufficient noise filtering. A way

to smoothen these objects is applying filters from mathematical morphology. Typically,

these algorithms take as input a digital image and a structuring element, e.g. a very small

binary image with true-valued pixels in certain shapes (e.g. a disk, square or cross). We

used four simple operations to postprocess the binary images in our datasets, namely

erosion, dilation, opening, and closing.

Dilation and erosion work by moving a small binary image S (generally less then 10% of

the original image size) over every one-valued pixel of the binary input image Dseg and

examining the intersection between positive pixels in S and Dseg. S is called a structuring

element and is related to the kernel K in the convolution operation. The shape of S is

determined by one-valued pixels. A typical shape and size for S is a diamond of 3 × 3

pixels:

Khorizontal =

0 1 0

1 1 1

0 1 0

 (2.25)

The center of S is then placed on every one-valued pixel Dfg
x,y. We define the one-valued

pixels of S as a set A of points in euclidean space. In the same fashion, we define the set

of pixels in D that are covered by S as B.

The dilation δ is then defined as

δ(A,B) =
⋃
b∈B

A. (2.26)

Thus, the dilation operation results in the growth of all foreground regions in dependence

of the size and shape of S. The complement to this operation is erosion ε. It is defined as:

ε(A,B) = {b|∀a ∈ A, b+ a ∈ B}, (2.27)

Consequently, erosion of a binary image results in a decrease of all foreground regions. By

nesting the two operations in alternating order, we get morphological opening γ, defined

as

γ(Dseg) = δ(ε(Dseg)), (2.28)
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and morphological closing φ, defined as

φ(Dseg) = ε(δ(Dseg)). (2.29)

These operations posses some interesting properties (Nixon and Aguado, 2012). For ex-

ample, a dilation operation on a binary image will first enhance all foreground regions

and thus filling e.g. holes in segmented cell objects, but also connect adjacent cells to

form a single region. The erosion on the other hand will then disconnect the cells again

by reducing the regions but will not change filled holes as there is no edge to work on

anymore.

2.1.6 Circular hough transform

The circular hough transform (CHT) finds objects with circular shapes but incomplete

boundaries in grayscale or binary images. It is thus useful to detect centers of biological

cells in microscopic images, even if these cells reside in larger colonies that are difficult to

separate. The detected center coordinates in turn can then be used as seed points for the

watershedding algorithm (see above).

The CHT is a specialization of the Hough transform, a method to detect straight lines in

images (Hough, 1959). The idea of the hough transform is to find pixels of an image D

that are lying on the same line. A line equation in the polar system can be written as:

y =
(
− cos(θ)

sin(θ)

)
x+

( r

sin(θ)

)
, (2.30)

and rewritten as:

r = x · cos(θ) + y · sin(θ), (2.31)

where r and θ are the polar coordinate parameters and x and y are spatial coordinates of

a pixel. The general hough transform is then defined as depicted in Algorithm 5.

To detect circles, formula 2.30 is replaced by the following definition:

x = a+R cos(θ),

y = b+R sin(θ),
(2.32)

where a and b are the center coordinates of a circle and R its radius, that is typically

known and thus fixed. It is worth noting that the implementation we used in this thesis
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Algorithm 5: General Hough transform (HT)

1. Find edges in a digital image D, for example by sobel filtering or thresholding,
resulting in a binary image Dseg

2. For each true-valued pixel Dseg
x,y, compute the sinusoid such that r > 0 and

0 < θ < 2π, called hough space

3. Find intersections for curves of different pixels in the hough space (e.g. points are
residing on the same line)

4. Construct an image Dhough showing only the lines above a threshold τ

is capable of detecting circles in an image in a range of radii.

2.1.7 Distance transform

The distance transform is a method that is typically applied on a binary image Dseg, for

example after a thresholding operation (see Section 2.1.4). It assigns the distance of every

foreground pixel Dfg
x1,y1 (i.e. with a value of one) to its closest background pixel Dbg

x2,y2

(i.e. with a value of zero). As a metric we here used the euclidean distance:

dist(Dfg
x1,y1,D

bg
x2,y2) =

√
(x1 − x2)2 + (y1 − y2)2. (2.33)

The result of this operation is a grayscale image Ddist, where every foreground pixel has

as a value the distance to the center of its region.

2.2 Automated cell tracking

The methods and algorithms that we described in the previous section identify all objects

(e.g. cells) in a given image. To derive temporal dynamics of the objects from a time-lapse

movie, the position of every object has to be determined in every frame and then linked

to a full trajectory. As the consecutive tracking of thousands of objects over hundreds

of frames is tedious and labour-intensive, computerized approaches have been developed

that automatize the tracking (Meijering et al., 2006, 2009, 2012).

In general, two different algorithmic concepts exist to track single cells in time-lapse ex-

periments (Meijering et al., 2009). The first approach performs object identification and
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tracking in a single step by fitting a deformable mathematical model to the object of inter-

est in the first frame of a time-lapse experiment (Zimmer et al., 2002). The model is then

updated for every consecutive frame, resulting in a progression of model parameters for a

full trajectory. The second approach decouples object identification and object tracking.

First, objects are identified frame-by-frame, for example by image segmentation. Second,

an algorithm tracks cells in all frames of a time-lapse experiment consecutively (Xinghua

Lou et al., 2011). Note that in this dissertation we used a software that implemented a

two-step approach (see Section 2.5.2). For a comparison of state-of-the-art cell tracking

algorithms, see (Maška et al., 2014).

2.2.1 Deformable mathematical model (Single-step approach)

A typical approach for a deformable model is representing each object by a separate level-

set function φc(), c = 1, ..., N , where N is the number of objects (Dzyubachyk et al.,

2010). The optimal segmentation in every frame is achieved by minimizing an energy

functional E, which depends on image features such as the intensity gradient, but also

includes criteria like the smoothness of the contour. For every pixel of a two-dimensional

image Dx,y, the energy functional E is evaluated:

E(φc, ..., φN ) =
N∑
c=0

∫ ∫
Ωc

− logp(g(Dx,y)|Ωc) dxdy + a+ Length(δΩ), (2.34)

where Ω0 is the background of D. Ωc = Dx,y : φc(Dx,y) > 0, c = 1, ..., N are the object

regions such that Ω =
⋃N
c=0 Ωc is the image domain, δΩ is the boundary between fore-

ground and background regions and a is a positive parameter. p(g(Dx,y)) is the conditional

probability that voxel Dx,y with intensity g(Dx,y) belongs to region Ωc.

To start the tracking, the level-set functions have to be initialized by either drawing manual

contours around the objects or providing an initially segmented image at frame 1. The

contours are then evolved by adapting the result of a frame at time point t − 1 to time

point t.

While the deformable model approach allows for the analysis of the object behavior over

time and provides a continuous mathematical description of shape changes below pixel

resolution and natively models object splitting and merging, it has several downsides.

First, if the cells are moving too fast or the temporal resolution is too low, the contour

of the previous time point might not overlap anymore with the object in the present
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time-point, leading to a premature ending of cell tracks or erroneous shapes. Also, as

every cell has to be initialized separately, cells that are entering the field of view during

the time-lapse experiment are difficult to add to the model. Second, the correct fit of

the contour to the cell shape is heavily parameter dependent and can require a separate

set of parameters for every cell in the experiment. Also, the adaptation of one contour

per cell is computationally intensive, which makes the application of deformable model

approaches to large amounts of cells (approximately more than 30 cells) or long time-lapse

experiments (approximately more than 200 frames) difficult or necessitates the usage of

powerful computation clusters.

2.2.2 Linear assignment problem (Two-step approach)

A highly cited tracking approach that decouples object detection and object linking (i.e.

two-step approach) is the algorithm proposed by (Jaqaman et al., 2008). First, a set S of

object positions (x, y) in every frame t is determined, for example by an LoG filter (see

Section 2.1.2) or the center of a segmented object (see Section 2.1.4) (object detection

step, see step 0 in Figure 2.3a). Next an optimal linking for the objects in S over the full

time range has to be found, which the authors formulated as a linear assignment problem

(LAP, Jonker and Volgenant (1987)). The LAP models every potential linking operation

l by a cost matrix M : C × R. The goal is to find a combination of object links that

minimizes the sum of costs for a given matrix of links A : C ×R:

Âarg min =

R∑
r=1

C∑
c=1

Ar,cMr,c, (2.35)

such that
R∑
r=1

Ar,c = 1 and
C∑
c=1

Ar,c = 1. (2.36)

The authors defined two separate linking operations that were both formulated as LAPs

(see steps 1 and 2 in Figure 2.3a). First, every object is linked mutually exclusive to

one object in its preceding and following frame (see the cost matrix M1 in Figure 2.3b),

penalized by the cost function `. If no matching object is found in the next frame, the

track is stopped (cost function d). Similarly, if an object has no match in a preceding

frame, this is regarded as a track start (cost function b). The cost functions d and b are

inferred from the tracking information available up to the source frame t. They are defined

as 1.05× the maximal cost of all previous links (see Jaqaman et al. (2008) for details). A

track is stopped if all potential links of a particle in frame t to particles in frame t+ 1 had
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Figure 2.3: Two-step tracking approach with global optimization as proposed by Jaqaman
et al. (2008). (a) Flow chart of the full procedure. Step 0: The positions for all objects
are determined in every frame, e.g. by a LoG filter (see Section 2.1.2) or the center of a
segmented object (see Section 2.1.4). Step 1: Every object in one frame is linked to a
single object in the following frame or ended, resulting in a set of locally optimal track
segments that might only be part of a full track. Step 2: To account for object splitting (or
merging) events, as well as temporally missing objects (gaps in the track), the set of track
segments is connected to each other by a globally optimal. Both steps are implemented as
Linear assignment problems (Jonker and Volgenant, 1987). Figure taken with permission
from Jaqaman et al. (2008)

costs larger than this value. Similarly, a track was started if a particle in frame t, lost all

possible linkings to a particle in frame t− 1.

This procedure results in a set of short tracks (i.e. track segments). Yet, the causes for a

track end or start can not be modelled by this simple approach. For example, an object

could temporally diappear or moved out of the field of view for a few frames. Also, a
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newly started track could result from an object splitting event. Thus in a second step, the

found track segments are linked to each other by the the cost matrix M2 (see Figure 2.3c)

with the cost functions `() (linking), g() (gap closing), m() (merging) and s() (splitting):

`rc = δ2
rc, (2.37)

where δrc is the distance between particles r and c,

guv = δ2
uv, (2.38)

where δuv is the distance between the end of track segment u and the start of track segment

v,

mRC , suv =

δ2
rc × ρuv, ρuv > 1

δ2
rc × ρ−2

uv , ρuv < 1
, (2.39)

where δuv is the distance between the end or start of track segment u and the middle

point of track segment v,and ρuv is the ratio of the intensities Au (of track segment u)and

Av (of track segment v) before and after merging or splitting:

ρuv(merge in frame t) =
Av(t)

Au(t− 1) +Av(t− 1)
, (2.40)

ρuv(split in frame t) =
Av(t)

Au(t− 1) +Av(t− 1)
. (2.41)

While the first linking step in this algorithm is a greedy approach that is globally optimal

in space, the second linking step of acquired track segments is globally optimal in space

and time. It models cell splitting events and also integrates new track starts, for example

by cells entering the field of view. In contrast to the deformable model approach, the

evaluation of the cost matrices is computationally less demanding than updating a level-

set equation for every object, which allows the tracking of more cells and longer time

periods (more than 100 cells per frame or over 500 frames are possible). The more flexible

object detection step allows to apply state-of-the-art segmentation algorithms which makes

the tracking of cells e.g. in brightfield images possible where level-set algorithms are hard

to parameterize. One downside of this approach is however that no continuous evolution

of the cell shape can be modeled, as is the case with the deformable model approach.
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2.3 Quantification of cell morphology and motility

In order to derive patterns in data from high-throughput time-lapse microscopy, it is

helpful to reduce the abstract information encoded in single pixels of an image to more

descriptive and intuitively interpretable measures. We compiled a set of algorithms that

derive features from regions of an image that were previously identified to show foreground

objects (i.e. cells). These features comprise morphological information such as shape and

texture of an object, but also time-dependent measures such as motility or directionality

and persistence. Most of the discussed features have already been used to describe the

shape of and texture of cells in microscopy experiments (Held et al., 2010; Cohen et al.,

2010; Smith et al., 2009). Apart from the more recent Ray features (Smith et al., 2009),

they are also implemented in image processing programs such as CellProfiler (see Section

2.5.3).

2.3.1 Basic measures

We calculated the following basic shape measures for every foreground region r in a set of

regions R in a given binary image Dseg. A region r is a set of spatially connected pixels

ri, i ∈ {1, 2, ..., |r|} with value one in Dseg. We define the convex hull c as

c =

{ |r|∑
i=1

airi

∣∣∣∣(∀i : ai ≥ 0) ∧
|r|∑
i=1

ai = 1

}
(2.42)

where ai is a coefficient . Note that in the MATLAB image processing toolbox of the

the convex hull we used in this dissertation, p ∈ N+ is a set of pixels that describes the

smallest convex polygon that can be fitted around the region r (Mathworks, 2015).

• Area:

The number of pixels in r:

fA =

|r|∑
i=1

ri. (2.43)

fA ∈ N+.
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Figure 2.4: Overview of the 13 basic measures. (a) Measures computed on the binary
image Dseg. (b) Pixel intensity statistics computed on the original image D.

• Convex area:

The number of pixels in the convex hull c.

fCA =

|c|∑
i=1

ci. (2.44)

fCA ∈ N+.

• Solidity:

The proportion of the pixels in the convex hull that are also part of r:

fSOL =
fA

fCA
. (2.45)

fSOL ∈ [0, 1].

• Equivalence diameter:

The diameter of a circle with the same amount of pixels as r:

fEQD =
2√
π
∗
√
fA. (2.46)

fEQD ∈ R++.

• Extent:

The ratio of pixels in r to a set of pixels bb in the bounding box, which is the smallest
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rectangular image patch that covers the whole region r:

fEXT =
|r|
|bb|

, (2.47)

with

bb = [min
i∈r

(rxi), ...,max
i∈r

(rxi); min
i∈r

(ryi), ...,max
i∈r

(ryi)]. (2.48)

fEXT ∈ [0, 1].

• Major and minor axis length:

The length of the major (minor) axis of an ellipse fitted to r in pixels:

fMAL = 2
√

2

√
uxx + uyy +

√(
(uxx − uyy)2 + 4 ∗ u2

xy

)
,

fMIL = 2
√

2

√
uxx + uyy −

√(
(uxx − uyy)2 + 4 ∗ u2

xy

)
,

(2.49)

with

uxx =

|r|∑
i=1

(x2
i )

|r|
+ 1/12,

uyy =

|r|∑
i=1

(y2
i )

|r|
+ 1/12,

uxy =

|r|∑
i=1

(xiyi)

|r|
,

(2.50)

where, xi and yi are the coordinates for a pixel ri ∈ r in x- and y-direction, respec-

tively. fMALandfMIL ∈ N+.

• Eccentricity:

The ratio of the distance between the foci of an ellipse fitted to r and its major axis

length fMAL, approximated as:

fECC =

√
1−

(
fMIL

fMAL

)2

. (2.51)
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fECC ∈ [0, 1], where 0 denotes a perfectly round (circular) region and 1 represents a

line segment.

• Orientation:

The angle between the x-axis and the major axis of the ellipse in degrees:

fORI =

(
180

π

)
atan

(
n

d

)
, (2.52)

with

n =

uyy − uxx +
√

(uyy − uxx)2 + 4 ∗ u2
xy , when uyy > uxx

2uxy else

and

d =

2uxy , when uxx > uyy

uxx − uyy +
√

(uxx − uyy)2 + 4 ∗ u2
xy else

.

(2.53)

fORI ∈ [0, 360].

• Perimeter:

The distance around the boundary of r. Given a list b of pixels that constitute the

boundary of r in clockwise direction, the perimeter fPER of r is defined as:

fPER =

|b|−1∑
i=1

√
sxi + syi, (2.54)

with sx and sy being the lists of differences between adjacent pixels in x- and y-

direction:

sxi = bi + 1− bi, i = {1, 2, ..., |b|}, (2.55)

with sy being computed analogously and |s| = |b| − 1. fPER ∈ R+.

In addition, we computed three features that statistically describe the intensity of a group

of pixels in the original 8-bit image D with pixel intensities g ∈ [0, 255] defined by the

region r in Dseg:

• Maximum intensity:

of the set of pixels belonging to r:

fMAI = max
ri∈r

(g(ri)). (2.56)
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fMAI ∈ [0, 255].

• Average intensity:

Of the set of pixels belonging to r:

fMEI =
1

|r|

|r|∑
i=1

g(ri). (2.57)

fMEI ∈ R+.

• Minimum intensity:

Of the set of pixels belonging to r:

fMII = min
ri∈r

(g(ri)). (2.58)

fMII ∈ [0, 255].

2.3.2 Shape

The measurements defined above are well suited for a basic analysis of identified objects in

an image. However, while fA and fECC provide a rough estimate about an object’s shape,

they do not account for a more complex morphology. For example, we can construct a

circular and a star-shaped object that both have the same values for fA and fECC. Thus,

we introduce more sophisticated shape measures in the following paragraphs.

Ray features

The Ray feature set was introduced by Smith et al. (2009) to describe deformed or irregular

shapes of objects in images. For a given digital image D, the algorithm first detects all

edges in the image, for example by a Sobel filter (see Section 2.1.2). The resulting binary

image Dedge is then analyzed by evaluating the function e():

eθ = e(Dedge,m, θ). (2.59)

The function returns the spatial coordinates eθ of the closest pixel belonging to an edge

in the image Dedge to the location m in direction θ. Thus, m and eθ can be regarded as

vectors that point to different locations in the image. Based on e(), the following measures

can be computed:
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Figure 2.5: Overview of the four ray features. (a) Distance difference (b) Distance (c)
Orientation (d) Norm. For mathematical details see the main text. Figure adapted from
Smith et al. (2009)

• Distance:

rDST
θ = ||eθ −m||, (2.60)

where || · || is the euclidean vector norm. The feature computes the absolute distance

to the closest edge point in orientation θ. It is not invariant to scaling an thus

provides information about the object size. rDST
θ ∈ R+.

• Distance difference:

rDDF
θ =

||eθ −m|| − ||eθ′ −m||
||eθ −m||

, (2.61)

where θ′ = θ − 120◦ and || · || is the euclidean vector norm. The feature compares

the relative distance from a given spatial coordinate to the nearest edge in two

orientations. Due to the normalization term this feature is invariant to scaling.

rDDF
θ ∈ R+.
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• Orientation:

rORI
θ =

∇Dedge
e

||∇Dedge
e ||

· (cosθ, sinθ)>, (2.62)

where ∇Dedge
e denotes the gradient of Dedge at point c. This feature analyzes the

edge orientation at all angles θ and is thus useful to differentiate convex shapes from

concave shapes. Thus, an averaged value close to one for rORI is an indicator for a

closed convex shape (see below). rORIθ ∈ [0, 1].

• Norm:

rNRM
θ = ||∇Dedge

e ||. (2.63)

The norm feature tests the image intensity at the specified edge point. When applied

on the binary image E(x, y), this feature can also be used to test the closedness of

a shape. rNRM
θ ∈ R+.

For a single image D we evaluated all formulas for θ ∈ [0, 30, ..., 330] with m being fixed

to the center of the image patch. We then computed the final ray features by averaging

over all values per feature, with N being the amount of different values:

r∗ =
1

N

330∑
θ=0

r∗θ . (2.64)

2.3.3 Texture

Basic intensity measures such as mean intensity average out patterns in the identified

objects that could be useful for a later analysis. For instance, biological cells that reside

in different phases of the cell cycle at the time point of image acquisition often show

differences in their intensity patterns. A way to quantify these differences is to compute

statistical features based on the single pixels of an object and their spatial dependencies.

Two well established approaches are the feature sets described by Haralick et al. (1973)

and Tamura et al. (1978). In the field of bioimage informatics, these features have already

been used to e.g. classify cell types (Boland et al., 1998; Boland and Murphy, 2001; Held

et al., 2010). The features are already implemented in Software for bioimage analysis such

as CellProfiler (see Section 2.5.3), which increases their usability.
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Haralick features

Given a grayscale image D with a range of intensity values G ∈ [0, 255] (in the 8-bit case),

the general idea in this approach is to quantify how often a pixel with e.g. intensity 1 is

found adjacent to a pixel with e.g. intensity 2. For this purpose the authors introduced a

so-called gray-tone spatial dependence matrix (or co-occurence matrix) M : G×G:

Md =


0, 0 0, 2 · · · 0, G

2, 1 2, 2 · · · 2, G
...

...
. . .

...

G, 0 G, 2 · · · G,G

 , (2.65)

where d is the direction of pixel adjacency. In the two-dimensional case, M can be com-

puted in four directions d (horizontal, vertical, left and right diagonal). An entry Md,i,j

of the matrix can be considered to be the probability that a pixel with intensity i is ad-

jacent to a pixel with intensity j. Md,i,j is derived by counting the occurences of such a

pixel relationship over a given image D and dividing this value by the number of total

comparisons in M. The following definitions are needed before we can define the Haralick

features:

• NG: the number of values in G.

• Md,i,j : probability of finding a pixel with intensity i next to a pixel with intensity j

in direction d

• Md,i,∗: marginal probability for pixel with intensity i, computed as

Md,i,∗ =
∑NG

j=1 Md,i,j .

• Md,∗,j : marginal probability for pixel with intensity j, computed as

Md,j,∗ =
∑NG

i=1 Md,i,j .

• Md,∗,∗,k:
∑NG

i=1

∑NG
i=0 δi+j,kMd,i,j , with k = 2, 3, ..., 2NG.

• M−
d,∗,∗,k:

∑NG
i=0

∑NG
i=0 δ|i−j|,kMd,i,j , with k = 0, 1, ..., NG − 1.

where the Kronecker delta function is defined as

δm,n =

1 when m = n

0 when m 6= n

• Hd,i,∗ = −
∑NG

i=1 Md,i,∗log(Md,i,∗) (entropy of Md,i,∗)

• Hd,∗,j = −
∑NG

j=1 Md,∗,j log(Md,∗,j) (entropy of Md,∗,j)
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• Hd,∗,∗ = −
∑NG

i=1

∑NG
j=1 Mi,j log(Mi,j)

• H1d,∗,∗ = −
∑NG

i=1

∑NG
j=1 Mi,j log(Mi,∗M∗,j)

• H2d,∗,∗ = −
∑NG

i=1

∑NG
j=1 Mi,∗M∗,j log(Mi,∗M∗,j)

The set of 14 statistical measures is then computed for every co-occurence matrix Md:

• Angular Second Moment

hASMd =

NG∑
i=1

NG∑
j=1

(Md,i,j)
2 (2.66)

• Contrast:

hCONd =
G−1∑
k=0

k2M−
d,∗,∗,k (2.67)

• Correlation

hCORd =
1

σd,i,∗σd,∗,j

NG∑
i=1

NG∑
j=1

(
(ij) ·Md,i,j − µd,i,∗µd,∗,j

)
(2.68)

where µd,i,∗,µd,∗,j ,σd,i,∗,σd,∗,j are the means and standard deviations of the marginal

probabilities of the i-th row of M and the j-th column of M.

• Sum of Squares Variance

hSSVd =

NG∑
i=1

NG∑
j=1

(i− µ)2Md,i,j (2.69)

• Inverse Difference Moment:

hIDMd =

NG∑
i=1

NG∑
j=1

1

1 + (i− j)2
Md,i,j (2.70)

• Sum Average

hSAVd =

2NG∑
k=2

kMd,∗,∗,k (2.71)

• Sum Entropy

hSENd = −
2NG∑
k=2

Md,∗,∗,klog(Md,∗,∗,k) (2.72)
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• Sum Variance

hSV Ad =

2NG∑
k=2

(k − hSENd )2Md,∗,∗,k (2.73)

• Entropy

hENTd = −
NG∑
i=1

NG∑
j=1

Md,i,j log(Md,i,j) (2.74)

• Difference Variance

hDV Ad =

NG−1∑
k=0

k2M−
d,∗,∗,k (2.75)

• Difference Entropy

hDENd = −
NG−1∑
k=0

M−
d,∗,∗,klog(M−

d,∗,∗,k) (2.76)

• Information Measure of Correlation 1

hIMC1
d =

hENTd −H1d,∗,∗
max(Hi,∗, Hj,∗)

(2.77)

• Information Measure of Correlation 2

hIMC2
d =

(
1− exp

(
− 2
(
H2d,∗,∗ − hEd

))) 1
2 (2.78)

• Maximal Correlation Coefficient

hMCC
d = Square root of the second largest eigenvalue of Q, where

Qd,i,j =

NG∑
k=1

Md,i,k ·Md,k,j

Md,i,∗Md,∗,j
(2.79)

Note that while the authors suggested the final measures to be computed by averaging

over all values for the four co-occurence matrices, we used the implementation from Cell-

Profiler1.0 that computes the features only for a single direction (right adjacency) to save

computation time (Carpenter et al., 2006).

All Haralick features are ∈ R+.
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Tamura

A substantially different approach to quantify texture in an image was undertaken by

Tamura et al. (1978). The authors defined a set of features and compared their numerical

description of images with the visual perception of human subjects in psychological ex-

periments. Eventually they found three features that could resemble the classification of

images from the human subjects very well. Following the definition and implementation

given by Howarth and Rüger (2004), the Tamura features are defined as:

• Coarseness

This feature analyses textural patterns in a given image D with dimensions N×N at

different scales and then tries to find the largest representation of this pattern. The

feature is computed by moving a squared window of size 2K×2K over the image and

computing the average intensity of the window for each pixel Dx,y for a predefined

interval of k = [21, ..., 2k, ...2K ]:

Ak =

x+2k−1−1∑
i=x−2k−1

y+2k−1−1∑
j=y−2k−1

Di,j
1

22k
. (2.80)

Next, differences between adjacent but non-overlapping windows are computed for

every pixel Dx,y in D in both horizontal and vertical directions d:

Ehorizontal
k (Dx,y) = |Ak(x+ 2k−1, y)−Ak(x− 2k−1, y)|,

Evertical
k (Dx,y) = |Ak(x, y + 2k−1 −Ak(x, y − 2k−1|.

(2.81)

At each pixel, the value of k where E is maximal is detected:

stexture
x,y = argmax

k=1...K
max

d=horizontal,vertical
Edk(Dx,y). (2.82)

The final coarseness measure tCOR(D) is then computed by averaging over all optimal

k for each pixel. tCOR ∈ N+.

tCOR =
1

N2

N∑
x=1

N∑
y=1

2s
texture
x,y . (2.83)
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• Contrast

This statistic evaluates the dynamic range of gray levels in an image by measuring

the mean µ and the standard deviation σ of a digital image D with dimensions

N ×N . The contrast is then defined as:

tCON =
σ

(α4)
1
4

, with α4 =
µ4

σ4
, (2.84)

where tCON ∈ R+ and µ4 is the fourth moment about the mean. It is computed as

µ4(D) =
1

N2

N∑
x=1

N∑
y=1

(Dx,y − µ)4. (2.85)

• Directionality

The directionality analyses the presence of different directional of textures in an

image D. To calculate the diractionality in vertical and horizontal direction, the

derivatives ∆horizontal and ∆vertical are computed by convolving D with the kernels

Kh and Kv, respectively:

∆horizontal = D ∗Kh = with Kh =

−1 −1 −1

0 0 0

+1 +1 +1

 ,

∆vertical = D ∗Kv = with Kv =

−1 0 +1

−1 0 +1

−1 0 +1

 .
(2.86)

Next, the angle θ is computed for every pixel Dx,y:

θx,y =
π

2
+ tan−1 ∆vertical

∆horizontal
(2.87)

The values θ are then grouped into a histogram Hd of n bins (here, n=125) and

the Tamura directionality tDIR ∈ R+ can then be caluculated as the sum of second

moments around each peak from valley to valley, normalized by the number of pixels.

2.3.4 Motility

We derived the morphological features discussed above for every frame of a time-lapse

experiment separately. To observe patterns in the temporal dimension we computed an
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object’s movement behavior (also called migration or motility) with three measures. To

compute these measures we used a series of observations (e.g. a cell under the microscope

that is followed over time) at time points t ∈ i, ..., T that can be generated by e.g. an

automatically tracked cell over time as described in Section 2.2.

Speed

The speed mSPE
t of an object o with spatial coordinates x and y at time point t is defined

as

mSPE
o,t =

√
(xo,t − xo,t−1)2 + (yo,t − yo,t−1)2

1

∆t
, (2.88)

where ∆t is the absolute difference in time for two consecutive frames and mS
o,0 is not

defined. We computed mS
o,t for all pairs of adjacent frames for every object. mS

o,t ∈ R+.

Note that the unit of mS
o,t can either be px/sec or µm/sec. depending on the application

and the used calibration of the experimental setup.

Direction and persistence

The direction of an object o at time point t is computed by the two-parametric arctangent

of its movement vector :

mDIR
o,t = atan2(xo,t−1 − xo,t, yo,t − yo,t−1). (2.89)

Similar to the mathematical artangent function, the method returns the angle of a vector

that is described by a point in (x, y) in a plane. Additionally it considers the signs

of the inputs in order to compute the appropriate quadrant of derived angle. Thus,

mD
o,t ∈ [−180, 180].

Based on the direction, the persistence mPER ∈ [−180, 180] of an object o at time point

t+ 1 is then computed by

mPER
o,t+1 = mDIR

o,t+1 −mDIR
ot . (2.90)

2.4 Machine learning

The field of machine learning comprises the development and application of algorithms

that explore datasets to find informative structures or patterns. The found information is
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then used to construct computational models that can classify new data points or predict

future progressions of processes. In the following sections we will introduce the methods

we used to process and analyze the huge amounts of data that we derived from time-

lapse experiments in the different projects. If not stated differently, formal definitions and

pseudocode descriptions are adapted from Hastie et al. (2009) and Maimon and Rokach

(2010).

2.4.1 Unsupervised machine learning

In unsupervised machine learning, the task is to find pattern or structures in often high-

dimensional datasets that have no label information (Bishop, 2007). A typical application

of unsupervised learning is cluster analysis, i.e. grouping the data in clusters in accordance

to some metric, e.g. the euclidean distance. In this thesis we used two different approaches

of unsupervised learning, which we will discuss in the following paragraphs.

DBscan

DBscan is is a clustering algorithm that exploits the different levels of density in dataset

(Ester et al., 1996). This approach leads to several advantages in comparison to other

highly used clustering algorithms such as k-means. For example. DBscan does not require

the user to provide the number of clusters that should be detected, as the algorithm

natively detects the amount of clusters that is most likely. In addition it can detect

arbitrarily shaped clusters.

The density of the dataset D in accordance to two datapoints p and q, with a distance

metric dist(p, q) is described by following definitions (for details see Ester et al. (1996)).

• Eps-neighborhood:

NEps(p) = q ∈ D|dist(p, q) ≤ Eps, (2.91)

i.e. for every point p in a Cluster C there is a point q in C such that p resides inside

of Neps(q). In addition, Neps(q) is required to contain at least MinPts points.

• Directly density reachable:

A point p is directly density reachable if

p ∈ NEps(q)and|NEps| ≥MinPts (2.92)
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• Density reachable:

A point p is density reachable from a point q if a chain p1, ..., pn exists, while p1 =

q, pn = p such that pi+1 is directly density reachable from pi

• Density connected:

A point p is density connected to a point q if there is a point o such that p and q

are density-reachable from o.

A cluster C is then defined by two properties:

• All points p inside C are mutually density connected

• A point q that is density reachable from any point p of C is part of C as well

For a parameterset D, eps,MinPts, the algorithm is then defined as:

Algorithm 6: DBscan

1. C = 0

2. For each p in D

(a) if p was already visited, skip it

(b) get the set of points N that lie within the eps-neighborhood of p

(c) if |N | < MinPts, mark p as NOISE. Otherwise, open a new cluster C and for
each point q in N

• if q was already visited, skip it

• get the set of points M that lie within the eps-neighborhood of q

• if |M | ≥MinPts, join M and N

• if q was not assigned to any cluster, add q to C

Variational Bayesian approach to fit Gaussian mixture models

When analyzing a dataset of univariate or multivariate measurements, it is often unclear

whether the data is structured into one or many components (i.e. subpopulations or clus-

ters). A way to assess this question is to fit a probabilistic model to the dataset which

assumes that the observed measurements emerged from one or more probability distribu-

tions. An approach that is widely used is the Gaussian mixture model (GMM).
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Given a dataset D with |D| observations, we assume that K components exist that are

following Gaussian distributions with different parameters. The parameter vector is writ-

ten as θk=1,...,K = {wk=1,...,K , µk=1,...,K , σ
2
k=1,...,K}, where µk=1,...,K and σ2

k=1,...,K are the

mean and the variance of component k and wk=1...K is the mixing coefficient of every com-

ponent k, respectively. Additionally we denote a single observation as od=1,...,|D| . Finally,

we define p(o|θ) as the probability distribution of o that is parametrized by θ. Thus, the

GMM is defined as

p(o|θ) =
K∑
k=1

wkN(o;µk, σ
2
k). (2.93)

The parameters θ are typically fitted by expectation maximization (EM). Starting with an

uniformly distributed prior w and a provided number of components K, the membership

of every od=1,...,|D| is adjusted. Next µk, σ
2
k and wk are recomputed for every component,

resulting in a shift of the distributions and thus a reassignment of every datapoint to the

respective component becomes necessary. After some iterations the system converges to

a local optimum, resulting in the fitted model parameters θ and w. A downside of this

approach is that the number of components has to be provided a priori.

An approach to fit K together with the other parameters is to put the GMM in a Bayesian

formulation. In this setting, the task is to infer the posterior distribution p(θ, z|x), where

z = {zdk} is a indicator variable such that zdk = 1 if observation od belongs to the kth

component and 0 otherwise. The model is then written as a full data likelihood:

p(o, z|θ) =

|D|∏
d=1

K∏
k=1

{wjN(od;µk, σ
2
k)}zij , (2.94)

As the direct inference of p(o, z|θ) is intractable, it has to be approximated. A compu-

tationally less demanding way is to approximate p by a variational distribution q(θ, z|o)
(Variational Bayes, see Bishop (2007)). As this distribution factorizes over the parameters

θ and z, it can be rewritten as qθ(θ|o) × qz(z|o). with the joint distributions defined as

p(o, z, θ) = p(o, z|θ), p(w)p(µ|σ2)p(σ2). In addition, the priors are defined as :

p(w) = Dirichlet
(
w;α

(0)
1 , ...α

(0)
k

)
,

p(µ|σ2) =
K∏
k=1

N
(
µk;m

(0)
k , (β

(0)
k , σ2

k)
)
,

p(σ2) =

K∏
k=1

Gamma
(
σ2
k;

1

2
v

(0)
k ,

1

2
φ

(0)
k

)
,

(2.95)
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where α(0), β(0),m(0), v(0), φ(0) are predefined parameters. The posteriors are then derived

as:
qw(w) = Dirichlet

(
w;α1, ...αk

)
,

qµ|σ2(µ|σ2) =
K∏
k=1

N
(
µk;mk, (βk, σ

2
k)
)
,

qσ2(σ2) =

K∏
k=1

Gamma
(
σ2
k;

1

2
vk,

1

2
φk
)
,

(2.96)

By using this Bayesian formulation of the GMM, redundant components are eliminated as

the posterior over the component weights wk=1,...,K becomes sparse and only the number

of components that is required to fit the data is retained. In addition, as the parameters

are probability distributions itself, we receive a confidence over the component weights

wk=1,...,K on how likely the memberships of every datapoint to a given component is.

Figure 2.6 exemplifies the fitting procedure by the Variational Bayes approach. For a

detailed discussion of the method, see (Bishop, 2007).
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Figure 2.6: Variational Bayesian mixture of K = 6 Gaussians applied a univariate set
of samples that were drawn from two different Gaussian distributions. Lines correspond
to the different components k ∈ K, dotted red lines represent the mean σk for every
component. (a) 2 iterations. The initial components are visible, i.e. Gaussian distributions
with equal standard deviations but different means. (b) 51 iterations 3 of the 6 initial
components are close to being dropped out because of redundancy. (c) Two components
fit the data quite well, the standard deviation broadens more and more. (d) Convergence.
Only two components “survived” the fitting process, all others were dropped out.

2.4.2 Supervised machine learning

The goal of supervised machine learning is to generate a computational model that is

able to assign a continuous (e.g. weight of a person) or discrete (e.g. patient is sick or

healthy) target output y to a given sample data point of x. While y is a scalar with

dom(y) being the range of values that y can attain, x is a vector of N features f , i.e.

numerical values that describe the sample x in a high-dimensional space. To achieve this

goal, the model parameters are typically trained by providing a matrix of sample data
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points X : M × N together with a vector y of known target outputs. The rows of X

denote independent data points and columns represent the features. Training is then

achieved by adjusting the parameters (or weights) of the model to minimize an error ε,

that compares the predicted output ŷi of the model with the known true values yi for

every training sample xi with i = 1, ...,M . If dom(y) ∈ R we speak about a regression

problem. If dom(y) is an amount of discrete values we call the task classification. In this

thesis we used different approaches for supervised learning, which we will describe in the

following paragraphs.

Decision tree

The decision tree algorithm consists of a rooted tree-structured graph where each interior

node represents a feature fj with j = 1, ..., N and the leaves correspond to the possible

output values dom(y) (i.e. y ∈ R in the continuous case, and y = {0,1} in the discrete

binary case).

The decision tree is constructed top down (e.g. from root to leaves), at each branch (or

node) of the tree a training data set T ⊂ X is split into partitions R1,...,|R| in accordance

to a single feature fj . The feature fj is chosen by an evaluation function that determines

the homogeneity of the resulting partitions (e.g. R1 and R2) after the split. One measure

for this is the Gini index, which computes the probability distributions of dom(y). It is

defined as:

Gini(yT ,T) = 1−
∑

c∈dom(y)

(
|σy=cT|
|T|

)2

, (2.97)

where yT is the vector of target vectors for the samples in S and | · | is the finite cardinality.

Thus, for each value c ∈ dom(y), Gini’s index computes its relative abundance. A low

Gini index is indicating high variable importance and vice versa. The evaluation criterion

to select an attribute a is then defined as

GiniGain(fj ,T) = Gini(yT ,T)−
∑
k∈R

|σfj=kT|
|T|

·Gini(y, σfj=k,T) (2.98)
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Is 
person male?

Is age > 60?

Is smoking? Is sporty?

Has patient
relatives?

sick: 0.6 healthy: 0.4

sick: 0.3 healthy: 0.7sick: 0.9 healthy: 0.1

yes no

yes no

Figure 2.7: Example for a decision tree. At every branch point, the data set is split in
accordance to a single feature and a certain split point. The split can be binary (male?)
or numerical (age < 60?). If a leaf is reached, the model reports the predicted class (here:
sick or healthy)

Ensemble learning

A challenge in the training of decision trees is to find a proper pruning strategy that

prevents the overfitting of the model to the training data. One way to tackle this problem

is to use ensemble learning, where many different models are trained on the data set

and predictions are aggregated, which often results in improved predictive power. Two

well-known methods for ensemble learning are on the one hand boosting (Schapire et al.,

1998), where successive models are given an extra weight to samples incorrectly predicted

by earlier predictors and in the end a weighted vote is taken for prediction. On the other

hand bagging (Breiman, 1996) constructs each model independently using a bootstrap

sample of the data set and a majority vote over all trees is taken to generate the final

prediction score.
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Majority vote

sick: 0.9

healthy: 0.1

Figure 2.8: Schematized view of a random forest model. An ensemble of decision trees
is constructed, where each tree is trained only on a (randomly drawn) subset of the data
and feature space. Improvement in generalization (i.e. predicting unseen data samples) is
achieved by taking the majority vote of all predicted class labels.

Random forest

Random forests are a variant of bagging (Breiman et al., 1984). A subset of features is

randomly drawn and a decision tree is grown based on this subset. This is repeated a

predefined amount of times (usually some hundred trees suffice for a good classification

performance), resulting in a “forest” of decision trees, each based on a subset of the original

features. Each sample in the training set is then classified by every decision tree and the

most probable output is chosen by majority vote. A useful feature of random forests is the

inherent computation of feature importances. These measures are derived by averaging

the changes in the split criterion over the entire ensemble of grown trees. Changes in the

split criterion are computed by estimates of input feature importance for every decision

tree by summing changes in the risk due to splits on every feature. At each node, the risk

is estimated as node impurity. This risk is weighted by the node probability. Variable

importance associated with this split is computed as the difference between the risk for the

parent node and the total risk for the two children. Subsequently, the given probability to

which a sample is assigned a class can be used to examine borderline cases and to improve

the training procedure.

Support vector machine

The support vector machine (SVM) is a mathematical model that tries to find a hyperplane

in a high-dimensional space that separates the samples si in a training set S ⊂ X with
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Mapping Solution

Input spaceFeature spaceInput space

a cb

Figure 2.9: Schematized view of SVM training. (a) a dataset is not linearly separable
in the feature space (here: 2 dimensions). (b) After transforming the data in a higher-
dimensional feature space, for example by a radial basis function (RBF) kernel, the data
becomes linearly separable. A maximum margin hyperplane is fitted with respect to some
support vectors, i.e. vectors on both sides of the margin that have the closest distance to
the margin. (c) After retransforming the data to the original feature space, we receive a
non-linear classifier.

different target outputs yi, where i = 1, ..., |S| (Cortes and Vapnik, 1995). As most

datasets are not separable linearly, the authors suggested to transform the data into an

even higher-dimensional space, where linear discrimination becomes possible by applying

a kernel function φ(). The support vector machine then solves the following optimization

problem:

min
w,b

1

2
w>w + C

|S|∑
i=1

ξi,

subject to yi(w
>φ(si) + b) ≥ 1− ξi,

ξi ≥ 0.

(2.99)

Here, training vectors si ∈ S, i = 1, .., |S| are mapped into a higher-dimensional space by

the kernel φ(). SVM then finds a linearly separating hyperplane with the maximal margin

in this higher dimensional space by optimizing the weights w and the bias b, where ξj is

a measure that denotes the distance of wrongly classified samples to the hyperplane and

C > 0 is a penalty parameter. A kernel φ() that is used extensively and has been shown

to produce reasonable results for a wide range of applications ins the radial basis function

(RBF), defined as:

φRBF(xi,xj) = exp(−γ||xi − xj ||2), (2.100)

with γ > 0; 1 < i < j < |S| and φ(xi,xj) ≡ φ(xi)
Tφ(xj).
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Convolutional neural network

The convolutional neural network (CNN) is an approach of supervised machine learning on

image-based datasets that recently was improved by a row of breakthrough improvements

and was thus dominating several image classification challenges (Krizhevsky et al., 2012).

The principles underlying CNNs were already published 35 years ago (Fukushima, 1980),

yet it took the power of modern GPU computing to unravel their full potential. Nowadays

CNNs provide the benchmark models for many large-scale image classification challenges,

as shown for example in Krizhevsky et al. (2012). The greatest strength of CNNs is

their ability to derive feature maps directly from the raw pixel information of an image,

which renders the need to derive hand-crafted features in the image obsolete. In the

following we will introduce the conceptual parts of a CNN that are needed to understand its

application in chapter 5. An excellent recent review which highlights the most important

publications in the field is available from LeCun et al. (2015). The theory underlying

convolutional neural networks can also be found in the classical multilayer perceptrons

(MLP). A layer of nodes in a directed graph with several input edges but a single output

edge is fully connected to another layer by a nonlinear activation function. Similar to

other classification methods, a multilayer perceptron is trained by presenting the network

a set of samples with known class label. The classification error ε of a validation set is

then minimized by adjusting the weights of the edges in the graph by backpropagation

Rumelhart et al. (1986).

Convolutional layer CNNs aim to classify a digital image D with pixels Dx,y by resem-

bling the architecture of neurons found in human vision (Hubel and Wiesel, 1968). The

idea is to reduce the huge parameter space (and thus computational burden) that arises

when every pixel of an image is used as an input of a fully connected MLP by adding a

locally connected layer. A convolutional layer consists of a set of nodes that apply linear

filters to sub-regions of the image, which is conceptually equivalent to a convolution as

defined in section 2.1.2. After adding a bias term and applying a non-linear activation

function to each filter, a feature map is obtained, defined as

hkx,y = ψ((W k ∗Dx,y) + bk), (2.101)

where k ∈ K is the number of filters, ψ is the activation function, W are the weights and

b is the bias for each filter k, respectively. Note that the idea of using locally connected

networks for image classification is based on the assumption that natural images are sta-

tionary, meaning that statistics of one part of the image are the same as in another part.
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Figure 2.10: Exemplary architecture of a convolutional layered neuronal network. An in-
put image is first passed through several alternating convolutional and max pooling layers.
The layers are not fully but locally connected, which reduces the computational burden
and the number of weights that have to be optimized during training. The convolutional
layers lead to an abstract representation of the original image. This procedure takes local
textural patterns into account and the pooling layers also introduce some sort of shift
invariance. After 7 or 8 convolutional or pooling layers, the resulting filters are fed in a
conventional neuronal network with fully connected layers. The nework then reports a
classification score (here: binary).

Thus, locally learned features are valid througout the whole image.

Pooling layer The number of features after running an image through a convolutional

layer is still too large to train a deep network. For example, for an image with size 128×128

px and 500 learned filters over sub-regions of size 10 × 10 px, the number of features for

single filter after convolution would be (128−10 + 1) · (128−10 + 1) = 14161. This results

in a total of 14161 ∗ 500 = 7080500 features. However, due to the stationarity property of

natural images it is possible to divide the image into non-overlapping tiles of predefined

size, and apply simple statistics such as averaging or taking the maximum. In addition to

a great reduction of features that are propagated through the network, pooling provides

a form of translational invariance, which is beneficial to the classification performance of

the final network (Zeiler and Fergus, 2013).

Activation function The activation function of every node in a neural network decides

if this node produces output (“fires”) or not. Using non-linear functions allows to model

complex relationshops in a given data set. The classical activation functions used in neural
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networks are the sigmoid or hyperbolic tangent function:

Sigmoid: f(x) =
1

1 + exp(x)
,

Hyperbolic tangent: f(x) = tanh(x) =
ex − e−x

ex + e−x
.

(2.102)

Recently, Nair and Hinton (2010) showed that another activation function, called rectified

linear function, solves some problems of the sigmoind and tanh functions such as vanishing

gradient (not mentioned here) and in addition allows to efficiently train deep networks

without pre-training the weights. It is defined as:

f(x) = max(0, x). (2.103)

Dropout To train a model that performs well on a given test set, ensemble methods

as discussed in section 2.4.2 can largely improve the prediction performance. However,

the complex and long-lasting training procedure of even a single CNN (depending on the

size of the dataset and the used architecture but usually between many hours and several

days) prohibits the simultaneous training of hundreds of these models. A very efficient

workaround of this problem is called dropout and was first formulated by Hinton et al.

(2012). The algorithm works by setting the weight of randomly chosen nodes to zero

during the training process. This leads to a different sampling of the network architecture

every time a training input is presented, but the network is still trained as a whole. This

technique is comparable to ensemble learning, but the training time is much faster as only

one model hast to be learned.

Stochastic Gradient Descent Stochastic Gradient Descent (SGD) is a technique to

effectively train a deep neural network. As described in Bottou (2010), SGD follows the

same principles as standard gradient descent while being drastically simplified. Given the

tuple z of a data sample x and its true class label y, z = (x, y), a loss function l(ŷ, y)

evaluates whether the prediction corresponds to the true label y. The task is to find

a function fw(x) with the weight vector w parameterizing f , thus minimizing the loss

Q(z, w) = l(fw(x), y), averaged on all samples x. The SGD algoirhtm is then written as

wt+1 = wt − γt∇wQ(zt, wt), (2.104)

where zt is a randomly picked data sample. The main hyper-parameter for gradient descent

based methods is the learning rate γ. This factor determines the step size that is taken in
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the direction of the gradient. Unfortunately, this parameter is highly problem dependent

and needs to be adjusted during training. The later we are in the trainings process, the

smaller the adjustments to the parameters should be. This can be solved by introducing

an additional hyper-parameter for momentum α, which controls the decay of the learning

rate after each iteration through the training set (also referred to as epoch). It is given by

v = αv + γ∇wQ(zt, wt)

w = w − v
(2.105)

where v is the velocity vector with same dimensions as the parameter vector w.

2.4.3 Model evaluation

Evaluation methods for classification models

In supervised machine learning, a model performs well if it correctly predicts the class

labels most samples that were not part of the training set. In applications with binary

class labels (e.g. positive and negative), several basic measures can be derived from the

prediction of a model. Positive samples that are correctly classified as such are called

true positives (TP), whereas correctly classified negative samples are called true negatives

(TN). Furthermore, falsely classified positive samples are called false negatives (FN), and

falsely classified negative samples are called false positives (FP). Based on these definitions

the following measures can be computed:

• Precision:

The precision measures the portion of the classified samples that were correct. It

falls in the range from [0, 1], with 1 being the best score. Precision is denoted as

prec =
TP

TP + FP
(2.106)

• Recall / true positive rate:

Recall is a measure to determine the portion of the samples were assigned the correct

class. It falls in the range [0, 1], with 1 being the best score. Recall is denoted as

rec =
TP

TP + FN
(2.107)
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• False positive rate:

rec =
FP

FP + TN
(2.108)

• Specificity / true negative rate: The specificity determines the fraction of cor-

rectly identified negative samples

spec =
TN

TN + FN
(2.109)

• F1-measure:

The F1-measure combines precision and recall in a single score. Its values are fall

within the interval [0, 1], where 1 denotes a perfect classifier and 0.5 stands for

random guessing. The F1-measure is denoted as

F1 = 2 · prec · rec

prec + rec
(2.110)

• Macro- and micro averaged F1-measure:

In multi-class classification tasks, the measures described above only give information

about the performance on one class (normally the positive). In order to obtain a

single measure that accounts for performance on both classes, it is necessary to

apply macro and micro statistics. For example, the F1-measure can be calculated

for each class and then averaged, which is called macro-averaging. In contrast, the

true positives, false positives and false negatives can be summed up for all classes

and precision, recall and F1-measure are calculated afterwards. For a set of class

labels C = c1, ..., cn, the micro-averaged F1-measure is defined as:

TP′ =

|C|∑
i=1

TP(ci),

FP′ =

|C|∑
i=1

FP(ci),

prec′ =
T ′

TP′ + FN′
,

rec′ =
TP′

TP′ + FN′
,

microF1 = 2 · prec′ · rec′

prec′ + rec′

(2.111)
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and the macro-averaged F1-measure is defined as the mean of all class labels Ci:

macroF1 =
1

|C|

|C|∑
i=1

F1(ci). (2.112)

The two procedures bias the results differently - micro-averaging tends to overem-

phasize the performance on the class with the most samples, while macro-averaging

over-emphasizes the performance on the class with the fewest samples.

• Receiver-operator characteristic and AUC:

For classification methods that return a continuous score instead of a categorical

class label, the receiver operating characteristic (ROC) can be used to determine

the best tradeoff between the true positive rate (TPR) and the false positive rate

(FPR). The ROC-analysis is carried out by analyzing all possible thresholds of the

classification score after which a sample is regarded as the positive or the negative

class. The analysis can be visualized by plotting the resulting TPR and FPR against

each other. The resulting curve can be used in two ways. First, the point on the

curve where the TPR is highest and the FPR is lowest is the optimal threshold

for the classifier. Second, by analyzing the area under the curve (AUC), we obtain

an easily interpretable value in the interval of [0, 1] that represents how well the

classifier performs overall. An AUC of 0.5 represents random guessing, whereas a

AUC of higher than 0.8 can be regarded as a well performing model.

Evaluation methods for regression models

While classification models can be evaluated by doing statistics over the correctly and

erroneously predicted values, the continuous target variable in a regression model renders

different approaches necessary. Similar to the evaluation of a fitted curve, one typically

assesses the residual error of the function, or even the correlation of the predicted values to

the true values. In this thesis we used the RMSE and the R2 score to evaluate regression

models.

• Root mean squared error:

A very popular measure to evaluate the error rate of a regression model is the root
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mean squared error (RMSE). It is defined as

RMSE =

√√√√√ n∑
i=1

(pi − li)2

n
, (2.113)

where li is the true value and pi is the predicted value for a sample i. The disad-

vantage of this measure is that it is only comparable between different regression

models that wer fitted to the same data. It does not provide a general idea if the

model works well or not.

• R2 score:

The R2 score reports the percentage of variance that is explained by the trained

regression model. A value of one denotes a perfect fit and smaller values denote

worse fits. It is defined as

R2 = 1− SSres
SStot

= 1−

∑
i

(pi − p̄)2∑
i

(yi − p̄)2
, (2.114)

where li is the true value and pi is the predicted value for a sample i. p̄ is the mean

of the observed data, denoted as p̄ = 1
n

n∑
i=1

pi.

Cross-validation

Cross-validation is a popular method to evaluate the generalization performance of a

trained model (Devijver and Kittler, 1982). The data set is split into k stratified batches

of equal size and k − 1 batches are used to train the model. The performance measures

are then evaluated on the remaining batch that the model has not seen before. This pro-

cedure is repeated k times in a round-robin fashion. By doing statistics on the computed

performance measures for every fold, we can see if our model is well trained or overfitted to

the training data. For classification methods that utilize hyperparameters such as SVMs,

Hastie et al. (2009) pointed out that two rounds of cross-validation have to be carried out

in order to prevent overfitting:

The error estimates from step 2c are then accumulated over all K folds to produce the

cross-validation estimate of prediction error.
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Algorithm 7: K-fold cross validation

1. Divide the samples into K cross-validation folds at random

2. For each fold k = 1, 2, ...,K

(a) Find a subset of “good” predictors that show fairly strong (univariate)
correlation with the class labels, using all of the samples except those in fold k.

(b) Using just this subset of predictors, build a multivariate classifier, using all of
the samples except those in fold k.

(c) Use the classifier to predict the class labels for the samples in fold k.

2.5 Software tools

In the following we list the tools and frameworks that we used throughout the course of

this thesis.

2.5.1 ImageJ / FIJI

ImageJ is a widely used software for the analysis of biological images (Rasband, 2012). It

features a multi-stack imageviewer that enables the visulization of datasets with up to 5

dimensions (x × y × z × time × color channels), also as a 3D rendering. In addition,

a multitude of plugins are available, while new plugins are actively developed by a huge

open-source community. ImageJ also has frameworks and wrappers for most scripting

languages, e.g. Python, that enables batch scripting.

FIJI is a distribution of ImageJ that was specifically designed for the analysis of biological

image-based datasets (Schindelin et al., 2012). It features the core ImageJ routines along

with a set of powerful and carefully tested features for image processing, registration,

segmentation and noise reduction.

ImageJ and FIJI are written in Java and are fully open source.

2.5.2 Trackmate

Building on the algorithm developed by Jaqaman et al. (2008), Trackmate provides a pow-

erful open-source framework to automatically track single cells in time-lapse microscopy
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experiments. It is capable of modeling cell division events, a feature that most other

tools for automatic tracking are lacking. Furthermore, Trackmate features a graphical

user interface that allows to easily filter erroneous tracks or to manually correct them.

Being a plugin for ImageJ, it is possible to script full pipelines that involve sophisticated

image preprocessing steps followed by the autoatracking in a single application. Also, its

xml-based data format is easy to parse in order to further analyse or process the results

from autotracking in programs other than FIJI.

2.5.3 CellProfiler

CellProfiler is program to batch-process and analyze data from high-throughput imaging

experiments citepCarpenter2006. It consists of GUI where the user can easily build a

pipeline by choosin from a list of available modules. The modules cover the full range of a

bioimage informatic analysis, yet its modular structure and predefined parameter sets for

every module render more sophisticated or specialized analyses difficult.

CellProfiler is written in Python and fully open-source.

2.5.4 Matlab

Matlab is a scripting language that is based on Java and thus platform independent (Math-

works, 2015). Being used extensively in the fields of engineering, computer vision and

machine learning, many recently published methods come with Matlab implementations.

Matlab’s greatest strength is numerical computing and matrix manipulations. Powerful

plotting functions, toolboxes for image processing and statistical analysis and the interac-

tive GUI make it a perfect tool for rapid prototyping.

2.5.5 Background Correction Tool

The method for background estimation and correction described in sections 2.1.3 and 2.1.3

is implemented as a Matlab tool featuring a full graphical user interface. For details please

see the dissertation of Schwarzfischer (2013).
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2.5.6 TTT

TTT is a program to manually follow (i.e. track) single cells and their progeny in time-lapse

microscpy experiments (Rieger et al., 2009). The key feature of TTT is its feature-rich GUI

and the strong code base, that allows to track full genealogies of e.g. differentiating (and

thus proliferating) stem cells over long time spans of at least 14 days. As these genealogies

can comprise tens of thousands of cells, most other available tracking programs fail in this

task. TTT is closed-source and written in C++.
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Chapter 3

Quantitative analysis of

T-lymphocyte migration modes

In this chapter we describe the development of an automated pipeline to quantify and

analyze the migration behavior of T-lymphocytes in time-lapse experiments of a murine

model cell line. These cells are robust against photo-toxicity, which allowed the acquisi-

tion of fluorescence images of both nucleus and cell soma at every frame. This made it

possible to use available state-of-the-art algorithms for cell detection and autotracking. In

addition, the cells did not divide throughout the period of observation. Thus the chal-

lenge of our automated analysis was to follow highly motile non-dividing T-lymphocytes

in multiple time-lapse experiments and statistically analyze their morphodynamics over

time. We conducted the project in close collaboration with Dr. Anne Reversat and Prof.

Dr. Michael Sixt from IST Austria. A manuscript is currently prepared for publication.

It is entitled “A. Reversat*, F. Buggenthin*, J. Merrin, A. Leithner, I. de Vries, F.

J. Theis, C. Marr and M. Sixt. Morphodynamic analysis of T lymphocyte migration in

confined microenvironments.”

We identified four key modules that the pipeline had to satisfy and could not be estab-

lished with standard software in order to derive the necessary information: (i) Detection

of cell somata and nuclei in separate channels and for every frame of the experiment,

(ii) automatic tracking of single cells over the full experimental time span, (iii) quantifi-

cation of a set of interpretable features that describe cell morphology and motility, and

(iv) quantification of actin expression inside the cell soma. The pipeline should show

high robustness for a fixed parameter set that can be chosen once for an experimental

setup. Furthermore, it should have the ability to manually assess automatically tracked
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Figure 3.1: Experimental setup and data structure. (a) A micropillar of different heights
is confining the cells on the coverslip. (b) Example of a single frame of size 1000x1000 px
with 3 color channels. Scale bar respresents 40 µm. (c,d,e) Cutouts from (b) showing a
single cell in the brightfield (c), Hoechst405 (d) and LifeAct-GFP channel (e). Scale bars
represent 15 µm.

cell trajectories and correct or discard them if necessary. As the experimental setup will

be changed throughout the experiments to acquire best results for different conditions,

the pipeline should be easily adaptable to changes in the experimental setup to allow for

the analysis of new datasets.

3.1 Experimental setup and used datasets

We developed our pipeline based on a set of image stacks from fluorescence time-lapse

microscopy experiments. Here, a T-cell lymphoma cell line was used to model wild type

lymphocytes (Malherbe et al., 2000). The cells were transfected with LifeAct-GFP, to

reveal filamentous actin, and stably selected. Before each experiment, the nucleus of every

cell was stained with Hoechst405 (Invitrogen).

The cells were plated out on a customized coverslip with with either adhesive coating (Fi-

bronectin, BSA) or non-adhesive coating (PLL-PEG). Fibronectin is adhesive via Integrins

and other molecules present on T cells, BSA binds non-specifically to those molecules. A

micropillar with differing heights of 8, 6 and 4 µm was used to mimic confinement in

vitro as described in Le Berre et al. (2014) (see Figure 3.1a). Cells were imaged in in-

tervals of 30 seconds for 60 minutes with a time-lapse light microscope (Nikon) using a
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Experiment Condition Confinement (µm) Replica Seeding Density

140609 Fibronectin 8 1 low
140609 Fibronectin 8 2 low
140609 Fibronectin 6 1 low
140609 Fibronectin 6 2 low
140609 Fibronectin 4 1 low
140609 Fibronectin 4 2 low

150429 BSA 6 1 high
150429 BSA 6 2 high
150429 PEG/BSA 6 1 high
150429 PEG/BSA 6 2 high

Table 3.1: Overview of the full dataset used in this study. Low seeding density was 22±8.7
cells per 0.4 mm2 and high seeding density was 59.5±12.87 cells per 0.4 mm2, respectively.

20x objective. One bright-field image and two fluorescence images for Hoechst and GFP

staining were acquired, respectively. An image stack consisted of 121 frames (1000× 1000

px, 1 px = 0.4 µm2) in 16-bit format, for every color channel (see Figure 3.1b-d). All

time-lapse experiments were conducted by Dr. Anne Reversat, Institute of Science and

Technology Austria (IST Austria).

The full dataset comprised 11 image stacks from two experiments, one with a low seeding

density (22±8.7 cells per 0.4 mm2) and one with a high seeding density (59.5±12.87 cells

per 0.4 mm2) with differing conditions (see Table 3.1 for details). Processing of all image

stacks took a total of 3 hours. The segmentation and tracking modules were executed

sequentially on a standard laptop (Core i7-3520M @ 2.90 GHz, 12GB RAM, 250GB SSD),

while the quantification module was executed as parallellized jobs for single cells on a

computation cluster (the average node architecture was equal to an Intel Xeon 2GHz,

4GB RAM running a 64bit linux-based operating system).

3.2 A pipeline for automatic quantification and analysis of

T-lymphocyte morphology and motility

To process images from fluorescence time-lapse experiments automatically and robustly,

several design decisions have to be taken that typically are a tradeoff between measurement

precision, computation speed and the amount of manual adjustment. For example, model-

based methods to detect objects in images such as active contours and level set algorithms

are able to describe a cells shape with a precision below pixel resolution, but are also highly
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parameter dependent and computationally demanding (Meijering, 2012). The same class

of algorithms can be used for accurate and automatic tracking, but typically only a few

cells can be followed at the same time because of the computational burden (Ambühl

et al., 2011) (see Section 2.2). In addition, an autotracking method that conducts cell

identification and tracking in a single step is not well suited for parallelization. As in time-

lapse microscopy experiments many thousand images have to be processed in reasonable

time with as less user interaction as possible, it is necessary to devise a robust and modular

pipeline architecture where every part can be executed automatically and in parallel.

In this project we chose algorithms for the different modules of our pipeline with respect

to these demands. A schematic overview of the pipeline is depicted in Figure 3.2. In a first

step, we preprocessed every frame in every channel of the image stack to filter noise and

correct illumination differences. Next, we separated the channels to detect cell and nuclei

outlines separately. Simultaneously, we followed the nuclei over time by an autotracking

approach to create single cell trajectories. We then used the detected outlines in every

channel together with the tracking information to derive a set of 40 features that describe

the shape (f∗ and r∗ measures, see Section 2.3), as well as texture (t∗ and f∗ measures) and

motility (m∗ measures) of every cell. We will discuss the steps executed in every module

in the following paragraphs. For details about the used algorithms and mathematical

concepts, see Chapter 2.

3.2.1 Image preprocessing

In many time-lapse experiments the cells are transfected with fluorescent compounds such

as green fluorescent protein (GFP) to label structures of interest. The varying efficiency of

the transfection protocol leads to heterogeneous levels of marker expression in individual

cells that render the robust identification of e.g. nuclei difficult. Thus, for a given fluores-

cence image stack, we adaptively enhanced the contrast of every image frame and every

channel by histogram equalization such that 0.4 % of the pixels were saturated, resulting

in an increase of overall contrast and the intensity of very dim cells. Next, we applied a

median filter with a neighborhood O of size 5 × 5 to remove noise from the images (for

details see Section 2.1.1 and Section 2.1.2).

3.2.2 Autotracking and optional manual correction

To retain a high modularity and robustness of our pipeline, we decided to use a two-step

autotracking approach as provided by the ImageJ plugin Trackmate (Jaqaman et al., 2008;
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Figure 3.2: Schematic view of
the developed automated anal-
ysis pipeline. The pipeline
takes a 4-dimensional image
stack (2 fluorescence channels,
121 time points) as input.
First, every channel of the stack
is preprocessed to filter noise
and correct illumination differ-
ences. Next, the channels are
separated and outlines for cells
and nuclei are detected by seg-
mentation. Using the images
of observed nuclei, all cell cen-
ters are automatically detected
and then tracked over time. If
needed, the resulting cell tra-
jectories can then be manually
assessed and corrected. Even-
tually, a set of 40 features that
describe the shape (f∗ and r∗

measures, see Section 2.3), as
well as texture (t∗ and f∗ mea-
sures) and motility (m∗ mea-
sures) of every cell over time are
derived.

Schindelin et al., 2012). The method first detects the centers of all nuclei in fluorescence

images by a Laplace of Gaussian (LoG) filter (see Section 2.1.2). Next, a tracking algorithm
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that is able to account for missing time points and cell divisions is applied (see Section 2.2).

The algorithm first links objects between adjacent frames by a locally optimal approach,

thereby creating several smaller track segments. Next, the segments are evaluated by a

global optimization procedure. Given a cost matrix that compares possible gap closures

(i.e. merging of two track segments), splitting events (i.e. cell division) or termination (i.e.

cell death or loss), the configuration of all tracks that minimize the total cost is derived.

The full procedure can be executed as a batch job without user interaction. Still, all tracks

can be manually evaluated by an easy to use graphical user interface, allowing to delete

erroneous tracks or even to reassign single frames or whole track segments.

3.2.3 Cell detection

We separated nuclei and cell somata in the respective fluorescence images from the back-

ground by applying the thresholding-based segmentation algorithm maximally stable ex-

tremal regions (MSER) for all images in the respective channel (Matas et al., 2004). We

applied mathematical closing to fill holes in segmented foreground objects and filtered

objects with too small areas (typically smaller than 100 px). The resulting binary image

showed the masks of all foreground objects. To split clumped cells we used the coordi-

nates that were detected by the LoG filter operation in the autotracking step as seeds for

a watershedding operation.

Quantification of morphology and motility

By combining the spatial coordinates from autotracking with the detected outlines of nuclei

and cell somata we built image patches of a fixed size with mass centered cell nucleus and

soma in the middle of the patch, respectively. We then quantified the morphology of the

object for both fluorescence channels by a set of 92 features describing shape and texture.

The set included basic measurements such as a cell’s area or its eccentricity, but also more

sophisticated shape descriptors such as Ray features (Smith et al., 2009). To describe

textural patterns, we derived the simple pixel intensity statistics, as well as the feature

sets defined by Haralick (Haralick et al., 1973) and Tamura (Tamura et al., 1978) (21

textural features in total). To describe the motility of a cell we computed its speed, the

direction and its persistence for all frames. For a detailed discussion of all features, see

Chapter 2.
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Implementation

We implemented the segmentation and quantification modules of the pipeline in Matlab

and the autotracking in Java. The full pipeline is executed by a single Matlab script where

all parameters can be set. A batch script then scans a given folder for all image stacks

and automatically executes the ImageJ plugin Trackmate that conducts the autotracking.

Afterwards, the resulting XML file bearing the tracking information is converted into a

Matlab structure. In the mean time, every channel is separately segmented in Matlab.

Together with the tracking information, the morphology and motility features are then

quantified, where every cell is processed in parallel on a computing cluster. Eventually

the results are parsed in a Matlab structure that eases further statistical analyses.

3.2.4 Pipeline parameters

We used the following parameters in the different modules of our pipeline to process the

dataset:

• Preprocessing

Parameter Value

Percentage of saturated pixels 4%

• Autotracking

Parameter Value

Radius 5px
Intensity threshold 250
Median filtering False
Subpixel accuracy False
Allow track splitting True
Allow track merging False
Maximum splitting distance 15 px
Maximum frame gap 12 frames
Maximum gap closing distance 20 px
Maximum linking distance 15 px

• Cell detection

Due to the different object sizes and fluorescence intensities, we used different pa-

rameter sets for the object detection module to segment cell nuclei and somata in

the respective channels:
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Parameter Value (Nuclei) Value (Somata)

Delta 2 1
Minimum Object Size 100 px 20 px
Maximum Object Size 5000 px 2000 px
Maximum Variation 1 1

• Quantification

No special parameters were necessary in this module. For implementation details of

the measured features, see Section 2.3.

It is worth noting that we used the same set of parameters for all image stacks, illustrating

the robustness of our pipeline.

3.2.5 Evaluation

Depending on the application and the desired readout, a method that automatically de-

tects and tracks cells in time-lapse experiments can be evaluated by different measures

(Chenouard et al., 2014; Maška et al., 2014). For example, a simple analysis of cell motil-

ity does not require the method to derive accurate cell shapes. On the other hand, if one

is only interested in cell shape dynamics but not in detailed motility statistics the pipeline

does not have to detect exact cell centers. In this project we were interested in both,

accurate cell motility and shape measurements of single cells over time. Thus we decided

to evaluate the pipeline in both ways, but did not account for missing measurements in

single time points of a cell track, as we were able to interpolate or discard these errors in

a later curation step.

To evaluate an autotracking method, one typically computes the disagreement to a ground

truth by a globally optimal overlap between both track sets. As the dataset in this project

was lacking a proper ground truth, we manually assessed every autotrack and decided if

it was correct or showing errors. We marked an autotrack as wrong if one or more of the

following criteria applied: (i) Premature track end due to loss of cell, (ii) misassignment

of a single frame, leading to a crossing of two cell tracks, (iii) larger jumps in adjacent

frames due to erroneous cell detections and (iv) falsely detected splitting events due to

debris or touching cells. Our method generated smooth and continuous autotracks for

image stacks with low (see Figure 3.3a) and high seeding densities (see Figure 3.3b). The

manual assessment of every cell in the dataset revealed that 95 % and 90 % of all tracks

were correctly assigned in stacks with low and high seeding densities, respectively.



3.2. AUTOMATED ANALYSIS PIPELINE 93

a b

Figure 3.3: Autotracking shows high accuracies on image stacks with two different seeding
densities. (a,b) Visualization of tracked single cells over the full time span (121 frames, 30
seconds intervals, 60 minutes duration) for low seeding density (22±8.7 cells per 0.4mm2)
and a high seeding density (59.5± 12.87 cells per 0.4 mm2).

In a next step we assessed how accurate our pipeline detected the shape of cell nuclei

and somata in the two color channels. We created a set of 30 representative images by

taking the first, middle and last frame from every stack and every channel, respectively.

We manually segmented each image to produce a ground truth of optimal segmentations.

Additionally we applied a simple automatic segmentation approach using Otsu’s algorithm

with mild postprocessing steps to see how its performance compared with our proposed

method. We then computed the overlap of manually and automatically generated segmen-

tation approaches by the Jaccard distance, a measure frequently used in computer vision

to evaluate segmentation results (see Section 2.1.4).

We found that in the segmentation results for cell nuclei our proposed method as well as

the simple method reported good overlap with the ground truth in the low seeding density

(0.68± 0.20% and 0.77± 0.13%, respectively. Mean±s.d., n=18 images, see Figure 3.4a)

and the high seeding density (0.78 ± 0.05% and 0.83 ± 0.07%, respectively. Mean±s.d.,

n=12 images, see Figure 3.4b). Yet, our proposed method outperformed the simple ap-

proach in terms of robustness at segmenting cell somata in the dataset with low seeding

density (0.67± 0.10% and 0.63± 0.45%. Mean±s.d., n=18 images, see Figure 3.4a), while

both methods performed equally well on images with high seeding density (0.67± 0.09%
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Figure 3.4: Automatic segmentation yields high overlap with manually generated ground
truth. (a) Lower seeding density, n=18 images. (a, Cell nucleus) Percentage of overlap
of our proposed method (0.68 ± 0.20%, mean±s.d.) and the simple method with Otsu’s
algorithm (0.77 ± 0.13%, mean±s.d.) with the ground truth. Both methods achieve
equal results while the simple method performs slightly better. (a, Cell soma) Percentage
of overlap of our proposed method (0.67 ± 0.10%, mean±s.d.) and the simple method
(0.63 ± 0.45%, mean±s.d.) with the ground truth. While our method performed equally
well on all images, the simple method reported erroneous segmentation results in one half
of the images, but performed well on others (thus the high standard deviation). This
is evidence of the higher robustness of our proposed method. (b) Higher seeding density,
n=12 images. (b, Cell nucleus) Percentage of overlap of our proposed method (0.78±0.05%,
mean±s.d.) and the simple method (0.83 ± 0.07%, mean±s.d.) with the ground truth.
(b, Cell soma) Percentage of overlap of our proposed method (0.67 ± 0.09%, mean±s.d.)
and the simple method (0.64± 0.08%, mean±s.d.) with the ground truth. Both methods
perform equally well.
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and 0.64 ± 0.08%,respectively. Mean±s.d., n=12 images, see Figure 3.4b). These results

emphasize the importance of robustness in a segmentation approach. While the simple

method we used here yielded equal results on most images, even slight changes in the

image quality led to completely wrong results.

Taken together, we showed that our automated pipeline robustly detected cell nuclei and

somata in the respective fluorescence channels and also correctly created autotracks for

over 90% of the observed cells. These results allowed us to statistically analyse the quan-

tified motility and shape dynamics in T-lymphocytes.

3.3 Single T-lymphocytes react heterogeneously to in vitro

confinement

We analyzed the migration behavior of single T-lymphocytes when exposed to different

levels of confinement, as discussed in Section 1.5.1. We used the quantified speed in

experiment “140906”, as it contained time-lapse image stacks with 8 µm, 6 µm and 4 µm

confinement (see Table 3.1). We did not include experiment “150429” in this analysis

because it featured only a single confinement height and and different coatings, which

rendered a comparison of both experiments impossible.

At a micropillar height of 8 µm with n=24 cells, we could barely observe any migration

(0.03 ± 0.03 µm/sec, mean±s.d., see Figure 3.5a). The cells were moving back and forth

without leaving their position. We could observe only a single cell that was moving slowly

and seemingly undirected. In the time-lapse movies with a micropillar height of 6 µm with

n=34 cells we could observe a slight increase of motility (0.04±0.03 µm/sec, mean±s.d., see

Figure 3.5b), also the motile cells showed very straight directionality. Still, around 50 % of

the cells did not move at all. At a micropillar height of 4 µm with n=54 cells, at least 60 %

of the cells showed high speed with the typical elongated morphology (0.08±0.06 µm/sec,

mean±s.d., see Figure 3.5c). Yet, 40% of the cells did again not exhibit any motility and

adopted a round morphology while moving back and forth.

We hypothesized that there might exist several subpopulations of cells that respond differ-

ently to the micropillar heights. We assessed this idea by fitting Gaussian mixture models

(GMMs) with a varying number of Gaussians per model to the distributions of mean cell

speeds per micropillar height and evaluated the model that fitted best with a variational

Bayes expectation maximization approach using the pmtk3 toolbox developed by Murphy

(2012) (see Figure 3.5d-i). The Bayesian approach found two subpopulations of cells in
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each confinement condition, which we termed resting (i.e. non-motile) and motile, depend-

ing on their averaged cell speed. At 8 µm confinement we found 18 cells (75%) to belong

to the resting population with an averaged speed of 0.02±0.01 µm/sec, while 6 cells (25%)

where grouped into the motile population with an averaged speed of 0.07± 0.03 µm/sec.

We made the same finding in the experiments with 6 µm/sec confinement, yet the ratios

between two groups were nearly equal. We found 18 cells (53%) in the resting population

with an averaged speed of 0.01±0.01 µm/sec and 16 cells (47%) with an averaged speed of

0.07± 0.03 µm/sec in the motile condition. The differences between both subpopulations

were most striking in experiments with 4 µm confinement. Here, 21 cells (39%) in resting

population showed an averaged speed of 0.02 ± 0.02 µm/sec, where 33 cells (61%) were

highly motile with averaged speeds of 0.12± 0.03 µm/sec.
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Figure 3.5: Analysis of T-lymphocyte migration speed reveals motile and resting sub-
populations. (a,b,c) Trajectory plot of all cells in the different confinement conditions.
Starting coordinates of all cells are set to (0,0). (a) 8 µm confinement, n=24 cells. The
cells show only very little speed. One cell (yellow trajectory) observably moves in an
undirected fashion, without leaving its starting area. (b) 6 µm confinement, n=34 cells.
The cells migrate, directed speed is observable. 50% of the cells do not show any speed.
(c) 4 µm confinement, n=54 cells. The cells migrate further, yet around 20% of the cells
do not show any speed. (d,e,f) A variational Bayesian approach to fit a Gaussian mixture
model reveals two subpopulations in the different confinements. A resting population
and a motile population was detected in all conditions. (d) 8 µm confinement. Speed of
resting population: 0.02±0.01µm/sec, n=18 cells (74%±7%). Speed for motile population:
0.07±0.03µm/sec, n=6 cells (26±7%). (e) 6 µm confinement. Speed of resting population:
0.01±0.01µm/sec, n=18 cells (50±5%). Speed for motile population: 0.07±0.03µm/sec,
n=16 cells (47%). (f) 4 µm. Speed of resting population: 0.02 ± 0.02µm/sec, n=21 cells
(35± 5%) . Speed for motile population: 0.12± 0.03µm/sec, n=33 cells (65± 5%). (g,h,i)
Mean and standard deviation of 10000 samples from a derichlet distribution to determine
the most likely fraction of resting and motile cells for every condition, respectively.
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3.4 Correlations of T-lymphocyte morphology with speed

As discussed earlier, it is known from previous studies that migrating cells exhibit an

elongated soma, while resting cells are nearly perfectly circular (see Figure 3.6a). A

measure of elongation is eccentricity, where a value of one would represent a straight line

and a value of zero would be a circular object (see Section 2.3). We analyzed whether cells

that were classified as motile in the different confinement conditions showed a correlation of

eccentricity with cell speed on a frame-by-frame basis (see Figure 3.6c-e). Interestingly, we

found no correlation in 8 µm confinement (Pearson’s r = -0.06, p = 0.07, n = 848 frames)

and a mildly negative correlation between eccentricity and speed in 6 µm (Pearson’s r =

-0.28, p < 0.00001, n = 848 frames) and 4 µm (Pearson’s r = -0.26, p < 0.00001, n = 1569

frames) confinement, respectively.

Migrating cells are pushed forward by the reorganization of their actin network in the

cell soma (see section 1.5.1). A first manual assessment of the actin intensity in the cell

with a speed of 0.2µm/sec already revealed a heterogeneous intensity pattern, while in

the resting cell actin was distributed more homogeneously around the cell membrane (see

Figure 3.6a). We tested whether we could find a correlation between the actin ratio at

the leading edge of a cell and its speed. For every frame, we computed a cell’s direction of

migration and rotated the fluorescence image such that it was parallel to the x-axis (see

Figure 3.6b, first panel). We then computed the integrated fluorescence intensity of 30%

of the cell soma at the front and rear of the cell (see Figure 3.6b, second panel). The ratio

of actin at the front and rear of the cell showed no correlation at a confinement of 8 µm

(Pearson’s r = 0.11, p = 0.001, n = 848 frames) and 6 µm (Pearson’s r = 0.10, p = 0.001,

n = 848 frames), and a weak correlation at 4 µm (Pearson’s r = 0.28, p < 0.00001, n =

1569 frames).
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Figure 3.6 (facing page): Migrating cells show only mild correlation of speed with eccen-
tricity or actin polarization. (a) Fluorescence image patches showing a cell with a speed
of 0.2 µm/sec with an elongated shape in the first panel. Actin seems polararized at the
front and the rear of the cell. In contrast, a resting cell in the second panel is perfectly
round and actin is homogeneously distributed around the cell membrane. (b) Strategy to
compute the ratio of actin at the front and the rear of the cell. The direction of migration
is detected and the cell is rotated to move parallel to the x-axis. Then, the fluorescence
intensity of the first and last 30% of the cell soma are quantified. The ratio is then com-
puted by dividing the front intensity by the rear intensity. (c-e) Density plot of cell speed
(µm/sec) vs. Eccentricity for different confinement conditions. Dots denote single frames.
(c) 8 µm confinement. Pearson’s r = -0.06, p = 0.07. (d) 6 µm confinement. Pearson’s
r = -0.28, p < 0.00001. (e) 4 µm confinement. Pearson’s r = -0.26, p < 0.00001. (f-h)
Density plot of cell speed (µm/sec) vs. Actin ratio (a.u.). (f) 8 µm confinement. Pearson’s
r = 0.11, p = 0.001. (b) 6 µm confinement. Pearson’s r = 0.10, p = 0.001. (c) 4 µm
confinement. Pearson’s r = 0.28, P < 0.00001.
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Figure 3.7: A cell’s speed is predictable only from its shape and texture by a nonlinear
regression model. a) Scatter plot of predicted speed (y-axis) versus measured motility
speed (x-axis). The values show a correlation coefficient of 0.82, an RMSE of 0.04 and
an R2 score of 0.67. b) The most important features reported by the random forest
regression are tCON (Tamura contrast, texture), rDIFF (Ray difference, shape), tSOL

(Solidity, shape), fMEI (Mean intensity, texture) and fMIL (Minor axis length, shape)
.

3.5 T-lymphocyte speed is predictable by morphology

A strength of our quantification pipeline is that it computes a multitude of different

measures that describe a cell’s shape and texture. As we could not find correlations in

univariate analyses, we tested if cell speed could be predicted by a multivariate nonlinear

model, namely random forest regression (Breiman et al., 1984). We used all cells from the

experiments with a micropillar height of 4 µm and all shape features (40 in total). We

used the framewise speed as our target and evaluated the fitted model by its out of bag

error. The technique is comparable to a classical cross validation (see Section 2.4.2). After

a training round with 200 trees, we found the predicted speed values to highly correlate

with the true values (Rcorr = 0.82, see Figure 3.7a). With an RMSE of 0.04 and an R2

score of 0.67, the model predicted the speed very well. By evaluating the features that

had the most predictive value in the trained model, we found the features tCON (Tamura

contrast, texture), rDIFF (Ray difference, shape), tSOL (Solidity, shape), fMEI (Mean

intensity, texture) and fMIL (Minor axis length, shape) to have the most predictive value

(see Figure 3.7b and Section 2.3 for details).
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3.6 Conclusion

In this chapter we described a fully automated modular pipeline for the processing of

multichannel time-lapse fluorescence experiments, that tracks single cells while also quan-

tifying their morphology and motility robustly and fast. It allows the manual assessment

and correction of cell tracks, but is also capable being executed autonomously on a com-

putation cluster. The modular design of the pipeline makes it easy to change parts and

adapt them to different experimental setups and applications.

We applied the pipeline to a set of time-lapse experiments observing the motility of T-

lymphocytes with different seeding densities in two fluorescence channels showing nuclei

through Hoechst 405 and cell somata by lifeAct-GFP. Without changing the parameters,

at least 90% of the cell trajectories were correctly and automatically tracked. Our seg-

mentation module showed a good overlap with the manually determined ground truth and

was more robust than a simple thresholding algorithm. By fitting the most likely Gaussian

mixture model via a Bayesian approach to the derived averaged speed of T-lymphocytes,

we found that that two subpopulations of resting and motile cells exist in all confinement

heights of 8 µm, 6 µm and 4 µm, respectively. We showed that the fraction of motile

cells increased to 25%, 53% and 61% as the micropillar height was decreased. Also, our

analysis revealed that with an averaged speed of 0.12µm/sec under 4 µm confinement, the

cells were nearly twice as fast as under 6 µm and 8 µm confinement, which both showed

an averaged speed of 0.07 µm/sec. The fact that cells were migrating the fastest under

4 µm confinement is contradicting previous studies, where it was shown that a height of

7− 9 µm is optimal (Jacobelli et al., 2010). However, as the the experimental setup could

differ, e.g. in micropillar construction or coating (in our case: fibronectin), this finding

needs to be further validated. Also, the reasons why we always found two subpopulations

of resting and motile T-lymphocytes needs to be further analyzed. Yet, we could rule

out that cells in the resting population are simply dead, as the cells still expressed the

LifeAct-GFP marker and showed changes in their morphology, but did not leave their

position.

Contradicting to our expectations, we could not find a correlation of a cell’s eccentricity

and its speed or its front/rear ratio of actin concentration. The exact reasons for this

have to be further analyzed. For example we could observe that migrating cells often

feature a broad leading edge followed by an elongated but thin rear. This could lead to

an overestimation of a cell’s roundness and render the usage of eccentricity as a feature

useless. This hypothesis is also supported by the fact that we could predict a cell’s speed

by a multivariate nonlinear regression model, but did not find eccentricity in the most



3.6. CONCLUSION 103

predictive features. Yet, we found the shape featuers ray difference, solidity and minor

axis lengths to be predictive for a cell’s speed. As especially the ray difference can capture

more complex morphologies than just the level of roundness, it will be worthwile to analyze

this feature in more detail.

Our pipeline is at the moment not capable to segment brightfield images and derive cell

shapes from this channel. In future analyses this could be possible by e.g. testing different

objectives that enhance the contours of the cells during image acquisition. Furthermore, we

could implement more sophisticated preprocessing steps and learning-based segmentation

algorithms that can recognize incomplete cell boundaries in images with bad contrast, as

proposed earlier (Liu et al., 2012; Theriault et al., 2011). The possibility to segment cells

in the brightfield channel will be of help to better understand the actin distribution in the

cell soma. As we are deriving cell shape from the LifeAct-GFP channel at the moment,

we have to rely on a proper transfection of this marker, or we measure wrong cell shapes

or entirely miss full cells.

The cell motility statistics we derived where based on a single experiment with small

amounts of T-lymphocytes. As our pipeline was built for fully automated quantification,

we plan to extend our dataset by thousands of cells. This will increase the statistical power

of our findings and may lead to rare subpopulations which we could not identify with the

available data. We also will expand our project to analyse the behavior of T-lymphocytes

under different coatings of the micropillar and coverslip. Last but not least, we will

incorporate more sophisticated analyses to describe the actin distribution at the cell front

and rear during migration. We will for example compare the model-based computational

analysis of fish keratocytes by Keren et al. (2008).

Taken together we believe that the high robustness of our automatic quantifications ant the

promising first analyses will be of great help road to a full understanding of T-lymphocyte

migration.
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Chapter 4

Robust cell detection in

high-throughput brightfield

microscopy

This chapter is based on and in part identical with Buggenthin et al. (2013).

In Chapter 3 we used established image processing approaches to extract centers and

somata of single cells in the respective fluorescence images. Yet, to extract this informa-

tion from brightfield images that are acquired in high-throughput long-term time-lapse

microscopy, the available methods did not suffice (see Sections 1.2 and 1.5.2).

In this chapter we present a novel method that is able to robustly segment and analyze

cells with ellipsoid morphology from high-throughput brightfield microscopy in a time

efficient manner without user interaction. The procedure comprises two steps: (i) Image

acquisition is adjusted to obtain optimal brightfield image quality for automatic processing.

(ii) A concatenation of fast performing image processing algorithms robustly identifies

single cells in each image. We applied the method to a time-lapse movie consisting of

315,000 images that captured differentiating hematopoietic stem cells on the full coverslip

over 6 days. We evaluated the accuracy of our method by comparing the number of

identified cells with manual counts. Our method is able to segment images with varying

cell density and different cell types without parameter adjustment and clearly outperforms

a standard approach. By computing population doubling times, we were able to identify

three growth phases in the stem cell population throughout the whole movie, and validated

our result with cell cycle times from single-cell tracking. We conducted the project in close
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collaboration with the group of Prof. Dr. Timm Schroeder from D-BSSE Basel (ETH

Zurich).

4.1 Previously available methods for high-throughput seg-

mentation

In the last couple of years, several computational methods for the automatic processing

of high-throughput microscopy experiments have been proposed. For example, Fenistein

et al. (2008) developed an automatic method for the segmentation of cell nuclei in fluores-

cence images for different cell lines in dilution experiments and reported an average cell

recognition rate of 95%. Knapp et al. (2011) employed a method to identify single cells in

two-channel RNAi screens and used this information to improve the statistical power of

the analysis. Both applications demonstrated the feasibility of automatic high-throughput

image processing methods on large amounts of fluorescent images. The framework Cell-

Profiler (Carpenter et al., 2006) is a great example of how automated image analysis can

be made accessible for a broad range of users, not only specialists. The intuitive GUI and

wealth of different implemented methods has led to frequent usage (2400 citations, as of

March 2015), where most applications relate to the analysis of fluorescence images.

However, the development of an automated processing method for high-throughput bright-

field experiments is more demanding than in the fluorescence case and holds several chal-

lenges. Cells imaged by brightfield microscopy exhibit heterogeneous intensity levels and

are often badly contrasted. In addition, differences in illumination over time and across the

cell culture plate hamper the ability to specify a global set of parameters for cell detection

algorithms over the whole experiment. This prevents the application of available automatic

image processing frameworks, which are mostly developed to perform well on fluorescent

images. Despite the large amount of methods that are implemented in frameworks like

CellProfiler, the available algorithms for illumination correction and segmentation do not

perform well enough to achieve satisfying results on many high-throughput brightfield

microscopy experiments.

By employing active contour and level set methods, many issues of cell segmentation in

brightfield or phase contrast images have already been solved (Tse et al., 2009; Li et al.,

2010). For example, Ambühl et al. (2011) demonstrated the very accurate tracking of

a single cell in phase-contrast microscopy images. Ali et al. (2011) developed a method

that combined out of focus image acquisition and segmentation by level sets to identify

outlines of adherent cells. However, these approaches are computationally expensive and
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often highly parameter-depended, which prevents the application in high-throughput im-

age processing, where millions of objects have to be processed in reasonable time and

without user interaction.

4.2 A method for automated detection of cells in brightfield

high-throughput microscopy

For the development of a method to analyze high-throughput microscopy data, it is es-

pecially important to incorporate algorithms that are (i) robust against heterogeneities

between images that are processed and (ii) able to process single images in the range of

seconds up to a few minutes at maximum in order to finish a full experiment in reason-

able time. In this work, we chose the algorithms used in every step according to these

requirements. The complete procedure is visualized in Figure 4.1.

4.2.1 Image acquisition

The first step in our method concerns image acquisition. Adapted from Selinummi et al.

(2009), we recorded every image with the microscope’s auto focus set 18µm below the

optimal focal plane. In the case of brightfield image acquisition with a 10x fluar objective

(Zeiss), the change of the focal plane resulted in enhanced contrast of single cells, yet with

a loss of textural complexity (see Figure 4.1a). The cell body was evenly illuminated and

much darker than the background. In addition, every cell exhibited a bright halo that is

supporting the identification of touching cells.

4.2.2 Background correction

After all images were acquired in the proposed manner, differences in illumination across

the images had to be resolved. We used an adapted version of the method proposed by

Schwarzfischer et al. (2011) (see Section 2.1.3). This machine learning based algorithm

estimates the background for every image, using a grid of image patches that are classified

as showing only background or a mixture of background and foreground pixels. In com-

parison to standard correction methods like Gaussian filtering that is parametrized on the

average foreground object size, the machine learning based method is able to estimate the

background more robustly. As shown in Figure 4.1b, every cell body was clearly separated

from the background. The halo surrounding each cell was corrected, yet clumped cells still
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Machine learning
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Figure 4.1: Flow chart of the pro-
posed method. The results of each
step are exemplified on a brightfield
image of hematopoietic progenitor
cells. (a) The image is acquired with
the focus set 18 µm below the opti-
mal focal plane to enhance contrast
of cells. (b) The inhomogeneously
illuminated background is corrected
by a machine learning based ap-
proach to resolve differences in il-
lumination across different locations
on the cell culture plate and over
time. (c) Foreground objects are
identified by maximally stable ex-
tremal region (MSER) detection.
(d) Splitting of clumped cells. Max-
ima of cells are identified by ulti-
mate erosion and split by water-
shedding. Over-segmented cell bod-
ies are reconstructed by merging of
too small neighboring regions.
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exhibited a change in illumination at their touching edges. Due to the time-consuming

feature calculation during machine learning, this algorithm was occupying nearly 50% of

total computing time for a single image, which was in our case 30 to 50 seconds on a

standard laptop (Intel Core i7 dual-core, 2.8GHz, 8GB RAM, Windows 7 64bit).

4.2.3 Thresholding

In the next step, all foreground objects had to be separated from the background. In

our method, we used the maximally stable extremal regions (MSER) algorithm (Matas

et al., 2004) (see Section 2.1.4). An advantage compared to thresholding methods such as

Otsu’s algorithm is its robustness in segmentation when there are inhomogeneities in object

illumination or huge differences of cell densities between different images. As shown in

Figure 4.1c, MSER correctly identified nearly all cell bodies. The used implementation of

MSER has linear time complexity, thus it is able to process a single image (i.e. 1388×1040

pixels) in milliseconds (Nistér and Stewénius, 2008).

4.2.4 Object splitting

Eventually it was necessary to split clusters of multiple cells that were segmented as a single

foreground object (i.e. under-segmentation). We used a two-step approach consisting of an

initial marker-based watershedding (see Section 2.1.4), followed by merging of cells that

were erroneously split into fragments (i.e. over-segmentation).

In this step (see Figure 4.1d), the earlier conducted out of focus acquisition was very

advantageous: the homogeneous illumination of cell bodies and the slightly brighter in-

terfaces of touching cells simplified the task to find cell centers, which then served as seed

points for the watershed algorithm. Secifically, the raw input image D was inverted result-

ing in local intensity maxima residing at cell centers. All local maxima were extracted to

a binary mask Dsegmax, which was done calculating the regional maxima of the Euclidean

distance transform of the cell mask Dseg that was returned from the MSER algorithm. In

a next step, the distance transform Ddist of the foreground mask Dseg was computed. The

final transformed image Dtransformed was derived by imposing Dsegmax on Ddist. Water-

shedding was applied on Dtransformed, resulting in the mask of identified and split objects

Dwatershed.

To reduce over-segmentation, a rule-based split & merge procedure of small regions from

CellProfiler 1.0 was applied (Carpenter et al., 2006). A list of adjacent neighbors for all
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objects in BWwatershed that are likely to be over-segmented (i.e. very small objects with

high eccentricity) was computed. For each neighbor the following criteria were evaluated:

(i) For the pixels residing on the interface of the evaluated object and its neighbor, the

likelihood to belong to the background or to the foreground was computed. Foreground

and background were represented as Gaussian distributions, where mean and variance are

derived from the image (i.e. pixels that were classified as foreground and background by

the thresholding step). (ii) The eccentricity for the merged object was calculated. The

evaluated object and its neighbor were merged if the interface pixels were more likely

to belong to the foreground and if the merged object’s eccentricity was lower than an

empirically determined value (here: 0.7). Depending on the number of cells in an image

this step occupies 10 to 50 seconds of processing time.

4.2.5 Implementation

All methods were implemented using MATLAB version 8.0.0.783 (R2012b) with the ad-

ditional packages image processing toolbox 8.1 and statistics toolbox 8.1. If MATLAB

code was available for the cited methods, this code was used. For MSER thresholding,

a C++ implementation with linear time complexity was used. To speed up computation

times, the data set was split into junks of images and processed on a computation cluster

(sun grid engine version 6.2u5). The average node architecture was equal to an Intel Xeon

2GHz, 4GB RAM running a 64bit linux-based operating system.

4.3 Large-scale application shows high robustness and cell

detection accuracy

We applied our method on a time-lapse experiment of murine hematopoietic stem cells

(HSCs) under conditions that promote differentiation towards myeloid cells. For a review

of blood cell differentiation in mice, see for example Orkin and Zon (2008). All wetlab

experiments where conducted by Dr. Philipp S. Hoppe from the D-BSSE at the ETH

Zurich.

To obtain population of HSCs as pure as possible, femurs, tibiae and ilia of a healthy

mouse strain on C57Bl/6 background with no discernible phenotype were removed from

14 weeks old mice and the bone marrow was extracted. Using fluorescence activated cell

sorting (FACS), the stem cells were then purified by combining two protocols described
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Figure 4.2: Manual examination of segmentation results, shown at exemplary image
patches over the whole time span of a 6 day time-lapse experiment of differentiating
hematopoietic stem cells. Blue outlines: Segmented objects regarded as cells. Red out-
lines: Objects unlikely to represent cells (size <50 px and eccentricity >0.99). First row:
500x500px image patch, second row: 150x150px image patch. (a) 12 hours after exper-
iment start. Very few cells are populating the field of view. Cell outlines are correctly
segmented. Erroneous measurements originate in debris in the image. (b) 2 days after
experiment start. The number of cells is slightly increased, still the object density is very
sparse. Pairs of clumped cells can be identified, which are correctly split by the method.
(c) 4.5 days after experiment start. More complex cell morphologies arise that lead to
errors in segmentation. The field of view becomes more and more crowded, complicating
the identification of single cells. Small artifacts that are a result of over-segmented cells
or fragments of dead cells are filtered by size. (d) 5.5 days after experiment start. Most
cells are differentiated and different morphologies can be found. Segmentation errors are
observed more frequently, especially for adherent cells with elongated shape.

in Kiel et al. (2005) and Osawa et al. (1996). According to the original publications, the

fraction of true HSCs that are received by this method is between 40%-60% .

Directly after sorting, the cells were plated out on a plastic slide (µ-slide VI coated with

Fibronectin, Integrated BioDiagnostics GmbH, Munich, Germany) with two physically

separated wells in serum-free medium (StemSpan SFEM, StemCell Technologies) supplied

with cytokines that only promote differentiation towards myeloid cells. All animal exper-
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iments were performed in compliance with the institutional guidelines of the Helmholtz

Center Munich and the regulations of the State of Bavaria.

Due to the cameras limited field of view, both wells were subdivided into 33 overlapping

tiles (fields of view). Each field of view corresponded to an image of 1388 × 1040 px

(1 px = 1.0238 µm), that was saved in 8-bit png format. Imaging was conducted using

a Cell Observer microscope (Zeiss) surrounded by an incubator to maintain a constant

temperature of 37◦C. Images were obtained using a 0.63x TV-adapter (Zeiss) and an

AxioCam HRm camera (Zeiss), with a 10x fluar objective (Zeiss). Each field of view was

imaged in intervals of ∼2.3 minutes for 6 days. Automatic focusing was achieved using

a hardware autofocus (Zeiss) which was set to 18 µm below the optimal focal plane to

acquire slightly blurred images. The complete data set comprised a total of 315,942 images

(4787 time points * 66 fields of view) and occupied ∼500 gigabytes of hard drive space.

The wells were sparsely covered with cells at experiment start, yet as the experiment was

stopped all wells were densely populated by hematopoietic progenitors and differentiated

cells (see Figure 4.2).

Complete processing of the full data set occupied 72 hours, using 150 cores of a computer

cluster. The average node architecture was equal to an Intel Xeon 2GHz, 4GB RAM

running a 64bit linux-based operating system. Complete processing of a single image with

average cell density (see Figure 4.2) lasted 100 seconds. To account for small debris or

fragments of dead cells that were erroneously segmented by our method, we discarded all

foreground objects with a size < 50 pixels and an eccentricity > 0.99, as well as objects

that were touching the image border.

The final test set comprised ∼315,000 raw images with the according object masks and

computed background corrections, covering ∼270,000,000 identified objects.

Parameters

For the dataset that was used in this work, the method was initialized using the following

parameter set (one setting for all images of the data set):

• Background correction
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Parameter Value

Tile dimensions 30 px
Overlap 15 px
eps 0.1
MinPts 6

• Cell detection

Parameter Value

Delta 5
Minimum Object Size 30 px
Maximum Object Size 4000 px
Maximum Variation 1

• Object splitting

Parameter Value

Maximum Eccentricity 0.7
Minimum Object Size 30 px
Maximum Object Size 1000 px

Evaluation

The performance of a segmentation approach can be measured in different ways depending

on the analyses that are intended after processing. For the development of automatic

tracking approaches it is necessary to identify single cells with high accuracy. Especially

cells that stick together shortly after division or clusters of multiple cells need to be split

correctly. For population analysis or simple cell counting it suffices to detect the number

of cells in each image with high accuracy. Here, we manually determined the total number

of cells after 12 hours, 2 days, 4.5 days and 5.5 days at two randomly chosen fields of

view per well. To manually assess the segmentation quality we used the java based image

processing tool ImageJ 1.47K with the plugin CellCounter (Abramoff et al., 2004).

We evaluated if a cell was (i) correctly segmented, (ii) missed, (iii) over-segmented or (iv)

under-segmented. Next, we computed the average accuracy, specificity and sensitivity of

cell detection based on the number of true positives (complete cell bodies, the largest frag-

ment of over-segmented cells and one cell per under-segmented object), false positives (dirt
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and cell fragments) and false negatives (missed cells, remaining cells in under-segmented

objects). In addition, we calculated the mean and the according standard deviation of cell

densities (cells per mm2) over all fields of view at the given time point.

After 12 hours (Figure 4.2a), all fields of view were sparsely covered with cells (cell density

5.6 ± 2.4 1/mm2). Despite the high fraction of correctly segmented cells (92%), debris in

the examined fields of view that was falsely identified as a cell by our method lead to a

decrease in accuracy (83±11%). The low number of cells at this early time point resulted

in a high variability (11%) between the fields of view.

At day 2 (Figure 4.2b), the number of cells increased to a density of 16.2±7.1 1/mm2. Pairs

of clumped cells appeared. 82% of all cells were correctly segmented, only very few cells

were missed or over-segmented (11%) and under-segmentation was not detected. The cell

detection accuracy was 82± 3%.

At day 4.5 (Figure 4.2c), the number of cells across the examined fields of view was

significantly larger (741.6 ± 250.6 1/mm2). We observed cells that were clumped together

in large clusters and first differentiated cells with more complex morphology were found.

Cells with round shapes were correctly identified in most cases (92%), especially round

clusters of cells were under-segmented (1%) and cells with elongated shape were over-

segmented (4%). Most over-segmented cells were still only counted once since smaller

fragments were discarded by the filtering step (see methods). 1% of the cells were missed,

mostly because of bad contrast or direct contact to the image border. Due to the large

increase in cell number, debris did not significantly contribute to a drop in cell recognition

accuracy anymore. The accuracy at this time point was 95± 1%.

At day 5.5 (Figure 4.2d), fields of view of both wells were very densely populated by cells

(1.2∗103±0.22∗103 1/mm2) that were exhibiting a variety of shapes. With 1.2%, the fraction

of missed cells was even reduced compared to the time point examined before. Over- and

under-segmented cells were observed more frequently (6% and 1%, respectively), yet most

cells were correctly segmented (90%). The amount of debris was increased, mostly due to

clumps of fragments of dead cells. Yet, the cell detection accuracy was very high (92±3%).

Sample images showing the cell densities at different time points for our method are given

in Figure 4.2. The object quantification is summed up in Table 4.1.

To demonstrate the superior robustness of our method, we conducted the same manual

evaluation with the results from a pipeline of methods available in CellProfiler (Carpenter

et al., 2006). We used version 2.0 (r11710) of the software and created a pipeline for

automatic processing of the brightfield images that we used in the manual evaluation. The
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Experiment time 12 h 2 d 4.5 d 5.5 d
Number of manually counted cells 37 90 5837 7414
Correct 34(91.9%) 74(82.2%) 5356(91.8%) 6638(89.5%)
Missed 1(2.7%) 4(4.4%) 78(1.3%) 86(1.2%)
Over-segmented 2(5.4%) 10(11.1%) 230(3.9%) 411(5.5%)
Under-segmented 0(0.0%) 0(0.0%) 46(0.8%) 87(1.2%)
Debris 6 7 1 32
True positives 36 84 5632 7136
False positives 6 13 96 329
False negatives 1 6 205 278
Accuracy 0.83± 0.11 0.82± 0.03 0.95± 0.02 0.92± 0.03
Specificity 0.86± 0.11 0.87± 0.06 0.98± 0.01 0.96± 0.03
Sensitivity 0.97± 0.06 0.94± 0.04 0.96± 0.02 0.96± 0.01

Table 4.1: Manual evaluation of segmentation results. Two randomly chosen fields of view
per well were quantified for 12 hours, 2 days, 4.5 days and 5.5 days, respectively. In each
field of view, the number of true cells was counted. All segmented objects were classified
as correct, over-, under-segmented, or debris. Accuracy, Sensitivity and Specificity of
cell detection were calculated based on true positives (complete cell bodies, the largest
fragment of over-segmented cells and one cell per under-segmented object), false positives
(dirt and cell fragments) as well as false negatives (missed cells, cells in under-segmented
objects). Note that we deliberately keep differences in the total number of counted cells
at different experiment times, since these impact on the standard deviation of accuracy,
specificity and sensitivity.

following modules were sequentially called for each image: Correct Illumination (Gaussian

filter, Average object size: 60 px), Apply threshold (Otsu global), Identify primary objects

(Typical diameter of cells: 5 to 50 px, splitting method: Intensity, method to draw dividing

lines: Shape), Convert objects to image (saved binary mask). Parameters were optimized

according to a single image of the evaluation set of day 4.5. In the case of long-term

time-lapse experiments the constant change of cell density and illumination, as well as

the acquisition of different fields of view makes Otsu’s method the best choice out of the

algorithms that are available in CellProfiler. We applied the CellProfiler pipeline on the

identical set of out-of-focus images and optimized the parameters of each module based

on a single image of day 4.5. For a graphical comparison of the cell detection accuracy of

our method against the CellProfiler pipeline, see Figure 4.3.

At 12 hours, the CellProfiler pipeline produced highly heterogeneous results. The used

thresholding algorithm performed well on images of 2 fields of view but produced com-

pletely mis-segmented images on the others, leading to a low cell detection accuracy

(24± 31%). This was most likely due to errors in the clumped cell splitting step.
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Figure 4.3: Comparison of manually evaluated cell detection accuracy as described in Ta-
ble 4.1 between our method (green boxplots) and the CellProfiler pipeline (gray boxplots).
Especially at the two early time points, CellProfiler performs not very robust on the dif-
ferent fields of view. Note that the pipeline was parametrized to perform best on images
at day 4.5. Thus, the pipeline might be able to perform well on images on the early time
points, but is not robust enough with the given parameter settings.

For images taken at day 2, the CellProfiler pipeline performance increased (45 ± 25%).

Yet the accuracy was rather low and less robust across different fields of view (25%).

At 4.5 days, the increased cell density lead to an improvement in the cell detection accuracy

(84± 2%), with a huge decrease of standard deviation. Still, 3% of the cells were missed

completely and 9% were under-segmented.

At the last manually evaluated time point of 5.5 days, cell detection accuracy of the

CellProfiler pipeline decreased to 71 ± 9%. This was mainly because of the high fraction

of missed (20%) and under-segmented (6%) cells.

Taken together, our method showed high robustness in cell detection and low over- and

under-segmentation over the full experiment range. Even at very late time points where

the wells were very densely covered, the cell detection accuracy was satisfying (∼92%).

The out-of-focus acquisition improves the overall segmentation accuracy of our method:

Applied to a comparable in-focus movie, the segmentation accuracy dropped to 70% due
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to over-segmentation of badly contrasted cells and complex cell texture.

As shown in Figure 4.3, our method clearly outperformed the standard CellProfiler pipeline.

Note that the low cell detection accuracy in the early time points does not necessarily mean

that CellProfiler in general is not able to segment this type of images (i.e. very few cells).

Still, the combination of algorithms performed less robustly on images with different cell

densities, given the parameter set that we optimized for images with medium cell density

(i.e. day 4.5).

Finally, we would like to note that our pipeline achieved similar robust results (segmenta-

tion accuracy ∼85%) in a second long-term high-throughput experiment.

4.4 Population doubling time derived from cell counts

A possible use-case in the analysis of high-throughput time-lapse experiments is the control

of cell proliferation. Due to photo toxicity or different medium conditions, cells could die

early or exhibit deviating proliferation rates (Schroeder, 2011), which would introduce

errors in later analyses that are conducted on the data set.

Here, we first analyzed the mean cell density over 66 fields of view over the full experi-

ment time span (blue line in Figure 4.4a). We found that the number of cells increased

monotonously until a plateau roughly at day 5. We compared the results with the man-

ually quantified numbers of cells as shown in Table 4.1 and found them to reside within

the standard deviation of the number of objects. From our accuracy estimation in Ta-

ble reftab1, we conclude that the plateau is not due to a failure of our method, but resulted

from biological or experimental reasons. One explanation could be the differentiation and

thus post-mitotic state of the hematopoietic cells, but also a depletion of the medium. In

addition, the high density of cells could lead to an arrest in population growth.

Plotting the growth curves in log scale (see Figure 4.4b) revealed three different phases of

population dynamics. At the beginning of the experiment, the number of cells increased

sub-exponentially. Between approximately 2 and 4.5 days a clearly exponential increase

with an average doubling time of 10-12 hours was observed. The population stops to grow

exponentially and reaches a plateau after ∼4.5 days.

Based on the cell counts resulting from our image processing method, we derived the

population doubling time. Due to the high temporal resolution of ∼2.3 minutes between

measurements, the population doubling time could be estimated by computing the differ-
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ation (light blue patch) per mm2
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ence of each time point and the time point where the cell number had doubled, respectively

(see blue line in Figure 4.4c). The doubling time decreased from ∼40 hours and stabilized

after day 2 until day 4 at around 10 to 12 hours.

To validate the estimated doubling times, we tracked 1600 cells manually using our in-

house developed software TTT (Rieger et al., 2009). As shown in Figure 4.4c, the cell

cycle times of tracked cells that were born between 0 and 4.5 days (gray circles) show the

same trend, decreasing from ∼20 hours to 9-11 hours in the exponential growth phase.

4.5 Conclusion

In this contribution, we described a fully automated method for processing of high-

throughput brightfield microscopy experiments, that relies on the combination of opti-

mized image acquisition and a concatenation of image processing algorithms that identify

cells in in a robust yet time efficient manner. Using the same parameter set for all images,

we applied the method on a 6 day time-lapse movie of differentiating hematopoietic stem

cells and achieved a cell detection accuracy of at least 82%, which outperformed a pipeline

of algorithms available in CellProfiler. We demonstrated the application of the results

generated by our method by computing population doubling times based on the increas-

ing number of cells over the whole experiment in time and space. We compared the results

to the cell cycle times of 1600 manually tracked cells and showed that the automatically

derived doubling times coincided with the manually tracked cell cycle times.

The full data set of ∼315,000 images was processed within ∼72 hours. Note that this value

was achieved by parallel computing on 150 cores of a computation grid. However, the code

used in this work was not optimized for speed. Using implementations in C++ or Java

that are optimized for fast computation, the processing time could be further improved.

This would allow on-line processing of a time-lapse or high-content experiment during ac-

quisition, which offers powerful options. For example, a researcher could check population

doubling times, and thus cell health during a time-lapse experiment, or acquisition could

be stopped automatically when a certain number of cells is reached in the experiment.

The robustness of our method relies on the out of focus acquisition of brightfield images,

which results in very well defined cell outlines but also in the loss of textural complexity

for single cells. However, by acquiring an additional image with an optimally set focus

in every interval, the quantification of morphological features such as shape and texture

becomes feasible. Together with the high accuracy in cell detection of our method, this
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will support the development of automatic tracking approaches in time-lapse microscopy.

For both time-lapse and high-content screening experiments, morphological quantification

of millions of cells in one experiment allows the application of machine learning methods

to classify, e.g., dying and surviving cells after drug treatment or the fate of differentiating

stem cells.

Our method will be improved and adapted in the future. A promising avenue is the

extension of the MSER segmentation algorithm to include more cellular features, like

eccentricity or size.

Another possible improvement in our method is the splitting of clumped cells. Many

methods have been developed in the past, e.g. ellipse fitting that is well suited to split

nuclei or cells with round morphology (Bai et al., 2009). Unfortunately, the restrictive

assumptions in this method do not allow more complex cell shapes that may emerge

during a long-term movie of differentiating cells. We showed that our method performs

well at the segmentation of hematopoietic stem and progenitor cells, which show round

morphology. Still, the marker based watershedding we used is flexible enough to also cover

more complex cell shapes that are appearing later in the differentiation process. Li et al.

proposed a method based on gradient flow tracking and showed that it performs well on

fluorescent images with hundreds of stained nuclei that are densely packed and are thus

exhibiting different morphologies (Li et al., 2008). Another approach could include the

development of a robust and fast performing level set evolution method. This class of

algorithms has already been shown to perform very well on complex cell shapes (Li et al.,

2010), however the computional complexity hinders an application in a high-throughput

context. An approach that was already applied on high-throughput screens is to iteratively

learn the different cell shapes of a given cell type or system in an experiment (Jones et al.,

2009). Due to the modular structure of our method, the extension with algorithms that

are able to split cells with a more complex morphology is easily possible. In the time-lapse

experiment that was used in this work, these improvements could specifically enhance the

cell detection accuracy for differentiated blood cells at the end of the experiment.

In summary, we believe that the high overall robustness in cell detection as well as the fast

processing speed of our method will be of great service for the analysis of high-throughput

microscopy experiments.



Chapter 5

Prospective identification of hema-

topoietic lineage choice without mo-

lecular labeling

In this chapter we set out to develop a computational method that predicts the commit-

ment of HSCs to GM or MegE lineage in high-throughput time-lapse microscopy experi-

ments as discussed in Section 1.5.2. In contrast to the experiments used in Chapter 3 that

observed non-dividing fluorescently stained cells over a time span of 60 minutes in a single

field of view, the time-lapse experiments used here comprised a duration of up to 8 days

with highly proliferating and differentiating hematopoietic stem cells that migrated freely

under a grid of 72 fields of view (i.e. single images). The longer time of observation, the

brightfield acquisition as well as the much higher number of cells (due to proliferation)

introduced a couple of obstacles that we had to overcome to complete the task, for which

we extened the developed methodology from Chapters 3 and 4. We conducted the project

in close collaboration with the group of Prof. Dr. Timm Schroeder from D-BSSE Basel

(ETH Zurich).

We defined five milestones in order to complete the project: (i) Creation of three inde-

pendent long-term time-lapse experiments with appropriate image quality as discussed in

Chapter 4, (ii) generation of at least 100 hematopoietic pedigrees with annotated lineage

commitment to build the dataset, (iii) robust identification of cell somata in the brightfield

channel for every frame and field of view, (iv) quantification of morphology and motil-

ity for full cell trajectories in the generated pedigrees and (v) development of a machine

learning method that would derive descriptive patterns from quantified morphology and
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motility information. The final model would have to be able to predict a cells most likely

lineage decision on a fresh experiment that was not used for training. Finally, to be able

to predict lineage choice on-line, the model should require as few observations of a single

cell as possible for a correct prediction.

This chapter is based on and in part identical with the manuscript “F. Buggenthin*,

F. Buettner*, M. Kroiss, M. Strasser, P. Hoppe, M. Schwarzfischer, T. Schroeder, F.J.

Theis* and C. Marr*. Prospective identification of hematopoietic lineage choice without

molecular labeling. Under review at Nature Methods”. Note that this project was a

joint effort. The author of this thesis created the paralellized and automatized image

processing framework and derived the morphological information, performed extensive

data cleaning and annotation, parts of the manual tracking and trained the conventional

machine learning methods. Florian Buettner designed, implemented, trained and tested

the convolutional neural network.

5.1 Experimental setup

The time-lapse experiments that were the basis of this study were generated by Dr. Philipp

S. Hoppe from the D-BSSE at the ETH Zurich following the protocol described in the next

paragraphs. Note that in comparison to the protocol we used in Chapter 4, some steps

such as the culture medium or acquisition intervals were tweaked or changed. For more

details about wetlab materials and methods, see (Hoppe et al., 2016).

5.1.1 Purification of primary murine hematopoietic stem cells

Pelves, femurs, tibiae, humeri and vertebrae were extracted from a transgenically modi-

fied mouse line with knocked-in yellow (eYFP) and red (mCHERRY) fluorescent proteins

at the gene sequences of PU.1 and GATA1, respectively. After isolation, the cells were

incubated with anti-CD16/32 antibody. HSCs were then purified with flow cytometry to

40%-60% following a combination of protocols described in Kiel et al. (2005) and Osawa

et al. (1996). Directly after sorting, cells were plated out on a plastic slide (µ-slide VI

coated with Fibronectin, Integrated BioDiagnostics GmbH, Munich, Germany) with two

physically separated wells in serum-free medium (StemSpan SFEM, StemCell Technolo-

gies) supplied with cytokines that only promote differentiation towards myeloid cells. All

animal experiments were performed in compliance with the institutional guidelines of the

Helmholtz Zentrum München and the regulations of the State of Bavaria.
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5.1.2 Time-lapse microscopy

For each experiment, two wells of the plastic slide were subdivided into 72−78 overlapping

fields of view. Each field of view corresponded to an image comprising 1388× 1040 pixels

that was saved in 8-bit png format (1 px was equal to 1.0238 µm). Images were acquired

using Cell Observer microscopes (Zeiss), equipped with a 0.63x TV-adapter (Zeiss), Axio-

CamHRm cameras (Zeiss) and 10x Fluar objectives (Zeiss). Microscopes were surrounded

by an incubator to keep a constant temperature of 37◦C, cells were maintained in 5% CO2.

Each field of view was imaged in intervals of 60-120 seconds (brightfield channel), 25-40

minutes (PU.1eYFP and GATA1mCHERRY channels) and 120-240 minutes (CD16/32

channels) for up to 8 days. Automatic focusing was achieved using a hardware autofocus

(Zeiss) which was set to 18 µm below the optimal focal plane to acquire slightly blurred

images optimal for cell detection (Selinummi et al., 2009). Three time-lapse experiments

were used in this study, comprising a total size of 1TB of disc space.

5.2 A pipeline to quantify morphology and motility in hema-

topoietic genealogies

To identify all cell centers and somata outlines in the brightfield images of every frame

and every field of view in all experiments, we extended our previously developed segmen-

tation method as described in Chapter 4 to a full quantification pipeline. The changes

and improvements to the method are specified in the different modules in the following

paragraphs.

5.2.1 Illumination correction

To resolve illumination differences in single fields of view of the plastic slide and over time,

we normalized the background of all images using the method from Schwarzfischer (2013)

as described in Section 2.1.3. In difference to the original method, we used a random

forest model that we trained with an active-learning approach to classify whether pixels

belong to foreground or background. We trained classifiers to estimate the background

image Dbg for both fluorescent channels and the brightfield channel independently, but

used the same classifiers for all experiments. The corrected image Dcorr was then derived
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by pixelwise division of the raw image D through the background image:

Dcorr =
D

Dbg
. (5.1)

Finally, we enhanced Dcorr by contrast stretching as described in Section 2.1.2 and nor-

malized the interval of intensities to [0 255]. We computed a single background image

for the first frame of every field of view which we used also for all subsequent frames,

respectively. While this approach resulted in a great reduction of total computing time,

we could not detect a decrease on the robustness of cell identification (see Section 5.2.7).

5.2.2 Identification of cell somata

We used Maximally Stable Extremal Regions (MSER) to separate foreground objects (i.e.

cells) from background in all brightfield images. We filled holes in foreground regions,

i.e. background pixels with no connection to an image border by morphological erosion.

Additionally, we resolved open cell boundaries and single pixels connecting two adjacent

foreground regions by applying two rounds of morphological opening and closing with a

disk-shaped structuring element. Foreground objects that were too small or featured very

elongated shapes (most likely fragments of the coverslip border) were discarded.

We filtered the resulting binary mask Dseg for cell fragments and dirt particles and dis-

carded all foreground objects with an area smaller than 50 pixels or with an eccentricity

greater than 0.99. We determined both values empirically, based on randomly drawn im-

ages of the data set. In addition, all objects that were touching an image border were

removed.

5.2.3 Manual tracking of genealogies

Several studies have shown that to date no automatic tracking algorithm exists that ro-

bustly generates trajectories of differentiating hematopoietic stem cells from high-throughput

brightfield microscopy (Schroeder, 2011; Meijering et al., 2009). Yet, as the Trackmate

program we used in Chapter 3 produced accuracies of over 90% for short-term fluores-

cence time-lapse experiments, we evaluated the tracking performance on image stacks of

the same length and size (i.e. 60 minutes duration, single field of view), for long-term

high-throughput time-lapse microscopy.
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a b

Figure 5.1: Autotracking correctness decreases in dependence of cell density and exper-
iment length. (a) Visualization of tracked single cells with a low cell density (22 ± 8.7
cells per 0.1mm2). The percantage of correctly identified trajectories was at 73 ± 5%
over three stacks. (b) Single-frame visualization of tracked single cells for high cell den-
sity (59.5 ± 12.87 cells per 0.1 mm2). The percentage of correctly identified trajectories
dropped to 15 ± 5% over three stacks. Traces are shown for 10 time points. Scale bars
represent 100 µm.

Applying Trackmate on a set of 3 imagestacks with a density of 22±8.7 cells per 0.1 mm2

and 59.5 ± 12.87 cells per 0.1 mm2 revealed that 73 ± 5% and 15 ± 5% were correctly

tracked for the low and high cell density, respectively (see Figure 5.1). This example shows

that even for this extremely reduced level of complexity, sophisticated tracking algorithms

that are capable of detecting cell divisions and powerful enough to track hundreds of

cells simultaneously are not performing good enough to track whole genealogies in long-

term high-throughput time-lapse experiments fully automatically. We thus followed a

manual tracking approach that is well established in our labs by using the custom written

software TTT (see Section 2.5.6) to built a pedigree of a hematopoietic stem cell and

their progeny (Eilken et al., 2009; Rieger et al., 2009; Hoppe et al., 2016). We stopped

tracking if i) a cell divided after a lineage marker was identified, ii) the cell died, or iii)

a cell was lost (cell moved beneath the coverslip border or obscured exact position due

due to insufficient temporal resolution). Note that our results also showed that while

an autotracking approach might not perform well enough to track entire pedigrees over

long time spans and in high cell densities, a short tracking interval together with low cell

densities could suffice to at least partially track single cells with sufficient accuracies.
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5.2.4 Mapping of somata to track coordinates

Before we were able to quantify the morphology and motility of full cell trajectories,

a mapping of the tracking coordinates to the identified somata per frame and cell was

necessary. Due to inaccuracies of the manual tracking process, the track points were

deviating up to 100 pixels from the true cell center. We thus automatically identified

the center of the nearest cell soma for all frames in every cell track of a pedigree by the

following iterative search procedure.

For every tracked coordinate, we identified the nearest foreground object (i.e. cell) in Dseg

by a window around the coordinate with an initial size of 30 × 30 px (the approximate

radius of a cell) that was iteratively extended by 10 × 10 px. If an object was found, a

binary image patch Pcell of 41 × 41 px around the object was extracted from Dseg and

the procedure was continued. If no cell was identified after 12 iterations the frame of the

track was skipped and labeled as missing.

In the extracted image patch Pcell, we separated large objects that presumably represented

mitotic cells or cell clumps by applying a modified version of marker based watershedding.

While we applied watershedding to the full image in Chapter 4, the procedure described

here reduced the computational burden. Also, instead of using ultimate erosion to define

the seed points for watershedding, we identified ellipsoid structures with a maximum

radius of 30 pixels (the approximate radius of a hematopoietic progenitor cell) by applying

a circular Hough transform. After computing the distance transform Pdist of the binary

patch, all detected centroid pixels that were found by the hough transform in Pdist were set

to zero and watershedding was applied, resulting in the binary image with splitted objects

Pwatershed. If a foreground object was split the image patch Pwatershed was rearranged to

the retained cells center of mass and all pixels not belonging to the identified cell were set

to zero.

5.2.5 Quantificaton of cell trajectories

We derived a set of 66 features (14 basic measurements, 3 Ray features, 13 Haralick texture

features, 2 Gabor wavelet features, 5 Tamura features, cell speed, 27 Zernike moments, 2

Gabor wavelets) from every extracted image patch Pcell (see Section 2.3 for details). If a

fluorescence image was available at the given frame, we quantified the fluorescence signal

by summing up all pixels within the segmented cell in the normalized fluorescence image.

To normalize the amount of fluorescence, we divided the summed up signal by cell size.
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To be able to filter quantification errors (clumped cells, dirt falsely identified as cell, cells

lost due to border contact, over-segmented cell fragments) in a later data cleaning step, we

fitted a B-spline to the quantified cell size over time by using the FDA toolbox (Ramsay

et al., 2009).

5.2.6 Pipeline parameters

We used the following set of parameters for the processing of all experiments:

• Background correction

Parameter Value

Tile dimensions 30 px
Overlap 15 px
Number of trees 1000
Class probability prior 0.5

• Detection of cell somata

Parameter Value

Delta 40
Minimum Object Size 20 px
Maximum Object Size 4000 px
Maximum Variation 1

Morphological closing 1 px
Morphological opening 1 px

Filter objects (eccentricity) > 0.99
Filter objects (size) < 30px

• Mapping of somata to cell tracks
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Parameter Value

Initial size of search window 30 px
Growth of search window 10 px
Search Iterations 12
Size of extracted image patch 41× 41px

Maximum Eccentricity 0.7
Minimum Object Size 30 px
Maximum Object Size 1000 px

Cell radius for CHT 25 px

5.2.7 Evaluation of single-cell quantification

We evaluated the general performance of our cell identification approach by quantifying

and analyzing the cell size during cell cycle with a fitted B-spline function to the full

single cell trajectory using the FDA toolbox (Ramsay et al., 2009). Since cell size can be

expected to smoothly grow over a cell’s lifetime, large residuals would suggest errors in

cell identification (see Figure 5.2a-c). We thus computed the standard squared error for a

single-cell trajectory as

SSE(c) =

N∑
n=1

(
gc,n − fc(n)

)2
, (5.2)

where N is the number tracked time points for cell c, gc,n is the measured size of the cell

at time point n and fc(n) is the respective value of the B-spline. We then determined the

contribution of the SSE to the quantified cell size:

ERRsize =

(
SSE(c)

N∑N
n=1 f

A
c,n

)
100 (5.3)

where fA is the cell area as defined in Section 2.3. We found that only ∼ 5% of the cells

in our dataset exceeded an average cell size error of 25%, indicating an overall robust cell

identification (see Figure 5.2).
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Figure 5.2: Quality and robustness of cell identification. (a) Cells with a size error of
10% − 20% show very few outliers and smooth size quantifications (cell taken from the
Median, solid black line in (d)). (b) Cells with an error higher than 25% have a few
measurement errors (most likely due to under-segmentation), yet the B-spline fit is smooth
and the majority of residues is small (cell at 95th percentile, dashed black line in (d)).
(c) If cell identification is erroneous, a high variance in cell size quantification results in
a size error of more than 45% (cell at 99th percentile, dotted black line in (d)), which is
unlikely for normal cell growth. (d) Fraction of all cells per error in cell size (root mean
square error of B-spline fit divided by mean cell size), for each experiment (blue, red and
yellow lines). For less than 5% of all cells in our dataset, the amount of cell size that was
explainable by error was higher than 25% (dashed black line).

5.2.8 Annotation of lineage commitment

Based on the quantified concentration dynamics of CD16/32 and GATA1mCHERRY of a

full branch (i.e. an annotated cell and all their predecessors) we annotated whether a cell

was differentiated, using a custom-written user interface. We computed the concentration

by dividing the summed up pixelwise fluorescence intensity of all pixels P in the mask of
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cell c at time point t in channel ch:

conc(c, t, ch) =
P∑
p=1

Flt,ch(xc,p, yc,p)
1

fA
c,t

, (5.4)

where fA is the cell area as defined in Section 2.3. We annotated lineage commitment

when the respective lineage marker was detectable in the fluorescent channel (CD16/32

for GM and GATA1mCHERRY for MegE) and assigned all tracked cells to one of three

categories (see Figure 5.3: i) “annotated” cells with clear marker expression, ii) “latent”

cells with no immediate marker expression but an expression in a subsequent generation,

and iii) “unknown” cells with no marker expression in current or subsequent generations.
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Figure 5.3: Lineage annotation and dataset overview. A single hematopoietic stem cell
at the root of a genealogy gives rise to an exponentially growing number of succes-
sors via repeated cell division. (a) Genealogy featuring cells committed to the granu-
locytic/monocytic lineage (GM) with annotated (dark blue lines) or latent (light blue
lines) CD16/32 antibody onset. Cells in branches with no annotated onset but annotated
sister branches were also labeled as latent. (b) Genealogy featuring cells committed to the
megakaryocytic/erythroid lineage (MegE), with annotated (dark red lines) or latent (light
red lines) GATA1mCHERRY expression and/or characteristic megacaryocytic morphol-
ogy (large cell body, multiple nuclei). Cells residing in branches with no annotated onset
but with annotated sister branches are also labeled as latent.

5.3 Dataset overview

After the full procedure of manual tracking, automatic idenfication of cell bodies and semi-

automatic lineage annotation, we received robust morphological quantifications for entire

branches of a hematopoietic pedigree for GM (see Figure 5.4a) and MegE committed cells

(see Figure 5.4b).
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Figure 5.4: Exemplary image patches of a full branch of single cells committed to either
GM (a, upper row) or MegE (b, upper row) lineage. Differences in morphology are hardly
visible before a marker onset (latent state), and even after a lineage is annotated. (a,b,
lower rows) Result of the automatic image processing pipeline (see supplementary Note 1
for details). The high accuracy of cell identification in all brightfield frames for a tracked
branch allows robust quantification of morphology and motility dynamics for both GM-
(b, lower row) and MegE-committed (c, lower row) cells, demonstrated here for cell size.
Scale bars represent 10µm.

After filtering for all unknown cells (containing both uncommitted cells and committed

cells for which the markers had not yet switched on), the dataset to train and evaluate

our method comprised 4402 single cells (∼ 1, 700, 000 image patches) with annotated or

latent marker onset (34% MegE and 66% GM). See Table 5.1 for a detailed overview of

the full dataset.
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# Genealogies MegE GM GEMMeg Unknown Sum

Experiment1 16 17 4 20 57
Experiment2 7 24 5 21 57
Experiment3 20 14 1 1 36
Sum 43 55 10 42 150

# Cells MegE GM latent MegE latent GM latent GEMMeg Unknown Sum

Experiment1 248 386 206 367 21 612 1840
Experiment2 315 510 124 286 15 932 2182
Experiment3 341 489 236 696 1 137 1900
Sum 904 1385 566 1349 37 1681 5922

# image patches MegE GM latent MegE latent GM latent GEMMeg Unknown Sum

Experiment1 71726 86696 56715 88529 6144 177873 487683
Experiment2 169186 201550 71595 141736 10347 528700 1123114
Experiment3 149833 224077 115799 310385 960 65933 866987
Sum 390745 512323 244109 540650 17451 772506 2477784

Table 5.1: Detailed listing of the number of genealogies, single cells and single cell obser-
vations (i.e. image patches) with defined annotations that were used in this study. Note
that a genealogy can feature a mixture of the annotations explained in Figure 5.3, called
GEMMeg.

5.4 A machine learning method to predict the hematopoi-

etic lineage decision

The information in our derived dataset spanned a highly complex, nonlinear spatiotempo-

ral input space. Thus in a next step we developed a machine learning method to robustly

and efficiently predict the lineage choice of a given single cell. Recapitulating our ini-

tial requirements for the method, we focused on the following capabilities: (i) General

applicability, i.e. training on other cell types or processes should be possible, (ii) on-line

prediction, i.e. prediction of a partially tracked cell during experiment duration and (iii)

Report of feature importance, i.e. which measure such as size, eccentricity or speed is most

influential on model performance.

5.4.1 General design considerations

We decided to develop a method that, given a single cell trajectory should predict the

most likely lineage choice. As the derived dataset contained a subset of cells with an

annotated lineage based on identified marker expression we chose to employ a supervised

classification method with a binary outcome, i.e. is the cell committed to MegE or GM

lineage?. Note that we deliberately did not include a “uncommitted” or “undecided”

class in the model, since the time-lapse experiments were designed in a way that all

cells eventually differentiated into GM or MegE lineage, even if a marker could not be

identified until the experiment was stopped. Thus, our dataset lacked a labeled subset of
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“uncommitted” cells and training on this class was not possible.

Single-cell vs. whole pedigree information As discussed earlier, an algorithm that

automatically and correctly tracks a full hematopoietic pedigree does not exist, i.e. during

on-line prediction correctly tracked predecessors of a cell of interest would not be available

(see Section 5.2.3). Yet, our tests also showed that short tracks of single cells might be

accurate enough to predict its lineage choice. We thus decided to only incorporate the

information about a single cell trajectory into the classification model, thereby discarding

information about predecessor, sister or niece cells.

Raw pixel information vs. high-level features In general, there are two approaches

to train a classification model on an image-based dataset. On the one hand, the raw

pixel information has to be transformed to high-level features that describe the shapes

or textural patterns in the image, and the model is then trained based on a vector of

these features per data point. This approach was followed in several well performing

models that were used for e.g. the general prediction of different cell types in fluorescence

microscopy (Shamir et al., 2008), the classification of cell cycle phases (Held et al., 2010)

or the prediction of differentiation decision of retinal progenitor cells (Cohen et al., 2010).

Yet, the set of features has to be designed manually, which often involves a thorough

understanding of the studied cell type or system that is not always available. In addition,

the derivation of high level features adds computation time to the processing pipeline. As

the computation of some features such as Zernike moments is computationally demanding,

this approach would lead to a slower on-line evaluation. We thus decided to train our

method based on the raw pixel information. This approach allowed a general application

of the model even for different cell types and the on-line prediction would be faster.

Incorporating temporal dependencies Standard classifications methods such as sup-

port vector machines, random forests or neural networks regard the set of samples that

are to be classified to be i.i.d., meaning that there are no dependencies of one sample to

each other. In our case however, the single frames that comprised a cell trajectory were

temporally dependent on each other. On the one hand, using a classification method that

natively models the temporal dependencies such as a Hidden Markov model (HMM) would

potentially lead to a better model performance, as was shown by Held et al. (2010). The

authors first trained a SVM to predict the cell cycle stage of a given fluorescence time-lapse

microscopy image frame, then used a HMM to incorporate the temporal information of

a full cell trajectory and thereby increased the model performance. On the other hand,
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requires a single trajectory to change its state during a single cell cycle, which was not

the case in our application. In addition, if a cell would be only partially tracked during

an on-line prediction, the model would not be applicable.

We chose to develop a two-stage approach, that is similar to the the method described in

(Held et al., 2010). First, a classification method should predict lineage commitment of a

given raw image patch on a frame-by-frame basis. In a second step, the predicted class for

every frame of a cell trajectory should then be averaged to get a single prediction per cell.

This procedure is also comparable to ensemble learning, as discussed in Section 2.4.2.

Note that in a side project we used recurrent neural networks (RNNs) to directly integrate

the temporal dependence of single frames for a given cell trajectory in the model. The

results are discussed in detail in the thesis of Kroiss (2014). Yet, this approach was only

possible by using the measured high-level features, not raw pixel information.

5.4.2 Convolutional neural network

A class of machine learning algorithms that satisfied all of our design considerations were

convolutional neural networks (CNN, see Section 2.4.2). The network consists of several

layers that can extract meaningful patterns from the raw pixel information of an input

image. In addition, the architecture of such a method is flexible enough to introduce new

layers that allow to incorporate information that is not directly related to the raw image,

such as cell movement. We built a model from the LeNet family, which performed well

in several recent image classification challenges (Lecun et al., 1998; Ciresan et al., 2011;

Krizhevsky et al., 2012; Erhan et al., 2013; Girshick et al., 2014).

The CNN is structured in two parts of processing layers. First, convolutional layers ex-

tract information from spatially connected input nodes such that the neural network can

learn local patterns from the image. These local, automatically generated image features

are iteratively passed through several connected convolutional layers, resulting in increas-

ingly global representations of the images (see Figure 5.5). Each convolutional layer is

followed by a non-linear activation function. We chose Rectified Linear Units (ReLU),

which have been shown to introduce non-linearities without suffering from the vanishing

gradient problem (Nair and Hinton, 2010). In addition, we used max-pooling layers re-

ducing variance and increasing translational invariance by computing the maximum value

of a feature over a region (Ranzato et al., 2007) and dropout layers. Next, a fully con-

nected layer is introduced to avoid overfitting. By using this archtitecture we followed

largely Ciresan et al. (2011), where is shown that this combination of layers results in
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Figure 5.5: Machine learning architecture. (a) For each frame of a tracked cell, the raw
image patch and the instantaneous cell speed are fed into a convolutional neural network
(CNN, see Section 2.4.2). Every frame is assigned a lineage score L between 0 and 1 (0 =
MegE, 1 = GM, 0.5 = unsure). (b) To improve classification performance, we average all
lineage scores L for all frames of a cell cycle, resulting in a lineage score L̄ for every cell in
the dataset. The shown prediction profile is shown exemplarily for the cell at generation
-3 in Figure 5.4a.

fast training times and good performance on a variety of image classification data sets.

As a convolutional net allows no direct inclusion of features other than pixel information,

we introduced a concatenation layer which combines spatial features with cell speed (see

Figure 5.5a).

We used a standard softmax loss function and trained the network using stochastic gradient

descend with stratified batches of 128 images (for details see Section 2.4.2). We initialized

all weights in the network using the Xavier algorithm which automatically determines

the scale of the initialization based on the number of input- and output nodes randomly

(Glorot and Bengio, 2010). We used standard values for the base learning rate (0.01),

momentum (0.9) and the weight decay (inverse decay with γ = 0.0001 and power = 0.75.

We then multiplied the base learning rate after i iterations with (1 + γi−power) (Jia et al.,

2014).

In order to classify individual cells as committed to either lineage, we first generated a

lineage score L for each image patch and then averaged all scores resulting in a lineage
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Figure 5.6: Train-test procedure to evaluate our method. (a) We used two experiments for
training while one experiment was left out to assess generalization quality of the learned
model. We repeated this procedure 3 times in a round-robin fashion, and received a
lineage score L for every latent and annotated cell in the dataset. (b) Area under the
receiver operating characteristics curve (AUC; 1.0 = perfect classification, 0.5 = random
guessing) to determine the performance the trained models. Annotated cells (generations
0,+1,+2) and latent cells up to 3 generations before a marker onset (generations -3,-2,-1)
show good AUCs higher than 0.77 (n=3 experiments, 4204 single cells). Rounds refer to
the individual cross-validation runs from (a).

score L̄ for every cell (see Figure 5.5b).

5.4.3 Training and evaluation

In order to avoid over-fitting we divided the training data into a training and validation set

and optimized the weights until the performance on the validation set started to degrade

(early stopping). All images were normalized to mean zero and unit variance, allowing for

online predictions of cells directly during experiment duration, without having to normalize

for possible batch effects.

To assess the generalization power of our model to reliably predict a cell’s putative lineage

choice in independent experiments, we trained the CNN on 2 experiments and tested the

resulting model on the third experiment; we repeated this procedure 3 times in a round-

robin fashion (see Figure 5.6a) and evaluated the performance of the trained model by the

area-under-the-curve (AUC) of the receiver-operating characteristic (see Figure 5.6b).

Our method achieved high AUCs of 0.86 ± 0.02 (mean ± s.d., nE = 3 rounds) on an-

notated cells, indicating that morphology and speed suffice to detect the lineage choice

of hematopoietic progenitor cells. Interestingly, the reported AUCs for latent cells were
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Figure 5.7: Average AUCs when only (contiguous) subsets of the available image patches
are used to compute the averaged lineage score L. AUCs of the trained models for each
train-test round reach a plateau when after using the first 25% of a cell cycle for averging
the lineage score. This holds true for all annotated (h) as well as all latent cells from 3,2
and 1 generations before marker identification (i), respectively.

also high (0.78 ± 0.04, mean ± s.d., nE = 3), suggesting that latent cells are morpho-

logically different before an identifiable marker expression (Supplementary Fig. 3a). We

further investigated this finding by analyzing AUCs for every generation separately (Fig.

1g). AUCs stayed at comparable levels from one to three generations before an annotated

marker onset (0.86± 0.07, 0.83± 0.06 and 0.81± 0.06, mean ± s.d., nE = 3). At four and

five generations before the marker onset the decline of AUCs (0.75± 0.14 and 0.60± 0.19,

mean ± s.d., nE = 3) suggested that the difference in morphology and speed did not longer

suffice to correctly identify GM- and MegE-committed cells.

To assess the performance of our CNN when a cell is not tracked over its full cell cycle, we

computed AUCs using a growing subset of all available lineage scores per cell to compute

the averaged lineage score L. Consistently for all three train-test rounds, improvement of

AUCs reached a plateau after using 25% of the cell cycle from annotated (see Figure 5.7a)

and latent ( see Figure 5.7b) cells 3,2 and 1 generation before the identified marker onset,

respectively.

5.4.4 Comparison to feature-based classification methods

We compared the performance of our CNN to a random forest model and a support vector

machine (SVM). In addition, we evaluated algorithmic information theoretic prediction, a

method that was specifically developed to predict self-renewing versus terminal divisions

of retinal progenitor cells (AITP, Cohen et al. (2010)). AITP uses the full trajectory of
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Figure 5.8: CNNs outperform feature-based methods in regard of calibration. (a) Area
under the curve (AUC) for generations before and after an annotated marker onset for our
CNN (dark gray bars), random forest (light gray bars) and support vector machine (white
bars). Our method outperforms the SVM on annotated cells and is on par on latent cells,
whereas random forest reports higher AUCs throughout the whole range of generations,
yet with higher standard deviations (error bars). (b) Macro-averaged F1-scores (averaged
lineage score threshold: 0.5) for generations before and after an annotated marker onset
for our deep learning method (dark gray bars), random forest (light gray bars) and support
vector machine (white bars), as well as AITP (black bars). Due to better calibration, our
method outperforms random forest and AITP. SVM reports similar scores as our method
on latent cells, but performs worse on cells with annotated onset.

a given cell to compute the normalized compression distance, a measure from algorithmic

information theory, on multiple quantization levels.

A random forest classifier was trained with 200 trees and evaluated by out-of-bag pre-

diction. In addition, we chose BudgetedSVMs (Djuric et al., 2013) with the Pegasos
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algorithm and a radial basis function kernel as a support vector machine framework that

was able to deal with the millions of single-cell measurements in our dataset. We used

a grid search with 5-fold cross-validation for every train-test combination to determine

optimal hyperparameters. The best-performing model was then used for predicting the

testset. Note that the hyperparameters for SVM had to be determined for every train-test

run individually. We trained both methods with a set of 65 morphological features and

cell speed (see above). We applied the same train-test procedure for model evaluation as

for the CNN.

AITP was trained as described in Cohen et al. (2010), using a set of 6 features for each

cell (movement, net movement, movement direction, area and eccentricity of fitted convex

hull). As AITP was not able to process the the full dataset in a single run, we generated

three subsets (nc = 400 cells) for every train-test round, which we evaluated separately.

We used the averaged evaluation results for comparison. As the used version of AITP

reported class labels and no prediction scores, we used the macro-averaged F1-score for

performance evaluation. It is worth noting that in contrast to all other methods, AITP

inherently uses the full cell trajectory for training and prediction.

While our method outperformed the support vector machine on annotated cells and was

on par on latent cells, we found the reported AUCs for random forest to be higher on both

sets (see Figure 5.8a). However, the CNN achieved considerably higher macro-averaged

F1-scores as the random forest and AITP (see Figure 5.8b), indicating a poorer calibration

of these methods. This suggests that the CNN yields more reliable results when applied

to new experiments that were not part of the training procedure.

Cell speed, size and mean intensity are most informative for the prediction of

hematopoietic lineage decision

A downside of the convolutional neural network is that the automatically generated ab-

stract feature layers that are used as features to train the model are hard to interpret

biologically. Yet, knowing which features are most important for lineage prediction could

support experimentalists in the design of novel experiments to study hematopoietic dif-

ferentiation (Schroeder, 2011). Given the comparable performance on our data set we

chose to evaluate the feature importance reported by the trained random forest models

(see Section 2.4.2 for methodological details). We found that cell speed and simple mor-

phological features (maximal/mean pixel intensity and cell size) are most important for

correct classification (see Figure 5.9).
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Figure 5.9: Importance of derived morphological features for classification performance.
Gini importance for 4 most important morphology features as well as cell speed as re-
ported by the random forest model, averaged over three train-test rounds (see Section 2.3
for details). Cell speed and simple morphological measurements (minimum and maximum
intensity, perimeter, major axis length) have the most impact on classification perfor-
mance. More sophisticated shape (zernike moments, ray features) or texture measure-
ments (tamura and haralick features) are mostly irrelevant.

5.5 PU.1 expression of cells predicted to be MegE- and GM-

committed agrees with prior knowledge

A possible application of our method is stopping a time-lapse experiment at any time

before lineage markers are identifiable, measuring the expression of key master regulators

and eventually assigning a lineage choice to single cells in accordance to L. This would

allow to compare expression patterns of differentially committed cells. Here we analyzed

PU.1eYFP, a transcription factor that was upregulated in GM-annotated cells (see Figure

5.10a) and downregulated in MegE-annotated cells (see Figure 5.10b), as expected from

prior knowledge. In contrast, PU.1eYFP showed an intermediate distribution in cells with

no annotated marker expression (see Figure 5.11a). If our proposed method was capable

of reliably predicting lineage choice before approaches based on molecular markers, we

should be able to in-silico stratify all cells in a stopped experiment (due to missing marker

expression only “unknowns” and “latents”) into GM- or MegE-committed cells. These

groups in turn, are expected to differentially express PU.1eYFP. Thus we classified every

latent and unknown cell of experiment 3 into two groups by analyzing if L was above

(GM) or below (MegE) a threshold of 0.5 (see Figure 5.11b). We found the two groups

to differentially express PU.1eYFP from 3 generations after experiment start onwards

(P<0.05 in gen. 3, P<0.01 in gen 4, P<0.001 in gen. 5-8, unpaired wilcoxon rank-sum

test, see Figure 5.11c) with at least 70 cells per generation (Fig. 2e). As only 2 ± 1%

(mean ± SD, nE=3) of GM and 15±8% (mean ± SD, nE=3) of MegE marker onsets were

annotated earlier than four generations after experiment start, our method is superior
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Figure 5.10: PU.1 expression of cells predicted to be MegE- and GM-committed agrees
with prior knowledge. (a) Increase of PU.1eYFP concentration from intermediate to high
level for a branch with annotated GM marker onset (blue line). (b) Decrease of PU.1eYFP
concentration from intermediate to low level for a branch with annotated MegE marker
onset (red line). Shown PU.1eYFP levels (black dots) are the sum of cellular fluorescence
intensity at every time point, divided by cell size and fitted by a B-spline (black/colored
line for latent and annotated lineage, respectively).

than the lineage identification with molecular markers.
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Figure 5.11: Figure 2: Subsets of cells with differential PU.1eYFP concentration can be
distinguished 3 generations after experiment start without molecular labeling. (c) Cells
without marker expression (unknown or latent fate, black patch) show an intermediate
PU.1eYFP concentration distribution in comparison to cells with annotated marker onset
for GM (blue patch) and MegE (red patch) lineage and are thus not differentiable without
further labeling. (d) Concentration of PU.1eYFP for “unknown” and “latent” cells in
generations after experiment start, subdivided into predicted GM (blue boxes) and MegE
(red boxes) lineage, as reported by cell cycle averaged lineage score L. Observed trends in
PU.1eYFP concentration are in good agreement with behaviour expected from literature.
PU.1eYFP concentration is significantly different (black stars, P¡0.05 in gen. 3, P¡0.01 in
gen 4, P¡0.001 in gen. 5-8, unpaired wilcoxon rank-sum test) between the two predicted
groups. (f) Numbers of predicted GM (blue bars) and MegE (red bars) committed cells
for every generation after experiment start. Generations with significantly different groups
cover at least 70 single cells.
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Implementation

Single-cell identification and quantification was implemented using MATLAB (R2014a).

Code from Junior et al. (2009) was used to compute histograms of oriented gradients. All

quantifications were parallelized on single-cell level and processed on a computation cluster

(sun grid engine version 6.2u5). The average node architecture was equal to an Intel Xeon

2GHz, 4GB RAM running a 64bit linux-based operating system. Random forest classi-

fication was conducted with the python-based scikit-learn package (v0.15). The support

vector machine was trained using the code provided with the original publication(CITE).

AITP was trained using the latest version (april 1st, 2014) from the website of the au-

thors after slight adaptation of input/output functionality to fit our data. To implement

the deep neural network, we used the Caffe framework and trained it on a standard PC

equipped with an Intel Core i7-4770 CPU, 32GB working memory and a 6GB Geforce

GTX Titan Black graphics card.

5.6 Conclusion

Our method prospectively identifies lineage choice in hematopoietic progenitors and per-

forms robustly on three independent time-lapse experiments. For future experimental

applications, the brightfield-based prediction frees fluorescent channels that are currently

used for lineage marker annotation. Moreover, the differential expression of PU.1eYFP in

implies that our methods can be used to identify master regulators of lineage choice when

large-scale expression profiling is performed. The use of convolutional neural networks

matches the large amount of image data emerging in time lapse microscopy. Compared

to other machine learning methods, our CNN approach is fast , independent of a cell-type

specific, curated feature set and requires no high-level feature calculation. It is thus very

versatile and can be applied to analyze branching processes in in biological systems where

suitable feature sets are unknown, shown in other applications before (Mnih et al., 2015).



Chapter 6

Summary and Outlook

In this Chapter, we summarize the developed methods and biological insights we gained

throughout our studies. We also critically discuss the limitations of our methodology and

provide ideas for further improvements and future applications.

6.1 Summary

The goal of this thesis was the development of methods from bioimage informatics tailored

to the application on time-lapse microscopy experiments and the analysis of morphody-

namics of single cells. We contributed to the question, whether these non-molecular charac-

teristics can be used to predict cellular state changes of T-lymphocytes and hematopoietic

stem cells.

6.1.1 Analysis of T-lymphocyte migration

In a first project described in Chapter 3, we analyzed changes in the migration of T-

lymphocytes in three independent experiments with different cellular confinement depths.

Based on short sequences from fluorescence time-lapse microscopy we used a concatena-

tion of available image filters and the MSER algorithm to detect nuclei and cell somata.

While we found that the performance of our segmentation approach generally was on par

with simple Otsu thresholding, we could show that our method was more robust in cases

where very few foreground objects (i.e. cells) were present in the image. This finding is

especially important for the analysis of time-lapse experiments, where the number of cells
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but also the image quality can hugely vary over the full experiment duration. A less robust

method would lead to systematic errors, e.g. a high fraction of missed cells at the end of

the experiment. In a next step, we adapted the tracking framework Trackmate to auto-

matically generate trajectories of single cells over the full experiment with a correctness

of over 95%. While the high amount of correctly tracked cells sufficed for the analysis we

conducted in this thesis, an important feature of our pipeline is the possibility to manually

assess the automatically generated trajectories if necessary. This allows a researcher to

discard tracks of e.g. dead cells that would otherwise lead to erroneous measurements.

We analyzed the migration behavior of T-lymphocytes in the different confinement depths

(i.e. 8 µm,6 µm and 4 µm) by fitting a Gaussian mixture model with a variational Bayesian

approach (VB-GMM), which allowed us to determine the number of cellular subpopula-

tions that are present in the data. Interestingly, we found two groups of motile and

non-motile cells in every condition, although with varying abundances, suggesting that

cells respond heterogeneously to the confined environment. While these groups could also

have been detected manually by a human observer, our fully Bayesian approach allowed to

exactly determine the average speed and the standard deviation for every group together

with a confidence estimate. This quantitative measure adds a new level of detail to the

analysis and could be useful when differences in the migration behavior of the analyzed

cells are more subtle.

The detected cell somata together with the tracked cell trajectories allowed us to auto-

matically determine a set of morphological features, as well as the distribution of actin

inside the cell. In contrast to literature, neither a cell’s eccentricity nor the amount of

actin at the leading edge correlated strongly with cell speed. A technical explanation for

this observation is that the level of precision of the eccentricity and actin measurement did

not suffice to account for the complex shapes that T-lymphocytes adopt over time. Yet,

we think it is worthwhile to continue this analysis with more experiments and an increased

number of tracked cells, as the missing correlation could also be a consequence of a too

small dataset. In a last analysis, we trained a regression model on the quantified morphol-

ogy per cell to predict its movement on a frame-to-frame basis. While the model predicted

the speed of fast and intermediate moving cells very well, the accuracy decreased for slow

or non-moving cells. Since our VB-GMM approach identified two different groups of cells,

one could split the dataset in accordance to motile and non-motile behavior and train two

regression models separately for the group of motile and non-motile cells, respectively.

Taken together, the developed pipeline automatically quantifies the morphology and motil-

ity of T-lymphocytes in fluorescence time-lapse experiments with high accuracy and thereby
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enables to generate datasets with high cell counts, which will eventually increase the sta-

tistical power with new experiments. Together with Dr. Anne Reversat from the Sixt lab

we started to conduct and analyze time-lapse microscopy series that feature more levels

of confinement (i.e. 2µm or 10µm), but also different coating patterns and substrates of

the coverslip to study T-lymphocyte migration under non-adhesive and adhesive environ-

ments. Our pipeline will be of great help to automatically process the high amount of

time-lapse experiments that will arise due to the increased number of combinations of

environmental factors and could lead to findings such as under-represented groups of cells

that are not detectable by manual analyses alone.

6.1.2 Prediction of hematopoietic lineage choice

In the second project of this dissertation described in the Chapters 4 and 5, we assessed

the feasibility to use the morphodynamics of single cells as a predictor for myeloid lineage

choice of differentiating hematopoietic stem cells (HSCs) in long-term high-throughput

time-lapse experiments. The long experiment duration and the fast cell motility made it

necessary to acquire brightfield images at intervals of 60 seconds for cell tracking, as a

high frequency of fluorescence images would have been toxic for the cells. As it was much

harder to derive meaningful information such as cell shapes from this type of images as from

a fluorescent image and reliable algorithms for robust cell detection in high-throughput

experiments were not available, we developed and published our own algorithm. The steps

that had the most impact on robustness of cell identification (at least 83% of all cells in

a field of view at every frame) were on the one hand the adaptation of the microscopes

focal plane during image acquisition. This increased the contrast of the cells to a level that

spatial and temporal variances in illumination did not affect the segmentation performance.

On the other hand, the robust MSER thresholding algorithm allowed us to process the

complete dataset (i.e. 3 experiments, more than 1,000,000 images) in a single run with a

single set of parameters. Finally, we could quantify the morphodynamics of hematopoietic

stem and progenitor cells throughout the full differentiation process by coupling the derived

cell outlines with manually tracked genealogies.

In a next step, we used the derived image patches with centered single cells to train a

convolutional neural network (CNN) that automatically identified the important differ-

ences in the raw pixel information to discriminate between MegE- and GM-committed

cells. Additionally, we introduced a concatenation layer to the classical network layout

that allowed us to also use cell speed as a feature for model training. We showed that our

method robustly detected the lineage commitment of single cells up to three generations
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before the expression of molecular lineage markers, even when the prediction was done on

a completely unknown experiment. This implies that a model - once trained on a set of

annotated data - can be applied on newly conducted experiments without generating a

ground truth for every particular experiment. While we could not find a significant im-

provement in the prediction performance of our CNN in comparison to classical machine

learning methods such as random forest and support vector machine that we trained with

the derived morphological features, we believe that the higher robustness in terms of cali-

bration and the faster computation of prediction scores will be viable in the application of

the method in the experimental day to day work and will also allow on-line applications.

Also, the CNN can be applied to different cell types where a manually derived set of mor-

phological features might not be available. We hope that this will enable the conduction of

high-throughput screening approaches, to e.g. test the influence of different growth factors

or drugs on hematopoietic differentiation.

As a side note, our method also allowed to automatically and continuously quantify the

expression of PU.1 and GATA1, which are thought to play a major role during differ-

entiation by their fluorescence signals. Given that the currently established procedure

to postprocess this data involves a manual inspection of every quantified time point per

fluorescence channel (see the dissertation of Schwarzfischer (2013)), we believe that our

automated technology can save a great amount of time in the analysis of gene expression

dynamics on the single-cell level.

The in our opinion most important biological implication of the results we received in this

project is that hematopoietic stem and progenitor cells show subtle differences in their

morphodynamics during differentiation that allow to predict whether a cell is committed

to the MegE or GM lineage. This means that cells might be committed to a certain lineage

much earlier than what was expected previously. Also, the morphological differences could

be used to study the molecular state of cells committed to different lineages at every time

point during experiment conduction, for example via single cell sequencing (see Section

6.2.2). To demonstrate this possible use-case of our technology, we analyzed the differences

in PU.1 expression of cells that were classified to be committed to MegE or GM lineage

by our CNN. We found that PU.1 expression behaves as described in literature. Given a

mouse line that fluorescently expresses another transcription factor of which the role in

hematopoietic lineage choice is unclear, our methodology can be used to group single cells

in accordance to their differentiation status, thereby revealing differences or patterns in

gene expression that would otherwise not be detectable.

It is worth noting that both image processing pipelines are in large parts executable
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in parallel on a computation cluster, which greatly decreased the computation time for

the detection of single cells and the quantifaction of morpholgy and motility. To that

end, we designed and used a load balancing script that splits up the images of a long-

term high-throughput time-lapse experiment in equally sized chunks and distributes it

over a predefined number of grid notes. The same is possible for the quantification of

morphological features on an extracted image patch for every time point of a tracked cell

trajectory. In our case, the time required for processing was reduced up to 500-fold, which

made many of the analyses and especially parameter tuning possible in the first place.

6.2 Outlook

While the methods we developed throughout the preparation of this dissertation were

strongly tailored to the analysis of T-lymphocyte migration and the prediction of hematopoi-

etic lineage choice, several modules in the created pipelines could be used with little

adaptations for the analysis of a multitude of different biological experiments based on

time-lapse microscopy. In the following paragraphs we will thus first disucss potential

methodological extensions that could be beneficial for further analysis of time-lapse ex-

periments. Second, we will provide ideas on how to design follow-up studies that use our

methodology to answer biological questions.

6.2.1 Methodological extensions

Identification of single cells in multi-focal brightfield microscopy

A downside of the approach we described in Chapter 4 is the loss of textural detail in

brightfield images due to a shift in the optimal focal plane during acquisition. This could

be resolved by acquiring brightfield images in several focal planes, including the plane with

optimal textural details (Selinummi et al., 2009). While the 72 fields of view that had to

be scanned in short acquisition intervals of ∼ 60 seconds per frame did not allow to to

pursue this approach in the experiments we used in this dissertation, this could be done

by either using a motorized stage that scans the plate faster or by reducing the size of the

coverslip. Also, for cell types that do not require high acquisition intervals due to slower

motility (e.g. embryonic stem cells), the amount of brightfield images in different focal

planes could be increased. This procedure could also help to correctly identify already



150 CHAPTER 6. SUMMARY AND OUTLOOK

differentiated and thus adherent cells that are residing in a different focal plane, which the

algorithm we presented in Chapter 4 often segmented incorrectly.

Autotracking in high-throughput time-lapse microscopy

After parameter adjustment, the autotracking software Trackmate we used in Chapter 3

returned over 95% of correctly tracked trajectories in fluorescence time-lapse experiments.

However, the correctness of the algorithm heavily decreased in the brightfield case (see

Section 5.2.3). Initial tests that we have conducted throughout our studies suggest that

Trackmate is capable of tracking full genealogies, as the underlying tracking algorithm

from Jaqaman et al. (2008) can detect cell division events and also fills gaps in a cell

trajectory that resulted from e.g. incorrectly segmented cells. We identified the following

challenges to be resolved until reliable autotracks of full genealogies can be realized. First,

the accuracy of cell detection in brightfield images has to be increased. While our proposed

algorithm reported accuracies higher than 80% and split cells correctly after a division

event, we found problems when cells were clumped together or became adherent and thus

moved to a different focal plane. Yet, a correct splitting of cells especially in clumps

of three or more cells is crucial to derive correct genealogies. In addition, in order to

allow a global optimization of the tracklet linking (see Section 2.2) the amount of data

points has to be reduced, as a matrix of ∼ 300, 000, 000 single-cell measurements can

not be optimized computationally. We therefore suggest to split this matrix into smaller

overlapping chunks both temporally (e.g. intervals of 24 hours as this would represent two

cell cycles) and spatially (as cells typically show fast motility but stay in one quadrant

of the coverslip). This would create locally optimal solutions that can be connected to a

full result afterwards. As errors in this process are inevitable, a measure of quality for the

tracked genealogy would have to be introduced. Criteria that could be incorporated are

the number of cells in close proximity for the tracked cell at every frame, the quality of

segmentation or cell identification and also the time that has passed until the experiment

was started (due to cell proliferation tracking accuracy decreases with a rising number of

cells on the coverslip) (Meijering et al., 2009; Chenouard et al., 2014; Maška et al., 2014).

These quality measure would also make it possible to manually assess parts of the tracked

genealogy (e.g. using the user interface provided by Trackmate) that are problematic,

without having to screen the full tree.
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Convolutional recurrent neural network to predict lineage commitment

The convolutional neural network we developed in Chapter 5 is not able to inherently

process time-resolved data. While the averaging approach we used to build the lineage

score for a given input cell reported high AUCs and also has the advantage that cells

can have arbitrary lengths (e.g. due to tracking errors), the temporal dependencies in a

cell cycle could improve the methods overall performance. We thus propose to combine

our results with the insights gathered with recurrent neural networks on this dataset as

described in Kroiss (2014). A convolutional recurrent neural network could be generated to

predict the lineage commitment not only of single cells, but also branches and genealogies.

While the training of this class of models could be problematic due to the high model

complexity, recent advances might help to tackle the upcoming challenges (Pinheiro and

Collobert, 2013; Kalchbrenner and Blunsom, 2013; Donahue et al., 2014).

6.2.2 Biological/experimental extensions and follow-up studies

Prediction of HSC lineage commitment in microfluidic devices

In Chapter 5 we used long-term high-throughput time-lapse microscopy experiments to de-

velop our processing pipelines and conduct the analysis. While this technology has proven

to be a valuable tool to study the molecular and morphological dynamics of hematopoietic

lineage choice there also exist several downsides. For example, the large coverslips that are

necessary to culture the cells and the high motility rates of HSPCs render the development

of an reliable autotracking algorithm extremely difficult (Meijering et al., 2006), thus the

manual generation of pedigrees and annotation of lineage commitment will remain a huge

bottleneck in the analysis of such experiments. In addition, analyzing gene expression

by transgenically fused fluorophores is not well suited to study many molecular players

in parallel. First, generating a transgenic animal (in our case: mice) is very challenging

and can take years (Schroeder, 2010). Second, the number of fluorophores that can be

analyzed simultaneously is restricted to ∼ 10 color channels. Also, generating a knock-in

model requires that a potential player is known beforehand, thus new players can not be

detected.

A recently emerged experimental technique that has the potential to overcome these limi-

tations are microfluidic devices (Sackmann et al., 2014). Here, single cells are maintained

in small chambers on a tiny plastic chip that are connected by several channels and valves

that allow to precisely control the environmental conditions such as the amount of growth
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factors. If a cell divides one daughter is channeled into another chamber, which allows to

easily keep track of all successors of a single cell without tracking. While this approach

has been shown for yeast cells by Huberts et al. (2013), unpublished results by the group

of Timm Schroeder (D-BSSE at the ETH Zurich) suggest that this technique will also

be applicable to observe hematopoietic differentiation. In addition, the recently presented

commercial platform PolarisTM developed by Fluidigm claims to combine microfluidic cul-

turing of single cells in trap chambers, coupled with a downstream single-cell sequencing

approach to analyze the expression of thousands of proteins at any given time point during

differentiation. However, before the technique will be fully applicable for the long-term

analysis of differentiating hematopoietic stem cells, several challenges have to be solved.

This includes keeping the less robust stem cells healthy inside the microchambers, but

also robustly triggering the switching of one daughter cells to a new chamber after a cell

division. Also, the acquisition of brightfield images needs to be adjusted for microfluidic

divices, as the microchannels in the field of view can lead to image artifacts that can

hinder the correct identification of single cells.

Along this line, our developed methodology could be of great help in determining different

time-points in the hematopoietic differentiation process at which the observed cells will

be forwarded to further profiling, e.g. a sequencing pipeline. The convolutional neural

network detects the lineage commitment of hematopoietic stem and progenitor cells up to

three generations before conventional molecular markers, based solely on the pixel-based

morphology information and speed that could also be acquired during the culturing step in

a microfluidic chamber. Given that the prediction performance reached a plateau when we

averaged the lineage score over at least 25% of a cell’s full cell cycle (corresponding to ∼ 90

individual measurements per cell in our experiments), and the fast frame-wise prediciton

in milliseconds per frame, our method could be a great addition to the PolarisTM pipeline.

Large-scale comparison of cell shape space

The robustness and processing speed of our methodology allows the automated identifica-

tion of cells in millions of microscopy images, the generation of single-cell image patches as

well as the extraction of features and classification with a convolutional neural network.

A possible follow-up project could e.g. be an exploration of the total shape space in a

high-throughput screening approach of brightfield images, where hundreds of different cell

types are observed under the miscroscope. Comparable studies were already done in the

Bakal lab for D. melanogaster hemocytes and neuronal cells (Yin et al., 2014). The au-

thors found classes of conserved shapes, but also discuss that an exhaustive analysis of the
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shape space of a multitude of different cell types is still lacking. Along this line, Neumann

et al. (2010) conducted a phenotypic profiling of all ∼ 21, 000 human protein-coding genes

in fluorescence time-lapse experiments observing knock-out cell lines by quantifying their

morphology. For an evaluation whether the CNN performs better than a feature-based

machine learning method, the software WNTCHRM that computes an ensemble of 2500

morphological features could be used (Shamir et al., 2008). While to this date we are not

aware of a high-throughput dataset that would be suitable for this project, databases like

Morphobase (Futamura et al., 2012) or Morphobank (O’Leary and Kaufman, 2012) that

are providing images of a multitude of different cell types are constantly growing. Also,

publicly available datasets from already published projects like Neumann et al. (2010) or

(Held et al., 2010) could serve as a proof-of-concept study to demonstrate the feasibility

of the project to a potential collaborator.

In summary, we believe that the methods we developed throughout the preparation of

this dissertation will provide vital support in the automated analysis of experiments that

observe cell morphology and motility and thus enable the design of high-throughput exper-

iments to study a multitude of different environmental influences or molecular processes

in parallel. The analysis of cell morphology and motility can lead to discoveries in many

biological processes, as we demonstrated with the analysis of T-lymphocyte migration and

the prediction of hematopoietic lineage commitment. New experimental techniques such

as microfluidics open up a large number of potentially interesting studies, and we are ex-

cited how the automated quantification of cell morphology will further contribute to the

analysis of these experiments.
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B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers,

I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche,

V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils,

W. Huber, J. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg. Phe-

notypic profiling of the human genome by time-lapse microscopy reveals cell division

genes. Nature, 464(7289):721–727, apr 2010.



BIBLIOGRAPHY 167

B. Neumann, M. Held, U. Liebel, H. Erfle, P. Rogers, R. Pepperkok, and J. Ellenberg.

High-throughput RNAi screening by time-lapse imaging of live human cells. Nature

Methods, 3(5):385–390, 2006.

NIH. Regenerative Medicine, 2006.

D. Nistér and H. Stewénius. Linear Time Maximally Stable Extremal Regions. In

D. Forsyth, P. Torr, and A. Zisserman, editors, 08 Proceedings of the 10th European

Conference on Computer Vision: Part II, volume 5303 of Lecture Notes in Computer

Science, pages 183–196, Berlin, Heidelberg, oct 2008. Springer Berlin Heidelberg.

M. Nixon and A. Aguado. Feature Extraction & Image Processing for Computer Vision,

Third Edition. In Feature Extraction & Image Processing for Computer Vision, Second

Edition. Academic Press, 2012.

S. Nourshargh, P. L. Hordijk, and M. Sixt. Breaching multiple barriers: leukocyte motility

through venular walls and the interstitium. Nature reviews. Molecular cell biology, 11

(5):366–78, may 2010.

S. L. Nutt, D. Metcalf, A. D’Amico, M. Polli, and L. Wu. Dynamic regulation of

PU.1 expression in multipotent hematopoietic progenitors. The Journal of experimental

medicine, 201(2):221–31, jan 2005.

M. O’Leary and S. Kaufman. MorphoBank 3.0: Web application for morphological phy-

logenetics and taxonomy. Wiley, 2012.

T. M. Olson. Actin Mutations in Dilated Cardiomyopathy, a Heritable Form of Heart

Failure. Science, 280(5364):750–752, may 1998.

S. H. Orkin and L. I. Zon. Hematopoiesis: an evolving paradigm for stem cell biology.

Cell, 132(4):631–644, feb 2008.

M. Osawa, K.-i. Hanada, H. Hamada, and H. Nakauchi. Long-Term Lymphohematopoietic

Reconstitution by a Single CD34-Low/Negative Hematopoietic Stem Cell. Science, 273

(5272):242–245, jul 1996.

N. Otsu. A threshold selection method from gray-level histograms. Automatica, 11:285–

296, 1975.

E. Paluch and C.-P. Heisenberg. Biology and physics of cell shape changes in development.

Current biology : CB, 19(17):R790–9, sep 2009.

H. Peng. Bioimage informatics: a new area of engineering biology. Bioinformatics, 24(17):

1827–1836, sep 2008.



168 BIBLIOGRAPHY

S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer. Seventeen-colour flow cytometry:

unravelling the immune system. Nature reviews. Immunology, 4(8):648–55, aug 2004.

P. H. O. Pinheiro and R. Collobert. Recurrent Convolutional Neural Networks for Scene

Parsing. Arxiv, jun 2013.

T. D. Pollard and J. A. Cooper. Actin, a central player in cell shape and movement.

Science (New York, N.Y.), 326(5957):1208–12, nov 2009.

S. Preibisch, F. Amat, E. Stamataki, M. Sarov, R. H. Singer, E. Myers, and P. Tomancak.

Efficient Bayesian-based multiview deconvolution. Nature methods, 11(6):645–8, jun

2014.

V. Procaccio, G. Salazar, S. Ono, M. L. Styers, M. Gearing, A. Davila, R. Jimenez, J. Jun-

cos, C.-A. Gutekunst, G. Meroni, B. Fontanella, E. Sontag, J. M. Sontag, V. Faundez,

and B. H. Wainer. A mutation of beta -actin that alters depolymerization dynam-

ics is associated with autosomal dominant developmental malformations, deafness, and

dystonia. American journal of human genetics, 78(6):947–60, jun 2006.

J. O. Ramsay, G. Hooker, and S. Graves. Functional data analysis with R and MATLAB.

Springer Verlag, 2009.

M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun. Unsupervised Learning of

Invariant Feature Hierarchies with Applications to Object Recognition. In 2007 IEEE

Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, jun 2007.

W. S. Rasband. ImageJ: Image processing and analysis in Java. Astrophysics Source Code

Library, -1:06013, jun 2012.

B. S. Reddy and B. N. Chatterji. An FFT-based technique for translation, rotation, and

scale-invariant image registration. IEEE transactions on image processing : a publication

of the IEEE Signal Processing Society, 5(8):1266–71, jan 1996.

J. Renkawitz and M. Sixt. Mechanisms of force generation and force transmission during

interstitial leukocyte migration. EMBO reports, 11(10):744–50, oct 2010.

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T.

Parsons, and A. R. Horwitz. Cell migration: integrating signals from front to back.

Science (New York, N.Y.), 302(5651):1704–9, dec 2003.

J. Riedl, A. H. Crevenna, K. Kessenbrock, J. H. Yu, D. Neukirchen, M. Bista, F. Bradke,

D. Jenne, T. A. Holak, Z. Werb, M. Sixt, and R. Wedlich-Soldner. Lifeact: a versatile

marker to visualize F-actin. Nature methods, 5(7):605–7, jul 2008.



BIBLIOGRAPHY 169

M. A. Rieger, P. S. Hoppe, B. M. Smejkal, A. C. Eitelhuber, and T. Schroeder. Hematopoi-

etic cytokines can instruct lineage choice. Science, 325(5937):217–218, jul 2009.

I. Roeder and I. Glauche. Towards an understanding of lineage specification in hematopoi-

etic stem cells: a mathematical model for the interaction of transcription factors GATA-1

and PU.1. Journal of theoretical biology, 241(4):852–65, aug 2006.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-

propagating errors. Nature, 323(6088):533–536, oct 1986.

G. Ruvkun. Molecular biology. Glimpses of a tiny RNA world. Science (New York, N.Y.),

294(5543):797–9, oct 2001.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe. The present and future role of microfluidics

in biomedical research. Nature, 507(7491):181–9, mar 2014.

H. Sailem, V. Bousgouni, S. Cooper, and C. Bakal. Cross-talk between Rho and Rac

GTPases drives deterministic exploration of cellular shape space and morphological

heterogeneity. Open biology, 4(1):130132, jan 2014.

Y. Sakurai, A. A. Kolokoltsov, C.-C. Chen, M. W. Tidwell, W. E. Bauta, N. Klugbauer,

C. Grimm, C. Wahl-Schott, M. Biel, and R. A. Davey. Two-pore channels control

Ebola virus host cell entry and are drug targets for disease treatment. Science, 347

(6225):995–998, feb 2015.

A.-E. Saliba, A. J. Westermann, S. A. Gorski, and J. Vogel. Single-cell RNA-seq: advances

and future challenges. Nucleic Acids Research, pages gku555–, jul 2014.

I. F. Sbalzarini. Modeling and simulation of biological systems from image data. BioEssays

: news and reviews in molecular, cellular and developmental biology, 35(5):482–90, may

2013.

R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new

explanation for the effectiveness of voting methods. The annals of statistics, 26(5):

1651–1686, 1998.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. Quantitative monitoring of gene

expression patterns with a complementary DNA microarray. Science (New York, N.Y.),

270(5235):467–70, oct 1995.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch,

S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Harten-

stein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for

biological-image analysis. Nature methods, 9(7):676–82, jul 2012.



170 BIBLIOGRAPHY
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veri, J. F. Abril, R. Guigó, M. J. Campbell, K. V. Sjolander, B. Karlak, A. Kejariwal,

H. Mi, B. Lazareva, T. Hatton, A. Narechania, K. Diemer, A. Muruganujan, N. Guo,

S. Sato, V. Bafna, S. Istrail, R. Lippert, R. Schwartz, B. Walenz, S. Yooseph, D. Allen,

A. Basu, J. Baxendale, L. Blick, M. Caminha, J. Carnes-Stine, P. Caulk, Y. H. Chiang,

M. Coyne, C. Dahlke, A. Mays, M. Dombroski, M. Donnelly, D. Ely, S. Esparham,

C. Fosler, H. Gire, S. Glanowski, K. Glasser, A. Glodek, M. Gorokhov, K. Graham,

B. Gropman, M. Harris, J. Heil, S. Henderson, J. Hoover, D. Jennings, C. Jordan,

J. Jordan, J. Kasha, L. Kagan, C. Kraft, A. Levitsky, M. Lewis, X. Liu, J. Lopez,

D. Ma, W. Majoros, J. McDaniel, S. Murphy, M. Newman, T. Nguyen, N. Nguyen,

M. Nodell, S. Pan, J. Peck, M. Peterson, W. Rowe, R. Sanders, J. Scott, M. Simpson,

T. Smith, A. Sprague, T. Stockwell, R. Turner, E. Venter, M. Wang, M. Wen, D. Wu,

M. Wu, A. Xia, A. Zandieh, and X. Zhu. The sequence of the human genome. Science

(New York, N.Y.), 291(5507):1304–51, feb 2001.
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