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Abstract— Many human activities, given their intrinsic mod-
ularity, present structural information which can be exploited
by classification algorithms: this enhances the capability of
robots to predict activities. We introduce a semantic reasoning
paradigm in which, via logical and statistical learning, we
discriminate between actions on the basis of contextual associ-
ations. An example of this is considering the co-occurrence of
scenario objects when predicting an action. We also combine
such probabilistic reasoning with traditional sequence likeli-
hood modeling. The system, given partial execution evidence of
a task (e.g. assembling a car), first reasons in logical terms over
qualitative primitives to constrain the space of possibilities, and
then predicts the most sequentially likely action (e.g. ‘PickAnd-
PutScrew’). A further claim is also the representation of actions
in tractable logic, enabling online-capable recognition. Our
evaluation, adopting annotated primitives of motion and tool
usage, proves that simple sequence-only prediction methods (i.e.
bigram sequence information, 59.80%) are outperformed by
the proposed polynomial-time context- and sequence- aware
inference (i.e. with 8 primitives, various degrees of partial
evidence and bigram sequence information, 78.43%), proving
the effectiveness of the combined approach.

I. INTRODUCTION

Artificial assistants require to effectively classify actions
performed by humans in the shortest time frame possible.
A first prior question is how to represent such action con-
cepts: today activity classification algorithms which consider
actions and objects combined lack context generalizability
as they mainly work with trajectory information [1], [2].
It is apparent that while such generalization at a senso-
rimotor level encapsulates important information for task
reproduction, robustness towards context variation (in terms
of adopted objects and their parameterization) can only be
achieved at a higher level of abstraction, i.e., by making use
of semantic notions and reasoning, as currently investigated
by some lines of research [3], [4]. However, the prediction
of actions exploiting the intrinsic high logical modularity
has not been tackled from a combined statistical and logical
perspective.

In this work, we make use of action sequence statis-
tics and semantic reasoning over contextual relations and
qualitative discrete motions for recognizing executed ac-
tions (e.g. Flip, PutScrew). This is useful in human-
robot task collaboration or human intention understanding
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Fig. 1: Block diagram of the polynomial-time context- and
sequence-based action recognition model.

[5]. For use in practical settings, semantic representations
allow for context generalization as they disregard non-
salient details [6]. A representation of the implemented
system is illustrated in Fig. 1. In the system, ontological
knowledge and sequences are weighted according to seen
occurrence frequencies (from Occurrence Memory, creat-
ing Probabilistic Ontology and Sequence Likelihood
Model respectively). After such training phase, both lat-
ter modules, given partial instance knowledge (i.e. Local
Evidence), are able to infer independently the most likely
action. Such distributions are then aggregated to obtain a
final posterior probability (i.e. action MAP distribution).

The remainder of this paper first describes relations among
current and past work (Sec. II) and provides an introduction
to the terminology and adopted learning formalisms (Sec.
III). We then provide an in-depth description of our novel
compound prediction model, as well as its representation
and execution complexity (Sec. IV-A and IV-B respectively),
together with implementation and evaluation details (Sec. V)
to prove the effectiveness of the logical reasoning and of the
combined model. We conclude by summarizing our claims
and discussing future opportunities (Sec. VI).

II. RELATED WORK

Many learning approaches concerning the construction and
recognition of plans adopts generative (e.g. Hidden Markov
Models [7], [8], Markov Random Fields [9]) or discrimina-
tive (e.g. Conditional Random Fields [10]) trajectory model



learning. Such work does not consider context, focus of
this work. Conversely, Object-Action Complexes (OAC) [1]
consider the impact of executed sensorimotor instances on
context in terms of causality, but do not use the contex-
tual associations with objects during action prediction [11].
Furthermore, trajectory level representations are not able to
properly handle multiple objects involved in an action, espe-
cially when interactions between them often differ in type.
However, the presented work introduces semantic reasoning
over discrete, qualitative motion primitives as features, which
are seldom adopted [4]. Closer work identifies the need
to predict sequences of actions, and partly understands the
importance of context [12], however it does not employ
discrete features which enable sensorimotor abstraction and
consequent semantic reasoning. The closest work known to
date [13] exploits statistical relational learning for identify-
ing similar actions which present partial order variability,
but does not consider associations with contextual objects
for such recognition. To our knowledge no work provides
training and inference means of structured logic sequences
representing actions, given both context and partial motion
evidence.

III. ADOPTED CONVENTIONS AND
FORMALISMS

We now describe the adopted conventions and learning
features which constitute action plans (Sec. III-A), to then
present two pre-existing, widely adopted probabilistic mod-
eling approaches (Sec. III-B) which are used as basis for the
compounded model presented thereafter (Sec. IV-A).

A. Motion Primitives

This work makes use of discrete, sequential primitives
as basic constituents of actions, which intend to describe
a qualitative variation with respect to the previous state of
the instance. These have been successfully segmented from
movement for human action description, and some of the
ones adopted within this scope are presented in more detail
in [6]. More specifically, we define the following:

Motion related primitives

• Move(o): the object ’o’ has begun a motion
• NotMove(o): the object ’o’ has stopped its motion

task:BuildModelCar

action:PickAndPutScrew

action:Flip

primitive:move1

primitive:notMove2

primitive:toolUse3

primitive:. . .

primitive:notToolUse6

primitive:useCompound

Fig. 2: Exemplification of the scope’s terminology.

• ToolUse(o, i): an object ’o’ has engaged in interacting
with an object ’i’

• NotToolUse(o, i): an object ’o’ has stopped an inter-
action with an object ’i’

Object use related primitives
(assembly scenario examples, as in use case of Sec. V-B)

• useScrew(o): the tool in use is a Screw instance
• useChassisBar(o): the tool in use is a Chassis in-

stance
• useCompound(o): the tool in use is a Compound

instance
• useWheelCompound(o): the tool in use is a Screw-

Wheel compound instance
These primitives are generated by a perception seg-

mentation module, and are basic constituents of actions
(e.g. PutScrew), which in turn compose tasks (e.g.
BuildModelCar, full hierarchy example in Fig. 2). For ex-
ample, from an initial state (notMove1) any motion would
be perceived as a sequential variation of state (move2),
where the numbering at the end of the primitive is a
convention for defining the discrete time instant. Any fully
stationary instant after such movement would again be con-
sidered a variation (notMove3). Likewise reasoning applies
to tool usage. It is noteworthy that the here presented system
can elaborate an arbitrary number of primitives, and the
framework is agnostic towards the nature and meaning such
primitives have. Such priorly designed relations could de-
scribe contextual aspects or any arbitrary information avail-
able from the sensor array. The only constraint is that such
properties have to be in a symbolic form. The segmentation
of such labels from sensory arrays has to be catered by a
prior module external to this scope (such as [14]). This work
considers the informativeness analysis of primitives, as well
as segmentation performance details, as out of scope. The
chosen type and amount of primitives here used is a minimal
demonstrative example.

B. Logico-Statistical Learning

In action recognition we need to predict sequences of
actions, i.e. sequences of logic predicates, therefore we look
at combined statistical and logical formalisms for estimating
the confidence of an individual action (i.e. via statistical
relational learning, by providing context understanding), to
then combine it with information regarding sequentiality.

a) Statistical Relational Learning: Markov Logic Net-
works (MLN) [15] is a knowledge representation formalism
which enables probabilistic learning and inference via the
combined use of first order logic and probabilistic undirected
graphical models (i.e. Markov Random Fields). More for-
mally, we can define a probability over the world x as a
log-linear model in which we have an exponentiated sum of
weights wj of a binary feature fj, and the partition factor Z:

P (X = x) =
1

Z
exp

∑
j

wjfj (x)

 (1)



In our case, we consider the binary formula fj(x) as an
evaluation of a logic relational formula which comprises
information regarding our motion and tool usage relations,
and we substitute such term with nj(x), where the latter
is the number of true groundings of such formula fj in xj.
By defining informative context-aware relations (which can
be devised on the basis of the domain of application), we
exploit MLN to infer the likelihood of occurrence of our
actions, without taking into account sequence information,
given contextual information (see likelihood term in Eq. 4,
e.g. we compute the probability of an action occurring, given
the objects in use). A variant of such relational model is used
in this work to represent all the action definitions and their
likelihoods in a probabilistic fashion (Sec. IV-B).

b) the n-gram language Model: is an efficient proba-
bilistic modeling of sequences of symbols of arbitrary nature.
It first appeared for natural language modeling [16], to then
be used in DNA and protein sequencing, and can be applied
to statistically model sequential, discrete processes. The
present work uses such model for describing the sequentiality
of actions which compose a task (see likelihood term Eq. 3).

IV. PREDICTION MODEL

We now introduce our model for sequence prediction
given the context, obtained by compounding probability
distributions over both the sequence likelihood (Eq. 3, via n-
gram modeling) and context-based likelihood (Eq. 4, inferred
via Markov Logic Networks) (Sec. IV-A), to then discuss
representational and inference complexity (Sec. IV-B).

A. Compound Prediction

The presented model, during execution, exploits relations
of objects which usually co-occur with the executed actions.
It first discards all candidates which are inferred as impossi-
ble due to contextual conditions, to then predict, given such
sparse array of remaining hypotheses, the most sequentially
likely action. For example, within a vehicle assembly task, if
no wheels are present in context, it follows that we cannot be
building a 4-wheeled vehicle model, even if the latter might
be more statistically likely in terms of sequence occurrence.
This is specifically designed in view of computing inference
on a high number of action candidates, as often is the
case in real-world ontologies (evaluation of such feature
is in Sec. V-C (a)). A further potential of the model is
that if the logical associations are not unique, and therefore
the maximum a posteriori estimate does not comprise only
one candidate, we will have a re-partition of the posterior
probability density over the candidates which have not yet
been estimated as impossible (evaluation of such feature is
in Sec. V-C (b) and illustrated in Fig. 6): at that stage, the
sequence likelihood will further discriminate on the basis
of past occurrence frequencies. Let Taski be composed by
actions Action0i

. . . Actionmi
, for i ∈ T , where T is the

set of all known task concepts. Also let n > 0, where n ∈ N
is the order of approximation which can be varied on the
basis of how many past elements should be considered in
the likelihood computations (i.e. by relaxing the Markov

property). Then the constructed independent probability of
the task occurring is:

P(Taski) = P(Action(0i), . . . , Action(mi)) (2)

≈
m∏
j=0

{
P
(
Action(ji)| Action(ji−n), . . . , Action(ji−1)

)︸ ︷︷ ︸
sequence likelihood (via n-gram modeling)

(3)

·P
(
Action(ji)| Context,Ontology

)
.︸ ︷︷ ︸

context-based likelihood (via statistical relational learning)

(4)

which is presented as the product of our n-gram sequence
modeling (3) by our MLN probabilistic logic reasoning (4),
where context is the instance’s partial motion evidence and
observed tool usage (described as primitives, as in Sec. III-
A), and ontology is the set of previously learned actions.

B. Representation for Real-Time Recognition

We now describe how we meet timing and inference
exactness requirements, as well as how we implement class
concepts and their inference. As per intuition the recognition
of structures within sequences of segmented primitives is
computationally complex. We look at the complexity of our
compound model (2), and notice that the complexity of the
n-gram modeling (3) is computable in polynomial time for
any arbitrary n, in terms of both training and inference
[16]. However, context-based likelihood (4) has non-efficient
complexity (NP−complete for both training and inference,
i.e. no polynomial algorithm is yet known [17], [18]). In the
domain of cognitive robotics and machine learning, this is
often partly remedied by computing approximated or lifted
inference [19]–[21]. However these provide only average
case efficiency increase, but not the upper-bound constraints
on execution times necessary for real-time recognition.

One of the advances here presented is the online capability
brought by polynomial inference time (P − time), and the
syntactic conditions for polynomial training time [22].

a) Syntactic Restriction: Our timing claims are enabled
by a non-restrictive consideration: our semantic represen-
tation as well as many knowledge intensive applications
require only predicate relations between actions (taxon-
omy), actions and their constituting objects (meronymy),
and between motions and their formal object arguments,
i.e. objects which are subject or instrumental to the mo-
tion. It is noticeable that the logic expressiveness needed
for these is confined to an efficient subset of probabilistic
first order logic, i.e. expression of hierarchy relations and
relations among same-level constituents (e.g. respectively,
the action PickAndPutScrew is child of PickAndPlace,
and Obj relates to RightArm, which are both child
nodes of PickAndPutScrew, via the motion relationship
toolUse(object, part), as shown in Fig. 3). We use an
existing tractable subset of MLN which suits all specified
requirements, called Tractable Markov Logic (TML) [22].
The main syntactic restriction imposed by TML (i.e. that
relations have to be present only among entities which are



PickAndPutScrew

Obj RightArmusingScrew
usingWheelCompound

toolUse3
notToolUse6

move1
notMove2
move4
notMove5

Fig. 3: Structure of an action class concept modeled in
Tractable Markov Logic (TML).

children of the same father node) does not constrain the ex-
pressiveness of our solution. We implemented two modeling
approaches in the TML formalism: the first approach (hence-
forth CModel1, example in Fig. 3) describes action concepts
as containers of parts of the robot and of contextual objects
(as class objects, e.g. RightArm and Obj respectively),
while any qualitative primitive is a relation among such
objects (e.g. toolUse3(object, part) as relation between
Obj and RightArm), or characteristic of a single object
(e.g. usingScrew as label of Obj). Object label primitives
have been introduced to overcome subclass grounding prob-
lems in the current TML implementation. Conversely the
second model (henceforth CModel2), in addition to what
has been just stated, also explicitly defines which relations
do not occur (e.g. move1(part), !toolUse1(object, part),
!notMove1(part), !notToolUse1(object, part)). We de-
rive the context-based likelihoods (Eq. 4) via Maximum A
Posteriori estimation over such relations.

V. EVALUATION

We now describe our implementation details (Sec. V-A),
to then show our evaluation results for context understanding
(Sec. V-C) and for the latter and sequence prediction com-
bined (Sec. V-D), which makes use of the annotated data
deriving from our assembly task use case (Sec. V-B).

A. Implementation Details

In order to compute the n-gram based likelihoods (Eq.
3 of the compound model) we consider action frequency
counts, utilizing bigram instances based on sequential max-
imum likelihood estimation. For our problem, we view
the entirety of possible actions as a formal grammar with
closed world assumption, which is representative of our
transitions between known actions [23]. The latter can be
implemented as weighted finite state transducers, and for
this we specifically use OpenGrm [24]. Our implementation
is therefore an overlay of the latter for sequence MAP
estimation and of Alchemy Tractable Markov Logic [22]
for the context-based MAP estimation. The latter however
only provides implemented tractable inference, while weight
training algorithms are not yet efficient and are the same of
Alchemy MLN.

B. Use Case and Adopted Data

Within the context of Programming by Demonstration
(PbD), in order to teach an action concept, humans teach
multiple sensorimotor instances to robots [25]. Some ap-
proaches incorporate active learning into the paradigm, so
that the human can perform a critic selection of the most
informative trajectories [26]. We hypothesized a use case
in which a human demonstrator, via kinesthetic teach-
ing, demonstrates a series of trajectories which are seg-
mented by the robot (into {move, notMove, toolUse,
notToolUse}). In the envisioned system the robot then
predicts, at every new piece of primitive evidence, the most
likely action which is executed (as in Fig. 4). As this is
thought for long sequences, the system can be used for
reducing training times, if the robot intervenes when highly
confident to declare that an action concept is already known.

In order to retrieve a training and testing dataset of
primitives, we partly constructed the use case scenario now
described and then annotated by hand video-only data with
primitive information (therefore performing manually the
segmentation of Fig. 4). Four video samplings (∼ 6 minutes
of length each) were performed on a Willow Garage Personal
Robot 2 (PR2) in gravity compensation mode, whose arms
were moved by a human to construct car models made out
of wooden components (see Fig. 5). Such scenario has been
constructed only for video annotation and not robot execution
purposes.

  

Video
Feeds

Robot

World Human

Encoder
Feeds

Primitive
Segmentation

Compound Sequence-Context
Prediction Model (Fig. 1)

q0,t … qDoF,t

image t
primitive0,t   …  primitiven,t

MAP
prediction

action

Fig. 4: Block diagram of the envisioned use case of ‘discrete
active learning by demonstration’ scenario.

Fig. 5: Image captured from an assembly domain training
scenario, comprising a PR2 robot, a human demonstrator,
and a series of wooden objects which will be compounded
to obtain a model car, focus of the assembly task.

During the manual annotation of the video samples it was
observed that many motions performed by the human do
not contribute to the population of the ontology, and were



therefore discarded (such as backtracking due to erroneous
movements). We consider all four sampling sessions as one
single, sequential training session, in which 8 distinct actions
were learned and repeated (i.e., numbered for reference in
the text and ordered by frequency of occurrence in all tests:
ActionDataSet = {0 PickAndPutScrew, 1 PickAndHold,
2 Release, 3 PickAndPlace, 4 Flip, 5 PutScrew, 6

FlipAndRelease, 7 FlipAndHold}).

C. Reasoning Effectiveness

a) Unique Associations: We first prove the concept
of the impact of logic by providing as evidence relations
which occur only once in the ontology. By performing
Maximum A Posteriori (MAP) estimation on the grounded
Markov random field network, we verified if MAP identified
the only action which contains such relation (e.g., in our
dataset, relation notToolUse1(object, part) only occurs in
action Release). The MAP test for CModel2 yielded 100%
prediction effectiveness for each action concept containing
a unique relation, while CModel1, due to the unbalanced
amount of relations for each action concept impacting on the
computation of the partition function Z, lacked scalability
and did not yield meaningful results for the present test.

b) Density Partitioning: The majority of actions could
not be discriminated by unique relation occurrence (e.g.
Flip and PickAndPutScrew action definitions contain
6 identical non-grounded primitives). We added contex-
tual object use relations (e.g. usingScrew) to implement
CModel2. The tests that now follow were performed by
giving maximum 3 sequential primitive relations (taken
from the set {move, notMove, toolUse, notToolUse})
and further object use relations (taken from the set
{usingScrew, usingChassisBar, usingWheelCompound,
usingCompound}) as local evidence (the average number
of primitives for each action concept of the dataset is 4.31).
In particular, we tested context understanding over every
individual action, imposing equal occurrence probability. The
information of object use enabled CModel2 to correctly dis-
criminate 64.70% of annotated actions (confusion matrix in
Fig. 7a). We tested further, this time exploiting independent

Fig. 6: Tree graph representing the variation of probability
density for action candidates upon any new introduction of
primitive evidence in a MAP instance, when testing with
prior action existence information and with the use of logic.
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(b) Logic and marginals as priors
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(d) Full bigram sequence + grounded TML model

Fig. 7: Confusion matrices from Maximum A Posteriori
estimation over logic only ontology (a), and over logic and
marginals ontology (b), over bigram sequence likelihoods
(c), and over the full bigram sequence and grounded TML
model (d), given local evidence of maximum three motion
primitives and object use.

probability of actions learned from the dataset (example of
MAP variation with different degrees of evidence in Fig. 6).
This allowed CModel2 to correctly discriminate 74.50% of
annotated actions (confusion matrix in Fig. 7b).

The inference time with the presented TML system was
on average 0.2s on a 4GB Core i5 system, versus the
14.5s required for the same computation in MLN. Given the
computational complexity analysis presented in Sec. IV-B,
this difference holds in qualitative terms on all test datasets
and grows exponentially with the size of the ontology [17].

D. Sequence And Full Model Forecasting

A 2-order ngram model generated from the dataset yielded
a table of 29 bigram entries, each showing the likelihood
of every action a ∈ ActionDataSet, conditioned over all
possible predecessors. Use of bigrams in sequence modeling
is frequent in practical settings as higher order sequences are
more computationally expensive (still polynomial in com-
plexity terms, but present a higher value). MAP estimation
over such conditional probabilities for all annotated instances
of the dataset yielded 59.80% correct recognition (confusion



matrix in Fig. 7c). We then tested the full model, i.e. the
stated sequence implementation (as in Eq. 3) combined with
the context-based action confidence estimation (as in Eq.
4, and implemented as CModel2 explained in Sec. IV-B,
with partial evidence as in Sec. V-C), which yielded 78.43%
correct recognition (confusion matrix in Fig. 7d). We have
therefore highlighted the benefits of the compounded model
estimation over the individual component contributions.

VI. CONCLUSIONS AND FUTURE WORK
In view of efficiently recognizing actions by exploiting

contextual structure, we have introduced i) a novel method
to exploit semantic context-related associations for activity
recognition, as well as ii) a real-time context-sequence com-
pound prediction model, which performs action inference in
polynomial time. We have proven the effectiveness of such
association-based discrimination, for uniquely-occurring re-
lations and for density ri-partitioning. Our numerical eval-
uation shows the effectiveness of the combined sequence-
context approach, which within the assembly domain and
experiment conditions specified, sequence (i.e. 59.8%, with
8 actions and a bigram assumption) and context reasoning
(74.5%, with 8 discriminating qualitative primitives) com-
bined yield higher prediction capability (i.e. 78.4%). Such
numerical result per se is data dependent, but proves that the
aggregation scheme is able to meaningfully merge context-
based and sequence information.

An important focus of future investigations will be to
integrate deep learning likelihood prediction to further the
current neuro-symbolic integration approach, and make use
of very large datasets to verify the recognition potential of
non-linear associations. Other research possibilities are:

a) bias the impact of logic over sequence: this can be
achieved by reducing the variance of the relative weights
describing independent action occurrence, or by performing
smoothing of sequence likelihoods. This enhances recogni-
tion of tasks which present highly structured contexts.

b) sensorimotor information: this scope envisions cou-
pling with OAC [1] to enable the presented generalization
and timing claims, as well as embodied reproduction.

c) implementation of Human-Robot Interaction use
cases: will be done starting with the explained example in
Sec. V-B, making use of segmentation modules [6], and robot
doubt verbalization [27], to verify the impact of inference
complexity on turn-taking times.

d) recognition of action variation in quantity and order:
will be integrated, as partly described in [13], with the
present context- and object-related claims.

REFERENCES
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