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Abstract. Semantic re-implementations of existing functionality are frequently reported
in practice and cause increased efforts for development and maintenance. However, in-
stances are hard to find with existing approaches. For practitioners, this increases main-
tenance risks, such as inconsistent bug fixing, and hinders quality improvement efforts.
For researchers, this hinders a reliable quantification of the issue.

With this paper, we follow up on previous work proposing a pragmatic approach
combining identifier-based concept location with static analysis to detect candidate re-
implementations in source code. We present an in-depth evaluation of our approach on
four experimental data sets and one industrial system. We compare two information
retrieval (IR) techniques, report the respective precision and recall, and detail on the
applicability of our approach in practice. In addition, we compare the findings of our
approach to the findings of a clone detection.

1. Introduction

An abundance of valuable software assets is present in companies’ code repositories,
via Open Source libraries, and commercial component markets. Nevertheless, developers
tend to re-implement existing functionality [21, 5], missing out on the benefits of reuse
opportunities. Furthermore, this can result in the creation of Type-4 clones, also known as
“Simions” [19], independent re-implementations of existing functionality that do not share
a common origin in terms of code. These re-implementations have long term negative
effects on software quality and lead to increased development and maintenance efforts.

Re-implementations can happen easily for various reasons, such as difficulties of finding
or accessing reusable entities, a reuse averse development culture, or organizational limi-
tations [5]. Prior work has addressed cases of semantic code duplication. Our notion of
re-implementations is related as follows:

Semantic clones [15] are code fragments with isomorphic program dependence graphs,
and therefore structurally similar. Their behaviour can, but does not need to, be func-
tionally similar. Accidential clones [2] are code fragments of different origin that are
syntactically similar due to the adherence to a specific protocol. This does, however,
not imply behavioural similarity. Type-4 clones [28], “wide miss” clones [24], and
Simions [19] refer to the same phenomenon: behaviourally similar code fragments that
have no common origin. Unlike cloned code, these fragments are likely to differ greatly in
their structure [19].
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Discovering re-implementations is difficult in theory and practice: first, semantic equiva-
lence checking is well studied (e.g. [9]) and a generally undecidable problem. Approaches to
detect re-implementations therefore are constrained to resort to approximations. Second,
previous work [11, 19] concludes that existing approaches, such as clone detection or random
testing approaches [18], do not provide satisfactory results to detect re-implementations in
practice.

Consequently, research so far is unable to realistically quantify the size of the problem.
Practitioners, on the other hand, miss an approach providing support to avoid new and
discover existing re-implementations [5].

To address these issues, we proposed a new approach to discover missed reuse opportu-
nities in the form of (unintentional) re-implementations [6] in source code. Our approach
uses structural code information obtained with static analysis. However, our notion of
similarity is based on the concepts embodied in the source code’s identifiers, accounting for
the structural differences featured by re-implementations [19]. Furthermore, we reported
preliminary results from a proof-of-concept implementation.

Nevertheless, one important question remained unclear: how do the results of our ap-
proach compare to the ones obtained by a clone detection? Even though re-implementations
showed significant structural differences in an experimental setting, it is important to com-
pare the two techniques on a real world system.

Problem statement: It is unclear which of the well-known IR approaches, TF-IDF or
LSI, support better the detection of semantic re-implementations

Contributions: We compare two information retrieval (IR) techniques, report the re-
spective precision and recall, and detail on their applicability in practice. We implemented
our approach for Java systems and report our evaluation on four study objects.

Outline: The remainder of the paper is structured as follows: Section 2 provides a brief
recapitulation of our approach before Section 3 states the goal and the research questions
driving this paper. Sections 4 to 6 describe the study objects, study design and study
execution. Section 7.2 reports the results, which then are discussed in Section 8. Section 9
details on threats to validity, before Section 10 provides an overview of related work.
Section 11 summarizes and concludes the paper.

2. Approach

The following section presents our approach. Our approach proceeds as follows (see
Figure 1): it takes as input a body of source code in which we look for re-implementations.
This is a difference to our previous work, in which we required two bodies of code: on the
one hand, a curated library of concept implementations to provide the concepts for the
analysis, on the other hand, the study objects that was analyzed for re-implementations.
From a conceptual perspective, the concept library was no longer needed for the current
study: due to our previous work, the datasets available to us were more robust. This allows
for a more general approach. Since in this paper we focus on the comparison of TFIDF
and LSI using a proven framework [14] that uses one body of code as input, we adapted
our approach to this prerequisite.
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The identifiers of the code body are extracted and analyzed in a preprocessing phase to
learn the specific concepts present in the source code. The preprocessed identifier infor-
mation is then used in the matching phase to compute the likelihood of two code entities
implementing equivalent functionality.

By resorting to identifiers, we overcome the problem of restricting similarity to a syntac-
tic level. As studies have shown, identifiers are valuable sources for capturing programmers’
intent [8, 12, 17]. Therefore, we assume that two code fragments that contain identifiers
belonging to the same concept might provide the same functionality and could, therefore,
be potential re-implementations.

Whilst the intuition behind this approach is quite simple, relying solely on identifiers
risks to clutter the results with false positives: the same identifiers occur when defining a
specific functionality as well as when using it. To mitigate this, we only consider identifiers
present in declarations of methods, fields, and classes1. In this way we achieve more
precision in locating the implementations of a concept.

Our approach abstracts functionality provided by identifiers on a per-file basis. We
opt for this granularity to capture concepts spread over several methods2. During the
preprocessing phase, we assign a set of “significant” identifiers to each source code file.
We deem those identifiers as significant that best3 capture the concepts of the respective
file. Based on this information, we compute a similarity score for all files within each body
of source code. The similarity score is based on the well known TFIDF and we compute

it as follows:

∑
i∈Ib∩s

v(i)∑
i∈Ib

v(i) , with Ib denoting the relevant identifiers of a concept file and

Ib∩s denoting the overlapping relevant identifiers of a concept and a study object file. v(i)
denotes the weight assigned to the given identifier i.

3. Study Goal and Design

The goal of the study is to evaluate our approach for detecting semantic redundancies
for the purpose of understanding the implications of two IR techniques with respect to
the performance of the approach from the viewpoint of its applicability in the context
of professional software development.

From this goal, we derive the following research questions:
RQ1: Which of the two IR techniques, TFIDF or LSI, is better suited for our

approach? In our first prototype, we chose TFIDF as IR technique for its robustness and
straightforward application. In this research question, we want to test whether TFIDF
is equally suited as LSI, another widely used IR technique. We attempt an answer by
reporting experiments for the following sub-research questions:

1We include the parameters present in the declarations.
2In an Object Oriented context, the assumption of concepts being captured by classes, which often can

be represented in files, is a technical decision we make.
3“Best” is determined by the most characteristic identifiers contained in each file.
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Preprocessing

E....................

Extract identifiers

Compute identifier weighting

Matching of classes

Output
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Body of source code 

A B D

E F G (...)

C

C

Figure 1. This figure illustrates our approach: we extract relevant iden-
tifiers for the concepts present in each file and compute the best matches
between the bodies of code.

RQ1.1: How do precision and recall of our approach change when substituting TFIDF for
LSI? In [6] we described a TFIDF-based approach supporting the discovery of potential
reimplementations and tested it on a large set of software systems. Now we want to
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Table 1. List of the study objects

Study
object

Controlled,
#known

pairs

# LOC #
Files

Avg., Med.,
Min., Max. File

Size

Clone
Cov-

erage

Description

AlgoDS yes, 784 27.966 283 208, 145, 1109,

41

0.229 Collection of implementation of specific

algorithms as used in [6]
ICSMEres yes, 223 50.867 95 535, 304, 2202,

53

0.303 Results from ICSMEstart corpus in [6] as

base line

DR yes, 5565 6.904 106 65, 60, 150, 41 0.013 Results from deliberate reimplementa-
tion experiment in [19]

ICSMEstartyes, 223 30.532.834 139.058 NA NA Qualitas corpus with reimplementations

of collections as in [6]
Industrial no, NA 151.571 1.194 130, 60, 2030, 5 0.255 Industrial system, excluded generated

non-maintained code

provide further evaluations by determining precision and recall, as well as testing for the
applicability of LSI. To answer this question we run our approach for all study objects in
4.1 with TFIDF-based as well as with LSI as IR technique. We then compare the results.

RQ1.2: How robust to noise is our approach with either of the two techniques? This
questions targets the influence the amount of data not associated with other documents
has on our approach, using TFIDF or LSI. Most of the use cases have a distinct set of
queries (=documents), therefore there always has to be data not matching any query. We
inject increasing levels of noise in our data sets and compare the quality of the results of
our approach with TFIDF and with LSI. We will execute both approaches with all their
variabilities on the four experimental datasets. Furthermore we will add noise to retrieve
the approaches’ reactions. The amount of noise documents we add is relative to the count
of the datasets’ documents with the percentages of 25, 50, 100 and 200%.

RQ2: How well does our approach complement the findings of a clone de-
tection analysis? We want to explore how much additional benefit our approach gives
in comparison to a clone detection analysis. We run our approach and a clone detection
on one industrial system and determine the overlap of the results. Specifically, we are
interested to see how many of the clone pairs are also contained in the result set of our
approach and how many additional pairs of re-implementations our approach can provide.

4. Study Objects

For our study, we run our set of analyses on four experimental datasets and one industrial
system. In the following paragraphs, we detail on the characteristics of each study object.
Table 1 provides a brief overview.

4.1. Experimental Datasets. For each of the experimental datasets, we have at disposal
the source code files and a corresponding matrix containing reference links. Reference links
capture pairs of source code documents that are known positives for our analysis. We store
these links in a sparse matrix. For each experimental dataset, the reference matrix was
validated by three researchers.
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4.1.1. Algorithms Dataset. In the preparations of [6] we gathered implementations of of
well-known algorithms of different types like e.g. graph traversing, sorting etc. These
implementations provide us with very obvious links as they all implement distinctive or
the same functionality. We retrieved these implementations by using an online Code Search
engine [7] searching for buzzwords related to the algorithms.

4.1.2. ICSMEres Dataset. We manually extracted and validated results found by our orig-
inal approach in [6] to gain a dataset containing source code of commonly used software
systems. The Dataset consists of classes provided by the QualitasCorpus [30] (version
20130901r4), the Apache Commons [31], Google Guava [16] and TROVE [13].

4.1.3. Deliberate Reimplementations Dataset (DR). We used the source code provided by
[19] to generate a very clean dataset. It consists of 109 implementations of the same
functionality Juergens et al. retrieved by giving the same task to several students. As the
data was validated we can assume they all implement the same functionality and therefore
have to found by as positives by our analysis.

4.1.4. ICSMEstart Dataset. For this study we recreated the test data we used in [6]. It
mainly consists out of the QualitasCorpus [30] (version 20130901r) with its various software
systems. Additionally we added the Apache Commons [31], Google Guava [16] and TROVE
[13]. In contrast to the ICSMEres dataset we use all of the corpus and library source code
files.

4.2. Industrial System. Our industrial study object is a web application for resource
management systems, providing service interfaces for different end user devices. It is
written in Java and has been under development for the last decade, growing to 151.571
LOC distributed over ˜2900 classes. We suspected the presence of re-implementations.
However, we did not have any kind of reference links or base-line at our disposal. For the
analysis, we assessed the manually developed and maintained parts of the codebase, i.e.
we excluded generated and non-maintained parts.

5. Study design

The following paragraphs describe the different steps we executed to conduct our study.

5.1. Comparing the IR techniques. To determine precision and recall in our study we
chose the Mean Average Precision (MAP) proposed by Lohar et al. in [22]. The approach
determines precision and recall based on the knowledge of reference links between different
documents: It uses the set of results ordered by their similarity value and the given links,
summing up the precision values of the relevant documents (given by the reference links)
and divides the sum by the number of relevant documents. This provides a more accurate
notion of result quality in a context where different sets of documents might constitute
equally ”good” results. MAP produces a value between 0 and 1.0, describing both precision
and recall.

4http://qualitascorpus.com/
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5.2. Adapted TFIDF. In this section we give a short insight into our adapted version of
TFIDF and how we use it to calculate the similarities between pairs of source code.

In preparation for the comparison we compute the TFIDF value for each identifier in
all the examined documents. TFIDF stands for Term Frequency Inversed Document Fre-
quency, which is the multiplication of two values [1]. The inverse document frequency
delivers us a weighting of the gained term frequencies. It makes use of the fact that a term
appearing only in very few documents, or being very unequally distributed, serves as a
suitable descriptor for distinguishing documents from one another [32]. According to [27]
it doesn’t matter which specific logarithm is used, therefore we chose the natural logarithm
for our analysis.

As soon as the TFIDF values are prepared we compare every document to each other.
The similarity score between each pair of documents is computed as described in Section ??.

This analysis allows to be executed for different TFIDF thresholds. If a threshold is set,
only identifiers passing this value will be considered. In [6] we discovered that this can
lead to a better trade-off between finding suitable matches more precisely or simply more
potential matches.

5.3. LSI Benchmark. LSI offers multiple parameters for tweaking. In order to evaluate
its suitability for our approach, we need to determine the ”best” configuration. To this end,
we follow the approach described in previous work [14]: Eder et al. developed an analysis
returning (amongst others) the Mean Average Precision (MAP) for a given dataset and
valid links between all the documents. The Analysis provides us with different possible
global and local weightings and other possible configuration options for LSI. Executing the
analysis for all possible configurations allows us to find the best one for each study object.

5.4. Data Preprocessing. Every dataset is preprocessed as described in [6] by extracting
the relevant identifiers: relevant means the identifiers of method, class and variable decla-
rations5. We create two different datasets out of this data by providing one with splitted
and one with unsplitted identifiers. Our splitting algorithm does not only provide us with
the various tokens, but as well with the subsequences of every identifier. For example
an identifier such as ’arrayInitializer test’ would result in ’array’, ’arrayInitializer’, ’test’,
’initializerTest’, and the original identifier. Before being fed to the respective analysis the
split identifiers are processed by an English word stemmer.

6. Study execution

In the following paragraphs, we detail on the analysis setup and study execution for each
research question.

RQ1: Which of the two IR techniques, TFIDF or LSI, is better suited for
our approach?

RQ1.1: How do precision and recall of our approach change when substituting TFIDF
for LSI?

5We use the program structure as filter on the identifiers to distinguish identifiers contained in, e.g., call
relationships from those in re-implementations.
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TFIDF: We execute our TFIDF based approach on all experimental datasets providing
a matrix with reference links (4.1). This grants us a MAP value for every dataset and
variability which we can use to make assumptions on precision and recall.

LSI: Our attempt to run our approach with a given LSI Implementation [14] on the IC-
SMEstart dataset, we encountered unexpected technical difficulties, that made the analysis
on that dataset impossible: The original Java implementation could not handle the size of
the term-document-matrix as it exceeded the maximal representable integer as its positions
were persistently indexed by the library. After solving this issue, the size of the matrix
caused a failure when attempting to load it into the memory on a usual machine, as well as
on a server with 32 Intel Xeon E5-2650 CPU cores with 2.00 Ghz each and 64 Gb of RAM.
To work around this issue, we implemented the LSI analysis, similar to the one in [14], in R,
using the bigmemory package [20] to cope with the large amount of data using a file-backed
Matrix. To perform the necessary SVD transformation we used the irlba package [3] which
is a parallelized implementation compatible to the big.matrix of the bigmemory package.
The R script outputs a ranked list of matched documents. However, despite the usage of
a file-backed matrix and the server infrastructure, we were not able to successfully execute
LSI on this amount of data due to memory shortage. Estimating the minimal memory
consumption of running our approach with LSI on the ICSMEstart dataset 200 Gb, we
stopped the attempt.

Final setup Since the ICSMEstart dataset was not suitable for comparison with LSI, we
dropped it from the study execution.

RQ1.2: How robust to noise is our approach with either of the two techniques? To
gradually increase the difficulty for both approaches, we furthermore add different percent-
ages of noise to the datasets. The exact number of documents added is relative to the
original documents in the dataset. For this study we added noise at the rates of 0, 25, 50,
100 and 200%. For the noise dataset we used core components as well as the clone detec-
tion module from the ConQAT system6 as it provides us with highly specific functionality
that is unlikely to contain re-implementations. Additionally, we manually validated and
cleansed the source code from classes similar to the ones in our test data. Additionally to
the noise we add a noise catcher file which contains one single unsplittable identifier not
contained by any other document. Our approach processes the noise source code equally
to rest of the documents. During the analysis, we dynamically add links between the noise
files and a noise-catcher file to allow the MAP algorithm to identify them as false positives
regarding to the rest of the documents. Executing our approach with both techniques for
all variabilities and noise percentages provides various MAP values allowing us to evaluate
their vulnerability to noise.

RQ2: How well does our approach complement the findings of a clone de-
tection analysis? For all study objects, we run the ConQAT clone detection (for Type
1 to 3) with a minimum clone length of 10. We report the clone coverage for each study
object and compare the reported clone pairs with the re-implementation pairs found by
our approach using TFIDF and LSI, respectively. Furthermore, we manually inspect the

6www.conqat.org
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results for the industrial system to assess the result quality of the respective techniques.
Additionally, two system experts assess the positive hits of our approach for their practical
relevance.

7. Results

In this section we report on result analysis and the results for our RQs.
RQ1: Which of the two IR techniques, TFIDF or LSI, is better suited

for our approach? For the experimental data sets, we had at hand a baseline of re-
implementations that all of the authors reviewed and validated. This served as basis for
the result analysis. RQ1.1: How do precision and recall of our approach change when
substituting TFIDF for LSI?

For this RQ, to provide a valid comparison between the approaches, we used the results
of the best 20% of the configurations for LSI and TFIDF.

Table 2 shows the best MAP values we retrieved with TFIDF and LSI for the exper-
imental datasets. TFIDF produces as best results a MAP of 0.8203 for the algorithms
dataset and 0.9316 for the ICSMEres dataset. The results for the algorithms dataset are
wider spread than the ones from the ICSMEres dataset.LSI produces a MAP of 0.8989 for
the algorithms and 0.8675 for the ICSMEresults datasets. For the DR dataset set, TFIDF
and LSI delivered a MAP value of 1.0 for all configurations.

Algorithms: TFIDF Algorithms: LSI ICSME: TFIDF ICSME: LSI DR: TFIDF DR: LSI

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Figure 2. Boxplot of the top 20 % MAP values retrieved by using TFIDF
and LSI as IR approach.

Figure 2 shows boxplots for the best 20% of the results of using the different IR techniques
on the experimental datasets (without noise). Whilst the best values for MAP in the
datasets are very similar for both techniques, the values of the best 20% of all configurations
show a wider spread for TFIDF.

RQ1.2: How robust to noise is our approach with either of the two techniques? To
answer this question we executed both approaches injecting different amounts of noise in
terms of functionality unrelated to the respective datasets. Figure 3 depicts these results
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Table 2. Best MAP Value for LSI and TFIDF per experimental dataset

LSI TFIDF
Dataset wl wg Cut-Off Rank MAP MAP Thresh.

Algorithms ltf H 12 0.8989 0.8203 1
ICSMEres ltf H 18 0.8675 0.9316 2

DR all all all 1.0 1.0 all

grouped by the dataset and the technique. The values underlying these plots consist of the
best 20% of every configuration. Examining the boxplots for the algorithms dataset one
can see, that LSI delivers a slightly decreasing but nearly stable result. In contrast, TFIDF
already starts with a wider spread and deteriorates faster. Taking into consideration the
best values for every approach as stated in Table 3, LSI furthermore shows a better result
for every noise percentage.

The ICSMEresult dataset led to opposite results: While the LSI results deteriorate with
increased noise, TFIDF seems to be hardly affected. The peak value (without noise) for
the LSI approach is close to the ones of the algorithms dataset. TFIDF, however, produces
a higher MAP than LSI on this dataset.

With respect to the DR Dataset we get a completely different picture. While the best
values, as depicted in Table 3, are all perfect with a MAP value of 1.0 for both techniques,
the TFIDF results drop drastically with increased noise whilst the LSI MAP is only slightly
decreasing.

Table 3. Best MAP value for varying noise percentages per dataset and IR technique

Datasets Algorithms ICSME DR
Noise % LSI TFIDF LSI TFIDF LSI TFIDF

0 0.8989 0.8203 0.8675 0.9316 1.0 1.0
25 0.8755 0.7903 0.8554 0.9307 1.0 1.0
50 0.8802 0.7770 0.8518 0.9303 1.0 1.0
100 0.8832 0.7562 0.8323 0.9292 1.0 1.0
200 0.7739 0.7353 0.7994 0.9296 1.0 1.0

RQ2: How well does our approach complement the findings of a clone de-
tection analysis? We answer the RQ in two steps: first, we describe our findings on
the experimental datasets by relating our reference links to the results of the clone detec-
tion. Second, we analyze the results of the two IR techniques and clone detection on the
industrial study object.

7.1. Experimental datasets. For the experimental datasets, we captured how many
of the reference links of each dataset were also found by the clone detection. For the
Algorithms dataset, clone detection discovered 27 out of 784 known pairs, for the DR
dataset, 1 out of 5565 known pairs, and for the ICSMEres dataset, 16 out of 223 known
pairs.
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(a) Algorithms Dataset: LSI.

0 % 25 % 50 % 100 % 200 %

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

(b) Algorithms Dataset: TFIDF.

0 % 25 % 50 % 100 % 200 %

0.
6

0.
7

0.
8

0.
9

1.
0

(c) ICSMEres Dataset: LSI.
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(d) ICSMEres Dataset: TFIDF.
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(e) DR Dataset: LSI.
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(f) DR Dataset: TFIDF.

Figure 3. Results of the best 20% of the MAP values of our approach
using LSI (left) and TFIDF (right) on the Algorithms, ICSMEres, and DR
datasets with noise levels of 0, 25, 50, 100, and 200%.
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7.2. Industrial study object. For this RQ, we analyzed our industrial study object with
both versions of our approach using TFIDF and LSI, respectively, as well as with a clone
detection. For the industrial system, we did not have a baseline of reference links at
disposal. Therefore, we had to analyze the results manually. However, each of our setups
produces a significant number of results (>15000 hits). For feasibility reasons, we had to
limit the number of result pairs. We proceeded as follows: for each of the IR techniques as
well as for clone detection, we sorted the results of the analysis in descending order7. Then,
we manually assessed the top 200 result pairs for each sorting. Furthermore, with a system
expert, we judged the relevance of the result pair in terms of it requiring to be acted upon
to improve the system quality.We manually analyzed the top 200 hits produced for each
setup to determine if it was a re-implementation. Then we intersected the top 200 hits
per pairs of techniques and of all techniques. Figure 4 shows a proportional Venn diagram
of these intersections and Table 4 summarizes the results. Furthermore, we distinguished
between relevant and irrelevant re-implementations: relevant re-implementations indicated
the potential for action to improve the system. Relevant hits were re-implementations that
did not originate from deprecated redundancies or were not imposed by system conventions.
In contrast, redundancies caused by system conventions, such as exception handling, or by
implementations of interfaces or deprecated functionality were not considered as relevant
hit.

When applying each technique by itself on the system, more than half of the resulting
pairs were irrelevant hits for LSI and TFIDF. Clone detection in this case performed better
than either approach. When intersecting the results of the different techniques, TFIDF
and LSI had the largest overlap (91 pairs) of which 78% were positive hits. The overlaps
between CD and TFIDF (35 pairs, 91% positive hits) and CD and LSI (33 pairs, 100%
positive hits) produced far smaller result sets. However, the quality of the results were
greatly improved. Intersecting the top 200 results of all three techniques produced 28
result pairs, which were all positive hits.

8. Discussion

In this section we answer our RQs based on the results in the former section.
RQ1.1: How do precision and recall of our approach change when substituting TFIDF

for LSI? Examining Table 2 we can see that our approach performs well for both techniques,
delivering MAP values from 0.8 to 1.0 (given the best configuration for each approach).
As to the ’perfect’ result of the DR dataset is of limited significance to RQ1.1. The nature
of the MAP calculation only allows us to evaluate the quality of the approach by the order
of its results. Therefore, only containing positives in the dataset, we cannot get any value
worse than 1.0. However, this changes with noise (see RQ1.2).

The ICSMEres dataset’s results are the best of the two remaining. This was to be
expected, as we used the same approach to collect the contained reference links.

Regarding the problem of deliberate implementations of similar algorithms (represented
by the Algorithms dataset), we can see that, at least for the best configurations, our

7For the clone analysis, we summed up the number of cloned units per file.
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Figure 4. Scaled Venn diagram approximating the overlaps of the results
of the top 200 results or our approach with TFIDF and LSI vs. the ConQAT
clone detection.

approach appears to be suitable for this type of problem. This is further supported by the
ICSMEres dataset’s results.

Examining Figure 2 and Table 2 both approaches give a similar performance. Although
on different datasets one is better than the other, all in all the provided results are satisfy-
ing. LSI has an average MAP (considering only the best results for each dataset without
noise) of 0.9221 and TFIDF of 0.9173.

RQ1.2: How robust to noise is our approach with either of the two techniques? For
this RQ we examined the effect of added noise on the results of our approach using TFIDF
or LSI, respectively. The boxplots in Figure 3 provide an overview of the resulting MAP
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Table 4. Qualitative assessment of the results of the different techniques
on the industrial system.

Industrial
Assessment of results LSI TFIDF CD

# of positives 98/200 87/200 150/200
# of relevance 64/200 58/200 114/200

LSI intersected with TFIDF CD
# of overlaps 91
# of positives 71/91
# of relevance 50/91

LSI TFIDF intersected with CD
# of overlaps 35
# of positives 32/35
# of relevance 24/35

LSI intersected with CD
# of overlaps 33 33
# of positives 33/33 33/33
# of relevance 23/33 23/33

Intersection of the three techniques
# of overlaps 28
# of positives 28/28
# of relevance 19/28

value ranges for different amounts of noise. On the Algorithms dataset, LSI performs very
well as increasing the noise levels shows only little effect on the results. TFIDF as well
provides good results, but worsens as more noise is added.

On the ICSMEres dataset, the opposite happens. Although both approaches return sat-
isfying results, LSI reacts stronger to the noise. In this case TFIDF stays nearly constant.
However, one has to keep in mind that the that the reference links of this dataset were
established by means of the original version of our approach based on TFIDF. This means
that LSI could be penalized in terms of the result. Under this aspect, LSI still performs
reasonably well.

For the Algorithms and ICSMEres dataset, both approaches deliver a good precision
and recall for their best configurations as shown in Table 2. While the variance of the
results may be increasing, the noise has little effect on the result for the most suitable
configuration.

With respect to the the DR dataset the best results (Table 2) for all noise percentages
are all 1.0. Nevertheless, LSI performs with more stability its different configurations. Our
TFIDF only performs as expected for one configuration, strongly worsening otherwise with
increasing noise.
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Both approaches perform well, even when hardening the problem with noise. For the
DR dataset, our TFIDF approach appears less reliable.

RQ1: Which of the two IR techniques, TFIDF or LSI, is better suited for our
approach? For the comparison of the LSI and the TFIDF approach in this section we rely
on the answers from RQ1.1 and RQ1.2. Both techniques showed good performance with
and without added noise. Compared to each other, LSI is performing better, taking into
consideration that the ICSMEres dataset is easier to analyze for TFIDF. This conclusion
is supported by the wide spreading of the MAP values provided by applying TFIDF on the
DR dataset. However, when attempting to run our approach on larger datasets, such as
ICSMEstart, LSI runs into scalability issues, whereas our original TFIDF-based approach
scales up.

Taking into consideration the reaction to noise as well as the fact that the ICSMEres
dataset is easier to analyze for TFIDF we assume that, in general our approach performs
better when using LSI as IR technique.

RQ2: How well does our approach complement the findings of a clone detec-
tion analysis? For the experimental datasets, the overlap between the given reference
links and the results of the clone detection is small (between 0 and 7%), which indicates
that both analyses could complement each other.

For the industrial system, LSI as well as TFIDF in our approach produced a large
number of results. However, during the manual analysis, we found that findings due to
system conventions, interface implementations, and deprecated units cluttered even the
top 200 results and decreased the number of relevant re-implementations.

We were interested to see whether LSI, TFIDF, and clone detection ranked the same
results in the first 200 positions. As the intersection between the results of LSI and TFIDF
shows, this applies for less than 50% of the results. However, the majority of positives and
the majority of relevant hits are preserved. Intersecting the results of the two IR techniques
thus increases the result quality and relevance.

The intersection of the results of a clone detection on the industrial system with either of
the IR techniques resulted in significantly smaller sets of overlapping pairs (35 for TFIDF-
CD, 33 for LSI-CD). Therefore, we conclude that our approach and clone detection deliver
different kind of results and are, therefore, complementary. The quality of the remaining
results is between 91 and 100%.

Intersecting the top 200 results for all three analyses only marginally reduces the number
of result pairs to 28. Again, all reported pairs are positive hits.

As far as the types of results are concerned, we found during manual inspection that
intersecting our approach with clone detection had the effect of propagating smaller cloned
units with semantic overlap to a significantly better position in the result set. Since these
were considered as relevant by practitioners, the intersection had the effect of providing
them with a focussed result set that they were willing to assess.

Summarizing, we can conclude that our approach is complementary to clone detection.
In addition, we find that intersecting the top results of our approach with LSI as the IR
technique with the top results of clone detection, we can produce a more focussed set of
high quality results than either of the analyses by itself.
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9. Threats to Validity

Human Error. All experimental datasets are possibly flawed as the assumptions made on
the true positives rely on our subjective judgment. It is likely that we did not find ev-
ery single reference link between documents containing re-implementations. Furthermore,
some of the links we considered as positives may be too general or not similar due to
misunderstandings about the functionality. To mitigate these risks, we applied researcher
triangulation and assessed the reference links independently.

Selection of Study Objects. The ICSMEres dataset is slightly biased towards using TFIDF
in our approach, as the reference links between the contained documents were found by
means of the original version of our approach presented in [6]. Therefore, we expect our
original approach to have an advantage over the LSI-based one.

Our experimental datasets, furthermore, are curated and thus do not necessarily reflect
the characteristics of a real world software system. Especially the DR dataset containing
109 re-implementations of the same functionality obviously is far from any problem in the
real world. We attempted to mitigate this threat with two measures: First, we incremen-
tally added noise to the different datasets and, in this way, enhanced them with source
code which appeared in other systems. Second, we applied our approach on a real world
system.

10. Related Work

In the following, we present approaches that aim to detect or avoid untintentional re-
implementations.

10.1. Detecting similar implementations. Closest to our approach is the work by Mar-
cus and Maletic [24]: they aim to interactively detect high-level concept clones by com-
puting the similarity of source code documents (that can be of the granularity of files or
methods) and clustering of the results. The similarity is computed with Latent Semantic
Indexing, LSI [10]. The clustering can be enhanced by using structural information. De-
termining relevant high-level concepts is done by the user. In a case study, the authors
uncover redundant implementations of a list within one system. Our contribution differs in
scope and techniques: We provide a comparison of two IR techniques, LSI and TFIDF, for
our approach, and relate the findings of our approach to the results of a clone detection.

Al-Ekram et al. [2] report empirical findings on accidential cloning across software sys-
tems. Their approach detects structurally similar code fragments caused by usage patterns
required by specific technologies. However, the authors state that their approach is likely
to miss re-implementations that are fundamentally different in structure.

Jiang and Su [18] propose random testing to automatically mine functionally equivalent
code fragments. The source code is randomly cut in chunks. Two chunks are consid-
ered equivalent if they produce the same output for the same random input data. The
study reports promising results for the test systems, namely a Linux Kernel and a sorting
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benchmark. However, Deissenboeck et al. [11] found that reproducing Jiang and Su’s ex-
periment on Java code yielded unsatisfactory results that provided little value for practical
application.

Kawrykow and Robillard [21] propose an approach to mine Java systems for methods
“imitating” library methods available to these systems. Their goal is to replace functional-
ity implemented in the client code by calls provided by the library. They abstract method
bodies to program elements and perform a matching between the available library methods
and the client methods. Whilst they cater to the important use case of replacing obsolete
client methods by library methods, the notion of equivalence on the method level is still
too restrictive for our task: the re-implementations we are looking for might be present in
different code structures and would therefore be missed by the approach.

10.2. Concept location. The use of identifiers is a common strategy for concept loca-
tion [23]. Methods from text retrieval, TR, (such as Term Frequency-Inverse Document
Frequency, TF-IDF [29], or Latent Semantic Indexing, LSI [10]) are used to extract con-
cepts given by e.g. use cases from source code. Recently, these approaches have been
enhanced by adding static and/or dynamic program information. A study by Basset and
Kraft [4] further suggests that structural term weighting can improve TR based concept
location. To the best of our knowledge, the mentioned techniques have not been applied
to our case.

Amongst the existing IR techniques, LSI is one of the most frequently used and best
documented. In the following we want to state different approaches similar to ours using
this and related techniques.

Natural text to Source Code. Most IR algorithms are based on having a defined query and
a set of documents to search on. In [25] Marcus et al. used LSI for concept location.
They let programmers write queries to map them to relevant parts in the source code. The
approach described by Poshyvanyk and Marcus in [26] is a combination of Formal Concept
Analysis and LSI. The queries are still created manually, but the approach organizes the
results in a concept lattice. This is further supported by a recommender system providing
similar words for the query.

Source Code to Source Code. In [24], Marcus and Maletic provide a segment of source
code implementing a specific concept. They use the contained comments and identifiers
to create a query they give to an LSI analysis then tracing the rest of the source code.
Using Latent Semantic Analysis combined with signature matching Ye and Fischer created
a tool providing the programmer with suggestions while implementing new Code [33]. It
queries the existing implementations in real time while the user enhances the information
by providing more and more source code.
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11. Conclusions
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