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Abstract— In this paper we propose event-based signaling
for large-scale artificial robotic skin to reduce bandwidth
requirements on data transmission and processing power. We
use the send-on-delta principle to trigger the event genera-
tion only when tactile sensors are stimulated and transduce
novel information. To compare the standard non-event based
method with the proposed event-based method we present a
comprehensive analysis of large-scale artificial skin systems for
different test applications. For this purpose we collect data
of 260 CellulARSkin cells on an UR-5 arm and calculate
the events off-line. We determine the optimal packet size for
event-based signaling and we show that the event-based system
reduces the data rate with respect to the non-event based system
for an unstimulated skin cell network to 16.45% and for a
heavily stimulated skin cell network to 47.69%. The obtained
results show that the event-based system reduces the data
redundancy and the required transmission rates without loosing
information.

I. INTRODUCTION

A. Motivation

Nowadays multiple solutions for modular artificial robotic
skin like RoboSkin [15], [16] and CellulARSkin [11]–[14]
exist. Main problems remaining with artificial skin in general
are the required transmission rate to convey information of
hundreds – in the near future even thousands of skin cells
covering a whole robot – to higher processing layers and
the required processing power to handle massive amounts of
tactile data in real-time or near real-time.
Yousseffi et al. [17] propose a generic real-time data acqui-
sition system and processing framework for artificial skin
which they call Skinware. This synchronous framework trig-
gers sensor readouts at constant rates and thus the framework
decides when to acquire sensor data and when to compile
tactile frames for higher processing layers.
To the best knowledge all artificial skin architectures so far
comply to the standard method of sampling tactile sensor
data at constant rates. The main reason is that many signal
processing and control algorithms rely explicitly on constant
sampling rates. However sampling tactile information at
constant rates reaches its limits when large amounts of
artificial skin cells cover large areas or even whole robot
bodies since the required transmission rates and processing
power increases.
Such setups reveal one disadvantage of sampling and pro-
cessing information at constant rates: large amounts of infor-
mation are transmitted and processed as sensing, transmitting
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Fig. 1. For the evaluation of our proposed event-based skin network we
use an UR5 robot arm which is equipped with 260 CellulARSkin cells;
the image shows the skin cell network on the UR-5 arm as it is stimulated
and as it generates tactile events; the different LED colors give feedback
about the modality of tactile stimuli; resting skin cells are green, skin cells
detecting pre-touch stimuli are red and skin cells detecting force stimuli are
blue; the lower part of the image drafts our proposed event-based skin cell
network.

and processing is not triggered by novel information but by
constant time intervals enforced by the synchronous system.
As solution we propose to change the trigger source and
sense, transmit and process information only when new
information is available, when some external stimuli are
present and need to be processed. Considering that most of
the time sensors sense constant values which don’t contain
novel information, as the values are already known at the
higher processing layers, then such a concept would remove
unnecessary information and relieve the transmission and
processing system.
However we need to consider that redundancy takes an
important role with respect to the robustness of a system.
Nevertheless, we can use the same argument as in the
discussion analog versus digital systems. One advantage
digital systems have over analog systems is that digital
systems purposefully reduce the amount of information of
band limited signals and represent information in a consistent
systematic and robust way. As a consequence one can easily
add specific redundancy to the signals which exclusively im-
proves robustness. For this reason digital signals allow small
bandwidth signal transmissions, as not needed information is
removed, while these transmission can still stay robust and
reliable. With respect to event-based signaling it is a fact
that we remove unnecessary information but as long as we
only remove information which is not essential for robustness



the signal remains reliable. Moreover adding redundancy for
improving robustness is usually possible.
Actually biological systems make massively use of novelty
triggered signals, the so-called events. Sensory neurons pro-
duce actions potentials, whenever the experienced change of
information exceeds a certain threshold. Besides reducing
data rate and required processing power, novelty triggered
information has a much higher temporal precision as sampled
information. The new information is handled when new
information is perceived by the sensor system and not when
the synchronous sampling system enforces the sampling. We
believe that event-based signaling for artificial skin poses a
viable solution for handling tactile sensory information at a
large scale.

B. Related Work

Multiple works exists on how to generate and transmit
sensory events in artificial, technical systems. The work of
Lichtsteiner et al. [1], Posch et al. [2], [3], Bartolozzi et
al. [4], [5] and Benosman et al. [6] address event based
retinomorphic dynamic vision sensors (DVS). They use the
temporal contrast TCON(t) in combination with contrast
thresholds to generate events at pixel level and use the ad-
dress event representation (AER) to convey events from the
pixels to higher layers. The image sensor has an outstanding
low data rate, extremely high temporal resolution and a high
dynamic range and enables efficient event-based processing
at higher layers. Dahiya et al. [13] already pointed out that
tactile events and feature extraction are important for data
reduction purposes and Mittendorfer et al. [14] implemented
tactile events using normalized tactile event levels at a higher
abstraction layer to reduce data rate and enable grasping with
the HRP2 robot.
The send-on-delta concept, introduced in [7] and [8] is a
simple event based concept which uses difference thresh-
olding for reducing transmission rates in wireless sensor
networks. Recently [9], [10] developed extensions for the
send-on-delta concept to further reduce transmission rate and
reconstruction errors. We use the results of these works and
introduce an enhanced and extended event-based concept for
large-scale artificial skin.

C. Our approach

In this paper we propose a first concept on how to generate
events in an existing CellulARSkin cell network without the
need to redesign the existing hardware. We evaluate how
the concept influences data rate and required processing
power. Our concept bases on the send-on-delta concept since
it can easily be adopted to our system. As CellulARSkin
cells don’t have any event generating sensors we decide
to use a compound architecture [8] where sensor values
are sampled as fast as possible but where the send-on-
delta concept triggers the event generation and transmission.
Our event packets will contain the skin cell ID, a time-
stamp and the absolute new sensor value. Before the actual
implementation we focus on the quantitative evaluation of
the proposed system to reduce data and transmission rate.

For this purpose we perform prototypical applications using
an industrial robot arm (UR-5) equipped with artificial skin
(see Fig. 1). The arm is equipped with 260 CellulARSkin
cells distributed in the most significant links of the robot
namely the forearm, the upper-arm and the tooltip. During
test applications we collect sensor data and calculate the
events off-line. This allows us to compare the original data
to the results of the event-based system. In the near future
we will implement the event-generation directly in the skin
cells. In this way we can evaluate the concept on-line and
take advantage of the system in future applications.

II. SYSTEM DESCRIPTION

A. CellulARSkin and skin cell network
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Fig. 2. CellulARSkin.

CellulARSkin [11]–[14] is a modularized artificial skin.
Each hexagonally shaped skin cell is equipped with the same
set of multi-modal sensors and one microcontroller. The
microcontroller collects and filters sensor data and puts the
gathered information as a packet into the skin cell network.
The skin cell network (see Fig. 3) is self organized and highly
redundant and the group of distributed microcontrollers
manages the network. The distributed microcontrollers cre-
ate packet routing paths and forward incoming packets to
neighboring cells or to higher layers via the interface box.
Each skin cell samples 9 sensor values – 3 for the 3D
accelerometer, 3 for the 3 force cells, 2 for the 2 temperature
sensors and 1 for the proximity sensor – with a maximum
rate of 250 Hz and injects packets to the network with the
same rate. For performance reasons and for taking advantage
of the microcontroller’s DMAs the packet size cannot vary

Fig. 3. The skin cell network architecture and interface to the PC.



and is fixed to 20 bytes. The inter-cell-connections are 4
Mbit/s fast UART connections and the skin cell network
connects via interface boxes and standard 1 Gbit/s Ethernet
connections to the PC. The interface boxes contain FPGAs
which handle the communication between the UART based
skin cell network and the Ethernet connection to the PC, see
Fig. 3.
Each UART bus can support up to 66 skin cells and can han-
dle 16000 packets/s. Overall a 1 Gbit/s Ethernet connection
can support up to 5742 skin cells and can handle up to 1.49
Mio. packets/s.
The data load, the huge amount of small packages and the
data organization are the limiting factors for the current
architecture rather than insufficient transmission bandwidth.
These are the main reasons why we propose event-based
signaling in this work.

B. Event generation

1) The ideal event generating sensor: The ideal event
based sensor needs not to be sampled at all, the sensor
generates the events at its own, whenever it is stimulated
with new information. The event generation is completely
asynchronous and events can occur continuously at any
time. Such an ideal event based sensor approximates infinite
sampling rate and has a very high temporal precision.
Lichtsteiner et al. [1] and Posch et al. [2] developed an
event based dynamic vision sensor which comes very close
to the ideal event generating sensor. Each pixel of the image
sensor creates independently an on or off event whenever
the difference ∆x between the light intensity of the last
transmitted event and the currently measured light intensity
exceeds a fixed threshold θ:

∆x = |ln(xi)− ln(xi−1)| ≥ θ ⇒ gen. event (1)

In this way the pixels as event generators are sensitive to the
temporal contrast TCON

TCON(t) =
1

x(t)

dx(t)

dt
≈ 1

xi−1

xi − xi−1

∆t
(2)

and generate events whenever the accumulated temporal
contrast exceeds the threshold θ:∣∣∣∣∣∣

t+∆t∫
t

TCON(t) dt

∣∣∣∣∣∣ = ∆x (3)

Thus on/off event are generated whenever the change of in-
tensity normalized to the last intensity exceeds the threshold
θ. This makes the pixel very sensitive to small absolute
intensities and less sensitive to bigger absolute intensities
which explains the high dynamic range of the sensor. The
on/off events are conveyed by an asynchronous bus which
implements the so called Address Event Representation
(AER). In the AER each event of a pixel is represented by a
pixel address while the creation time of the event is encoded
by the occurrence of the event on the bus. This yields in very
high, nearly continuous timing precision. Whenever an event
with AER on an asynchronous bus needs to be transfered

into a synchronous system like a PC then the asynchronous
to synchronous bridge has to add high precision time-stamps
to the event.
Clearly the main advantage of this AER based implemen-
tation is the high temporal precision but – since the asyn-
chronous bus must represent addresses – the implementation
relies on fast and wide communication buses which are only
available in VLSI CMOS circuits like FPGAs or ASICs.
Transmitting only on/off events will also introduce offsets in
the reconstruction of absolute values whenever an event is
lost.

2) The send-on-delta concept: The send-on-delta concept
for generating events proposed in [7], [8] is quite similar to
the temporal contrast TCON principle introduced by [2].
The send-on-delta concept proposes to send only sensor
values when the difference ∆x between the last sent value
x(ti−1) and the currently measured value exceeds a static
fixed threshold θ:

∆x = |x(ti)− x(ti−1)| ≥ θ ⇒ gen. event (4)

In contrast to the temporal contrast principle the sensor
generates now events whenever the accumulated contrast

CON(t) =
d

dt
x(t) (5)

exceeds the threshold θ. So the sensitivity doesn’t change
with the sensor value and the difference which triggers an
event is the same for all sensor values. The advantage is that
the send-on-delta concept works for compound architectures
[8]. In compound architectures sensor values are sampled as
fast as possible but the transmission of sensor values follows
the send-on-delta concept. Naturally this system has a lower
temporal precision since the precision is limited by the sam-
pling frequency of the conventional sensor. However events
generated by the send-on-delta concept can use any arbitrary
bus structure. Generally globally synchronized time-stamps
should be locally added to the events at the event generation
site. In this way the causality between events of distributed
event generators can be reconstructed.
Sending absolute values as proposed by the send-on-delta
concept has the advantage that the signal reconstruction from
events at higher layers is offset free and doesn’t suffer from
event losses.

C. Event based signaling for artificial skin

We propose a simple event based signaling concept for
artificial skins which allow its implementation in the cur-
rent CellulARSkin version without the need to modify the
hardware or the skin cell network architecture. We cannot
use the almost ideal AER principle since we cannot realize
asynchronous buses and the CellulARSkin cell doesn’t con-
tain any event generating sensors. For this reason, we aim
for a system which makes use of the send-on-delta concept.
In order to time-stamp events with the global time, the local
time of the distributed microcontroller has to be synchro-
nized to the global reference time which is provided by
the FPGA of the interface box (see Fig. 1). One solution



for this hard problem could be to use concepts of existing
time synchronizing algorithms like the NTP (Network Time
Protocol) or the more precise PTP (Precision Time Protocol)
to the needs of our skin cell network architecture. However
the exploration of this solution is out of the scope of this
paper.
As the current skin cell network implementation relies on
constant packet sizes we also need to determine the new op-
timal packet size for events. The idea is to make the packets
big enough such that multiple events fit in to one packet.
In this way whenever several events occur at the same time
these events can be sent immediately with small overhead
rather than separately with big overhead. Nevertheless event
packets have to be small enough to keep the overhead small
in case that only one single event needs to be transmitted.

III. EXPERIMENTS
A. Difference thresholds and RMS reconstruction errors

In order to achieve efficient event generators we have to
choose the fixed thresholds θ for each sensor value carefully.
For this purpose we calculate differences between samples
of the respective sensor values for all skin cells in the skin
cell network. Then we analyze the distribution of differences
(see Fig. 4). We ensure that all the skin cells are idle while
we collect the data for this evaluation. Idle skin cells in this
context mean that they remain at a constant pose in space
and that they are not stimulated by tactile events. Finally we
calculate for example the differences ∆ax for accelerations
along the x-axis of the sensor as follows:

∆ax
= ax(ti)− ax(ti−1) (6)

The criteria to find the optimal value for the threshold θ
is to find the best compromise. On the one hand the
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Fig. 4. Distribution of differences ∆ of the 9 different sensor values for
a skin cell network of 260 resting CellulARSkin cells; we observe that the
accelerometer, the proximity sensor and the first temperature sensor of an
idling skin cell have a wide distribution of differences while the distributions
of the second temperature sensor and the 3 force sensors are quite narrow;
from these results we deduce that the accelerometer and the proximity sensor
contain more noise and therefore get larger thresholds.

threshold needs to be high enough such that the event rate
is low for idle sensors with noise and on the other hand
the threshold has to be small enough such that the event
generator is sensitive to small changes in order to reduce

TABLE I
THRESHOLDS FOR THE EVENT GENERATION

ax, ay, az force 1, force 2, force 3 prox. temp. 1, temp. 2
θ 0.02 0.001 0.0001 0.5
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Fig. 5. Event rates and RMS reconstruction errors for different test
applications; the figure shows measurements of different sensor modalities
of one skin cell; in the resting test the sensors are unstimulated and idling
and for an optimal threshold θ we expect a very low event rate for all sensor
modalities; in the slowly moving and swiftly moving tests the UR-5 robot
arm repeats a defined trajectory several times with different speeds and we
expect higher event rates for the acceleration sensors; in the hammering
test we generate impacts on the base of the UR-5 robot arm such that the
skin senses vibrations and we expect higher event rates for the acceleration
sensors; in the stroking test we expect higher event rates for force and
proximity sensors; in the pushing test we forcefully move the UR-5 robot
arm with the fist into different directions and thus we expect a high event
rate on the force sensors; in the feather teasing test we tickle the UR-5
robot arm with a feather which induces high event rates on the proximity
sensors; we also provide event rates for tests where we apply a force of 3 N
to a skin cell at different frequencies by using a force test stand (see [11]).



the reconstruction error. In general, the threshold θ defines
the boundary between what the event generator interprets as
idling and what it interprets as small changes.
We see in Fig. 4 that the standard deviation σ is a good
first indicator for choosing an appropriate threshold θ. For
standard normal distributions we find that setting θ = σ
is a good trade-off. In this way the event generator discards
68% of the samples while the remaining 32% of the samples
correspond to noise like small vibrations induced by the
resting robot arm. Nevertheless to find an optimal threshold
for small event rates and small reconstructions errors for a
wide range of applications we analyze how event rates and
RMS errors for different sensor modalities and different test
applications change with different thresholds θ (see Fig. 5).
We decide to use the thresholds of Table I. For all these
thresholds the RMS reconstruction error stays below 0.5%.

B. Applications and global event rates

We want to study how the event based signaling behaves
with respect to the non-event based signaling. For each
of the sensors we set the transmission rate in relation to
those of the non-event based system. In other words we
use the transmission rates of the non-event based system as
reference. A skin cell network has ncells skin cells which
all sample sensor data and transmit the acquired data with a
rate fs . Thus in a non-event-based skin cell network all the
ncells cell are active at all times. The number of active cells
ncell, act at time t for the non-event based system is:

ncell, act, ref = ncells · fs · t (7)

and the ratio of active cells of an event-based skin cell
network with respect to the non-event based is:

pcell, act =
ncell, act

ncell, act, ref
=

ncell, act

ncells · fs · t
(8)

The relative activity of the different sensor values in the
global skin cell network scope can be calculated similarly
in the following way:

nmod, act, ref = ncells · fs · t (9)

pcell, act =
nmod, act

ncells · fs · t
(10)

and we can find the results for our test applications in the
upper part of the table in Fig. 6.

C. Optimal packet size

The packet size is fixed within the skin cell network. If
we continue to use the packet size of the current non-event-
based skin cell network the average transmission rate ratio
for the event-based implementation will be equal to the ratio
of active cells pcell, act that is for our test applications at
most 90.1% (see Fig. 6). In the lower part of the table in
Fig. 6 we observe that such an implementation is far from
optimal since most of the time only 1 sensor is active – it
is extremely unlikely that all the 9 sensors of a skin cell
are active at the same time. For this reason we need to find
the optimal packet size which minimizes the transmission

resting slowly moving swiftly moving hammering stroking
ax 9.90 % 46.6 % 68.3 % 49.3 % 13.1 %
ay 9.27 % 43.2 % 65.2 % 48.2 % 13.0 %
az 9.29 % 45.9 % 68.2 % 48.6 % 12.0 %
prox. 6.51 % 6.98 % 7.54 % 9.73 % 14.6 %
temp. 1 3.17 % 3.37 % 4.57 % 3.74 % 2.45 %
temp. 2 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
force 1 0.00 % 0.00 % 0.00 % 0.00 % 0.517 %
force 2 0.00 % 0.00 % 0.00 % 0.00 % 0.518 %
force 3 0.00 % 0.00 % 0.00 % 0.00 % 0.403 %
active cells 32.9 % 80.0 % 90.1 % 77.2 % 43.9 %
1 sens. active 28.0 % 33.0 % 16.6 % 25.0 % 33.4 %
2 sens. active 4.52 % 29.5 % 28.7 % 25.4 % 8.64 %
3 sens. active 0.350 % 15.9 % 39.6 % 23.5 % 1.38 %
4 sens. active 0.0131 % 1.57 % 5.08 % 3.16 % 0.283 %
5 sens. active 0.00 % 0.0285 % 0.157 % 0.101 % 0.0865 %
6 sens. active 0.00 % 0.00 % 0.00 % 0.00 % 0.0286 %
7 sens. active 0.00 % 0.00 % 0.00 % 0.00 % 0.00159 %
8 sens. active 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
9 sens. active 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %

Fig. 6. Relative global transmission rate ratios for 260 skin cells for
different test applications; the upper part of the table displays the global
transmission rate ratios respectively for the different sensor values of all
skin cells in the skin cell network; this transmission rate ratio is with respect
to the non-event based sensor value rates and not with respect to the whole
skin cell network transmission capacity; the active cell ratio describes how
often skin cells in the network are active, and need to send a packet with
at least one event, with respect to the non-event based skin cell network;
the lower part of the table shows how many events occur at the same time
and could be transmitted in a single packet.

overhead. First we define a set of packet sizes which fit for
different numbers of events (see table II).

TABLE II
PACKET SIZES IN BYTES FOR DIFFERENT AMOUNTS OF EVENTS

ne, pkt 1 2 3 4 5 6 7 8 9
spkt(ne, pkt) 7 9 10 12 14 15 17 18 20
spkt, ts(ne, pkt) 10 12 13 15 17 18 20 21 22

ne, pkt is the number of sensor events which fit into one
packet and spkt(ne, pkt) is the packet size in bytes for a given
number of sensor events that fit into that packet. spkt(ne, pkt)
is chosen in such a way that any combination of ne, pkt sensor
events fits into that packet. spkt, ts(ne, pkt) is the packet size
when we add a 21 bit time-stamp to the packets. In the next
step we determine how many packages will be transmitted
when we use packets that fit for ne, pkt events. Therefore we
need to find out how often the skin cells need to transmit
i = 1, 2 . . . 9 events at the same time. We determine these
numbers nsens, act(i) for our different test applications. If the
i events that need to be transmitted don’t fit into one packet,
then several packets need to be transmitted consecutively.
The number of packets to transmit npkt(ne, pkt) up to time
t is then:

npkt(ne, pkt) =

9∑
i=1

nsens, act(i) ·
⌈

i

ne, pkt

⌉
(11)

Now we calculate the transmission rate ratios of the skin cell
network ppkt, data(ne, pkt) with respect to different packet
sizes and different test applications:

ppkt, data(ne, pkt) =
npkt(ne, pkt)

t · fs · ncells
· s(ne, pkt)

sref
(12)

sref = 20 is the reference packet size of the non-event based
system in bytes. The results are presented in Fig. 7. The
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Fig. 7. Global transmission rate ratio versus number of events fitting into
one packet; the solid lines refer to packets without time-stamps and the
dashed lines refer to packets with time-stamps

resting slowly moving swiftly moving hammering stroking
without time-stamps
1 event/packet 13.35 % 51.13 % 74.84 % 55.86 % 19.80 %
2 events/packet 14.96 % 43.87 % 60.79 % 46.85 % 20.59 %
3 events/packet 16.45 % 40.78 % 47.69 % 40.24 % 22.13 %
4 events/packet 19.73 % 48.00 % 54.18 % 46.39 % 26.38 %
5 events/packet 23.02 % 55.98 % 63.09 % 54.05 % 30.89 %
6 events/packet 24.66 % 59.98 % 67.61 % 57.91 % 32.89 %
7 events/packet 27.95 % 67.98 % 76.62 % 65.63 % 37.28 %
8 events/packet 29.59 % 71.97 % 81.13 % 69.49 % 39.47 %
9 events/packet 32.88 % 79.97 % 90.14 % 77.21 % 43.86 %
with time-stamps
1 event/packet 19.07 % 73.04 % 106.9 % 79.80 % 28.30 %
2 events/packet 19.95 % 58.49 % 81.05 % 62.47 % 27.45 %
3 events/packet 21.38 % 53.02 % 62.00 % 52.31 % 28.77 %
4 events/packet 24.66 % 60.00 % 67.72 % 57.98 % 32.98 %
5 events/packet 27.95 % 67.98 % 76.62 % 65.63 % 37.30 %
6 events/packet 29.59 % 71.97 % 81.13 % 69.49 % 39.47 %
7 events/packet 32.88 % 79.97 % 90.14 % 77.21 % 43.86 %
8 events/packet 34.52 % 83.97 % 94.65 % 81.07 % 46.05 %
9 events/packet 37.81 % 91.97 % 103.7 % 88.79 % 50.43 %

Fig. 8. Average global transmission rate ratios for different packet sizes
with respect to the former non-event based system; the optimal packet size
enables the transmission of 3 events at the same time; the event-based skin
cell network uses then only 16.45% of the original transmission rate for the
resting skin and only 47.69% for heavily stimulated skin when the UR-5
robot arm is moving swiftly; when time-stamps are added to the packets the
resting skin uses 21.38% of the former transmission rate and the heavily
stimulated skin 62%.

optimal packet size is the one which suits for 3 events. This
is a reasonable result since the signals generated by the 3D
accelerometers are highly correlated. The event based system
overall shows a very good data reduction behavior. Even for
the heavily actuated UR-5 robot arm the event based network
only uses 47.69% of the original system’s transmission
rate, or respectively 62.0% when adding time-stamps to the
packets. For a resting skin cell network the transmission rate
ratio is only 16.45%, or respectively 21.38% for packets with
time-stamps. See figure 8.

IV. CONCLUSIONS
The paper introduces and evaluates quantitatively and

qualitatively an event-based system for large-scale artificial
skin networks and analyzes the system’s potential to greatly
reduce required data transmission bandwidths and processing
power. For performance evaluation we collected data from
260 CellulARSkin cells attached to an UR-5 robot arm for
a wide range of different test applications. The wide range
of different test applications allows us to estimate bounds
for the data reduction rates of the event based system in
real-world applications. The quantitative analysis shows that
the event-based system is able to reduce the transmission
rate to 32.9% for resting, unstimulated skin and 90.1% for

heavily stimulated skin. If we choose the optimal constant
packet size for events then the reduction rates improve to
16.45% or 47.69% respectively. Still the reconstruction error
remains low such that information loss is minimal. Future
improvements could embrace signal dependent or in general
non-constant thresholds which might improve reconstruction
errors and sensitivity.
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