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A B S T R AC T

Research and applications in the field of Social Signal Processing have successfully targeted
audio- and video-based techniques for the extraction and interpretation of behavioural cues.
Corresponding research typically aims at specific and rather narrow scenarios, often lim-
ited by dependencies on external infrastructure. This thesis investigates the detection of
social situations based on mobile devices and numerous physical or logical sensors, prefer-
ably without any such dependencies. More specifically, it is shown how probability models
based on variables of human interaction geometry lead to reliable results for the detection
and classification of binary social interaction, from which logical deduction and sensor
fusion lead to the determination of n-ary social situations. The input data of possible
real-life applications are mined from mobile sensors, resulting in wider applicability. A
new research dataset is aquired in a laboratory experiment by precise detection of inter-
action geometry through a commercial infrared tracking system, bypassing the difficulties
involved in mobile sensing and allowing for more fine-grained error analysis for the real-
life application case. Potential influences of personal profile parameter and latent variables
such as gender and group size onto the model are investigated using an additional new
dataset. The applicability of the proposed model in mobile scenarios is evaluated based
on two new mobile systems for measurements of interaction geometry. Interaction geom-
etry is however mainly well-suited for the analysis of static situations. The second part
of this thesis hence demonstrates the ability to recognize dynamic situations by means of
dual co-activity detection based on the similarity of multivariate data streams from mobile
agents, i. e. the detection of co-located and -timed activities of the same type, consequently
serving as indicators for the presence of mutual social situations. Contrary to related re-
search in the field of Activity Recognition, this new approach does not explicitly classify
the actual activities, as the detection of arbitrary co-activities out of the unlimited spec-
trum of potential activities would otherwise be limited by application- or research-specific
heuristics.
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Z U S A M M E N FA S S U N G

Forschung und Anwendung im Bereich des Social Signal Processings haben erfolgreich
audio- und videobasierte Verfahren zur Extraktion und Interpretation von Behavioural
Cues entwickelt. Die Forschung beschäftigt sich diesbezüglich üblicherweise mit spezifis-
chen und eher begrenzten Szenarien, oftmals limitiert durch Abhängigkeiten von externer
Infrastruktur. Die vorliegende Arbeit untersucht die Erkennung von sozialen Situationen
basierend auf Mobilgeräten und zahlreichen physikalischen und logischen Sensoren, vorzugs-
weise ohne vorgenannte Abhängigkeiten. Es wird gezeigt, wie Wahrscheinlichkeitsmodelle,
basierend auf Variablen menschlicher Interaktionsgeometrie, zu verlässlichen Ergebnissen
hinsichtlich der Detektierung und Klassifikation von binärer sozialer Interaktion führen.
Logische Deduktion sowie die Vereinigung mehrerer Sensoren führen dann zur Bestim-
mung von n-ären sozialen Situationen. Die Eingabedaten möglicher echter Anwendungen
werden aus mobilen Sensoren gewonnen, wodurch das Einsatzgebiet erweitert wird. Ein
neuer Datensatz zur Forschung wird in einem Laborexperiment durch die präzise Messung
von Interaktionsgeometrie mithilfe eines kommerziellen Infrarot-Trackingsystems erzeugt,
um Schwierigkeiten und Ungenauigkeiten im Rahmen mobiler Erfassung dieser Daten zu
umgehen und eine feingranulare Fehleranalyse für den Einsatz in echten Anwendungen
zu ermöglichen. Mögliche Einflüsse auf das Modell durch persönliche Profilparameter und
latente Variablen, wie beispielsweise Geschlecht und Gruppengröße, werden anhand eines
weiteren neuen Datensatzes untersucht. Die Anwendbarkeit des Modells in mobilen Szena-
rien wird anhand zweier neuer mobiler Systeme zur Messung von Interaktionsgeometrie
evaluiert. Nichtsdestotrotz ist Interaktionsgeometrie hauptsächlich zur Analyse statischer
Situationen geeignet. Der zweite Teil dieser Arbeit zeigt daher, wie sich dynamische Situa-
tionen auf Basis dualer Co-Aktivitäten erkennen lassen, basierend auf Ähnlichkeitsmaßen
zwischen den multivariaten Datenströmen zweier mobiler Agenten. Hierbei dient die Erken-
nung von Co-Aktivitäten als orts- und zeitgleiche Aktivitäten desselben Typs als Indikator
für die Existenz sozialer Situationen. Im Gegensatz zum Gebiet der Activity Recognition
werden in diesem neuen Verfahren die Aktivitätstypen aber nicht explizit klassifiziert, um
die Erkennung beliebiger Co-Aktivitäten aus einem unbegrenzten Spektrum möglicher
Aktivitäten nicht durch applikations- oder forschungsspezifische Heuristiken zu limitieren.
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1
I N T RO D U C T I O N / M O T I VAT I O N

The technological advancements of computers, portable and mobile devices, tablets and
other gadgets, as well as of course the developments in the related disciplines in science
and engineering, have led to a state where computing, networking, monitoring and a vast
amount of services seem to be omni-present throughout society. Next to typical candidates
such as smartphones, mobile devices are to be found literally anywhere, even in clothing,
known as wearables, and recently also smartwatches [182, 225, 207, 230, 146]. The cor-
responding field is known as ubiquitous or pervasive computing [281], where researchers
and engineers alike strive for the seamless integration of technology into various aspects
of daily life and human routine, thereby creating a transparent link between virtual and
real life [277, 295]. Out of all of the aforementioned devices, mobile phones have had the
highest adoption rate during the past two decades [115]. In 2013, already more than 90%
of the German and 91% of the American population owned one or more mobile phones
[322, 258]. The omni-presence of mobile devices has notably influenced the way that people
interact with each other. Nowadays, social interaction is no longer confined to co-located
activities of the participating persons, but extends to deferred location just as well as
to deferred time. Arminen et al. refer to this development as the “reformation of social
actions in mobile space-time” [14].
Computers have advanced from mere data processors to interaction partners of humans.
Resources and channels like the web, email, messaging services, mobile applications, and
social networking platforms, to name only a few, have elevated computers to a “privileged
interaction medium for social exchange” [278]. As possibly even proactive interactants,
computers should therefore learn to understand and synthesize social signals in order to
provide better communication, interaction and contextual services [120].
Likewise, based on the insight that people communicate using a “subtle combination of
gesture, facial expression, body language, and vocal prosody in conjunction with spoken
words” [230], Pentland coined the term “perceptually aware” for machines and environ-
ments that would be able to understand and generate such communicative elements to
obtain improved human-computer interfaces [230]. This is also known as socially aware
computing [231, 25, 195]. Two of its major aspects are the research of, and applications
for, the constantly increasing number of available uni- and multimodal sensors on mobile
platforms, in particular mobile phones. According to Lane et al., this may eventually revo-
lutionize economical sectors such as “business, healthcare, social networks, environmental
monitoring, and transportation” [181], since “mobile phone sensing systems will ultimately
provide both micro- and macroscropic views of cities, communities, and individuals, and
help improve how society functions as a whole” [181]. Among others, these are just some
of the key motivators for research disciplines such as Social Signal Processing (SSP) and
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2 introduction / motivation

Activity Recognition (AR), which make substantial efforts to fusion the findings of so-
cial sciences with those of pervasive computing, sensor networks, data mining, machine
learning and algorithmic modeling.

1.1 social signal processing

Generally speaking, SSP corresponds to the analysis of non-verbal human-human and
human-computer interaction, for which computers may be considered as social actors
[334]. The primary goal of SSP is to help computers to develop the abilities to recognize
and understand human social signals [333]. This can also involve the synthesis of social
signals during phases of active acting and back-channeling.
At its heart, SSP is based on the consideration that social intelligence is a key factor for
success [334]. Being able to understand, express and manage social signals would help in-
teractants to “get along well with others while winning their cooperation” [333]. In other
words, aiding humans and computers alike in their understanding of social signals may
further allow them to exploit this knowledge to become more effective when dealing with
social interactions, e. g. when assuming a dominant role in a social group or the working en-
vironment, being more successful at job interviews or business transactions, etc. [232, 334].
As such, it may help to find the right margin between acting appropriately or inappropri-
ately during social interactions, [12] in [334].
Existing and possible applications of SSP include the analysis of the spread of diseases or
the flow of information based on social network analysis [230, 84, 120], urban planning and
traffic forecasting [117], social lifelogging [124, 187], sharing content through social partici-
pation [106], multimedia indexing [345, 303], analysis of human privacy bounds [70], crowd
sensing and crowd sourcing [105], crowd motion analysis [151, 151, 217, 355], monitoring
devices for law-enforcement officers and firefighters [98, 49], or increasing the efficiency of
call-centers by prematurely ending a call that has no prospect of ending in the acquise
of a new customer [232]. SSP could furthermore act as a service layer for contextual so-
cial networking [120], privacy management, reachability management, controlling the flow
of information, e. g. when addressing social groups without specific interest in individual
members of those groups.

1.1.1 Social Signals

Pentland was the first to establish the notion of social signals, described in [232]:
“Social signaling is what you perceive when observing a conversation in an
unfamiliar language and yet find that you can still see someone taking charge
of a conversation or establishing a friendly interaction.”

This example was later rephrased by Vinciarelli in terms of being able to “capture the social
landscape” despite a lack of verbal understanding [334]. This implies that social signals
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provide an independent, quantifiable channel of communication [232] which constitutes as
much as 90% of human communication, albeit varying with context [333].
A more formal definition is given by Poggi and D’Errico in [243, 244], and repeated by
Vinciarelli in [336]:

“A social signal is a communicative or informative signal that, either directly or
indirectly, provides information about social facts, namely, social interactions,
social emotions, social attitudes, or social relations.”

For this, a social action is defined as any event performed by an agent A in relation
to another agent B, where A considers B as a self-regulated agent with subjective goals
[336]. A social interaction is consequently defined as a social action that is performed by
A while B is actually or virtually present, [333] in [336]. According to Salah et al., social
signals extend beyond the real world, e. g. in contexts such as micro-blogging or connection
formations over social networking platforms [278].
Note that the given definition of social signals distinguishes between informative and
communicative signals. The notion is that communicative signals are emitted consciously
along with verbal expressions in order to provide the addressee with contextual information
for the subsequent interpretation of the received message, as for example the choice of tone
when saying something ironical. On the other hand, informative signals may be emitted
consciously or unconsciously, yet always carry information that is received and interpreted
by the addressee [336]. A particularly interesting point about unconscious signals is their
tendency to convey honest information [233, 336]. As unconscious signals, they are also not
explicitly controllable [334]. According to Salah et al., humans are “evoluationary bound
to produce social signals”, even when they are alone [278]. This is further sustained by
Knapp et al. who state that people tend to use gestures even when they are alone or on the
phone, i. e. when no recepient is actually present [173]. Vinciarelli et al. further mention
another category of signals, namely those that are actually not emitted per se. Among
other examples, this is the case for mimicry, i. e. when a person A assumes the posture
(gestures, etc.) of another person B, from which a third party C could tell that either A
or B are mimicking the respective other, provided that C can observe both persons at the
same time. This would not be possible for anyone observing only either one of A or B
[336]. Signals of the latter category can therefore be considered both communicative and
informative.

1.1.2 Behavioural Cues

Social signals correspond to a temporal superposition of non-verbal behavioural cues, typ-
ically lasting for a short time in the range of milliseconds to minutes [336, 333, 278, 232].
As such, behavioural cues can be regarded as atomic units even though their complexity
may vary. Well acknowledged behavioural cues usually fall into either one of the following
categories, for each of which a detailed overview is given in [333]:
• Physical appearance, e. g. height, attractiveness, body shape
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• Gesture and posture, e. g. hand gestures, posture, walking
• Face and eyes behaviour, e. g. facial expressions, gaze, focus of attention
• Vocal behaviour, e. g. prosody, turn taking, vocal outbursts, silence
• Space environment, e. g. seating arrangement, distance, orientation
Humans are particularly effective in recognizing these behavioural cues (and numerous
more). Extending the notion to social signals or social factors in general, parts of the
human brain, so-called mirror neurons, are in fact specialized in the recognition and pro-
cessing of such factors as well as in the awareness of other social interactants [271]. Be-
havioural cues hence produce “social awareness, i. e. a spontaneous understanding of social
situations that does not require attention or reasoning”, [177] in [333].
In the context of SSP, the principle advantage of behavioural cues over (the more com-
plex) social signals is that they can be automatically detected and recognized by means
of rather simple sensors such as cameras and microphones [334, 333, 232]. Furthermore,
behavioural cues can be captured without precise knowledge about the context in which
they appear. According to Kendon and Scheflen, gaze, focus, posture changes, etc. have no
intrinsic meaning at all [166, 282]. In turn, this implies that the actual understanding of
social signals is inevitably bound to context-sensitive interpretation. This is corroborated
by Pentland who postulates that “useful systems must be able to adjust for individual
differences, become more sensitive to task and environmental constraints, and be able to
relate face and hand gestures to the semantics of the human-machine or human-human in-
teraction” [230]. They are not specifically linked to linguistic structures or affective states
[232].

1.1.3 Latent Information in Non-Verbal Behaviour

It was mentioned before that social signals provide an independent, quantifiable channel
of information. Unconscious, potentially honest, non-verbal behaviour furthermore consti-
tutes a continuous source of insight into personal feelings, mental state and personality
[269]. Social signals therefore convey information about a subject’s inner state.
Mohammadi et al., for example, investigated the automatic analysis of personality traits
based on individual samples of speech [215]. For this, they compared the algorithmic results
with those of human judgements on a relative large corpus consisting of 640 samples. To
ensure that the interpretation would be restricted to non-verbal communication, samples
were chosen such that the human experimenters would not understand the respectively
spoken languages. Personality traits were then expressed on a scale using the Five Factor
Model [203], according to which each traits falls into one of the categories extraversion,
agreeableness, conscientousness, neuroticism, and openness (see section 2.4.1 for further
descriptions of the model). Although the performance of the demonstrated system was
mixed, it still shows that automatic assessment of at least some individual personality
traits is feasible. Other works in the field [238] achieved as much as 94% accuracy on a
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much larger corpus with respect to extraversion and locus-of-control, the latter of which
quantifies if personal behaviour is assumed to be dependent on a subject’s own actions or
on external factors [107].
However, other than the analysis of individual persons, social signals also tell us something
about the nature and quality of interpersonal relationships during social interactions [333].
Examples are given by the way that people are oriented towards each other while they
are talking, whether they remain silent, how they position themselves, what intonation
they choose, their mutual turn-taking patterns and whether there are overlapping seg-
ments of speech, their visual focusses, etc. It follows that by continuously detecting and
analyzing social signals, information about individuals as well as their relationships can
be automatically inferred on a much more fine-granular scale, both in terms of quality
and timeliness, than, for example, based on long-term and overly simplified (yes/no) in-
formation such as friendship relations on social networking platforms. Another advantage
is that the information contained in social signals is implicit. In contrast, explicit assess-
ments of relationships by humans are prone to misjudgement. Such misjudgements may
be conscious or unconscious, e. g. due to efforts to avoid the violation of social conven-
tions and therefore personal embarassment. People may also have difficulties when being
asked to explicitly assess their relations with others (see section 2.4.1). The latter may be
due to subjectively varying scale, or due to the fact that people have a different impres-
sion of the quality of their relation. For example, a person A might deem another person
B as a close friend, whereas B might see A as acquaintance. Even in the case where A
and B would exhibit mutual agreement on being friends, their personal understandings of
“friend” might differ. To the contrary, automatic recognition and interpretation of social
signals, provided that (possibly domain-specific) means of standardization exist, based
e. g. on well-acknowledged findings from fields such as sociopsychology and sociology, will
most likely yield much clearer and hopefully universally applicable results, together with
a significant increase in precision.

1.1.4 Main Objectives of Social Signal Processing

SSP augments the classical approach of asking about the Where, What, When, and Who
[226, 135, 191] with questions about the How and Why [336], thereby enriching apparent
perception by context-sensitive social aspects such as communicative intention, affect, and
cognitive state. In order to do so, SSP is concerned with the following core questions
[243, 336, 6]:
• How to algorithmically detect and recognize behavioural cues based on uni- and multi-

modal sensors such as cameras, microphones, or accelerometers?
• How to algorithmically infer social signals and attributes from these behavioural cues?
• How to synthesize social signals in an effort to improve socially aware computing and

human-computer interfaces?
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Although not explicitly listed, this enumeration naturally implies the aspect of modeling.
Therefore the three main objectives of SSP can be stated as the modeling, analysis and
synthesis of social signals. SSP has evolved from initially mostly speech- and computer-
vision based systems, which were able to “detect, track, and identify people and more
generally, to interpret human behaviour” [230], to more complex systems based on often
sophisticated models as well as the integration and fusion of arrays of multiple physical
and logical sensors, hence “potentially permitting computer and communication systems
to support social and organizational roles instead of viewing the individual as an isolated
entity” [232]. As such, SSP strives for the development of tools and models which accurately
capture and/or predict human behaviour. Hitherto research has shown that corresponding
tools may sometimes even exceed expert human capabilities [232]. It is therefore expected
that SSP will empower research with the ability to achieve results with much higher qual-
ity and in shorter time [334, 232, 336, 278]. Yet SSP should not be seen as an orthogonal
means that would eventually replace human experts in their fields. However, contrary – or
in addition – to human experts, SSP will likely yield more objectivity during interpreta-
tion of what was observed. It does furthermore allow for observations on a much larger
quantitative scale, to be used e. g. in aiding researchers of fields other than in natural
sciences.

1.1.5 Predictability of Human Behaviour

An important question in this matter is whether human behaviour can be modeled or
predicted accurately. Generally speaking, it is certainly true that human behaviour is,
in principle, innumerable in terms of versatility. On the other hand, some portions of
human behaviour are more likely to contribute to social interaction and social signaling
than others. Also, it is assumed that some behavioural patterns are likely to occur more
often than others. In other words, while there is potential for random patterns in human
behaviour, there are also identifiable routines [82]. Without doubt, interpretation and
validity of the latter is a matter of the problem-specific application domains in SSP.
A number of studies however show that modeling and prediction are indeed possible.
Song et al., for example, studied how much traces of human mobility were predictable
by measuring the entropy of the location trajectories of ∼ 50, 000 users, for which they
report a 93% potential for correct predictions. Perhaps surprisingly, they found that none
of the subjects was predictable with less than 80%, even though parameters such as age,
gender, population density or travel habits varied widely between subjects [310]. In general,
subjects would spend 45% of their time at their primary location, and between 60% to
80% at their second to tenth most visited locations [310]. On a sidenote, studies like the
former also sustain the principle feasibility of universally applicable models both in terms
of gathering enormous datasets as well as exploiting those data. Data on human mobility,
for instance, are vastly collected by mobile phone carriers across large segments of the
population [117].
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Other, particularly well acknowledged studies were performed by Eagle and Pentland,
based on their Reality Mining dataset [82, 83]. The dataset consists of the recordings of
100 mobile phones over the course of nine months, accounting for ∼ 450, 000 hours of infor-
mation about the users. Notably, merely 15% of data are missing or uncontinuous due to
battery depletion or the fact that users consciouscly turned off their phones. Informations
recorded include the devices’ call logs, application usage, key presses, bluetooth devices in
proximity and cell towers. While Eagle and Pentland could again estimate location with
great accuracy, they were furthermore able to infer the social network and quantify the
subjects’ mutual relationships with over 90% accuracy, differentiating between workspace
colleagues, outside friends and people within a circle of friends [82]. It is particularly worth
noting that in order to infer friendship from daily proximity networks, the context of each
mutual encounter had to be taken into account, more precisely location and time of their
proximity measures.
In a subsequent study, Eagle and Pentland showed the prevalence of routine in the daily
lives of their subjects [83]. For this, they determined the principal components of the
recorded data on varying time scales. While these components correspond to the so-called
eigenbehaviour of an individual, this concept can easily be extended to groups, eventually
providing a similarity measure for individuals as well as for groups. Eagle and Pentland
report reconstruction accuracies of more about 80% using only a single eigenvector, al-
ready more than 90% for five eigenvectors, and eventually close to 100% for as little as 15
eigenvectors. All the same, combining the eigenvectors of the individuals of certain groups,
which would consequently span the so-called behaviour space, they further determined that
the behaviour of “first year students” was the most predictive, whereas that of “business
school students” was the least. The latter analysis contributes to Eagle and Pentland’s
notion of lives’ entropy: “People who live entropic lives tend to be more variable and
harder to predict, while low-entropy lives are characterized by strong patterns across all
time scales” [82]. Another notable result of their study is the fact that the identification
of a mere 50% of individual’s recording in terms of his or her eigenbehaviour would be
sufficient to predict the remaining 50% with 79% accuracy [83].

Apart from the prediction of long-term behaviour, another interesting aspect is the
analysis of short-term behavioural cues. This can, for instance, be used to get insight
into the inner state of a conversational partner, and e. g. exploit that knowledge towards a
successful aquise of a new customer at a call-center. A corresponding experiment monitored
70 calls and subsequently analyzed social signals such as engagement, mirroring, activity
and stress, based solely on the tone of voice [232]. These signals were then used to predict
the outcome of a proposed deal, yielding an overall accuracy of about 87% for successful
predictions of the outcome of a corresponding call.
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1.1.6 What is Recorded?

An increasing number of datasets exist for research in SSP, only some of which are available
to the public, for example [66, 82, 121]. Overviews of further datasets can be found e. g. in
[107, 333]. In addition to datasets, an even more increasing number of frameworks aim at
SSP tasks [11, 237, 47, 15, 211, 280, 252]. The common denominator of these frameworks
is their attempt to provide the user with more or less easy access to physical and logical
mobile phone sensors such as Global Positioning System (GPS) receivers, compasses, ac-
celerometers, gyroscopes, thermometers, barometers, cell towers, Bluetooth, microphones,
cameras, WLAN, call logs, SMS logs, applications, contacts, history, battery state, near
field communication, etc. Some of these frameworks also manage encryption, or remote
configuration and survey systems, the latter of which may be useful for online annota-
tion of the recorded data by the monitored subjects. Yet other frameworks attempt to
provide solutions for energy efficient handling of sensors as well as minimizing the effect
of monitoring on device performance. Last but not least, some of the frameworks extend
beyond those services and provide basic functionality for the automatic detection and/or
classification of events.
The exemplary enumeration of sensors available in modern mobile devices sustains the ex-
tent of possible applications in SSP research. The expanding number of embedded sensors
is also considered on the key drivers of mobile phone applications [181]. Yet in spite of
their sheer numbers, the selection and interaction of sensors is just as important for the
respective problem domain. The kinds of social signals and behavioural cues that were
recorded will consequently constitute an upper bound of what can be learned from the
data [335], and in general the acquisition of well-suited and large enough datasets is a
tedious and time consuming process. The design of experiments and algorithmical models
should furthermore take into account that social signals are considered to be “intrinsically
ambigious and the best way to deal with such problem is to use multiple behavioural cues
extracted from multiple modalities” [333]. Models may also benefit from learning the “tex-
ture” of certain social signals instead of trying to understand the actual signals themselves
[232]. Depending on the application it may be sufficient to learn the correlation between
social signals and the investigated entities, such as e. g. the outcome of acquiring a new
customer in the call-center example.
The majority of mobile phone sensors can be classified as either inertial, positioning or am-
bient [144], but sensors may also fall into more than one category. Bluetooth, for instance,
may be used for estimating distance or indoor localization scenarios [52, 46, 24], yet also
for inferring social networks or routine behaviour based on past encounters [82, 83], or
other interesting approaches like analyzing the sets of people who frequently encounter or
see each other without mutual awareness or even knowing each other [228].
Similarly, microphones are extremely versatile in regard of the detection of ambient noise,
silence, verbal and/or non-verbal expressions, turn-taking patterns, prosody, energy, vocal
outburts, etc. Groh et al., for example, successfully analyzed turn-taking patterns in order
to infer social interaction [126].
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Last but not least, one of the most frequently deployed sensors are cameras. Still images
or continuous recordings can convey an enormous amount of information, and research in
computer vision has long since demonstrated the ability to detect, recognize and possibly
track gestures, postures, faces, eyes, ears, mouths, extremities, space and environment,
seating arrangement or objects in general [191, 329, 214, 337, 136]. Among the former, the
face is particularly important as it hosts the greatest part of our most important sensoric
organs. Gaze, for instance, can tell a lot about the quality of social interaction [165], the
eyes may help to distinguish real smiles from fake ones [75], and together with other pa-
rameters, the face can be analyzed to detect deception or lies [99].
It is interesting to realize that facial expressions can be almost exhaustively described in
terms of the so-called Facial Action Coding System (FACS) [86], comprised of a surpris-
ingly small number of action units and action descriptors, based on individual or groups
of muscles and their corresponding movements, respectively. Likewise, it is also possible to
describe the signals of sign languages with rather basic sets of parameters [336]. Next to
capturing such kinds of behavioural cues, developing a higher-level concept for the descrip-
tion of abstract parameters such as their respective amplitude, fluidity, power, acceleration
and repetition could yield a useful grammer to lift those behavioural cues into the context
of social signals [336].

1.1.6.1 Obtrusive Sensing

Generally speaking, SSP is about making implicit facts explicit, for which examples were
given such as a person’s inner state or their relationship towards others. The correspond-
ing social signals are mostly unconscious, which implies that explicit interaction between
a device and its user should be avoided, as that may lead to erroneous and biased obser-
vations, as well as alter the users’ behaviour when they are aware of the fact that they
are being recorded. For example, traditional vision-based approaches, as opposed to using
e. g. inertial sensors, can be considered intrusive and disruptive [16].
Whenever active support of the sensing process is required by the user, this is known as
participatory sensing, whereas mere passive involvement would be known as opportunistic
sensing [181, 144]. It follows that in scenarios where emphasis lies on unconscious and/or
honest behaviour, such as e. g. in the analysis of social interaction geometry on small spatio-
temporal scales, opportunistic sensing would provide the appropriate means. Extending
to larger settings, opportunistic sensing can also be considered “particularly useful for
community sensing, where per user benefit may be hard to quantify and only accrue over
a long time” [181]. Participatory sensing, on the other hand, may help to increase the
acceptance level of sensing applications with respect to privacy [144]. In that sense, people
should always be aware of the fact that they are being recorded and that they are possibly
sharing data. This would have the advantage that people could decide what type and
amount of information they are willing to share, provided of course that they are basically
capable of realizing the consequences and implications with respect to subsequent analysis
of their personal data. Some researchers therefore propose that especially raw sensor data
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should generally not be pushed to the cloud because of any associated, non-foreseeable
privacy issues [181]. At last, people should in principle constantly be able to enact their
proprietary rights, possibly even including an opportunity for posterior erasure of the data.
Surprisingly though, the enormous developments of social networking platforms and the ex-
ponential availability of data however lead to the presumption that people indeed have an
intrinsic motivation and willingness to share nearly all kinds of personal and non-personal
information, accepting the risk that it may be exploited both legally and illegaly.

1.2 inferring social interaction from spatio-orientational arrange-
ments

Social relationships can be regarded as a function of social interaction [166]. This may be
based on quantitative and/or qualitative measures such as the presence or absence of inter-
action, relative frequency, respective duration, interpersonal distances during interaction,
or temporal behavioural patterns such as trajectories or the ratio of individual versus the
sum of interactions. Subsuming, social relationships can be characterized by investigating
how they were built and sustained through interaction [51]. Relationships should there-
fore be analyzed in terms of the amount of time spent interacting, the temporal sequence
of those interactions, and their distribution both on common as well as individual scale,
thus providing means for measuring human relations and quantitative research in the field
[166, 51].
It can be argued that there is a high correlation between spatial proximity and social
links [117]. In fact, social proximity has been found to be the most important feature for
the detection of social interaction [144]. There is potentially a certain set of universally
applicable rules for (appropriate) behaviour with respect to proximity [130, 166]. Since
assuming postures, position and orientation tends to happen unconsciously, they serve as
reliable cues for the attitude of people towards a social situation [333]. Additional impor-
tant aspects of behaviour in regard of proximity are inclusion versus exclusion, face to
face versus parallel orientation, or congruence versus incongruence [333, 336]. These can
be accurately described in terms of interaction geometry [123, 122, 278, 67].

1.2.1 Proxemics

The study of human proxemics, i. e. their spatial and territorial behaviour, dates back to
the early 1960s, and is founded on the seminal works of Hediger and Hall [140, 130, 131].
Hedinger found that the behaviour of animals upon contact with other animals of the
same or different species depends on distance. Following his findings he established the
terms flight, critical (or attack), personal, and social distance [140]. Flight and critical dis-
tance are crucial upon contact with different species. They correspond to invisible margins
which, once crossed, determine whether an animal would flee or potentially attack. The
latter two distances correspond to intra-species contacts and define the limits of intimate
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Figure 1.: Schematics of Hall’s model of personal zones (a) and Kendon’s F-formation systems
(b), for which the orange lines indicate the boundaries of the individual transactional
segments.

and communicative distance for non-contact species, i. e. those species that do neither
foster nor tolerate touch. This is augmented by Sommer who states that territory differs
from personal space in that personal space moves along with the individual, whereas a
territory is stationary [307]. Also, the boundaries of a territory are usually clearly marked
as such, yet for personal space they are invisible. At last, while a territory is most likely
defended against intruders, intrusion into personal space tends to cause withdrawal.
Hall subsequently investigated the personal space of humans [133], dividing it into inti-
mate, personal, socio-consultive and public zones (see figure 1a). The intimate zone ranges
from 0 to ∼ 45cm and is typically reserved for interactions with family or close friends.
The personal zone extends from ∼ 45cm to ∼ 1.2m. It corresponds to the distance that
people assume e. g. when talking with friends or colleagues. Dosey et al. further describe
the personal zone as a buffer zone whose main purpose is the protection of the emotional
well-being [78]. The socio-consultive zone extends from ∼ 1.2m to ∼ 2.4m and allows for
interactions in a professional context, such as talking to a superior at work or consulting
with a lawyer. The public zone eventually includes all interaction beyond ∼ 2.4m, for exam-
ple when attending a public event or a lecture. Apart from this “semantical” meaning, Hall
attributes the gain or loss of important sensory input such as olfactory or thermal percep-
tion, sight, loudness or touch to variations in distance [133]. He furthermore acknowledges
that the specific extents of the four zones apply to western caucasian Americans, and
may vary with additional parameters like culture or ethnological heritage (refer to section
2.4.1 for further details). He is also aware that “social organization is a factor in personal
distance” [133], which shows, for instance, in that impersonal business is conducted at
greater distances than when working together, independent of social distance.
Summing up, from a sociopsychological perspective personal space can be interpreted as

a functional, mediating, cognitive construct which allows the human organism to operate
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at acceptable stress levels and aids in the control of intraspecies aggression [90]. A more
detailed overview on the history of proxemics can be found in [22].

1.2.2 F-Formations

Kendon later criticized that most former research was concerned with individuals rather
than with systematic and behavioural formations of multiple subjects [166]. According to
Kendon, during interactions people are arranged according to geometric patterns, which
can vary in their nature from static to highly dynamic. Static arrangements are referred to
as formations, for which he assumes that although every encounter is unique per se, they
all share universally applicable principles. According to his seminal work [166], a so-called
F-formation occurs whenever two or more people form a spatio-orientational relationship.
The contextual system that leads to this formation is consequently termed F-Formation
System (FFS). Note that a FFS is independent of its participants as individual subjects.
Instead, the system depends on their contextual relations. Therefore a FFS may remain
stable even though individual members are exchanged. As an example, one person standing
in a circle together with others could leave that circle, upon which the remaining members
might adopt another formation while the system per se stays intact. Kendon’s research is
further motivated by the following insights:
• FFSs function as the identity and integrity of any social interaction.
• In spite of their common focus, FFSs allow for different ways of interaction.
• FFSs form a unit for social encounters. As such, they have a bounding or limiting effect.
• FFSs yield a spatial organization of behaviour within a social situation.
Space in every formation is partitioned according to any participating person’s Transactional
Segment (TA), Object Space (O-space), Personal Space (P-space) and Rear Space (R-space)
(see figure 1b). In regard of the TA, recall that an individual’s activity is always related
to space. The space in which an individual acts is therefore called their TA, and people
try to maintain that segment as long as they perform any corresponding transactions. Ac-
cording to Kendon, “others respect this space, not entering it or crossing it.” [166]. The
layout of the TA depends on location and orientation of the body. Respective changes are
therefore immediately reflected in the individual’s primary line of activity. Kendon relates
body orientation specifically to the orientation of the lower body because it constrains
the movement of the upper body, while head and arms move freely. The intersection of
the individual TAs defines the O-space. The O-space is therefore always located in front of
a person, and its presence is a prerequisite for when people act together. Their coordi-
nated efforts then lead to establishing the O-space. Note that the existence of an O-space
is sufficient for considering any F-formation as being fully established. P-space denotes the
portion of space that is occupied by the subjects’ bodies. R-space corresponds to the space
that is not accessible by the individuals, and usually refers to their rear. Interestingly
enough, R-space may act as a buffer zone which e. g. may be relevant when two or more
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groups try to establish compatible arrangements in a confined environment. If it is not
possible to avoid the buffer zone, body language, such as looking down or away, is typically
used to communicate respect or lack of interest [166]. In addition to the aforementioned
spaces, the so-called Face Address System (FAS) accounts for the fact that people look at
the persons they are speaking or listening to. In most cases, FAS and TA intersect each
other, although there may be situations where people briefly address somebody outside of
the TA. When it turns out that the latter may last (unexpectedly) long, the TA will shift
accordingly.

1.2.3 Properties of Spatio-Orientational Arrangements

Spatial and orientational arrangements of multiple persons are versatile. People usually
adopt circular, semi-circular, rectangular or linear formations [166]. Two persons, for exam-
ple, could be standing in a face-to-face configuration, be arranged in the shape of an “L”,
or alongside each other while looking into same direction [167, 166]. Among other things,
the selected arrangement depends on the number of persons, spatial constraints or a com-
mon activity. Additional constraints may exist due to the presence of other individuals
or nearby F-formations, which will usually respect each other. Arrangements are further-
more influenced by sociofugal or sociopetal forces due to architectural factors, furniture
or the placement of objects [224]. Vice versa, any concrete arrangement can also convey
information about the group, e. g. whether they are acting in contest, working together
or alone, or about attributes such as dominance and social hierarchy [305, 306, 61]. Circu-
lar arrangements, for example, may indicate equality among a group’s members, whereas
individual shifts from commonly adopted arrangements may indicate more “weight” in a
person’s role, e. g. when a group of students were talking to their professor. Orientation is
therefore an important addition to Hall’s model of personal distances. It follows that shifts
or changes in the arrangements hint at underlying organizational or hierarchical changes.
Other than that, as a FFS may also exist to support a certain utterance exchange, it may
also shift along with a topic change, especially in situations where people are standing
[166]. Once established, groups however try to maintain their arrangements. As a conse-
quence, individuals move along with each other, i. e. they work together towards sustaining
a FFS. The forward movements of one person might for instance be compensated through
the backward movements of another person [28]. Goffman refers to this behaviour as a
working consensus [114], where the system is kept in equilibrium. Note that, naturally,
for every person their participation in a social situation yields their subjective affective
meaning. Therefore people instinctively try to establish and maintain a common affective
meaning as soon as they come together [286, 250, 198]. Triandis furthermore distinguishes
between an individual’s private, public and collective selves, each of which pursue specific
goals [325]. In particular, it is the public and the collective selves who have the desire
to act appropriately and be rewarded through corresponding backchanneling, and make
efforts towards achieving the common interests of the peers [325].
At last, note that changes of an arrangement do not necessarily imply a change or the
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end of the respective FFS. Sometimes arrangements simply adapt to changes in the envi-
ronment. Also, adjacent FFS constantly influence each other despite the efforts of their
participants to uphold formations and interactions. Another noticeable shift may be due
to “lurkers”, i. e. persons not (yet) actively participating in a social situation. Once out-
siders approach an established system, they will typically stop at some outer position to
show that they respect the boundaries of the system, yet also signal their wish to enter.
When the group opens up, the arrangement will adopt the newcomer and then stabilize
again once (subtle) salutations were changed.

1.2.3.1 Where does interaction start and where does it end?

In general it is difficult to tell exactly when social interaction starts and when it ends.
Behaviour is not discrete but continuous. Behavioural cues, social signals, actions and
interactions may or may not be hierarchically organized and can be regarded at different
levels of abstraction. When two people meet, for example, does interaction start once they
establish eye contact or when they shake hands? Although certain behavioural phases go
along with respective variations in posture and distance [283], it is not possible to find a
total ordering of events. Hence the question is whether any meaningful boundaries can be
defined, and whether these could apply to different types of social interactions or, more
generally, social situations. For the given example, Kendon initially attempted to identify
the earliest time at which one could speak of greeting behaviour [166], but found that
gestures, gaze etc. follow various patterns even though one might assume that a greeting
scenario would be rather restricted in terms of available patterns and their interpretation.
Sometimes, certain behavioural cues appear, but the same do not appear at other times.
Interaction however clearly occurs when the behaviour of one person observably depends
on that of another [166, 336]. The decision process should thus begin at the most inclusive
level, i. e. when interaction is clearly observable and agreeable, and from there the process
should continue outwards. Spatial and orientational arrangements can hence serve as indi-
cators for the beginning and ending of social interaction, and changes of arrangement can
relate to changes in the kind of interaction. For research of social interaction in the context
of SSP it follows that fuzzy boundaries between interaction and non-interaction are accept-
able, provided that fully observable interactions are clearly separable from non-interaction,
and that they can be agreed upon.

1.3 research questions

Following the prior discussion, SSP is comprised of the analysis, modeling, and synthesis
of non-verbal social interaction. In the context of SSP, this work is concerned with the
question for suitable means of capturing social context on small spatio-temporal scales
through the use of mobile agents, and how that context can be modeled and characterized.
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This should furthermore be realized in a way such that the mobile agents will not depend
on external infrastructure.

Social relationships constitute an elementary aspect of the context of a social situa-
tion, and are quantifiable as functions of social interaction. Based on the detection and
interpretation of corresponding social signals and behavioural cues, this work shows how
actual social situations can be inferred from social interaction. For this, a social situation
is defined as co-located face-to-face social interaction with full mutual awareness of all
participating persons. As such, it is denoted as a four tuple S = (P, T ,X,K) of P a set of
persons, T ∈ R a temporal reference, X ∈ R3 a spatial reference, and K a set of tags which
can be used to describe the situation’s semantics. Note that T and X are actually projec-
tions from a spatio-temporal reference X̃ ∈ R4 to account for shifts of location over time.
Also note that full mutual awareness of all participants implies the deliberate exclusion of
potential overlaps with other situations.
The first research question is based on the theory of proxemics and F-formation systems.
It investigates the realization and quality of a new algorithmical model for the detection
of social interaction based on behavioural cues from dyadic interaction geometry corre-
sponding to interpersonal spatio-orientational arrangements.
The second research question investigates the potential effects of personal profile parame-
ters and additional latent variables onto the model, and whether and how they could be
integrated into the process.
The third and fourth research questions concern the automatic measurements of location
and orientation of mobile agents, and how such measurements can be related to the actual
location and orientation of the human body.
The fifth research question investigates the fusion of physical and logical sensors from one
or more agents, along with modeling and integration of subjectivity and mutual trust, in
order to infer n-ary social situations from dyadic social interaction.
The last research question investigates the feasibility of a new model for dynamic social
interaction based on the detection of simultaneous co-located identical activities as history-
based estimates of social interaction. The model should detect universal activities of the
same type and not be constrained to an a priori determined set of activities.





2
S O C I A L I N T E R AC T I O N G E O M E T RY

2.1 introduction and related work

In 2009, Amoaka et al. developed a basic probabilistic model of personal space for use
in computer vision supported Human Computer Interfaces (HCIs), e. g. for applications of
virtual agents in public spaces [13]. In accordance with Shozo, [299] in [13], they assumed
personal space to be twice as wide in front of a person than in their rear. Their model is
consequently comprised of two multivariate Gaussians, centered around the person’s head,
and with trivial diagonal covariance matrices aligned according to the direction into which
the person is looking. All parameters of the covariance matrices depend on the standard de-
viation of a single variable along the horizontal axis. In its basic form, the model therefore
only has a single degree of freedom. This is somewhat compensated by subsequently lifting
this variable to a function of three personal profile parameters, namely gender, age, and
a third individual parameter, which altogether act as a linear (or potentially non-linear)
filter. At the bottom line, it is interesting to see that Amoaka et al. already considered the
integration of profile parameters into models of personal space. On the other hand, their
model is rather artificial as it is based on manually designed and overly simple probabil-
ity distributions, instead of e. g. being inferred from statistical quantities. To the best of
the author’s knowledge, the publications of Shozo [299] and Amoaka et al. [13] were the
only preliminary works in advance of the studies leading to the first parts of this chapter,
published by Groh et al. in [123].
Cristani et al. subsequently developed a robust computer vision algorithm for the detection
of F-Formation Systems (FFSs) [66]. In a first step, their system determines the positions
and head orientations of the subjects. In a second step, a voting mechanism leads to the
identification of O-spaces, which is sufficient for the presence of established FFS [166] (see
section 1.2.2). A last step verifies that no other subjects are located inside a candidate
O-space. One especially interesting part of their approach is the integration of uncertainty
into the model. For this, multiple samples are drawn from a multivariate distribution
around the location and orientation of a subject’s head. Votes are then computed for each
of the samples on a discrete grid of possible centers of O-spaces. As a consequence, their
model exhibits robust performance on both real-world and synthetic datasets [66, 65].
In a subsequent related work [67], Cristani et al. have shown how interpersonal distance
correlates with social relationship, for which they monitored 13 subjects in casual stand-
ing conversations from a bird’s eye perspective using a single fixed camera. They argue
that the correlation between social relation and interpersonal distance is higher than that
of social relation and orientation, also citing [111]. Based on their aforementioned algo-
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rithm for statistical analysis of FFSs [66], beginnings and endings were determined for any
stable FFSs, considering only those FFSs that lasted longer than five seconds. For every
such formation, the pairwise distances of each adjacent pair of persons were determined.
Subsequent Expectation Maximization (EM)-based clustering then revealed that all mea-
surements were distributed among three to five modes with normal distributions. As a
result of their experiments, Cristani et al. were able to relate the pairwise measurements
in any of these modes to the apparent social distances between the respective people (pro-
fessors, PhD students, undergraduates). They furthermore showed that the means of the
modes would adapt to additional constraints when imposed on the room in which the
subjects could freely move, but that they would still adhere to the same number and prior
distribution of clusters [67].
Around the same time, Hung and Kröse proposed the estimation of FFSs through domi-
nant sets, a “form of maximal clique that can be applied to edge weighted graphs so that
the affinity between all nodes within [the subgraph] is higher than between the internal
nodes and those that are external to it” [149]. In their work, affinity is computed based
on relative distance, orientation, a custom feature called Socially Motivated Estimate of
Focus Orientation (SMEFO), or combinations of the former. One may note that, whereas
distance-based affinity is modeled by the exponential of Euclidean distance weighted by
the function’s variance, orientation is only trivially integrated into the model by cropping
the distance-based affinity to zero if at least one person A in a pair (A,B) is oriented such
the other person B is not located in A’s frontal hemisphere. The proposed SMEFO feature,
however, follows the presumption that people who attempt to interact stand more closely
together and orient themselves accordingly. SMEFO therefore depends on the angle of the
vector from a person’s position to their estimated center of focus, the latter of which de-
noting the weighted sum of distance-based affinities towards all other persons.
Out of a comparatively large dataset, for which 50 persons were recorded from a bird’s
eye camera over the course of three hours, 82 images comprised of ∼ 1700 persons were
annotated with location and orientation of each subject [149]. In addition to that, a group
of human experts, notably from different cultural backgrounds, labeled the apparent FFSs
in overlapping sets of images, yielding an agreement of more than 94%. It should be
pointed out that, although human experts will undoubtedly take into account more than
just proxemic behavioural cues when labeling still images of social situations, this very
high agreement contributes to the argument that location and orientation are indeed sig-
nificant priors for the existence of FFSs, and therefore social situations. It furthermore
sustains the assumption of a basic subset of rules for proxemic behaviour that may be
universally applicable among humans. Readers should note the emphasis on basic, as it is
already known from social sciences that proxemics are influenced by additional parameters
[130, 133, 166]. All in all, Hung and Kröse report good results for the positive detection
of FFSs when only distance-based affinities where used. Augmenting those distance-based
affinities with SMEFO would sometimes yield small improvements, but it appears that
this would not be the general case. High precision and recall were yet achieved for the
combination of distance- and orientation-based affinities. Setti et al. proposed a revised
formulation of [67], relaxing the constraints imposed on the prior model of O-space based
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on a single multivariate Gaussian through the use of an entropy based voting mechanism
with respect to varying group cardinalities [291]. More precisely, K− 1 voting modules are
employed for cardinalities k ∈ {2, . . . ,K} on an image of K persons, each with respect to
circular arrangement of the k subjects with an assumed distance of 95 cm between adja-
cent persons, accounting for placement within the personal zone. Each module produces
weighted entropy measures based on the times and weights of the subjects’ votes for po-
tential centers of O-spaces. The accumulated voting spaces for each cardinalty k are then
pruned of all those candidate O-spaces with differing k. The results are eventually merged in
a multi-scale accumulator from which, for every discrete location, the FFS with the highest
entropy is selected. According to Setti et al. [291], their revised approach outperformed all
prior attempts of statistical analysis of FFS in still images, including the aforementioned
[67] and [149], in most cases demonstrating considerably higher precision and recall.
Altogether, related work shows that designed, constrained or simplistic models suffer from
a lack of expressiveness for human proxemic behaviour. This does, however, not necessarily
imply a demand for sophisticated models, a fact clearly shown by the considerable results
that were achieved based on those models that involve clever voting mechanisms, incor-
porate elementary findings from the sociological theory on FFSs, and/or employ means of
uncertainty. The related work furthermore shows that the integration of orientation into
the decision process improves the quality of the results and allows for decisions in situations
where interpersonal distance alone would not be sufficient. It is also clear that interactants
arrange themselves in various formations, depending on sociopetal or sociofugal forces (see
section 1.2.3), environmental constraints, and most importantly social factors such as re-
lationships or the affective meaning of the situation. Computer vision based algorithms
could, without doubt, automatically recognize and handle several constraints, such as e. g.
obstacles in the environment. To a limited extent, these or similar types of constraints
may even be integrated into the model itself, yet only for specific applications at known
locations. Aside from environmental constraints of a more static character, the presence
of other nearby FFSs, together with their specific arrangements, can be regarded as dy-
namic constraints. So far, however, the aforementioned models take into account neither
static nor dynamic constraints. Instead, the models have a local focus on each distinct FFS,
except for the model by Setti et al. [291], whose multi-scale voting for every individual
subject in the scene implicitly accounts for multiple FFSs on a more global scale. Still, even
the latter model is potentially restricted due to the fact that it is based on heuristics such
as the presumption of circular arrangements and/or typical distances of 95cm between ad-
jacent persons. Instead of the explicit integration of dynamic constraints, and irrespective
of possible extrema, models would more likely benefit from implicitly learned knowledge,
such as is the case for quantitative models.
The present work thus proposes the algorithmic detection of social interaction based on
quantitative models learned from measurements of interaction geometry in dyads. For this,
interaction geometry will be modeled as a triple (δφ, δθ, δd) of interpersonal distance (δd),
relative orientation (δθ), and relative location (δφ). So far, relative location has not been
considered by other models, although clearly, interaction geometry is only fully determined
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once δφ is taken into account, as distance δd merely accounts for infinitely many positions
on a circle and a description of orientation δθ is per se independent of any other variable.

The layout of this chapter is as follows: Section 2.2 describes the aquisition, post-
processing and annotation of a sufficiently large dataset for social interaction, which is
subsequently analysed and discussed in terms of the aforementioned variables of interac-
tion geometry. Section 2.3 provides a detailed derivation and evaluation of the resulting
algorithmic model for the detection of social interaction. Following the discussion that so-
cial interaction is potentially influenced by further variables, such as, for instance, personal
profile parameters or the cardinality of groups, section 2.4 discusses influential factors in
general, and features a second dataset as well as a corresponding model in order to evalu-
ate the actual correlations of gender and age with respective measurements of interaction
geometry.

2.2 experimental dataset of social interaction geometry

The dataset at hand is based on the recordings of an experiment which was conducted
at the computer science department of the Technische Universität München on December
21st, 2009. During this experiment, position and orientation of the participating persons
were continously monitored by an infrared tracking system over the course of 30 minutes.
The subjects were furthermore recorded by stationary as well as mobile video cameras.
Audio was captured for each of the interactants through small wearable recording devices.
In order to gather a preferably rich and diverse set of data, in particular comprised of mul-
tiple naturally changing as well as lasting social situations and varying group cardinalities,
the participants were instructed to determine each other’s favorite food, TV show and
music at childhood. As an additional incentive, participants could win a price valued at
about 30,- EUR, provided they would give the quickest correct answers when asked about
the favorites of other, randomly selected, members of the group. Of the 9 participants, 7
were male and 2 were female. Age ranged from 22 to 31 with a median of 23, mean of 24.77
and standard deviation of 3.19 years. Body height ranged from 165 cm to 186 cm with a
median of 173 cm and mean of 175.1 cm. According to [2], the present time average height
of German males and females is 178 cm and 165 cm. The respective standard deviations
for male and female experimental subjects were 5 cm and 8 cm. All but one person were of
native German origin, the exception being one student with Asian heritage. The following
sections give a detailed description of the recording, post-processing, annotation and final
analysis of the data.
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2.2.1 Recording

2.2.1.1 Video Cameras

Throughout the experiment, the participants were filmed by 6 stationary high-resolution
cameras, plus one backup mobile camera. The stationary cameras were all mounted on the
ceiling such that they would record the scene from various angles. Likewise, the mobile
camera was only used to record the scene from the “outside”, so that none of the cameras
would interfere with the subjects’ behaviour inside their moving area. During postprocess-
ing, the mobile camera could provide more detailed information about certain formations
when obfuscated from the stationary cameras through motion, position or mutual shad-
owing of the participants, e. g. due to body height. All cameras provided digital video
streams at 25 frames per second, stored in a custom container format including precise
time stamps. Eventually, the video streams were precisely aligned with the time scale
of the infrared tracking system, henceforth aiding in the clarification of the exact set of
persons during the subsequent annotation of the monitored social situations.

2.2.1.2 Infrared Cameras

Position and orientation of the participants were tracked using a system of 8 stationary
infrared cameras [8], 4 of which were mounted on the ceiling and 4 on the floor. The system
is capable of tracking up to 20 markers in real-time, for which each marker features a
number of spheres with a specular surface that reflects the infrared beams sent from the
cameras at a rate of 60 Hz. The number and configuration of the spheres are unique for
each marker, so that each target can be detected without ambiguity. Each subject wore a
single marker on either their left or right shoulder, located at a distance of 18 centimeters
from the center of the torso when projected onto the x/y plane. The markers were fixated to
make sure they would not skid or move throughout the process. For each marker, position
and orientation in the camera coordinate system were continuously computed via metric
reconstruction of sets of corresponding points [136] as seen by two or more of the cameras
for every frame, for which the camera coordinate system had initially been calibrated such
that its three axes were known precisely (see figure 2). These data were available at all
times via a real-time TCP/IP stream [8].

2.2.1.3 Audio Recordings

Audio was recorded to provide additional means of control for post-processing, as well
as for improving the detection of social situations through fusion of multiple sources of
information (see section 4.6). For this, only the presence or absence of conversational audio
would be taken into account, but not the semantics of what was spoken. Mono-channel
audio was recorded through small wearable recorders, each of which taped to the breast
of the respective interactant. Audio recordings were performed at a sampling frequency
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Figure 2.: “Action shot” of the recording plus a visualization of the camera coordinate system
setup.

of 11 KHz. In advance of the actual experiment, a sequence of three sinusoidal signals
were emitted through a common loudspeaker at 440 Hz, 880 Hz and 1760 Hz to allow for
temporal synchronization of the devices.

2.2.2 Post-Processing

The infrared tracking system recorded a total of 121,447 frames at 60 Hz over the course
of 33 minutes and 44 seconds. For each frame, the identifiers, positions and orientations
of the visible markers were stored. Positions are stored as 3-tuples, specifying the x-, y-
and z-coordinates of the respective marker in relation to the camera coordinate system.
Orientations are stored both as 3-tuples of Euler angles as well as Direction Cosine Matrices
(DCMs), for which the order of rotations is defined as subsequent rotations around the z-,
y-, and x-axes [8]. Note that a representation in terms of Euler angles is prone to suffer
from singularities, known as Gimbal Lock, which occur whenever a prior rotation aligns
the two successive rotational axes, hence leading to the loss of one degree of freedom. As
a consequence, only the DCMs were used throughout the following process.
Post-processing needs to be performed to clean the data of redundant and/or misleading
information originating from actually unassigned, yet erroneously detected, markers, e. g.
due to accidental reflections caused by clothing. From the present dataset, 2 out of the 11
detected markers proved to be false positives that showed up from time to time, which is
consistent with the actual number of 9 participants. The respective markers could easily be
identified and were consequently removed from the dataset. Furthermore, positional and
orientational data may be temporarily missing for changing sets of markers, e. g. caused
by participants shadowing each other or accidentally walking out of the area visible to
the infrared cameras. Given the rather static character of the monitored FFSs and hence
the temporal stability of the subjects’ spatio-orientational configurations, missing data
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Marker ID 3 5 6 8 9 10 11 12 13
Frames 11100 28967 629 1579 2332 2881 5511 969 267

9% 23% 0% 1% 1% 2% 4% 0% 0%

Table 1.: Marker availability (missing frames).

can be easily compensated through interpolation. This was further verified by detailed
analysis of the respective portions of the video footage. Out of the 9 actual markers, most
markers had none or at most a few missing frames. However, 2 of the 9 markers showed
noticeable losses of 9% respective 23% of the total number of frames (refer to table 1).
Here, analysis of the video footage revealed that marker 3 was frequently shadowed by
taller persons, whereas the person wearing marker 5 stood at the margin of the observable
area for a few minutes, plus the subject’s long hair occasionally covered the shoulders and
thus the marker. Also note that missing frames were mostly not sequentially related, such
that e. g. the interpolation of the missing data for marker 3 would not correspond to a
continuous period but to a total of 11100 frames · 3600 frames/s ≈ 3 min, consisting of
several sequences of variable length throughout the whole duration of the recording.

2.2.2.1 Position

Interpolation between the last known position at t0 and the next known position at t1 is
straight-forward via

sti = st0 · (1− u) + st1 · u , (1)

where t0 ⩽ t ⩽ t1 and 0 ⩽ u = t−t0
t1−t0

⩽ 1.

2.2.2.2 Orientation

Linear interpolation is not applicable for DCMs. DCMs form the so-called special orthogonal
group SO(3), from which it follows that the determinant of each DCM is precisely +1, the
columns respective axes of each rotation matrix are orthonormal and hence ∀R ∈ SO(3) :
RRT = I, i. e. the inverse of each element is simply given by its transpose. These properties
are likely violated by linear interpolation. Compensating for missing orientational data is
however easily achieved through quaternion algebra, which provides additional means of
representing rotations and corresponding operators in R3 [176, 297, 68]. For this, the
recorded DCMs need to be mapped to and from quaternions as follows.

mappings Aside from the notion of quaternions as hyper-complex numbers of the form
q = q0 + iq1 + jq2 + kq3 along with the rule i2 = j2 = k2 = ijk = −1, quaternions can
also be interpreted as the sum of a scalar and a vectorial part

q = q0 + (q1,q2,q3)T . (2)
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It can be shown [176] that unit quaternions, i. e. quaternions subject to
∑
i q
2
i = 1, are

well-suited for the representation of rotations, in which case the scalar (real) part relates
to the cosine of the half angle and the vectorial (imaginary) part to the axis of rotation.
Those quaternions whose scalar part equals zero are called pure quaternions.
The rotation operator for a counter-clockwise rotation around the angle and axis as rep-
resented by a given unit quaternion q is then defined as

Lq(v) = qvq∗ , (3)

where v represents a three-dimensional vector (x,y, z)T in form of a pure quaternion, i. e.
v = 0+ ix+ jy+ kz, and q∗ denotes the complex conjugate of q. Now, since the product
p ∗q of two quaternions p and q can itself be defined in terms of the scalar product and
cross product as

p ∗q =

(
p0q0 −

∑
i

qipi

)
+ (p0q+q0p+p×q) , (4)

equation (3) can just as well be written in matrix notation as

Lq(v) =

 2q20 − 1+ 2q
2
1 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 2q20 − 1+ 2q
2
2 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q20 − 1+ 2q
2
3

 ·
xy
z

 , (5)

yielding a mapping from a rotation q in the quaternion domain to a corresponding DCMs.
The reverse mapping from a given DCM R ∈ R3×3 to the quaternion domain can as well be
derived from equation (5), by first solving the trace of R for the scalar q0, and subsequently
using q0 in order to solve for the remaining vectorial parameters. More precisely, solving
for q0 yields

tr (R) = 4q20 − 1⇒ q0 =
1

2

√
tr (R) + 1 (6)

and

q1 = R32 − R23/(4q0)

q2 = R13 − R31/(4q0)

q3 = R21 − R12/(4q0) . (7)

It should be noted that both equations (6) and (7) may cause problems whenever the angle
of rotation is very close or equal to 180◦. Recall that q0 denotes the cosine of the half
angle of rotation and hence limα→180 cos α

2
= 0. This is clearly a problem with respect

to the denominator in any one of the equations in (7). In case of equation (6), however,
the problem is due to numerical cancellation and hence potentially negative radicands.
Geometrically speaking, both problems can be interpreted as the fact that the axis of
rotation could point into either one of two strictly opposite directions [176], depending
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(a) (b)

Figure 3.: Basic linear interpolation as opposed to spherical linear interpolation. The former lacks
constant rotational speed due to varying lengths of the arcs in every segment.

on whether the rotation is clockwise or counter-clockwise. This is a well-known issue, and
various methods for the extraction of a quaternion from a DCM do exist [172, 127, 93].
Apart from e. g. case-by-case analysis of the signs and magnitude of the vectorial elements,
both angle and axis of rotation can be easily determined through solving the eigenvalue
problem for R. Since all rotation matrices have the eigenvalues +1, e+iθ, e−iθ and since
the trace of a matrix is equal to the sum of its eigenvalues, the angle of rotation can be
determined as follows:

tr (R) = 1+ e+iθ + e−iθ

= 1+ cos θ+ i sin θ+ cos θ− i sin θ

= 1+ 2 cos θ

⇒ θ = arccos
tr (R) − 1

2
(8)

The axis of rotation is then simply the eigenvector corresponding to the eigenvalue +1,
following from the fact that points along this eigenvector will be neither changed nor scaled
by any rotation, according to the eigenvalue equation Rx = λx.

spherical linear interpolation Mapping to the quaternion domain has not
completely solved the problem yet, since linear interpolation of two unit quaternions lacks
constant rotational speed as the rotational segments vary in length (refer to figure 3). [297]
therefore introduced the SLERP algorithm which solves this issue through spherical linear
interpolation, expressible as the quaternion product

Rt
i = qt0 ∗

(
q−1
t0
∗qt1

)u (9)

or, both easier and more efficient in terms of quaternion operators, as

Rt
i =

sin ((1− u)θ)

sin θ
qt0 +

sin(uθ)
sin θ

qt1 , (10)
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where θ denotes the angle between the quaternions qt0 and qt1 .

2.2.2.3 Mapping marker position and orientation to their respective body counterparts

At this point, the process of cleaning and compensating for missing data yields positions
and orientations for each marker at every point in time throughout the whole recording.
Recall that positions are always given as a three-tuple of x-, y- and z-coordinates in
millimeters, and orientations are given as DCMs. All coordinate systems are right-handed.
The infrared system’s manufacturer [8] defines the transformation of a point vM from the
local marker coordinate system (M) into the global camera coordinate system (C) as

vC = RMCi,t · vM + si,t , (11)

where, for a given marker i and time t ⩾ 0, si,t ∈ R3 yields the marker’s position, and the
columns of RMCi,t ∈ SO(3) correspond to the images of the axes of the marker coordinate
system in camera coordinates, equivalent to a rotation which aligns the axes of the camera
with the axes of the marker. An alternative view of the rotation described by RMCi,t as a
sequence of rotations with respect to the marker’s initial orientation at t = 0 per

RMCi,t = R̂MCi,t R
MC
i,0 (12)

allows for the definition of the marker’s relative rotation

R̂MCi,t = RMCi,t
(
RMCi,0

)−1 orthonormal
= RMCi,t

(
RMCi,0

)T
. (13)

Note that, for the present dataset, the initial orientation RMCi,0 was determined for each
marker by averaging and consequently orthonormalizing the respective rotation matrices
over the first 500 recorded frames. During this time, all participants were instructed to
stand still with their upper bodies parallel to the x-axis of the camera coordinate system
and facing the room’s rear wall, thus looking into the direction of the negative y-axis (refer
to figure 2).
In addition to the marker (M) and camera (C) coordinate systems, let the body coordinate
system (B) describe the orientation of the shoulder line and the direction which the front
of the body is facing (see figure 4). It differs from the marker coordinate system by two
subtle but very important differences. First of all, all tracking data have been recorded
for the markers, which is why all translations and rotations of the body must in fact be
perceived as occuring around the marker. The location of the marker therefore represents
the origin of the body coordinate system. Secondly, the axes of the body coordinate system
were initially not in strict alignment with the axes of the camera coordinate system. The
application of a corresponding initial orientation correction is therefore mandatory. As a
consequence, points in body coordinates have to be transformed prior to any rotations
and translations originating from the recorded data. The corresponding transformation is
easily found based both on the assumption of a rigid body and the knowledge of the marker
being firmly attached precisely along the shoulder line at a distance of 18 centimeters from
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Marker

Body

Camera

Figure 4.: The camera-, marker- and body coordinate systems used for tracking a person’s position
and orientation through an infrared marker.

the center of the body (see section 2.2.1.2). It follows that points in body coordinates need
only be translated about that particular distance along the local x-axis, thus implicitly
aligning the marker and the origin of the body coordinate system, followed by a subsequent
rotation which aligns the axes of the body and camera coordinate systems.
Let R̂BCi,t = R̂MCi,t , since the orientation of body i at time t can just as well be understood as
a sequence of rotations as in equation (13). The projection of body onto camera coordinates
is consequently defined as the function

f : (i, t, vB) 7→ RBCi,t
(
RBCi,0

)T
RIOC

(
vB + oi

)
+ si,t , (14)

where RIOC denotes the initial orientation correction and oi = (±180, 0, 0)T an offset
depending on whether the marker was worn on the left or right shoulder, respectively. As
stated above, all participants were initially oriented such that their shoulder lines were
aligned with the x-axis of the camera coordinate system and they were facing the rear wall
of the room. RIOC therefore equals a constant rotation about 180◦ around the z-axis and
equally applies to all bodies (hence no index i).

2.2.3 Annotation

The mapping from section 2.2.2.3 allows for precisely tracking and visualizing each in-
dividual’s absolute position and orientation throughout the experiment. Recall that the
final goal however will be the discrimination of established and non-established social sit-
uations for every participant at each point in time, based solely on interaction geometry.
It is hence mandatory to annotate the dataset with the ground-truth of whether two or
more subjects were interacting, and if so, who and when that was.
For this purpose, a system was developed [262] in order to allow human experts to per-
form the actual annotation based on an orthographic projection of the gathered data. The
main component of the system is an application that sketches the whereabouts of the
participants on a per-frame basis and allows for associating sets of participants with so-
cial situations. An arbitrary number of social situations can be created. Each participant
cannot be assigned to more than one situation at the same time. Aside from navigating
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Group size
2 3 4 5 6 7 9

# 9 8 5 5 2 1 4∑
duration 1245.0s 781.2s 838.5s 536.2s 144.3s 100.5s 345.2s
Min 47.8s 22.8s 12.3s 22.2s 37.7s 100.5s 19.7s
Max 370.0s 340.7s 609.7s 245.2s 106.3s 100.5s 154.8s
Mean 138.7s 97.5s 167.5s 107.1s 72.0s 100.5s 86.1s

Median 98.5s 66.2s 80.7s 84.2s 72.0s 100.5s 85.0s
StdDev 100.6s 104.8s 250.8s 83.3s 48.6s – 67.1s

Table 2.: Overview of the annotation results.

through and annotating mere still images, human labelers could also view the visualization
as a continuous stream, which would provide additional temporal information, e. g. where
otherwise it would have been difficult to determine whether a social situation had been
fully established or not. In addition to that, human experts could of course also rely on the
time-stamped video footage as a general fallback mechanism, especially so for the purpose
of cross-checking their annotations, since from the video footage they could furthermore
see many more social signals than just interaction geometry as in the projection.
The complete dataset was annotated during the proceedings of [262] and the results were
thoroughly double-checked by the author of this work. All in all, 34 independent and
mostly parallel social situations were identified over the course of 31:51 minutes, the first
starting at frame 679 and the last ending at frame 12144. The late start is due to the
obligatory calibration of the participants’ markers at the start of the recording process,
further explained in section 2.2.4. Table 2 shows the frequency with which social situations
occurred among exactly N participants, along with detailed statistics. Moreover, figure 5
gives an overview of when and for how long social situations took place, and how many
individuals participated in these situations. From these it follows that groups of two or
three individuals formed more often than others, while groups of eight did not occur at
all. One may note that social situations of four persons usually lasted longer than the
more frequent ones with groups of two or three. Groups of six or seven persons rarely ever
formed, and only during the first half of the experiment. During the second half, groups
of two, three, four or five persons were the most dominant cardinalities.

2.2.3.1 Discussion

An important question for annotation is what is to be classified as a social situation and
what is not, but also precisely where those situations start and where they end. As dis-
cussed in chapter 1, social situations can be recursively nested almost arbitrarily deep.
What is understood as a social situation is often a matter of the application-specific con-
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Figure 5.: Overview of when and for how long social situations took place, grouped by arity. Distinct
situations with equal arity are stacked on top of each other.

text in which they are to be investigated, but certainly also dependent on a personal point
of view. For example, two persons engaging in a mutual social situation can as well be
regarded as a mere subset of a much greater social situation with additional persons in
the very same room. According to Goffman [114], co-present persons will basically always
exchange information and/or communicate, and hence they will interact, irrespective of
whether they are actively or subconsciously engaged in the interaction. The issue of what
should be identified as a social situation is actually resolved by the definition of social
situations as given in chapter 1, according to which, in the context of this work, social
situations are only considered as such in case of face-to-face interaction and full mutual
and conscious awareness of all persons. Excluding potential overlaps, this yields a clear
understanding of the corresponding “threshold” in a nested hierarchy of social situations.
The requirement of full mutual and conscious awareness necessarily leads to the same set
of persons in a social situation as seen from every single interactant.
Likewise, different approaches for determining the precise beginnings and endings of inter-
action were discussed in section 1.2. According to [282, 283] in [166], the “spatio-temporal
frame” serves as a reliable source for identifying interaction. These frames vary upon
changes in behavioural phases. Hence social interaction occurs whenever there are observ-
able interdependencies between the behaviour of corresponding individuals. Erickson [89]
corroborates this view by stating that social occasions, the times at which they begin,
how long they last, and potentially even their whole context, are uniquely determined
through (observable) parameters like speech, proxemics, orientation and posture. More-
over, according to Kendon [166], the existence of a common O-space is sufficient for the
presence of a FFS, and therefore the presence of a social situation. It follows that “brackets”
around social interaction should be determined from the inside out, since the transition
between non-interaction and interaction is fluent and (highly) context-sensitive. During
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annotation, finding “brackets” for phases of clearly established social interaction is a rather
straight-forward task. On the other hand, the purpose is to develop a preferably universally
applicable model. In that sense, such a model can only attempt to learn the “true” ratio
between orthogonal decisions for marginal cases during transitory phases, meaning that
the model will only profit from a certain degree of fuzziness. For marginal cases, one could
otherwise only come to the right conclusion if the social context were (fully) known. Recall,
however, that behavioural cues supposedly have no intrinsic meaning at all [166, 283]. It
can be presumed, though, that the mere distribution of samples of interaction geometry
may still yield implicit, more complex, information about relationships, mood, culture,
gender, etc. It is, for example, the relative frequency and/or the actual distribution of the
samples that implicitly encodes information about time spent in, intensity of, and limited
dynamics of social interaction. Any mathematical model for this must hence be built upon
this contextual information. In turn, this means that potential issues will vanish along
with an increase in the number of monitored social situations respective corresponding
samples for both present and non-present social interaction.
At last, one may furthermore ask whether, or to what extent, annotations made by dif-
ferent human experts are likely to yield the exact same results. For this, recall that the
annotation is not solely performed based on the orthographic projection of the recorded
data, but just as well on the video footage of the experiment. Humans naturally make use
of a vast number of physical and (socio-)logical sensors like their ears, eyes, smell, touch,
interpretation of facial expressions, postures, head tilt, etc., for example in particular so
when deciding whether a certain scene constitutes a social situation, and who precisely is
part of it. In addition to the orthographic projection, the video recordings convey a lot
more such sensoric information to the expert during annotation, which apparently forms a
common ground for decision making. This notion is sustained by the findings of Hung and
Kröse [149] which were discussed at the beginning of this chapter. In their experiments,
the consensus between human annotators on a very large dataset was found to exceed 94%,
even though these annotators had notably different backgrounds. Nonetheless, this matter
could be further investigated by conducting experiments where subjects are provided with
various spatio-temporal configurations through either video, orthographic projection, or
both, and subsequently comparing the results of their annotations. It would also be in-
teresting to see how these experts perform with respect to the aforementioned additional
sensors when given orthographic projections along with either the corresponding contin-
uous video streams as opposed to only still pictures from that video. For example, how
would a scene where several people which are actually in a social situation, and where one
person briefly turns to look at something outside of that situation, be classified.

2.2.4 Variables of Interaction Geometry

So far, the dataset provides only the position and orientation of the participants, together
with the ground-truth of who interacted when and with whom. Interaction geometry,
though, is based on the relative mutual positions and orientations of the subjects. The
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Figure 6.: Illustration of the three variables used for modeling of interaction geometry.

reason for this is two-fold: For one, interaction geometry, as a layer of abstraction, yields
very good visualization and interpretability when building, understanding, and possibly
adapting corresponding mathematical models. Moreover, acquisition of absolute measures
using only mobile sensors is an extremely difficult task which, so far, has not been satis-
factorily solved in research [188, 349].
Interaction geometry can be modeled for any pair of persons i and j in terms of three vari-
ables as seen by either one of i and j, namely δθij, δdij and δφij, all expressed with respect
to a right-handed coordinate system where the persons are standing on the x/y-plane and
the z-axis points upwards, and
• δθij ∈ [−π,π) describes the relative orientation of the shoulder lines, i. e. the angle

about which person i must rotate around the yaw-axis such that their upper bodies are
aligned in parallel and both face the same direction,

• δdij describes the relative distance between the centers of the bodies, assuming that,
when projected onto the x/y plane, the center of the torso lies exactly half-way between
the shoulders,

• δφij ∈ [0, 2π) describes the position of person j in relation to person i. This angle is
measured between the positive x-axis of the local two-dimensional coordinate system
of person i and a vector from the origin to the center of the body of person j, where
the origin is located at the center of the body of person i and the x-axis is parallel to
the upper body, pointing at the right shoulder.

Figure 6 provides an illustration of δθ, δd and δφ. Note that whereas δθ and δd are
symmetrical, δφ is not as it depends on the orientation of the upper body of the person
from whose perspective the relation is described, from which it follows that the three-tuple
(δθ, δd, δφ)ij is also not symmetrical. The model of interaction geometry must therefore
be based on both observations from i to j and j to i.

2.2.4.1 From position and orientation to variables of interaction geometry

Computing the newly introduced variables of interaction geometry from the present data
is straight-forward. As defined in section 2.2.4, δθ describes the relative orientation of
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the upper bodies with respect to the yaw-axis. This is actually equivalent to the relative
rotation Q which would align the shoulder lines of persons i and j in parallel, and hence:

RMCi,t
(
RMCi,0

)T
= QRMCj,t

(
RMCj,0

)T
⇔ Q = RMCi,t

(
RMCi,0

)T [
RMCj,t

(
RMCj,0

)T]−1
⇔ Q = RMCi,t

(
RMCi,0

)T
RMCj,0

(
RMCj,t

)T (15)

The angle of rotation about the yaw-axis can be directly computed from the rotation
matrix Q, which would however require knowledge of the exact sequence of rotations that
finally led to the DCMs in the recorded data. In spite of the fact that [8] defines the order
of rotations as x (pitch), y (roll) and z (yaw), a more general solution, which does not
depend on any prior knowledge, is given by first transforming an arbitrary point v on the
x-axis, say v = (1, 0, 0)T , by Q, and then finalizing δθ as the angle between the x-axis and
a vector from the origin to the transformed point, i. e.

δθ = arctan2

(
v

′
2, v

′
1

)
where v ′ = Qv . (16)

For the computation of δd and δφ, the basic idea is modeling the body in terms of a set of
points describing the center of the body, the left shoulder, the right shoulder and the nose,
and transforming these points as required. Note that left or right “shoulder” really refers
to a point within the distance between the body’s center and the actual shoulder. More
precisely, either one refers to the location at which the marker is worn, be it on the left-
or right-hand side. This is sufficient because, for the validity of the dependent variables
of the current dataset, only the precise distance between the center of the torso and the
marker is significant, which was a controlled parameter during the experiment (18 cm).
The set of points is therefore defined as

S =
{
(0, 0, 0)T , (−180, 0, 0)T , (+180, 0, 0)T , (0, 60, 0)T

}
. (17)

The choice of the value for the last point (nose) from the center is rather arbitrary, as it is
merely used to represent the direction into which the upper body is facing. The value has
been chosen mainly for visualization as well as to avoid numerical issues. Note that this
vector could just as well be determined by the cross-product y = z× x of the idealized
z-axis (0, 0, 1)T and actual x-axis of the corresponding body, given by the rotation matrix
RBCk,t for any marker k.
Now, the mapping f from equation (14) is used to determine δd as the Euclidean distance
between the centers of the bodies i, j at time t:

δd =
√

(cj,t − ci,t)T (cj,t − ci,t) where ck,t = f(k, t, (0, 0, 0)T ) (18)

Next, the angle δφ is measured between the shoulder line of person i and a vector di,j,t =
cj,t − ci,t from the body center of person i to its counterpart of person j. As the angle
is defined with respect to the local coordinate system of person i, the vector d must be
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transformed accordingly. For this, let Bj,t = RMCj,t
(
RMCj,0

)T
RIOC an orthonormal matrix,

x be a vector in camera- and y be a vector in body coordinates. Since d represents a
direction, there is no need for translation, so that the transformation from camera to body
coordinates follows from

Ix = By

B−1Ix = y(
RIOC

)
RMCj,0

(
RMCj,t

)T
x = y . (19)

δφ is then determined as

δφ = arctan2

(
−d

′
2,−d

′
1

)
+ π where d ′ =

(
RIOC

)
RMCj,0

(
RMCj,t

)T
d . (20)

Note that the pair of δd and δφ can be interpreted as magnitude and argument in the
domain of complex numbers, which is why δφ has been defined in [0, 2π) (hence the change
of signs and the increment about π).

2.2.5 The final dataset

The previous sections documented the recording and post-processing of the experimental
data. For each frame and pair of persons, the variables δθ, δd and δφ were computed,
yielding a pair of observations of interaction geometry as seen from either person. The
data were visualized and annotated, thence providing ground-truth for social situations.
The results of the annotation were double-checked and verified by thorough analysis of
both the visualization and the time-stamped video footage. From here, the dataset can
be split into two partitions (S⊕, S⊖), one representing the pair-wise observations of those
persons who were engaged in social interaction and would hence be part of a social situation
(S⊕), and one for the pairs of persons who would not interact with each other, meaning
they were either not part of the same social situation or did not participate in any social
situation at a given time (S⊖). Note that the beginning of the first as well as the ending of
the last social situation constitute temporal boundaries for both partitions, since outside
of this interval there is no explicit ground-truth for either S⊕ or S⊖.
The final dataset consists of 368234 observations for S⊕ and 457318 for S⊖, verified against
the number of frames as well as the number of distinct pairs

(
N
2

)
for every social situation

with arity N. Figure 7 shows bivariate histograms of the observations for S⊕ and S⊖. For
S⊕, all three of the pairs (δθ, δφ), (δθ, δd) and (δφ, δd) feature clearly defined clusters.
Note the inherent periodicity of δθ and δφ, from which it follows that the apparent two
distinct clusters in the histogram of (δθ, δφ) actually form a single cluster instead. Similar
to S⊕, several clusters can be found for S⊖, yet their edges are a lot fuzzier and their
distributions are generally wider. One may argue that the similarities of S⊖ to S⊕ were a
consequence of the experimental settings, for example caused by the constrained area in
which people could move, or other potential influences such as personal profile parameters
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of the participants. In this regard, one may in particular expect S⊖ to follow a complete
random white noise distribution. It should be noted, however, that S⊖ will not adopt such a
distribution even under an infinite number of observations. As discussed in chapter 1, social
behaviour dictates a certain degree of perceived “non-awkwardness” [166], manifested e. g.
in the fact that humans strive to either clearly establish or separate from social situations.
For example, one person standing close to and in front of another person would usually
imply a certain sense of awkwardness, and such behaviour is typically avoided, except
for situations where that is simply impossible, for instance when riding an overcrowded
subway. Generally speaking, the marginal and joint distributions of the observed variables
conform to the elementary and intuitive expectations towards interaction geometry in
human behaviour. The following sections discuss the distributions of δφ, δθ and δd in
more detail.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.: Color-coded histograms of the joint distributions of δθ, δφ and δd for classes S⊕ (a,c,e)
and S⊖ (b,d,f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.: Histograms and kernel density estimations of the distributions of δθ, δφ and δd for S⊕
(a,c,e) and S⊖ (b,d,f), using a Gaussian kernel and bandwidths of 10◦, 10◦ and 25 mm
for δθ, δφ and δd, respectively.
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(a) Arity 2 (b) Arity 3 (c) Arity 4

(d) Arity 5 (e) Arity 6 (f) Arity 7

(g) Arity 9

Figure 9.: Histograms and kernel density estimations of δθ for varying arities, using a Gaussian
kernel and bandwidths of 5◦ (a,c,f,g) and 10◦ (b,d,e).
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(a) Arity 2 (b) Arity 3 (c) Arity 4

(d) Arity 5 (e) Arity 6 (f) Arity 7

(g) Arity 9

Figure 10.: Histograms and kernel density estimations of δφ for varying arities, using a Gaussian
kernel and bandwidths of 5◦ (a,c,d,e,f,g) and 10◦ (b).
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(a) Arity 2 (b) Arity 3 (c) Arity 4

(d) Arity 5 (e) Arity 6 (f) Arity 7

(g) Arity 9

Figure 11.: Histograms and kernel density estimations of δd for varying arities, using a Gaussian
kernel and a common bandwidth of 25 mm.
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2.2.5.1 δφ

According to the distribution of δφ for S⊕ (figure 8c), interactions take place almost ex-
clusively in front of a person (δφ ∈ [0,π)). There is however a non-negligible number of
observations close to 2π in a person’s rear hemisphere. This is interesting and can be ex-
plained for two reasons: First, people might briefly turn to look at somebody or something
else while still maintaining the same social situation. Second, aside from turning, observa-
tions of δφ close to and/or between π and 2π typically occur whenever additional people
enter an already established social situation. Imagine, for example, a situation where five
people stand in a circular formation and a sixth person signals their wish to enter that
situation by approaching the circle from the outside, and possibly even standing there
for a short while until the circle finally opens and that sixth person is included. Both
explanations are backed by the joint distribution of δφ and δd (figure 7d), which clearly
shows that most back-side observations close to 2π occurred at short distances of about
70 cm. The distributions of δφ for social situations with 7 or 9 participants (figures 10f
and 10g) provide further evidence as in both cases the number of observations close to 2π
are significantly higher than for smaller arities.
Furthermore, partitioning the set of observations for S⊕ by group cardinality exhibits typ-
ical configurations in social interaction geometry. Figure 10 shows histograms and kernel
density plots for δφ and varying arities. Note that this is only provided for S⊕ because
there is no meaningful way to tell whether a person was not in a social situation with a de-
fined number of others. Here, the correlation between the distribution of δφ and the arity
of the corresponding situation can clearly be seen, and the local maxima of the variable
tend to comply with basic expectations. Circular formations are typical [166], especially
along with an increasing number of group members, for which one would expect more or
less evenly distributed positions on a semicircle. For example, the “ideal configuration”
(so to speak) of 3 persons would imply that these persons are mutually located at angles
of about 60◦ as seen from each individual shoulder-line. This is clearly reflected by the
respective distribution of δφ (figure 10b), where from any person’s point of view, other
interactants would most often stand at angles of 60◦ and 120◦. The same naturally holds
for groups of 4 (figure 10c) or more persons. Table 3 compares the actual local maxima
of each distribution of δφ with the “ideal” configuration per arity. Notably, while N = 3

to N = 7 fulfill the expectations, this does not seem to be the case for N = 2 and N = 9.
In fact, the variance of the distribution for N = 9 is high enough so that there are no
obvious local maxima. However, this comes to no surprise as higher cardinalities force
smaller gaps and increased distances between the persons’ positions on the circle, which
is why relatively small movements or rotations of a person already have a huge influence
on one or all of the observed variables. Lastly, N = 2 is a special case in so far as the
theoretical ideal configuration at 90◦ can hardly be observed. In fact, it would imply a
strictly frontal pose which is rather found in formal settings like talking to a superior at
work [206]. One may further note that, during the experiment, people regularly exhibited
a certain openness towards others. This could relate to the basic personal need of moni-
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Arity Local maxima (degrees) Ideal configuration (degrees)
2 42, 78, 119, 144 special case
3 61, 120 60, 120
4 50, 90, 125 45, 90, 135
5 44, 71, 110, 146 36, 72, 108, 144
6 42, 66, 106, 137, 154 30, 60, 90, 120, 150
7 16, 43, 73, 90, 113, 168 26, 51, 77, 103, 129, 154
9 66, 101, 126 20, 40, 60, 80, 100, 120, 140, 160

Table 3.: Local maxima of δφ vs. evenly distributed positions on the semicircle.

toring one’s environment and/or the persons therein, but also signals preemptive approval
or invitation of outsiders to join a social situation.

Apart from δφ for S⊕, it is striking that the distribution is surprisingly similar for
S⊖ (figure 8d). Both distributions actually feature a peak at about 90◦ (front) and a
trough around 270◦ (rear). Still, the number of observations in the front is much less and
more evenly distributed for S⊖ when compared to S⊕, and while there are no notable
observations in the rear for S⊕, there are considerably more for S⊖ within [π, 2π). The
fact that S⊖ does not contain more observations in this particular interval is well worth
discussing. Indeed, this seems to be caused by experimental effects, namely the restricted
area in which people could freely move and still be recorded by the cameras. During the
experiment, in order to face others, the participants would often stand with their backs
towards the walls and hence the boundaries of the recording area. The confined space
would consequently not allow for others to stand behind their backs. In this regard, the
joint distribution of δφ and δd (as shown in figure 7d) exhibits a lack of observations at
distances of more than about 1.5 m. In real life one would rightly expect the number of
observations to grow with increasing distance in case of S⊖, which is especially true for
the interval [π, 2π]. Moreover, it is legitimate to claim that a higher number of samples,
and thus a more (but not completely) even (joint) distribution of δφ (and δd) for S⊖,
would eventually lead to greater differences between both classes, thereby considerably
simplifying the work of a classifier. Hence the dataset is considered to be on the “safe
side”. Aside from this effect, it is interesting that in case of S⊖ there is a noticeable “hole”
around δφ ≈ 4/3π and δd ≈ 1m, indicating that people tend to establish geometric
constellations in a way such that, at close distances, other persons will not be located
directly behind but preferably more to the sides of their backs.
Overall, the correlation of δφ and δd is high. The joint distribution of δφ and δd for
S⊕ (figure 7c) augments the marginal distribution of δφ in so far as most interactions
occur at about δφ ≈ π/3 and δφ ≈ 2/3π at distances of less than 1 m, which means
that the vast majority of interactions is more to the side, which in turn supports the
theory of perceived openness of social situations towards others. For S⊕, the peaks are
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also way more pronounced, whereas for S⊖, the distribution clearly lacks distinct local
maxima. It is also worth mentioning that, for S⊕, there is a noticable gap between ∼ 60◦

and ∼ 90◦ at particularly short distances of less than 75 cm (see figure 7c). This makes
sense because this area is covered by the intimate and personal zones as defined by Hall
[133], and neither any constraints of the experiment nor the personal background of the
participating persons would allow one person to stand respectively close in front of another
person without being at least being perceived as awkward. The gap is even bigger for S⊖,
ranging up to ∼ 1.25 m (see figure 7d). Naturally, standing with the back towards another
person at such distances is rather “unappropriate” and would not follow the common sense
of social behavior.
At last, note that the variance of δφ decreases with increasing δd. This is characteristic
because the farther interacting persons are apart, the more likely they attempt to face
each other and hence δφ slowly approaches π/2. This is verified by the more moderate
distributions of δφ for increasing group sizes (figure 10). It also reflects the constraints
that group cardinality imposes on FFS, in particular a tendency towards wider circular
formations as more persons participate.

2.2.5.2 δθ

In contrast to δφ, the values of δθ are symmetric for any pair of persons, no matter
whether they are interacting or not. According to the overall distribution of δθ (figure 8a),
most interactions occur at angles of ±80 and ±170 degrees between shoulder-lines, and
only very few around 0◦, i. e. whenever the shoulder-lines of two persons are aligned in par-
allel and both are facing the same direction. It should be noted that the extrema at ±170
degrees are quite close to a full frontal configuration at 180◦, which in turn further sustains
the discussed tendency to avoid such poses. Also note the local minima around 140◦ which
nonetheless differ from the global minimum at 0◦. Similar to the observations of δφ close
to 2π, the non-negligible number of observations of δθ around 0◦ is a consequence of either
people approaching an already established social situation from the outside, specifically
in the rear of other participants, or even more likely the observable fact that people tend
to turn into the direction of the current speaker or dominating person, where more often
than not the shoulder-lines of adjacent persons shift into similar or equal alignment. This
effect is particularly noticeable in larger groups, but applies to smaller ones as well. In
contrast to the peaked distribution for S⊕, δθ is much more evenly distributed for S⊖
(figure 8b). Interestingly, the minima at ∼ ±55 degrees for S⊖ are not strictly opposite
to the maxima for S⊕. Still, they represent an orientation which is rather likely to be
interpreted as mutual interaction either taking place or being about to be established.
Furthermore, partitioning the dataset by group cardinality confirms typical geometrical
configurations during social situations (figure 9). Common to all distributions for varying
group sizes is a global minimum at 0◦. The distributions for arities 3 to 7 (figures 9b, 9c,
9d, 9e, 9f) are consistent with the expectations for “ideal configurations” of the respective
number of persons (table 4), whereas group sizes of 2 and 9 are somewhat distinct, as was
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Arity Local maxima (degrees) Ideal configuration (degrees)
2 ±49, ±71, ±138, ±172 special case
3 ±96, ±118, ±147 ±120
4 ±93, ±172 ±90, 180
5 ±70, ±128 ±72, ±144
6 ±58, ±111, ±163 ±60, ±120, 180
7 ±66, ±108, ±148 ±51, ±103, ±154
9 ±78, ±118, ±171 ±40, ±80, ±120, ±160

Table 4.: Local maxima of δθ vs. evenly distributed orientations along the semicircle.

the case for the observed vs. ideal configurations in case of δφ (refer to table 3). Again,
the much higher variance (as a consequence of the fact that smaller shifts cause greater
changes in the observed variables for larger group sizes) is what leads to the specific shape
of the distribution for groups of 9. On the other hand, the distribution for groups of 2
features several spikes due to the higher number of possible (and typical) geometrical
configurations, as opposed to larger groups. Still, typical configurations are observable
at ±70, ±140 and ±170 degrees. Interestingly enough, variance was the least in groups
of 4, implying rather static spatio-orientational formations. This may be surprising, as 5
groups of 4 persons were observed over an accumulated duration of more than 10 minutes
throughout the whole experiment (figure 5). The same effect is however not observable for
other group cardinalities with comparable duration. In accordance with the prior reason-
ing, the distributions for arities 5, 7 and 9 show considerably more observations around
0◦, providing further evidence for the hypothesis that it is more likely for two adjacent
persons in larger groups to shift towards the same orientation and subsequently face the
same speaker. This is also corroborated by the video footage of the corresponding groups.
From these distributions, one might consequently expect the same for groups of 6, yet the
respective distribution lacks one such peak. This is likely caused by the fact that, overall,
there were only 2 situations with groups of 6, both of which did not last for more than a
couple of minutes in total.
The basic shapes of the joint distributions of δθ and δd look similar for both classes

(figures 7a, 7b). Closer investigation of S⊕ reveals peaks for interactions which mostly
occur at shoulder-line angles around 80◦ and distances between 60 cm and 90 cm. This is
distinct from S⊖, for which observations are almost evenly distributed among the whole
domain except for the two areas between ±80◦ and ±180◦ at distances of up to 1 m. The
latter is clearly opposite to S⊕ and conforms to intuitive expectations of social behavior. In
regard of S⊖, angles around 0◦ within the same range of interpersonal distances naturally
hint at a lack of interaction, which is also expected. Variance is proportional to increas-
ing distance, and the relative frequency of observations is more evenly distributed. Note
that both distributions have few to none observations at 0◦ and distances of 1.75 m (S⊖)
respective 1.25 m (S⊕) and above. This is another unfortunate effect of the constrained
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environment. However, further note that there are way less corresponding observations for
S⊕ than for S⊖. This, plus the fact that the distribution for S⊕ has the highest frequency
of observations where it is lowest for S⊖, lead to the conclusion that potential influences
due to environmental constraints can be considered negligible, similar to the corresponding
effect that was observed for the joint distribution of δφ and δd. One may further note that
the bottom shape of the distribution for S⊕ is rather convex while it is concave for S⊖. Full
frontal configurations are avoided independent of the presence of social interaction. This
is consistent with expectations towards the various possible geometric configurations as
well as the implications for larger groups. The joint distribution of δθ and δφ shows very
high linear and non-linear correlation for S⊕, where two clusters clearly emerge, which is
not the case for S⊖, for which, again, the data are evenly distributed over large areas. The
correlation between δθ and δφ is indeed meaningful because – during, but not restricted
to interaction – mutual orientation naturally depends on the relative position (both an-
gle δφ and distance δd). For example, one can observe almost full-frontal orientations at
likewise frontal positions, and flatter angles to the sides. All the same, the less populated
areas in the rear (3π/2δφ), together with relative frontal configurations (±πδθ), relate to
the same environmental restrictions that were discussed before.

2.2.5.3 δd

The greatest qualitative difference between S⊕ and S⊖ can be seen with respect to in-
terpersonal distance δd (figures 8e and 8f). For S⊕, there is a significant peak at 72 cm,
as well as a second, not so pronounced, peak at 128 cm. The former peak corresponds
to the personal zone while the latter is located shortly after the beginning of the social
zone. There are no observations of δd below 50 cm, i. e. inside the intimate zone. On the
other hand, for S⊖ one notices three areas with peaks at about 70 cm, 130 cm and 210 cm.
Beyond that, the number of observations decreases with a much greater slope than in case
of S⊕. Furthermore, for S⊕ the decrease already starts at or even before 200 cm and is al-
most monotonic. For both classes, the number of observations vanishes almost completely
at about 250 cm. This is, at least in case of S⊖, certainly a consequence of the confined
space during the experiment. In general, one would naturally expect a continuous growth
of the number of observations along with increasing distance, and likewise the contrary for
S⊕, for which the range of the intimate zone would impose a subtle but clear constraint.
Interestingly enough, according to figure 8f, these expectations are not generally met for
S⊖, at least not within a range of up to 250 cm. It is however clear that in spite of the
fact that interactions do also occur at greater distances, e. g. within the public zone, a
threshold could be selected after which the general probability of social interaction is less
than for no interactions at all, and hence a classifier could decide for S⊖ whenever this
threshold were to be exceeded. The present dataset does not allow for such a threshold to
be well selected.
The explicitness of the peak at 72 cm for social interactions is merely a consequence of the
fact that all distributions exhibit a similar peak even when the data are split according
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Arity Local extrema (cm) Ideal configuration (cm)
2 63, 79 70
3 59, 83 70
4 80, 127 70, 99
5 68, 96, 116, 135, 157, 180 70, 113
6 70, 115, 128, 146, 163 70, 121, 140
7 74, 120, 146, 192 70, 126, 157
9 64, 110, 138, 162, 205 70, 132, 177, 202

Table 5.: Local extrema vs. ideal distances assuming 70 cm between adjacent persons in circular
formation.

to group size (figure 11). From this, it follows that this specific value for interpersonal
distance is the most representative for the personal zone, and potentially also perceived
as comfortable and socially best acceptable, given the circumstances of the experiment.
It goes without saying that this relates to adjacent persons only, and therefore that it is
basically independent of the cardinality and geometrical configuration of a group. As a
consequence, it is possible to define the ideal mutual distance between any member of a
group in circular configuration. Given this circular shape constraint, plus the constraint
that neighbours should be located 70 cm apart from each other, the ideal mutual distance
can thus be determined per group size. Table 5 compares these theoretical distances to the
local extrema of the actual distributions. For this, recall that δd is measured between the
center of the bodies, and not between adjacent shoulders or the shortest distance between
any respective body parts.
On a final note, the distributions of δd for arities of 2 and 3 are unimodal and exhibit

relatively small variance. Among all, groups of 3 feature the most distinct peak in com-
parison to the average of 72 cm. For groups of 4, apart from a peak at about 80 cm, yet
with greater variance, one also notices an increased number of observations at 128 cm.
Assuming circular configuration and ideal distances of 70 cm between adjacent persons,
both values of 70 cm and 98 cm are well explained by the first peak. Manual analysis
of the corresponding video footage and visualizations unveils that the second peak is in
fact caused by two particular members of a group of 4 who stood farther apart from each
other for a quite long period of time. In addition to that, another member of this group
occasionally walked back and forth a few steps, hence causing greater variance than com-
monly found in equally sized or greater groups. Arguably except for groups of 6, groups
of 5 or more participants feature a much more equal distribution of δd. Note that groups
of 6 and 7 occurred only a few times and only during short periods, hence the relatively
small amount of data is less meaningful for these than for the rest. According to the video
footage, larger groups most of the time established approximate circular formations, yet
all the same their formations differed from ideal and static circular formations every now
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and then. The latter mostly occurred when the dynamics of other groups or individuals
forced members of a particular group to move accordingly.

2.2.5.4 Discussion

The previous analysis of the marginal and joint distributions of the δθ, δφ and δd supports
both the applicability and expressiveness of the dataset for its use in interaction geometry.
Most notably, fundamental expectations towards spatio-orientational behaviour are satis-
fied and well-reflected in the recorded data. Eventually, the analysis shows that interaction
geometry can indeed lead to well interpretable and manageable models. The validity of
the data is further corroborated by statistical analysis of the correlations between the
variables. Table 6 shows the correlation matrices where each element corresponds to the
Spearman correlation coefficient ρ, which, contrary to the Pearson coefficient, can also
express non-linear relations. For this, ρ ∈ [−1,+1] denotes whether one variable can be
described by another variable through some monotonic function.
Analysis of the full dataset for S⊕ shows a strong correlation between relative position δφ
and relative orientation δθ, whereas the same relation is much less for S⊖ (tables 6a 6b).
Perhaps surprisingly, the correlation between δθ and relative distance δd is close to none
for both classes. Even more so, it appears as if the correlation between δφ and δd were
much stronger for S⊖ than for S⊕, which in turn would contradict the discussed expecta-
tions towards proxemic behaviour. It turns out that the apparent problem is in fact rooted
in the symmetry of δθ and δd. Recall that, for each pair of persons and any particular time
frame, δdij is equal to δdji, and δθij and δθji differ in sign, but not in magnitude (except
for random measurement errors). Furthermore, note that δφ depends on δθ to a large
degree, so that the symmetry of δθ is again responsible for the low correlation coefficient
for δφ and δd in case of S⊕. The present issue can be easily resolved by considering only
one out of two corresponding samples for each time frame, thus effectively reducing the
data to half size (see below for a further discussion of symmetry). For the adapted dataset,
the strong relation between δθ and δφ is emphasized by Spearman’s correlation coefficient
even more. It furthermore exhibits a significant correlation between δθ and δd, as well as
a less strong, but still noticeable, relation between δφ and δd. The discrepancies between
the correlations of δθ and δφ for S⊕ and S⊖ are striking, and are much less in case of
the other variables. This is again presumably an effect of the constrained recording area
during the experiment. Still, the correlations of δθ and δφ with δd are relatively higher
for S⊕ than for S⊖. In case of S⊖, it may be expected that any δd-related coefficients will
tend to zero once more and more data were collected, particularly so in unconstrained
environments. At last, the apparent contradiction that the correlation coefficient between
δφ and δd is higher for S⊖ than for S⊕ is also explained through the latter analysis of the
reduced dataset. Table 6c reveals a noticeable correlation between δφ and δd when com-
pared with table 6a. It should be noted that the reduction of the dataset had no influence
on the corresponding value of ρ when comparing tables 6d and 6b. This shows that the
present issue is indeed explained by the (expected) noisy nature of the data for S⊖.



2.2 experimental dataset of social interaction geometry 47

As discussed before, the variables’ distributions (refer to figure 7) suggest inherent symme-

δθ δφ δd

δθ 1.000 0.481 -0.003
δφ 0.481 1.000 -0.072
δd -0.003 -0.072 1.000

(a) S⊕ full

δθ δφ δd

δθ 1.000 0.233 -0.006
δφ 0.233 1.000 -0.328
δd -0.006 -0.328 1.000

(b) S⊖ full

δθ δφ δd

δθ 1.000 -0.750 0.556
δφ -0.750 1.000 -0.440
δd 0.556 -0.440 1.000

(c) S⊕ reduced

δθ δφ δd

δθ 1.000 -0.372 0.438
δφ -0.372 1.000 -0.345
δd 0.438 -0.345 1.000

(d) S⊖ reduced

Table 6.: Spearman correlation coefficients for the final dataset

tries in a part of the data. This is obviously the case for δθ and δd, but δφ is not strictly
symmetrical. It is however possible to define a function f : [−π,+π]× [0, 2π] → [0, 2π]
where

f : (δθA, δφA) 7→ δφB = π+ δφA + δθA (21)

which allows for computing δφB from the samples measured by A. Hence the data for
A and B are symmetrical in the sense that all variables can be determined for both
persons based solely on the measurements of either person, irrespective of whether A and
B are members of the same social situation. Depending on the mathematical model to be
used, let alone the size of the final dataset with 368,234 + 457,318 = 825,552 samples in
total, any apparent symmetry could perhaps be used to one’s advantage, for example by
reducing the amount of data for an improved memory footprint and less computational
cost. Moreover, one should consider the degree to which the redundancy of symmetrical
data might be disadvantageous for a potential classifier. Very generally speaking, this
depends on both the chosen classifier as well as any specific kind of redundancy. For the
present dataset, however, it merely corresponds to partial mirroring, and will have no
negative impact on the model and classifier as discussed in the forthcoming sections. More
importantly, removal of redundant symmetries would need to be explicitly enforced for any
number of newly gathered observations. So, for any given pair of observations, selecting
one over the other must be subject to predefined criteria and would be imply further
processing. Most notably, reducing the dataset would first and foremost propagate or
even increase any systematic and/or random measurement errors. Indeed, actually cutting
the present dataset in half, and subsequently computing either half based on the other,
yields a noticeable error for both δθ and δφ, as can be seen from table 7. In order to
avoid the introduction of additional random measurement errors the dataset was therefore
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considered as a whole. Due to the fact that the pairwise symmetries occur for both S⊕
and S⊖ at once, it is ensured that leaving the dataset as-is will not lead to overfitting or
otherwise adverse effects.

δθ δφ

S⊕ 3.24 deg2 4.73 deg2

S⊖ 4.62 deg2 4.81 deg2

Table 7.: Mean squared error upon removal of presumed redundancies.

2.3 models for interaction geometry

The following sections develop an appropriate mathematical model for automatic detec-
tion of social interaction based on interaction geometry. Ideally, such a model would allow
for thorough understanding and easy interpretability, in particular with respect to socio-
psychological research. It will be shown that interaction geometry allows for probabilistic
decisions upon the presence (S⊕) or absence (S⊖) of dyadic social interaction for any pair
of persons (i, j) at any time t. Social situations of greater cardinalities can then be inferred
e. g. by means of graph clustering. Note that analysis and interpretation of group phenom-
ena based on dyads is common practice in social sciences [231, 84, 67, 120, 205].
The proposed model is a generative model deduced from the accumulated (δθ, δφ, δd)ij
over all time frames and ordered pairs {(i, j) | i, j ∈ P, i ̸= j}, where P denotes the set of
persons in the data. For the present task, generative models are preferable over discrimina-
tive models. Discriminative models arguably have the advantage of deciding a classification
problem without the need for explicitly modeling the probability densities of the features
[218]. They allow for almost arbitrary preprocessing of the features, such as the applica-
tion of kernel functions prior to fitting the model, and they are supposed to exhibit better
performance than generative models on discrete tasks [34, 218]. This however automati-
cally implies that continuous variables would have to be discretized first, which may lead
to an enormous increase in model parameters, especially so for multidimensional data for
which the corresponding increase would obviously be exponential, a fact well-known as
the curse of dimensionality [34]. This would likewise require a much greater set of training
data. Moreover, discriminative models can be considered “sub-symbolic” in the sense that
they are typically intractable in terms of interpretability and traceability, such as e. g. the
warped decision surfaces of high-dimensional Support Vector Machines (SVMs). Genera-
tive models, on the other hand, can be understood as Bayesian Networks and are thus
particularly well-suited for those tasks. In spite of the fact that they require a potentially
more complex modeling of the observed variables’ probability densities, their advantages
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for the present task are accounted for as follows: For a given training dataset of N samples,
generative models maximize the joint log-likelihood

N∑
i=1

logp(xi,yi|θ) (22)

of xi the observed samples and yi the corresponding class labels (and possibly additional
latent variables), given θ the set of model parameters [34, 218]. The probability term
in equation (22) is typically computed from the conditional probabilities p(xi|yi,θ) and
the class priors p(yi|θ), the latter of which are either modeled according to the classes’
relative frequencies, or as fully parametrized probability distributions [218]. Including the
class priors in the computation of the posterior distribution is a notable advantage of
generative models. As such, class priors help to compensate for unevenly distributed classes
in the training data, as shown by application of Bayes’ rule

p(yi|xi, θ) =
p(xi|yi,θ) · p(yi)

p(xi)
. (23)

From equation (23) it furthermore follows that, for a given observation xi, two classes
yi = 1 and yi = 2 can easily be discriminated by selecting the one with the higher
posterior:

p(yi = 1|xi,θ)
?
> p(yi = 2|xi, θ) (24)

⇔ p(xi,θ|yi = 1) · p(yi = 1)
p(xi,θ)

?
>

p(xi,θ|yi = 2) · p(yi = 2)
p(xi,θ)

(25)

⇔ p(xi, θ|yi = 1) · p(yi = 1)
?
> p(xi, θ|yi = 2) · p(yi = 2) (26)

Moreover, generative models can be used to generate samples by drawing from p(yi|θ) and
p(xi|yi, θ) for corresponding yi. Generative models can hence cope with missing data or, as
e. g. in case of Hidden Markov Models (HMMs), input sequences of variable length, and may
furthermore aid in the detection of outliers through the marginal p(xi). For SSP, generative
models could otherwise prove useful e. g. for simulating large-scale social situation data.
Eventually, existing generative models are much easier to adapt than models based on e. g.
non-linear optimization, possibly in real-time and/or on mobile hardware.

2.3.1 Gaussian Mixture Models

Figure 7 on page 35 reveals a number of overlaps between the (joint) distributions of
δθ, δφ and δd between S⊕ and S⊖. Also, the data in S⊕ appear in significant clusters
which are qualitatively easy to distinguish from those in S⊖. This suggests the use of
one probabilistic model per class, each based on a multimodal distribution. Multimodal
distributions, also known as mixture distributions [209], are commonly determined as
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the superposition of several unimodal distributions. One such distribution is known as
Gaussian Mixture Model (GMM), defined as

p(x|θ) =
∑
k

πkN(x|µk,Σk) , (27)

subject to

0 ⩽ πk ⩽ 1 and
∑
k

πk = 1 . (28)

Note that the mixing coefficients can themselves be regarded as the probability of each mix-
ture component for explaining a given observation x. GMMs are widely used in data mining,
pattern recognition, machine learning, and statistical analysis [34]. Next to classification,
typical use-cases are data generation, including completion of missing data [32, 71], and
soft-clustering for which distance metrics are modeled as probabilities. It has been shown
that GMMs can approximate every continuous density with arbitrary accuracy [218, 34],
which makes them an ideal choice for soft-clustering and discrimination when using multi-
ple models along with Bayesian classification. As they are built on top of the well-studied
normal distribution, it is quite easy to avoid overfitting, which is obviously required for
every classifier, but even more so for applications in proxemics and social sciences.

GMMs belong to the class of Latent Variable Models (LVMs) [218, 34], which assume that
the observed data correspond to one or more latent variables which cannot be directly
observed and are hence considered as hidden. LVMs usually require less parameters than
other models. As such, latent variables can be regarded as data in compressed form [218].
Since a single D-variate Gaussian has D +

D(D+1)
2

free parameters, it follows that for
GMMs with K components the corresponding count is K+K

D(D+1)
2

, also accounting for the
mixing coefficients. GMMs can be further simplified, e. g. by assuming uniformly distributed
mixture coefficients, or by adding arbitrary constraints on the shape of the covariances.
The downside of models subject to incomplete data or involving latent variables is that
model estimation is often difficult, as is the case for GMMs. Aside from using gradient-based
or Newton methods [351] for estimation, the Expectation Maximization (EM) algorithm
facilitates the learning process and guarantees monotonic convergence, i. e. the likelihood
of the model will increase or at least remain constant at during iteration. Nevertheless,
as the function which should be optimized is typically not convex, e. g. due to the fact
that there are exactly K! equivalent ways for distributing K sets of parameters among a
mixture of K components [34], the algorithm will probably converge to a local rather than
the global optimum. Other than that, the EM algorithm alleviates the inclusion of potential
constraints [218], such as on the distribution of the mixing coefficients in equation (28)
or the covariances. Apart from potential reductions of computational overhead, the latter
could be exploited to insert domain-specific knowledge into the process. In the context of
models for interaction geometry, such constraints could for instance correspond to previous
findings from social sciences.
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2.3.1.1 The Expectation Maximization Algorithm

The EM algorithm allows for maximum likelihood estimation of the parameter set of a
model where the training data suffer from missing values or where optimization of the
likelihood is analytically intractable, but can be simplified by assuming the existence of
missing latent values [32, 34, 218]. As it will be key to both sections 2.3.1.2 and 2.3.2.4,
the general idea of the algorithm is first outlined in this section.
In order to illustrate the difficulties when optimizing maximum likelihood for LVMs, let
θ denote the full parameter set of such a model. Let X denote a set of N independent
and identically distributed (i.i.d.) observations, and let Z be a set of N i.i.d. samples from
a hidden variable, such that ∀i : zi corresponds to xi. Then, given the joint distribution
p(x, z|θ), application of the sum rule yields the marginal marginal density over x:

p(x|θ) =
∑
z

p(x, z|θ) (29)

Since all the xi are independent, the log-likelihood of θ given X is

lnL(θ|X) = ln
∏
x

p(x|θ)

= ln
∏
x

∑
z

p(x, z|θ)

=
∑
x

ln
∑
z

p(x, z|θ) . (30)

As logarithm and sum cannot be exchanged, this function is typically hard to optimize, and
in general no closed form solution can be found for its differential [218]. EM circumvents
this problem by introducing the so-called complete data log-likelihood

lnLc(θ|X,Z) =
N∑
i=1

lnp(xi, zi|θ) (31)

assuming that X and Z were both observable. It is then possible to reason about the
complete data through the expected value under the hidden variable’s posterior [34, 218]

p(z|x,θ) ∝ p(x|z,θ)p(z|θ) , (32)

so that the expected value can be defined as a function of θ at iterations t and t− 1:

Q(θ,θt−1) = EZ|X,θ [lnLc(θ|X,Z)] (33)

=
∑
z

p(z|X,θt−1) · lnLc(θ|X,Z) . (34)

This way, the data are first “completed” by estimation of the latent variables’ values
(E-step), followed by the optimization of Q with respect to θ (M-step):

θt = argmaxθ Q(θ,θt−1) (35)

The EM algorithm alternates between the E- and M-steps until convergence of either the
model parameters or the log-likelihood.
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2.3.1.2 Learning Gaussian Mixture Models

The adaption of EM to GMMs with K components is straight-forward. Recall the density

p(x|θ) =

K∑
k=1

πkN(x|µk,Σk) , (36)

and let z be a K-dimensional latent variable with 1-of-K coding, i. e. subject to zk ∈ {0, 1}
and

∑
k zk = 1. Also recall that the mixing coefficients πk can be regarded as discrete

probabilities of choosing the k-th component. Hence define the marginal of z given θ as

p(zk = 1|θ) = πk (37)

which, due to the 1-of-K coding of z, is equivalent to

p(z|θ) =

K∏
k=1

π
zk
k . (38)

The distribution of x, provided that x was drawn from the k-th component, can likewise
be written as

p(x|zk = 1,θ) = N(x|µk,Σk) =

K∏
k=1

N(x|µk,Σk)
zk , (39)

so that the joint distribution of X and Z is eventually given by

p(x, z|θ) = p(x|z,θ)p(z|θ) =
K∏
k=1

(
πkN(x|µk,Σk)

)zk , (40)

from which application of Bayes’ theorem leads to the posterior

p(zk = 1|x,θ) =
p(zk = 1|θ)p(x|zk = 1,θ)

p(x|θ)
=

πkN(x|µk,Σk)∑K
l=1 πlN(x|µl,Σl) ,

(41)

known as the responsibility γ(znk) of the k-th mixture component for the explanation of
a given observation xn. The expected complete data log-likelihood under the posterior of
z is therefore given by

Q(θ,θt−1) = EZ|X,θ

[
N∑
n=1

lnp(xn, zn|θ)

]

=

N∑
n=1

E

[
ln

{
K∏
k=1

(πkN(xn|µk,Σk)
znk

}]

=

N∑
n=1

E

[
K∑
k=1

znk ln {πkN(xn|µk,Σk)}

]

=

N∑
n=1

K∑
k=1

E [znk]︸ ︷︷ ︸
γ(znk)

ln {πkN(xn|µk,Σk)} (42)
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The complete data log-likelihood is easily maximized through its partial derivatives for
each model parameter in θ. At first, the responsibilities πk are optimized using a Lagrange
multiplier to enforce the constraint

∑
k πk = 1, such that

δ
δπk

[lnp(x, z|θ)] + λ (
∑
k πk − 1)

!
= 0

⇔ δ
δπk

[
∑
n

∑
k znk lnπkN(xn|µk,Σk) + λ (

∑
k πk − 1)]

!
= 0

⇔
∑
n

znk
πk

+ λ
!
= 0 ,

(43)

for which multiplication by πk and summation over k yields λ = −N. Using this result in
the partial derivative of Q with respect to πk then yields the update rule

πt+1k =
1

N

N∑
n=1

γ(znk) . (44)

Accordingly, the update rules for µk as well as Σk are given by

µt+1
k =

1∑
n γ(znk)

∑
n

γ(znk)xn and (45)

Σt+1
k =

1∑
n γ(znk)

∑
n

γ(znk)(xn − µt+1
k )(xn − µt+1

k )T . (46)

Iterative computation of the expected responsibilities (E-step) and subsequent maximiza-
tion of the log-likelihood through adaption of the model parameters (M-step) are repeated
until convergence of either the model’s log-likelihood or its parameters.

2.3.2 Semi-Wrapped Gaussian Mixture Models

Strictly speaking, GMMs represent probability densities over linear variables from −∞ to
+∞. Two of the variables, δθ ∈ [−π,+π) and δφ ∈ [0, 2π) are however periodic, raising
the question whether GMMs constitute a legitimate choice for this particular dataset.

2.3.2.1 Periodic Variables and Circular Statistics

Probability distributions over linear variables are usually considered unfit for periodic
variables [34], for instance due to the fact that they fail to represent the basic characteristics
of circular data. This is easily demonstrated by considering the two samples {1

4
π, 7
4
π} from

a 2π-periodic variable. Averaging the samples yields a maximum likelihood estimate of the
mean at π, whereas the true mean is obviously located at 0, i. e. exactly opposite. This is
illustrated in figure 12. This problem can e. g. be solved by transforming periodic variables
such that every value maps to a two-dimensional vector from the origin to a point on the
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0

π/2

π

3/2 π

π/4

7/4 π

Figure 12.: Circular vs. arithmetic mean. The green vector represents the true circular mean, the
red vector the result of averaging the two given samples.

unit circle. These vectors can then be averaged, and the angle between the mean vector
and the abscissa determines the true circular mean, typically inside the unit circle:

µcircular = tan−1

{
1

N

∑
n

(
cos αn

sin αn

)}
= arg

{
1

N

∑
n

eiαn

}
(47)

Likewise, the circular variance is defined as

ν = 1− ρ = 1−

∥∥∥∥∥ 1N∑
n

eiαn

∥∥∥∥∥ , (48)

with 0 ⩽ ν ⩽ 1. Contrary to the linear case, the circular standard deviation is not defined
as the square root of ν, but instead as

σcircular =

√
ln

1

(1− ν)2
=

√
ln
1

ρ2
=
√

−2 ln ρ . (49)

This particular form actually turns out to be very useful as an estimate for linear distribu-
tions which have been wrapped around the unit circle (see section 2.3.2.2). Circular mean,
variance and standard deviation are clearly invariant under rotation, a mandatory prop-
erty for measures on circular data [200, 34]. In the context of machine learning, rotation
invariance is indeed important whenever data need to be whitened prior to model training,
e. g. through Singular Value Decomposition (SVD), as is the case for the present dataset
(see section 2.3.3.1). Comparison of the linear and circular measures for S⊕ and S⊖ indeed
yields significant differences for both δθ and δφ (as shown in table 8). These differences
suggest the evaluation of further, potentially more appropriate, models for the probability
densities of the present dataset. As a matter of fact, for GMMs, simply projecting the cir-
cular data onto a two-dimensional plane is insufficient as it does not change the fact that
the respective variables are inherently one-dimensional (see figure 13).
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S⊕ S⊖

µlin µcirc σlin σcirc µlin µcirc σlin σcirc

δθ ˜1◦ ˜180◦ ˜113◦ ˜107◦ ˜0◦ ˜180◦ ˜105◦ ˜159◦

δφ ˜98◦ ˜90◦ ˜60◦ ˜49◦ ˜135◦ ˜94◦ ˜90◦ ˜76◦

Table 8.: Comparison of the linear and circular means and standard deviations of δθ and δφ.

(a) (b)

Figure 13.: (a) Two-dimensional Gaussian Mixture Model on angular data which were previously
projected onto the unit circle. (b) Histogram of the true distribution.

2.3.2.2 Distributions over Periodic Variables

A number of specific probability distributions exist for periodic variables, starting from ba-
sic distributions on the unit circle, like the uniform distribution, the von Mises distribution,
also known as the “circular normal”, towards more complex ones like the bivariate von
Mises distribution on the torus, the Kent distribution on the two-dimensional unit sphere,
or the more general von Mises-Fisher distribution on hyper spheres. All of the above are
unimodal, and therefore likely the best fit for symmetric data [96]. Multimodality can
naturally be accomplished by mixtures of periodic densities [34]. Typical applications for
periodic distributions include the analysis of temporal, geological, marine, or metereolog-
ical data, directional features in handwriting recognition, or the segmentation of color
images [96, 21, 180, 275]. Periodic random variables therefore fall into two groups [200],
one on which wraps one-dimensional samples around a circle, whereas the other radially
projects samples from the two-dimensional plane onto the unit circle, e. g. corresponding
to angles. Whereas periodic distributions may excel in terms of statistical properties, one
major drawback is that their analytical forms are likely difficult to handle, e. g. when form-
ing joint distributions from multiple periodic and/or linear variables [21, 275]. Likewise,
their computational evaluation tends to be expensive [96], such as e. g. in the case of the
von Mises distribution whose integral has to be evaluated numerically [96].
Another way for dealing with circular data is through non-parametric methods like his-
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tograms [34] or kernel density estimators [183]. The former are flexible and easy to handle,
but suffer from limitations such as the optimal choice for the width of the bins, with small
bins tending to spiky and huge bins tending to overly smoothed distributions. Further-
more, both are prone to quantization errors, and may consume a lot of space for their
numerous parameters (sample counts, binwidth), especially in multidimensional settings.
Kernel density estimators also rely on suitable choices of basis functions, which yet again
need to be periodic for the present task. As mentioned before, it is however possible to
wrap any linear distribution around the unit circle by mapping subsequent intervals of
(non-zero) length onto the interval [0, 2pi) [96, 200]. Such distributions are then called
wrapped distributions. Given a random variable with density function f on the real line,
the density of the wrapped variable [34] is defined as

fw(x) =

+∞∑
k=−∞ f(x mod 2πk) (50)

with distribution

Fw(x) =

+∞∑
k=−∞ (F(x+ 2πk) − F(2πk)) , (51)

subject to

p(x) ⩾ 0 (52)
p(x) = p(x+ 2π) (53)w 2π

x=0
p(x)dx = 1 . (54)

For example, the Wrapped Normal is obtained by wrapping the linear normal distribution
as follows:

Nw(x|µ,σ) =
+∞∑

w=−∞N(x+ 2πw|µ,σ) (55)

It can be shown [200] that mean and variance of a wrapped distribution are strictly related
to their circular counterparts through

µcircular = µ mod 2π and σ2 = −2 ln (1− ν) , (56)

which in turn motivates the definition of the circular standard deviation as in equation
(49). One may further note that equation (55) also closely approximates the density of
the von Mises distribution, as illustrated in figure 14. According to Fisher [96], choosing
between the von Mises and the Wrapped Normal is usually a matter of taste. Just like
mixtures of von Mises distributions can be used to achieve multimodality, so can mixtures
of Wrapped Normals. Recall that joint densities of periodic and linear random variables
tend to become intractable. In this regard, wrapped linear distributions are preferable
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Figure 14.: The density of the von Mises distribution is closely approximated by the Wrapped
Normal.

over periodic distributions [275, 21, 96]. Eventually, this suggests the use of mixtures of
wrapped multivariate normals for the present dataset. In accordance with equation (55),
the density of a Wrapped Gaussian Mixture Model (W-GMM) is defined as

p(x|θ) =
∑
k

∑
w∈ZD

N(x+ 2πw|µk,Σk) (57)

More precisely, though, only the circular variables are modeled by Wrapped Normals
whereas linear variables must remain as is, finally resulting in a so-called Semi-Wrapped
Gaussian Mixture Models (SW-GMMs), for which the above equation is thus slightly altered:

p(x|θ) =
∑
k

∑
w∈W

N(x+ 2πw|µk,Σk) (58)

Here, W ⊆ Z×Z× . . .×Z denotes a set of D-dimensional displacement vectors, where
the i-th element of w corresponds to the i-th random variable for all w ∈W. It follows
that those wi that correspond to linear variables will remain 0 at all times.

2.3.2.3 Approximating Wrapped Distributions

In practice one can only approximate wrapped distributions because, depending on the
number of wrapped variables, the actual number of displacements causes exponentational
growth of the computational costs. For example, given a set of periodic variables V and
a corresponding function f : V → N+ which maps each variable to a selected number
of tilings, the costs grow by a factor of

∏
v∈V f(v). It follows that for the modeling of

the dataset at hand, of which two out of three variables represent angular data, choosing
as much as 5 displacements per periodic variable (i. e. w ∈ {−2,−1, 0, 1, 2}2 × {0}) would
already scale the computational costs by a factor of 25. It should be noted that this factor
can only serve as a lower bound due to additional system-architecture dependent bottle-
necks like caches etc. As a consequence, it is most often suggested that a maximum of 3
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Figure 15.: The middle histogram shows the actual distribution of a subset of δθ over [pi,pi),
the left and right histograms show additional tilings. The density of a regular GMM is
shown by the dashed line while the orange and red lines correspond to the densities of
SW-GMMs with 2 and 4 components, effectively demonstrating the potential requirement
for additional components for multimodal linear wrapped distributions.

tilings should be used per variable [10, 275, 21], while more than 6 tilings are generally con-
sidered intractable. On the other hand, the minimum required number of tilings depends
on the actual distribution of the corresponding variable. The general consensus however
is that an approximation using 3 tilings is legitimate for variables for which it holds that

3
√
σ2 ⩽ 2π ⇒ σ ⩽

(
2

3
π

)2
. (59)

This is reasonable since, based on the 3 sigma rule, even for larger variances of up to (2
3
π)2

at least 99.7% of the samples are located within ±1 tilings around the mean. Depending
on the actual distribution of the data, SW-GMMs typically require more modes than GMMs.
This is a consequence of the fact that EM is based on maximization of the complete-data
log likelihood, for which in case of SW-GMMs multiple tilings and hence more data are
taken into account during the training phase. This is illustrated in figure 15.

2.3.2.4 Learning Semi-Wrapped Gaussian Mixture Models

The idea behind SW-GMMs and their algorithmic basics have been discussed in [275, 21], yet
none of which gives an exhaustive treatment of EM. To the best of the author’s knowledge,
the following is the first complete derivation of EM for SW-GMMs.

Recall that for GMMs the latent variable z encodes the responsible mixture component
in a 1-of-K coding. Now let W ∈ ZP×D be a matrix whose p-th row represents the p-th
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tiling’s displacement of the original D-dimensional samples. For this, let w be a latent
variable with 1-of-P coding, corresponding to a single tiling. These variables are then
subject to

zk ∈ {0, 1} ∧
K∑
k=1

zk = 1 respective wp ∈ {0, 1} ∧
T∑
t=1

wp = 1 . (60)

Define the joint density of the independent z and w as

p(zk = 1,wp = 1|θ) = πk (61)

=
∏
k

∏
t

π
zkwp

k . (62)

Likewise, the probability of a sample x, given the respective component zk and tiling wp,
is defined as

p(x|zk = 1,wp = 1, θ) = N(x+ 2πWp|µk,Σk) , (63)

which due to the variables’ encoding can be rewritten as

p(x|z,w,θ) =
∏
k

∏
t

(N(x+ 2πWp|µk,Σk))
zkwp . (64)

It follows that the joint density of x, z and w is given by

p(x, z,w|θ) =
∏
k

∏
t

(πkN(x+ 2πWp|µk,Σk))
zkwp . (65)

Verify that the shape of the original model was retained throughout the process:

p(x|θ) =
∑
z

∑
w

p(x, z,w) (66)

=
∑
k

∑
t

πkN(x+ 2πWp|µk,Σk) (67)

The above equations now allow to determine the responsibilities according to the posterior
of z and w, given x and θ

p(z,w|x,θ) =
p(x|z,w,θ) · p(z,w,θ)

p(x|θ)
(68)

=

∏
k

∏
t (πkN(x+ 2πWp|µk,Σk))

zkwp∑
k ′

∑
t ′ N(x+ 2πWt′ |µk′ ,Σk′)

. (69)

Alternatively, the responsibility of the k-th mixture component for explaining the p-th
displacement of a given sample xn is determined by

γ(znk,wp) = p(zk = 1,wp = 1|x,θ) =
πkN(x+ 2πWp|µk,Σk)∑

k ′
∑
t ′ N(x+ 2πWt′ |µk′ ,Σk′)

. (70)
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Then the expected complete-data log-likelihood for a set X of N i.i.d. samples is

Q(θ,θt−1) = E

[∑
n

lnp(x, z,w)

]
(71)

=
∑
n

E

[
ln

∏
k

∏
t

(πkN(x+ 2πWp|µk,Σk))
zkwp

]
(72)

=
∑
n

∑
k

∑
t

E [zkwp]︸ ︷︷ ︸
γ(znk,wp)

ln {πkN(x+ 2πWp|µk,Σk)} . (73)

This leads to the update rules

πt+1k =
Nk

N
(74)

µt+1k =
1

Nk

∑
n

∑
t

γ(znk,wp)(xn + 2πWp) (75)

Σt+1k =
1

Nk

∑
n

∑
t

γ(znk,wp) ξ(xn − µt+1k + 2πWp) , (76)

for which Nk =
∑
n

∑
t γ(znk,wp) and ξ : v 7→ vvT maps a given vector to its outer

product.

2.3.3 Computing the models

2.3.3.1 Initialization

Estimation of a suitable initial parameter set for either GMM or SW-GMM with K mixture
components is done by applying the K-Means algorithm to the training data. K-Means
is a hard-clustering algorithm that assigns each sample point to one of K cluster centers,
and is in fact closely related to the EM algorithm for GMMs, the latter of which makes only
soft assignments based on the posterior probabilities. This relation can be demonstrated
by considering the limit ϵ → 0 of a GMM with covariances of the form ϵ · I, where I

denotes identity [34]. Once K has been carefully chosen, which will be further investigated
in section 2.3.4, the K cluster centers found by K-Means can very well serve as an initial
guess for the means of the K mixture components. Estimates for the covariances are then
determined by computing the covariance matrices of each set of points assigned to the
respective clusters. An initial estimate of the mixing coefficients is consequently given by
the ratio of the size of each cluster to the total size of the training data.
It is important to note that K-Means is based on the Euclidean distance between points
whereas GMMs – or, more specifically, normal distributions – are based on Mahalanobis
distance and hence taking into account the variables’ covariances. This means that K-
Means will naturally perform poorly on datasets where the variances of the variables



2.3 models for interaction geometry 61

differ by one or more magnitudes. Moreover, this explains why K-Means is non-robust to
outliers. For the present dataset, the measured interpersonal distances vary from about
194 mm to about 3025 mm with σ ≈ 429 mm for S⊕ and σ ≈ 484 mm for S⊖, as opposed
to the 2π-periodic δθ and δφ with much smaller standard deviations (which were given
in table 8). Since it is vital that for K-Means all variables live on the same scale, these
have to be transformed accordingly, e. g. by subtracting their mean and scaling to unit
variance, known as standardizing or feature scaling [34].

2.3.3.2 Whitening

Prior to feature scaling, the present data were furthermore decorrelated for decreased
redundancy [128] and reduction of noise. Decorrelation is also likely to improve the con-
vergence characteristics due to the duality between the input space and the space of the
error function, for which it is presumed that orthogonalization of the input space has some
orthogonalizing effect on the error function as well, meaning that surface dents become
more symmetric and hence their gradients easier to travel [236].
An effective way for orthogonalization and scaling is through Principal Component Anal-
ysis (PCA) [34, 185]. PCA is an orthonormal mapping of data onto their principal compo-
nents and can be used for decorrelation and/or information reduction, the latter of which
is achieved by selecting less components than the original number of dimensions. The
principal components are typically chosen by determining a new set of orthonormal basis
vectors which maximize variance. This can be achieved by maximizing the second central
moment of X under the transformation U

E
[
(Xui)

T (Xui)
]
= E

[
uTi X

TXui
]
= uTi E

[
XTX

]︸ ︷︷ ︸
=Σ

ui , (77)

where ui denotes the i-th column of U, and without loss of generality (w.l.o.g.) the data
have zero mean. The orthogonality constraint on the basis vectors can be enforced by a
Lagrange multiplier when the above equation is maximized through its derivative:

d

du
uTΣu+ λ(uTu− 1)

!
= 0 ⇔ Σu = λu . (78)

Solving for the eigenpairs of Σ yields the eigenvalue decomposition of the covariance matrix.
The eigenvalues correspond to the variances along the respective eigenvectors. Note that
full PCA does not alter the sum of variances since U is orthonormal and the trace of a
matrix is invariant under cyclic permutations:

tr
(
(XU)T (XU)

)
= tr

(
UT (XTX)U

)
= tr

(
UTΣU

)
= tr

(
UUTΣ

)
= tr (IΣ) = tr (Σ) . (79)

The scaling factor 1/(N − 1) has been omitted as it does not contribute to the above
equation.

Due to its numerical stability, computing the eigenpairs is preferably done via SVD
of the data instead of eigenpair decomposition of the covariance matrix. SVD yields a
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decomposition of the form X = UDVT , where U and V are the left and right singular
vectors of X, and D is a diagonal matrix whose diagonal contains the singular values
of X. The left and right singular vectors are the eigenvectors of XX∗ respective X∗X,
which means that for zero-mean data the right singular vectors are in fact identical to the
eigenvectors of the covariance matrix. All the same, the singular values correspond to the
square roots of the eigenvalues of the covariance matrix, because

(UDVT )(UDVT )T = (UDVT )(VDUT ) = UD2UT . (80)

Due to the orthonormality of U, this can be interpreted as a rotation into orthogonal
space, followed by a per-axis scaling, and an inverse rotation back to input space. The fact
that the diagonal of D equals the standard deviations of the (now orthogonal) variables
makes it as well easy to scale the data to unit variance by replacing each element of D

with its reciprocal, resulting in D−1. The final decorrelation and scaling transformation
is thus given multiplication of the centered data with W := UD−1. Since Gaussians are
parameterized only in terms of mean and covariance of the data, linear transformation of
the data causes no harm because

E[AX+ b] = E[AX] and Cov[AX+ b] = AXAT . (81)

The training of models such as mixtures of Gaussians GMMs on linearly transformed data
X̂ = XW is therefore equivalent to training on the original data X. The parameters of the
resulting model can be transformed back to the original input space by computing the
means of the mixture components

µk = µ̂kDUT + µ , (82)

where µ is the mean of the original input data X, and likewise the covariance matrices as

Σk =
1

N− 1
XTX

=
1

N− 1
(X̂W−1)T (X̂W−1)

= W−T 1

N− 1
X̂T X̂︸ ︷︷ ︸

Σ̂

W−1

= (DUT )T Σ̂DUT . (83)

2.3.3.3 Computing in log-space

Accumulation and/or multiplication of multiple very small probabilities may quickly ex-
ceed the numerical range of floating point architectures. Cancellation can e. g. be avoided
by scaling [255], where probabilities or other inferred entities are scaled in a way such that
the scaling coefficients cancel out only once a computation is finished. Another common
approach is to perform all calculations in log-space, the downside of which is a notable
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increase in computational overhead. For operations in log-space, [199] suggests the use of
an extended logarithm, where

eln(x) =

log (x) if x > 0

LZERO if x = 0
and eexp(x) =

exp (x) if x > 0

0 if x = LZERO
(84)

and LZERO is defined as either NaN or −∞, depending on architecture. It is furthermore
vital to define an appropriate sum operator to compute eln(x+ y), given eln(x) and eln(y).
This operator should be defined in a way such that exponentation is avoided or else only
used in a numerically stable manner. The sum operator ⊕L is accordingly defined as

eln(x)⊕L eln(y) = eln(x+ y)

= eln(x) + eln(x+ y) − eln(x)

= eln(x) + eln
(
x+ y

x

)
= eln(x) + eln

(
1+

y

x

)
= eln(x) + eln(1+ eexp(eln(y/x)))

= eln(x) + eln(1+ eexp(eln(y) − eln(x))) . (85)

For further increase in numerical stability, values are kept small by swapping eln(x) and
eln(y) whenever eln(x) > eln(y). Similar to ⊕L, a product operator for eln(x · y), given
eln(x) and eln(y), is defined as

eln(x)⊙L eln(y) = eln(x · y) =

eln(x)⊕L eln(y) if x > 0∧ y > 0

LZERO if x = 0∨ y = 0
. (86)

application to em The defined operations can be used throughout EM for SW-GMMs.
It is only consequent (and faster) to compute the responsibilities of Gaussian components
based on log-space probabilities as well. For this, consider the logarithm of the probability
density function for a multivariate Gaussian

logp(x|µ,Σ) = log

(
1√

(2π)D|Σ|
· exp

(
−
1

2
(x− µ)TΣ−1(x− µ)

))
, (87)

which can be rewritten as

logp(x|µ,Σ) = −
1

2

(
C+ log |Σ|+ (x− µ)TΣ−1(x− µ)

)
(88)

where C = D · log(2π). Both the logarithm of the determinant and the Mahalanobis
distance can be very efficiently computed by means of QR decomposition. So most if not
all computations can be performed in log-space while the computational demand is kept
at bay. This is especially important due to the large amount of samples in the present
dataset, along with the previous considerations about the necessary number of tilings and
the respective exponential growth of the computational costs (discussed in sections 2.3.2.3
and 2.3.2.4).
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2.3.3.4 Avoiding singularities

EM maximizes the log-likelihood of the complete data. A Gaussian with its center on
a single sample and with zero variance maximizes the probability of that sample being
drawn from the corresponding Gaussian, and hence maximizes the overall log-likelihood.
Implementations of the EM algorithm must therefore take care to avoid these singularities
for modeling and numerical reasons. In general, this problem can be completely avoided
by using Variatonal Mixture of Gaussians [34], based on a fully Bayesian model with prior
distributions over the whole set of parameters, including the number of components. It is
precisely because of these prior distributions that singularities do not occur. In addition
to that, the maximum likelihood number of components can be inferred probabilistically.
On the other hand, the downside of this approach is yet again increased complexity.
A much simpler approach is to keep track of the determinants of the covariance matrices,
for which values close or equal to zero indicate that a particular Gaussian is about to
collapse. Whenever that happens, the routine could reinitialize that Gaussian’s parameter
set with random values or restart the whole learning process with a different initial setup.
Moreover, the superimposition of noise onto the model parameters at each iteration may
both avoid singularities and help EM to pass through shallow local optima of the target
function.

2.3.4 Model selection

Model selection aims at finding the best model for a given dataset. For non-probabilistic
models, such as K-Means, the best model is usually found by minimization of the re-
construction error. For probabilistic models, however, the best model may be found by
cross-validating a set of models and choosing the one with the best fit for the data. A
more efficient approach [218] is based maximizing the posterior of a model m, given the
data D:

p(m|D) =
p(D|m) · p(m)∑

m p(m,D)
(89)

Assuming equal prior p(m) for all models, this is then equivalent to maximizing

p(D|m) =
w
p(D|θ)p(θ|m)dθ . (90)

In order to avoid the (potentially complex) evaluation of the integral in equation (90),
approximations like e. g. the Bayesian Information Criterion (BIC) are commonly used
instead. BIC assesses the maximum likelihood estimate θ̂ in relation to the model’s degrees
of freedom. Given a set of N i.i.d. observations and a set θ̂ of model parameters with K
degrees of freedom, BIC penalizes overly complex models:

BIC = logp(D|θ̂) −
K

2
· logN . (91)



2.3 models for interaction geometry 65

Other than BIC, the Akaike Information Criterion (AIC) is not based on the marginal
likelihood, but rather inferred from a frequentist perspective [218]. The definition of the
AIC is quite similar to that of the BIC, but does not take into account the number of
samples. Its penalty term is generally less when compared to the BIC. As such, the AIC
suffers from a tendency to prefer more complex models. Therefore, the Akaike Information
Criterion corrected (AICc) imposes an additional penalty for extra parameters in relation
to the finite number of samples:

AICc = AIC +
2K(K+ 1)

N−K− 1

= logp(D|θ̂) −K+
2K(K+ 1)

N−K− 1
(92)

2.3.4.1 Number of components

An optimal number of mixture components must be carefully selected for both GMMs and
SW-GMMs. For the latter, the number of additional tilings due to the periodic variables
have to be taken into account. As a rule of thumb, the number of mixture components
needs to increase along with the number of tilings. This is a consequence of maximum
likelihood estimation, as it naturally attempts to find an optimal parameter set for ex-
plaining the whole dataset, which consequently involves the additional samples from the
displaced periodic tilings. If the number of mixture components were not increased, part
of the components would tend to exhibit significantly greater variance so as to be able to
explain those samples that lie close to the limits of the domain. This is usually not an issue
around the center of the distribution, but components with high variance gain more impor-
tance with increasing distance from the center, thus likely causing more misclassifications
within these areas. Since SW-GMMs are only approximations of the real distribution (see
section 2.3.2.3), further attention must be paid when selecting the number of components,
as components with overly high variance can render wrapped distributions illegitimate,
violating the constraint

r 2π
0 p(x)dx = 1 for periodic distributions.

2.3.5 Evaluation

Following the discussions in 2.3.4 and 2.3.2.3, various configurations of models were com-
puted and their characteristics were compared. The parameter settings varied among the
number of mixture components as well as the number of tilings for SW-GMMs. Figure
16 illustrates the convergence characteristics for GMMs and SW-GMMs on the S⊕ dataset.
For this purporse, only those models with either one or two wraps for both periodic vari-
ables have been selected as representatives from the various possibilities. As expected, EM
converges relatively fast and straight-forward for regular GMMs, while there is much less
progress for the more complex SW-GMMs at each iteration, since estimating the latter in-
volves evaluating 9 to 25 times more samples from the obligatory tilings. Even more so,
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(a) (b) (c)

Figure 16.: Convergence characteristics of GMMs (a) and SW-GMMs with 1 (b) respective 2 (c) wraps
per periodic variable on the S⊕ dataset.

(a) (b) (c)

Figure 17.: Information criteria of GMMs (a) and SW-GMMs with 1 (b) respective 2 (c) wraps per
periodic variable.

(a) (b) (c)

Figure 18.: Performance characteristics of GMMs (a) and SW-GMMs (b) with 1 wrap per periodic
variable. Comparison of SW-GMMs with varying number of wraps (c).
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most GMMs converge towards a supposed global optimum, whereas SW-GMMs exhibit a
tendency of ending up in local optima. This effect becomes less with an increase in the
number of components, which is in agreement with the prior discussion.
AICc further corroborates this argument (figure 17). The quality of the models increases
with the number of components, although a considerable saturation effect can be seen for
GMMs with as few as five to ten components, after which no change of notable magnitude
is to be expected. The saturation is not so pronounced for SW-GMMs, especially when more
than ±1 tilings are involved. In the depicted range of up to fifty Gaussians the penalty
term of AICc does not yet reveal overfitting from a information-theoretical perspective. In
fact this is even not the case when computing mixture models with up to 150 components,
yet models of that magnitude exhibit considerable spikes in the surfaces of their probabil-
ity density functions, which clearly indicates overfitting and would contradict the premise
of finding a preferrably simple, generalizable and interpretable model.
Looking at the log-likelihood and AICc from yet another point of view leads to the no-
tion that GMMs explain the data much better than their periodic siblings. This naturally
raises the question for what may be the cause, especially after the expected benefits of
(semi-)wrapped distributions for the present setting involving linear and periodic vari-
ables. Arguably, this can be explained for three reasons: First, when comparing GMMs and
SW-GMMs with the same number of components, the latter naturally need to be comprised
of Gaussians with higher variance in order to compensate for the additional samples in
the periodic tilings, and hence each of the samples becomes less probable. Second, apart
from accumulated probabilities, log-likelihood is also a function of the number of samples,
so that the additional data from the tilings again have strong influence on the overall
likelihood. Third, and this is the most interesting aspect, it turns out that the actual dis-
tribution of the samples (refer to figure 7) is such that it can be approximated quite well
and with very reasonable accuracy by a regular GMM. For illustration purposes, consider a
trivial model comprised of only 3 components. Figure 19 shows that, in a qualitative sense,
the natural shape of the Gaussians overcomes the shortcoming of GMMs to see data beyond
periodic borders, if only to a certain extent. This hypothesis is sustained by reviewing the
constraint

r 2π
0 p(x)dx = 1 for periodic distributions. Evaluation of the respective integrals

for the marginal and joint densities of a slightly more complex GMM, i. e. one with 10
components learned from the actual dataset, reveals that the integrated volume is in fact
close to 1 (table 9). Nevertheless, there are non-negligible periodic characteristics in the
data which are unlikely to be captured by GMMs with fewer modes. For example, refer to
the samples in the area of [−π

2
,+π
4
]× [3

2
π, 2π) in figure 19c. Apparently, this issue may be

p(δθ, δφ) p(δθ) p(δφ)

S⊕ 0.97 0.98 0.99
S⊖ 0.95 0.97 0.98

Table 9.: Numerical quadrature over 2π-periodic intervals of the joint or marginal probability den-
sity functions of δθ and δφ, given a GMM with 10 components.
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(a) (b) (c)

Figure 19.: Joint distributions of δθ, δφ and δd, superimposed with a contour plot of the probabilty
density of a 3-Gaussians mixture model.

overcome with a slight increase in the number of components. As soon as too many Gaus-
sians are chosen, though, models will at least tend to overfit the marginal δθ. Comparison
of the classification performance of the various configurations further suggests the selec-
tion of GMMs over SW-GMMs. Figure 18 shows that GMMs perform well, both in terms of
overall classification accuracy, as well as precision and recall for both S⊕ and S⊖. Accuracy
mostly lies above 80%, recall shows that 75% to 80% of social interactions are recognized
as such, and only about 20% of the data were false positives for S⊕. Similar results can
be seen for S⊖, although recall is slightly better for observations from S⊖. Comparable
performance already starts at configurations with as few as 5 components. To achieve
similar performance, SW-GMMs need way more components (as is expected). The recall of
S⊕ and S⊖ is closer to the classifier’s accuracy for SW-GMMs, but once overall accuracy
reaches a satisfiable level of about 80%, the recall of S⊕ is getting worse. In order to get
a notion of how these performance characteristics develop for varying numbers of tilings,
figure 18c illustrates accuracies and F1-scores for corresponding SW-GMMs. F1-scores have
been chosen instead of precision and recall to avoid further obfuscation of the graph.
So far, all models perform almost equally well, only some need to be more complex than
others to achieve the same quality in performance. There is no apparent advantage of pre-
ferring SW-GMMs over GMMs. While SW-GMMs are certainly more correct in a theoretical
sense, the question is whether their inherent additional complexity is justifiable or valu-
able enough for the present application domain. At the bottom line, the goal was finding
a preferably general and thus not overly complex generative model, which was supposed
to be explainable, updateable, and adaptable. Of course the model should perform well
in classification tasks. With respect to their performance characteristics, and especially
in regard of the fact that the present dataset represents social interaction of groups of
various cardinalities and formations, both GMMs and SW-GMMs can certainly be consid-
ered as generalizing models. Depending on the choice of parameters, they are very well
explainable, and they are adaptable in the aforementioned sense by their very nature. The
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proposed model therefore is one consisting of two GMMs, one for S⊕ and one for S⊖ with
ten components each. To a certain extent, the specific choice of ten components is arguably
somewhat arbitrary, but it yields a good compromise between having a universally applica-
ble model and the ability to recognize rather specific effects from interaction geometry in
human behaviour. Once more experimental data will be collected, the distributions of the
samples for S⊕ and S⊖ will eventually converge towards their real distribution, which will
presumably emphasize the more general aspects of proxemics, yet attenuate the remainder.

2.3.5.1 Model performance versus other classifiers

A comparison of the selected model’s performance against other standard classifiers from
[134] supports the choice of GMMs. According to table 10, none of the tested classifiers
performs better in a way that would e. g. justify trading interpretability and simplicity
for increased accuracy. Most notably, GMMs actually perform best next to SVMs. Interest-
ingly enough, the simple Naïve Bayes exhibits about 72% in classification accuracy and,
except for precision for S⊕, also shows reasonable quality for all other performance mea-
sures. This is noteworthy because Naïve Bayes not only assumes independence for each
of the variables, but also that each of them corresponds to a single Gaussian. For the
present two-class classification problem, this means modeling δθ, δφ and δd in terms of
two univariate Gaussians each, one for S⊕ and for S⊖, effectively reducing information to
as few as 6 model parameters for the Gaussians and 2 for the class priors. By doing so,
Naïve Bayes simply bisects the variables’ domains such that it e. g. considers observations
5◦ ⩽ δφ ⩽ 135◦ or δd ⩽ 1185mm as S⊕ (see figure 20), and it is obviously biased to-
wards S⊖. The drawbacks of erroneously assuming independence also show in the results
for the more sophisticated forms of Naïve Bayes [42], as e. g. in the case of kernel density
estimation (K) or supervised discretization (SD). Although the latter resemble the actual
distributions in much more detail, a gap of almost 10% of performance still remains in
comparison to GMMs or SVMs. Decision Trees, on the other hand, do not suffer from the
independency assumption. The classification performance of the correspondingly chosen
classifier is marginally better than that of Naïve Bayes. This is in part due to the selection
of the parameters for pruning the estimated tree. These have been chosen such that there
are at least 25,000 samples per leaf in order to avoid overfitting, resulting in a rudimentary
explanation of the data (see appendix 62). Failure to do so also results in an overly deep
decision tree, potentially contradicting the premise of generalizability.
All in all, GMMs perform very well per se, but particularly also in comparison to other
standard classifiers. In the chosen configuration they are much less susceptible to over-
fitting than other models, yet still show way-above-average recall and precision for S⊕
and S⊖. According to the prior discussion, the choice of the number of components is a
compromise between generalizability and handling presumed specific effects in the data.
This is corroborated by the fact that the model allows for distinction of S⊕ and S⊖ even
in settings of varying group sizes and corresponding sample variance. Once more experi-
ments will be performed, which should preferably be conducted in the socio-psychological
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S⊕ S⊖

Classifier Acc. Prec. Rec. F1-Score Prec. Rec. F1-Score
Naïve Bayes 72.1% 66.8% 74.5% 70.5% 77.4% 70.3% 73.6%
Naïve Bayes (K) 73.6% 74.4% 62.5% 67.9% 73.2% 82.6% 77.7%
Naïve Bayes (SD) 73.5% 74.2% 62.3% 67.7% 73.1% 82.6% 77.6%
Decision Tree 74.7% 72.3% 70.1% 71.2% 76.5% 78.4% 77.5%
Logistic Regression 71.6% 69.6% 64.8% 67.1% 73.1% 77.2% 75.1%
Neural Network (1HL) 71.2% 67.1% 69.4% 68.3% 74.7% 72.6% 73.6%
SVM 81.4% 80.3% 77.3% 78.8% 82.3% 84.7% 83.5%
GMM 80.3% 80.1% 74.3% 77.1% 80.5% 85.1% 82.7%
SW-GMM 75.9% 71.3% 76.8% 74.0% 80.0% 75.1% 77.5%

Table 10.: Classifier performance on 10-fold stratified cross-validation. K, SD and 1HL denote the
use of kernels, discretized values, and a single hidden layer, respectively. GMMs and
SW-GMMs with 10 components each, and ±1 tilings per periodic variable.

(a) (b) (c)

(d) (e) (f)

Figure 20.: Posteriors of δθ, δφ and δd from Naïve Bayes [134] as opposed to the selected GMM.
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fields of research, the specific choice of the number of components will have to be adapted
according to potential changes in the distributions of either one or both of S⊕ and S⊖,
provided that conducting further experiments and gathering more data would exhibit new
or reshape existing clusters in the present data. Depending on the distribution of the sam-
ples in a further growing dataset, the constraints towards periodic distributions will likely
not hold anymore for GMMs, and SW-GMMs will have to be reconsidered.

2.3.5.2 How well does the model represent the data?

The models for S⊕ and S⊖ show very good convergence towards the actual sample distri-
bution of the data. Figure 21 illustrates the joint densities of δθ, δφ and δd, where all
left-hand plots correspond to S⊕ and right-hand plots to S⊖. From figure 21a it follows
that joint observations of δθ at slightly less than 90◦ and δd at ∼ 750 mm constitute a
strong indicator for the presence of social interaction. In accordance with the marginal of
δθ (refer to figure 8a) a minor sink can be seen next to this area from which the probability
then again increases along with distance and angles up to 180◦. This is yet another hint
which supports the hypothesis that full frontal configurations are usually avoided at close
distance, while they are increasingly common in FFS of larger groups. The emphasis of
the former two Gaussians is also due to the marginal of δd (refer to figure 8e). As far as
S⊖ is concerned, from figure 21b one can see that the joint distribution of δθ and δd is
much more attenuated, particularly so at δd below 1000 mm. Similar to the distribution
for S⊕, probability increases with distance and angle. As seen from S⊖, another notable
discrepancy between the two distributions is given by means of a single Gaussian at 0◦
and about 1000 mm for S⊖, representing a configuration where one person faces the back
of another person at relatively short distance. The lack of a corresponding Gaussian for
S⊕ expresses its importance for characterizing the absence of social interaction.
Likewise, the joint density of δφ and δd is characteristic and expressive for S⊕, and differs
significantly from that of S⊖ (figures 21c and 21d). Two Gaussians at about ±45◦ and
750 mm clearly indicate typical relative positions in mutual interaction, followed by two
less expressive yet still important Gaussians at ±10◦ and 1000 mm. Yet another Gaussian
represents formations where one persons stands in front of another at δd above 1000 mm.
The variance of all of these Gaussians increases the farther they are from 0 distance. Be-
tween angles of 3/2

π
and 2π a slight increase can be seen below 1000 mm, accounting for

the few observations at the rear, when one group member for example shortly turned to
face another member of the group. When compared to the distribution for S⊖, the latter
Gaussian is more or less insignificant, especially when taking into account the class priors,
but it sustains the viability of GMMs for the distribution of the periodic variable at hand.
Contrary to S⊕, the model for S⊖ has its peaks mostly beyond 1000 mm in the frontal
hemisphere. A number of Gaussians account for the absence of social interaction in the
rear, more precisely δφ ∈ [π, 2π), particularly at distances of more than 750 mm. Two
pairs of Gaussians at about {frac54π 7.5

4
π}× {750, 1000} emphasize typical formations for

S⊖ which appear in S⊕ with much less concentration.
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(a) (b)

(c) (d)

(e) (f)

Figure 21.: Joint densities of the selected 10-components mixture models for S⊕ (a,c,e) and S⊖
(b,d,f).
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Predicted
Actual S⊕ S⊖ Precision Recall F1-Score
S⊕ 274737 93497 79.6% 74.6% 77.0%
S⊖ 70253 387065 80.5% 84.6% 82.5%

(a) GMM

Predicted
Actual S⊕ S⊖ Precision Recall F1-Score
S⊕ 282775 85459 72.7% 76.8% 74.7%
S⊖ 106141 351177 80.4% 76.8% 78.6%

(b) SW-GMM

Table 11.: Confusion matrices after 10-fold stratified cross-validation of GMM- and SW-GMM-based
classifiers.

Lastly, figures 21e and 21f reveal very distinct joint densities of δθ and δφ for S⊕ and
S⊖. The correlation of δθ and δφ, and their expressiveness for S⊕, is obvious. Once more,
though, it is interesting that δθ and δφ are clearly not independent from each other for
S⊖. The increased number of observations at (π

2
, π
2
) and (7

4
π, 2.5

4
π), as well as the lack of

observations in the rear, support the hypothesis that, in the absence of social interaction,
configurations are not random at all. Further experiments would therefore lead to more
emphasis on these effects, and consequently make the distinction of S⊕ and S⊖ more clear.

2.3.5.3 Analysis of the classification results

Although the presented classifier overall yields reasonable performance, its decision bound-
aries should be further explored. This may also give further insight into why recall and
precision are slightly better for S⊖ than for S⊕, as can also be seen in detail from the
confusion matrices in table 11. To a certain extent, this is possibly caused by the relative
scale of the class priors. The number of observations of S⊖ is higher than that of S⊕,
which is why the classifier will generally decide in favor of S⊖ in areas where there is no
significant evidence for a particular class in the model. This is e. g. most likely to happen
at greater distances or particularly so for observations in the rear hemisphere.
Figure 22 gives more insight into the classifier’s decision boundaries by comparing an or-
thographic projection of the samples of each class of the whole dataset (figures 22a and
22b) versus those samples that were erroneously classified as false negatives or false posi-
tives (figures 22c and 22d). The data are projected from polar onto cartesian coordinates
and their corresponding values of δθ are encoded through a color gradient. They hence rep-
resent an orthographic view of the observations as seen by a virtual single person located
at the origin of the cartesian coordinate system.
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(a) (b)

(c) (d)

Figure 22.: Orthographic projection of the observations of S⊕ (a) and S⊖ (b) from the whole
dataset vs. the misclassified observations from S⊕ (c) and S⊖ (d).

(a) (b) (c)

Figure 23.: Joint distributions of δθ, δφ and δd for false positives.
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It is interesting to see how the S⊕ data form clusters in the shape of sectors of approx-
imately equivalent shoulder orientations. Six such sectors can easily be spotted, namely
those colored in blue, magenta, orange, brown, bright and dark green, three sectors of
which seem dominant, i. e. blue, orange, and dark green. One can also see that variance
increases with distance, especially beyond 1000 mm. As expected, there are only very few
observations in the rear hemisphere. Still, it should be noted that these observations ex-
hibit values of δθ representing shallow differences in orientation of the shoulder line, i. e.
|δθ| ⩽ π

2
. Once more, this provides evidence towards the correctness of assuming that those

observations of S⊕ in the rear hemisphere are mostly caused by one member of a group
shortly turning towards another. Lastly, there is a noticable convex gap between ∼ 45◦

and ∼ 135◦, reaching out as far as 750 mm in front, where one might assume data due to
the otherwise circular shape of the white area around the origin. This supports [308] who
states that people are more likely to allow others to approach from the rear or the sides
than from the front, and thus provides a refined view of the shape of the intimate and
personal zones as suggested by Hall [133]. While the fact whether we accept “intruders”
into our intimate or personal space is certainly also a function of social context, e. g. when
acting in a rather crowded environment, comparison of figures 22a and 22b augments this
view with a notion that such acceptance depends on mutual orientation of the bodies as
well. For example, people generally demonstrate obvious annoyance in full-frontal configu-
rations at close distances even in crowded scenarios, but tend to less strong reactions when
facing the back of another person, for example when standing in a crowd and looking into
the same direction, or when other persons may be passing by temporarily.
In contrast to S⊕, the data for S⊖ are much more irregular, which comes to no surprise.
One might argue that, from a bird’s eye perspective, a rough shape of certain clusters
in δθ is still recognizable. This is an effect that cannot be seen from the marginal of δθ
(figure 8b) or any of the histograms of the joint distributions involving δθ (figures 7b and
7f) for S⊖, and is probably caused by the constrained movement area during the experi-
ment. On the other hand, smaller size clusters of similar values of δθ build up everywhere
throughout the domain, so that ultimately this matter has no recognizable effect on the
generality of the model.

A qualitative view of the distribution of the misclassified samples, as shown in figures
22c and 22d, leads to the intuition that each of these distributions were just the opposite
from those for the whole dataset, i. e. the distribution of the false negatives (figure 22c)
looks like the overall distribution of S⊖ (figure 22b), and that of the false positives (figure
22d) like the overall distribution of S⊕ (figure 22a). This is a good result because it reveals
a notion of inversion between the models for present and absent social interaction. On the
downside, it shows a principle limitation of this approach towards modeling static social
situations, namely that it can only provide a context-free interpretation of interaction
geometry, not taking into account e. g. a time series of δθ, δφ and δd, or other potential
sources of evidence for or against interaction. However, the consequences are much less for
S⊕ than for S⊖. One is ultimately interested in detecting the presence of social situations,
but not their absence, where the probability of encountering S⊕ is not strictly one minus
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the probability of encountering S⊖. From figure 22d one can see that the decision boundary
for S⊖ is semi-elliptical in terms of cartesian coordinates. Along the ordinate, observations
above +2000 mm are generally classified correctly, and so are most below -500 mm. Along
the abscissa, observations beyond ±1300 mm are correctly classified as well. The whole
dataset contains more observations in the rear for S⊖ than it does for S⊕, and so the
classifier is clearly biased towards S⊖ in that area. This is all the same done with respect
to δθ. The noticeable “hole” in the lower left quadrant lacks those observations from S⊖

where other persons stood rather close and had their shoulder lines oriented such they
were more or less facing the same direction, which is yet another example of members of a
group temporarily turning into the direction of other interactants. The same effect applies
to the lower right quadrant, but is much less expressive in that area.
Other than that, a few false positives can be seen between 2000 mm and 3000 mm. This is
a consequence of deciding in favor of present social interaction in case of equal posteriors
of the models for S⊕ and S⊖, which are both zero for the aforementioned observations due
to numerical cancellation. The distribution of the false negatives in figure 22c once more
attenuates the bias of the classifiers towards S⊖ in the rear of a person. Nevertheless, the
coloring of the corresponding observations in the lower left suggests that this mainly con-
cerns formations where other members of a group stood close, but their upper bodies were
oriented away from the observer. A similar reasoning applies to part of the observations
in the lower right quadrant, but that is also mostly due to increased distance and thus
a stronger general bias of the classifier towards S⊖. Vice versa, figure 23 augments the
explanation as to what the classifier understands as S⊕ through illustration of the joint
distributions of δθ, δφ and δd for the false positives.

2.3.5.4 Influence of arity

Considering group size in social situations helps in the investigation of the false negatives.
Table 12 shows misclassification rates when arity is taking into account in S⊕. According
to these results, the misclassification rate is exceptionally low for social situations of fewer
than five participants. With the exception of groups of six, the misclassification rate grows
with increasing arity, starting from five participants. Figure 24 explains these results in
terms of the joint distributions of the variables for the false positives, where the color of the
observations corresponds to arity. In this context, recall that section 2.2.5 made assump-
tions about the ideal configurations of body orientation (δθ) and relative position (δφ, δd)
for varying group sizes. Those values that correspond to these ideal configurations have
been superimposed onto figures 24a and 24b. It follows that the model is indeed precise
for arities two, three and four, resulting in comparatively few false negatives. On the other
hand, it also follows that the model is not generally unsuitable for social situations with
more participants, but rather for those portions of the corresponding observations that
involve greater distances and/or (almost full) frontal configurations. Generally speaking,
the distributions of δθ, δφ and δd exhibit the more variance the greater the number of par-
ticipants. For further reference, appendix B contains illustrations of the joint distributions



2.3 models for interaction geometry 77

Arity 2 3 4 5 6 7 9
# of samples in S⊕ 14940 28122 60372 64340 25980 25368 149112
# of false negatives 772 1238 1020 13826 363 5570 59299
Fraction of false negatives 5.2% 4.4% 1.7% 21.5% 1.4% 22.0% 39.8%

Table 12.: Rates of false negatives per group size.

(a) (b)

(c) (d)

Figure 24.: Histograms of the joint densities of δθ, δφ and δd, including an orthographic projec-
tion of the false negatives per color-coded group size. Diamonds represent the ideal
configurations.
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per arity. The latter not only sustain this general view, but also give an explanation as to
why the classifier performed so much better for groups of six. As a matter of fact, groups
of six and seven only rarely showed during the experiment (see table 2), and hence the
corresponding observations are not as representative as for other group sizes. Assuming
a similar model, it is thus expected that the misclassification rate will actually grow for
arities such as six and seven once more data were to be collected.
Other than the corresponding clusters of higher variance, figure 24c reveals a few smaller
clusters for e. g. groups of two or four. Interpreting the respective values of δθ and δφ
shows that these clusters belong to rather untypical orientations of the upper body in re-
lation to the relative position. While this figure gives no information on distance, at least
the orange clusters for arity two can be quite easily detected in the other figures as well,
providing distance and subsequently corroborating the view that involved formations are
rather untypical.

2.3.5.5 The relevance of δθ, δφ and δd

The usefulness of each variable for the overall classification task is quantifiable in terms
of entropy and mutual information of δθ, δφ, δd, as well as the class attribute (S⊕, S⊖).
According to information theory, uncertainty about the value of a random variable X
is expressed in terms of its entropy [34, 218], defined as the expected value of the self-
information of X:

H(X) =
∑
x

p(x)I(x) =
∑
x

p(x) ln
1

p(x)
= −

∑
x

p(x) lnp(x) (93)

For continuous variables, differential entropy is analogously defined as

H(X) = −
w
x
p(x) lnp(x) . (94)

The conditional entropy of X given Y measures the remaining uncertainty about X once Y
were known:

H(X|Y) =
∑
y

p(y)H(X|Y = y) = H(X, Y) −H(Y) (95)

The relevance of variables or features is usually assessed based on the mutual information
that they share with the class attribute [34, 321]. Mutual information is therefore equiv-
alently referred to as information gain. Generally speaking, it quantifies the similarity
between the joint distribution of two random variables and the product of their marginal
distributions. It is based on relative entropy, also known as Kullback-Leibler divergence:

I(X; Y) = KL (p(X,Y)|p(X)p(Y)) =
∑
x

∑
y

p(x,y) ln
p(x,y)
p(x)p(y)

, (96)

It follows that I(X; Y) = 0 if and only if X and Y are independent [34, 218, 321]. From
a set-theoretical perspective, mutual information, joint entropy, and conditional entropy
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can be seen as set intersection, union, and difference [268], so that the following definition
is equivalent to equation (96):

I(X; Y) = H(X) −H(X|Y) = H(Y) −H(Y|X) = H(X) +H(Y) −H(X,Y) . (97)

One may note that, whereas entropy of a discrete random variable is strictly non-negative,
differential entropy can also take negative values. Its magnitude furthermore depends on
the scale of the values of the corresponding random variable. For this, the uncertainty
coefficient

U(X|Y) =
I(X; Y)
H(X)

=
H(X) −H(X|Y)

H(X)
(98)

provides a normalized measure that quantifies which fraction of X is predictable once
Y is known [320]. As a consequence of equation 97, U(Y|X) is equally easy determined as
function of mutual information, regardless of whether the latter was computed in terms of X
or Y. Other than that, symmetric uncertainty aids in the quantification of interdependency
[348].

For continuous random variables, entropy and mutual information are usually computed
based on the previous quantization of the distribution, which may lead to poor results de-
pending on the chosen number and width of the bins, more precisely their exact limits [218].
For the present work, information gain and uncertainty coefficients were hence computed
based on GMMs instead of quantization. Moreover, as indicated before, the magnitude of
the differential entropy for a scaled variable differs from the value for the same, yet un-
scaled, variable, i. e. H(s ·X) ≈ H(X) + ln s. The scales of δθ, δφ and δd differ by several
magnitudes. As a consequence, all of the variables were normalized (zero-mean, unit stan-
dard deviation) prior to computing any information-theoretic quantities.
Recall that the purpose of this analysis is first and foremost the quantification of each
variable’s importance for this specific modeling task, as opposed to a ranking of the inde-
pendent features. The dataset was partitioned according to samples belonging to S⊕ or S⊖,
and one multivariate GMM was computed for each of these two partitions. The conditional
distributions of δθ, δφ, and δd were then determined as the marginal distributions of the
models for each class, and the total marginals as the respective sums of the conditional
distributions weighted by the corresponding class priors. The latter would not be necessary
in case of quantized data, but it certainly makes a difference for estimated continuous dis-
tributions such as GMMs, or else w.l.o.g. the law of total probability p(x) =

∑
y p(x|y)p(y)

would be violated, and consequently falsify the results.

Measure δθ δφ δd

Mutual information 0.024 0.047 0.063
Uncertainty coefficient U(class|X) 0.035 0.068 0.092
Symmetric uncertainty (2 · I(X; class)

H(X)+H(class)) 0.025 0.049 0.062

Table 13.: Relevance of δθ, δφ, or δd with respect to the class attribute (S⊕, S⊖), given in nats.
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Table 13 lists the calculated values of the discussed quantities, from which it can be seen
that δd clearly has the greatest impact on decisions towards S⊕ or S⊖, followed by δφ.
The magnitude of the values attributes to the fact that these variables are by no means
independent of the class. Overall, the relation of the values is in line with the previous
analysis and interpretation of the data. Whereas δd arguably bears more information due
to its higher resolution in terms of the measuring equipment, and while δθ is inherently
symmetrical, it is still clear that certain areas of the marginal or joint distributions of
specifically δd and δφ serve as strong discriminant factors. For instance, observations of
δd below a threshold of about 50 cm, or in the rear (δφ > π mod 2π), are scarce and
therefore very expressive, and so are the distributions of δd and δφ in comparison to δθ.

2.3.5.6 Summary

All in all, the chosen model is well-suited for the distinction of S⊕ and S⊖ based on in-
teraction geometry, in particular for social situations involving up to four participants in
L-shaped or circular formations. Bigger situations imply configurations which are more dif-
ficult to handle as they fall into regions of greater overall uncertainty due to the relations of
the actual distributions of S⊕ and S⊖ in the whole dataset. Although the present dataset
is of course limited in size, it already captures a reasonable amount of general effects in
social interaction geometry. It is expected that these effects become more emphasized also
for larger groups as more experiments are conducted and data are sampled. According to
the hitherto analysis of the distributions, the interpretation of the false positives, false
negatives, the classifier’s decision boundaries and how it attempts to explain the data,
it is nevertheless likely that such formations impose implicit or explicit limits onto the
distinction of S⊕ and S⊖ based solely on geometry of interaction. The misclassification
rate is therefore expected to be of at least linear growth with increasing arity. Eventually,
this issue will have to be solved by other means. As the model is based on dyadic interac-
tion, and as social situations can be regarded as transitive closure over the latter, mobile
agents would therefore have to exchange their opinion and confidence on the who, when
and where of social situations.
The overall performance and the characteristics of the model show that context-free inter-
pretation of dyadic interaction geometry is indeed a viable approach for the detection of
social situations as a whole. This fact can be regarded as evidence towards the assumption
that human behaviour is rather uniform in its very nature, and that it does not necessarily
have to be context-sensitive in all of its aspects. To some extent, this uniformity expresses
itself in the generalizing way that the classifier explains both presence and absence of social
interaction. In regard of the relevance of δθ, δφ, and δd, the latter variables apparently
provide the most utility for modeling social interaction (see table 13). There is an artic-
ulate relationship between the information gain for each of the variables, suggesting that
the hitherto model of interaction geometry may be further simplified. This would in turn
constitute more evidence towards the uniformity of human proxemic behaviour, similar to
the means of the overly simple model of the Naïve Bayes classifier. For comparison, models
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(a) (b) (c)

Figure 25.: Comparison of the performances of GMMs (a) and SW-GMMs with one respectively two
wraps (b-c) for full and simplified representations of interaction geometry.

were computed based on a representation of interaction geometry solely in terms of δθ
and δd (termed “R2”), and yet another representation through δθ and a signed variant of
δd, where the sign of δd encodes a binary partition of the space into interaction occuring
in front (+) or behind (+) a person (termed “R2B”). The choice of δθ over δφ is rea-
sonable not only from an information-theoretical perspective but also from the fact that
δφ is much harder to determine from present-day physical and logical sensors of mobile
agents. The corresponding performances are shown in figure 25. It follows that a change
from the full representation, with body orientation plus relative position given in polar
coordinates (as in R3), to body orientation plus only signed distance, therefore losing all
information about the polar angle at which another person is located, results in a mere
drop of about 5% in performance. Yet another 5% are lost once the sign of δd is dropped,
effectively locating the other person on an arbitrary position on a full circle with radius
δd around the monitoring person. Note that the simplification of the model also has no
additional influence on precision or recall which both drop only about the same percentage
as accuracy while maintaining their interrelationship. One last notable difference of R2
and R2B as opposed to R3 is that they need considerably less components when being
modeled in terms of SW-GMMs, which is mostly a consequence of the fewer periodic tilings.
Performance-wise, though, SW-GMMs again do not exceed GMMs and thus bear no further
advantage in this context.

2.4 improving the model through additional parameters

The proposed model so far has been developed under the hypothesis that universal be-
havioural patterns exist in proxemics, and hitherto evaluation corroborates this assump-
tion. On the other hand, it has been noted that the experimental dataset is arguably
limited in size, both in terms of the actual data as well as in its representational sense,
being based on measurements of young adults from Western Europe, only two of which
were female, some acquainted via university, and all coming from a more or less equal
cultural background. It is well worth questioning whether such (and other) parameters
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do in fact have a significant influence on social interaction geometry – and if so, to what
extent. That goes along with the question as to how the presented model could and should
be adapted to any corresponding findings, for example by incorporating a subset of per-
sonal profile parameters. Without doubt, there is a multitude of possible parameters like
age, gender, culture, physical appearance, health, profession, and social background, to
name only a few. In addition to that there are also other (latent) variables like e. g. the
number of interactants, environmental or other situative attributes that one might want
to consider to incorporate under the objective of exhaustively modeling social interaction.
Vice versa, a particular model which incorporates some of these (latent) variables could
possibly provide information about their specific values and weights when applied to a new
data. For example, think of a function p(n|x, θ) yielding the probability of participating in
an n-ary social situation, given observations from interaction geometry and the respective
model parameters. Another example could be a function from group size to the presumed
character of any dyadic relationship in that group, be it casual, talking to a superior or
potentially participating in a focussed discussion.

The following sections investigate the influence of a selected subset of profile parameters,
as well as other (latent) variables, and how they could be exploited or otherwise be used
to improve the present model.

2.4.1 Influence of profile parameters

A common sentiment in literature is that behaviour is mostly a consequence of factors
such as the environment, the affective meaning of a situation, the behaviour of others,
emotions, and that it is strongly influenced by personality traits [315, 325, 198]. Already
Hall was aware that “social organization is a factor in personal distance” [133]. The fact
that part of proxemic behaviour is learnt early during socialization implies a high correla-
tion with the culture of the society in which individuals grew up [133]. Behaviour can be
regarded as a function of socio-cultural background [250]. Proxemic behaviour generally
happens unconsciously [131] and is usually beyond a person’s locus of control. The un-
derstanding and interpretation of situations, and consequently one’s behaviour, strongly
depend on individual personality. For this reason every situation has a so-called affective
meaning [286]. According to [319] in [286], “as individual people strive for emotionally
coherent mental representation, they mutually coordinate their social actions – both ver-
bal and non-verbal – so as to make them fit those representations.” People hence try to
work towards, and subsequently maintain, the affective meaning of a situation. In this
regard, communicating affective meaning plays an important role, and people consciously
or unconsciously act together in order to achieve a collective affective meaning, expressed
in terms of verbal and non-verbal communication [286, 250, 198]. Triandis further explains
this effort by differentiating between the private, public and collective selves [325]. The
private self accounts for personal attributes, preferences and one’s individual character.
The public self aims at acting in compliance with what others would deem appropriate,
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and retrieving corresponding feedback. The collective self pursues the common goals of the
peer group. It follows that whereas all participants of a social situation have their share
in the display and outcome of behaviour, they still each have their own motivations and
objectives.
The above belongs to a vast field in socio-psychological research. Following the seminal
works of Hediger [140] and Hall [130, 131, 133] (see chapter 1), a multitude of studies have
been conducted by anthropologists, psychologists, sociologists, and many others. These
works typically investigated the influence of culture, gender, age, attractiveness, or friend-
ship and acquaintance [309, 110]. In what follows, an overview shall be given over concerns
about culture, gender, and a subset of the remainders, as they have been the main focus
of related research, in that order.

2.4.1.1 Culture

In [132], Hall labels proxemics as a “culturally elaborated form of communication” . This
view is based on the notion that “language is a major element in the formation of thought”
[22]. Amongst other things, culture expresses itself through non-verbal communication.
The subsumption of any form of communication under the term language, together with
the assumption that language has significant influence on the process of thought, leads
to the conclusion that cultural aspects have a particular impact on even basic sensoric
perception, and therefore also on the assessment and interpretation of proxemics.
Hall gives several examples of cultural effects. In regard of perception and well-being, for
instance, he explains how a frontal seating arrangment might be perfectly normal for Eu-
ropeans whereas in China there might be a connotation with being on trial [131]. In yet
another example, Hall refers to an Arab colleague of his whose paneled recreational room
felt cozy to his German friends yet oppressive to his Arab friends [132]. Other than that,
cultural differences can also result in sociopetal and sociofugal effects, as e. g. furniture
is not only organized differently in Europe as opposed to Japan, where Europeans place
their furniture at or near the walls, whereas Japanese are apt to clustering everything in
the center of a room [133], but as well influences the duration of social interactions [166].
Much like Hediger made a difference between contact and non-contact species [140], Hall
differentiates between supposed contact and non-contact cultures. He assumes that mem-
bers of contact cultures are more likely to stand closer together, talk louder, touch more
often, and be more directly oriented towards each other during interaction. As examples
he names Americans and Arabs for contact and non-contact groups, respectively [131, 133].
Hall furthermore states that e. g. Westeners from non-contact groups might even associate
crowdedness with “distasteful connotations”, therefore attenuating his belief in the strong
influence of culture. He goes as far as saying that erroneous behaviour in contrast to what
is acceptable within one’s culture can lead from dissent to even real anxiety [132]. Others
share his view in that all members of a culture are supposed to behave accordingly, and
that consistency of verbal and non-verbal interaction allows for mutual understanding
[97, 286]. Culture bears latent core knowledge about successful behaviour throughout nu-
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merous generations in the past, enabling individuals to “derive intuitive knowledge about
the probability and cultural appropriateness of mutual behavior, including non-verbal ex-
pressions of interpersonal affect.” [286].
One should note that, although Hall states that a lot of his observations are based on
actual fieldwork, his theories on contact and non-contact cultures as well as other cultural
influences were largely speculative. Watson et al. therefore set out for a quantitative inves-
tigation [340]. They confirmed that groups of Arabs indeed communicated at closer range
and with a louder voice than Americans. They also confronted each other more directly
in terms of relative position and upper body orientation. Arabs had a tendency to (acci-
dentally) touch each other, whereas Americans avoided touching at all times. As touching
occurred in all of the Arab but none of the American groups, Watson et al. conclude
that this may be an outcome of culture. It also turned out that the variance in behaviour
was way less among different groups of Americans from different locations in the United
States than of Arabs from varying origins. At the bottom line, their findings seem to
sustain common stereotypes. However, the accuracy of the annotations was rather low,
and only thirty-two individuals were monitored during the process. Interestingly enough,
Watson et al. were the first to state the question if variations in proxemic style within
cultural areas are perhaps associated with other personality traits. In a later study, they
were furthermore able to show that the proxemic behaviour of individuals from supposed
contact cultures adapts itself over time spent in non-contact cultures [339]. Little [193] con-
ducted yet another study in order to find differences with respect to interpersonal distance
among Americans, Swedes, Greeks, Italians, and Scots. Based on the placement of dolls
and subsequent assessment by experimental subjects he concluded that there were differ-
ences between all of these cultures, most significantly when compared to the Italians. In
spite of the fact that his results support the distinction of contact and non-contact cultures
in principle, he also found that there were less differences between Americans and Ital-
ians than anticipated, which is remarkable as they are supposed members of contact and
non-contact cultures, respectively. Shuter likewise investigated the proxemic behaviour of
Germans, Italians, and Americans [301], more precisely the frequency with which inter-
actions occurred, interpersonal distance, relative orientation, and gender. According to
Schuter, the stereotypical distinction of contact and non-contact cultures is not sufficient
because of the high variance in intra-cultural behaviour. His results for example show that
the overall observed interpersonal distance is greater for Americans than for Italians, yet
in terms of physical contact or touching, there is no apparent difference between Ameri-
cans and Italians for male-female and female-female dyads. Quite to the contrary, physical
contact was observed between German even more than between Italian females.
Apart from culture, Little also looked into variables like gender and social roles such as
e. g. dominance or authority. There was no apparent general difference due to gender, so fi-
nally the major determinant was attributed to the relationship between individuals within
a group, followed by the affective tone of the transaction.
In a field study of 859 subjects in “several natural settings” over the course of 2 months,
Baxter [28] found even more statistical evidence for Hall’s and Little’s assumptions. He
observed “Anglo-, Black-, and Mexican-American” ethnic groups, and noted other factors
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like age (in three discrete levels, i. e. child, adolescent, adult), as well as the gender of dyads.
According to his results, there was a striking “tendency for Mexican subjects of all ages and
sex groupings to interact most proximally”, which he regards as members of a supposed
contact culture, as opposed to the other ethnic groups. The differences in interpersonal
distance were already clearly apparent for children, and increased with age, suggesting
that spatial schema are learnt at young age and similarly retained through adulthood.
Motivated by the awareness of the effort of groups to maintain formations and to compen-
sate behaviour of others in this process, e. g. if one person decreases interpersonal distance
and others consequently take a step back, Baxter suggests that ethnic groups be mixed
in further experiments. Assuming real differences in the proxemic behaviour of different
ethnic groups, this would show in that members of respective groups would work towards
different goals [28]. In a 1970s paper [189], Leibman assumes the existence of measureable
effects for interpersonal distance due to ethnic differences [189], and discusses that this
might as well be a consequence of the culture among “white” and “black” Americans. She
further states that interaction always depends on context, but from her paper it remains
unclear which variables are the ones which have an actual influence on behaviour. Her
experiments, however, showed no significant results, but “indicate that the social envi-
ronment is a significant determinant of the perception and use of space, and that spatial
behavior is an important measure of the behavioral consequences of social factors” [189]. In
yet another study, Jones [157] observed pairs of interacting persons from several of New
York’s “subcultures” within previously determined and strictly defined regions, and at
places of equivalent socio-economical account. In addition to interpersonal distance, Jones
also noted relative orientation of the dyad’s shoulder lines. His results vaguely augment
those of Leibman in so far as he did not detect statistically significant differences in either
interpersonal distances or relative orientation between members of distinct subcultures. It
should be noted though that his methods and results are questionable because the mea-
surements where subjective and imprecise, not least because the subjects were observed
from a certain distance, and interpersonal distance as well as orientation were only roughly
estimated.

Although most of the presented studies seem rather inconclusive, they do indicate cul-
tural differences in proxemic behaviour. All the same, it is not clear whether culture alone,
or ethnic group, or heritage, or some other yet unknown variables account for this. This
is corroborated by Remland et al. [265], who argue that the principal influence of cul-
ture might be either less than hitherto anticipated, or that differences are more likely
to come from latent variables such as social relationship, emotion, and personality traits
[265]. Sussman and Rosenfeld, for instance, showed in a study of Japanese, Venezuelans,
and Americans that how close people sit to each other is influenced by the language
which is spoken, be it native or learnt, which they assume as a consequence of aiming at
the display of appropriate behaviour when concentrating on another culture along with
speaking a foreign tongue [316]. This is sustained by a later study of Remland et al. on
interpersonal distance, body orientation and touch between North- and South-Europeans,
evaluated according to either origin, gender, or age [266]. The results demonstrate differ-
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ences in physical contact behaviour, and likewise body orientation for mixed male-female
and male-male dyads with respect to age, but also reveals that these are neither related to
contact/non-contact cultures nor any other “generalizable function” from North to South.
Similarly, Evans et al. [91] discuss that cultural background has often been mistaken for
a tolerance of crowding when instead this has been related to personality. Amongst other
variables, according to Sommer, the dimensions of personal space are particularly depen-
dent on culture, “internal state”, and transactional context [309].

2.4.1.2 Gender

Most of the previously mentioned studies focussed on cultural influences on proxemics, al-
though some of them also reported findings with respect to gender [307, 28, 157, 301, 266].
Women arguably stand closer together than men, adopt more direct orientations, whereas
men are less apt to physical contact during interactions. These presumptions are to some
extent corroborated by socio-psychological studies which quantify and evaluate personal-
ity traits based on ratings of the Five Factor Model [77]. The model organizes personality
traits in equivalence classes of extraversion, agreeableness, conscentiousness, neuroticism,
and openness [208]. Interestingly, women are believed to score higher on all factors except
openness [203]. Extraversion, agreeableness, and conscentiousness are particularly interest-
ing. Roughly speaking, extraversion represents sociability and positive affect, agreeableness
stands for trust, warmth and kindness, and conscentiousness describes self-control, task
orientation and rule abiding [203]. Together, extraversion and agreeableness may be linked
to smaller interpersonal distances and the allowance or even initiation of physical contact,
especially touching. Between males and females, the scores for conscentiousness vary less
than in other categories. Conscentiousness may however help to explain observations like
those of Hartnett et al. [137] who reported that, under given circumstances, women would
let male experimenters approach up to closer distances than would men.
Jones reports that observed female-female dyads were generally more directly oriented to-
wards each other in terms of their shoulder lines than others [157]. This is sustained in part
by Shuter who observed that American male-male dyads interacted at a significantly less
direct axis than male-female or female-female dyads. On the other hand, German subjects
demonstrated the opposite behaviour, namely that in male-male dyads the relative orien-
tation was the most direct [301]. Likewise, in his early studies of seating arrangements,
Sommer observed that men were more likely to sit in opposite chairs to either men or
women, while women had the tendency to sit next to each other, or at adjacent corners of
a table [307]. To the contrary, Remland et al. [266] found that male-male dyads maintained
the least direct orientations until an age of about sixty years, and that orientation becomes
more direct with age. Mixed dyads confronted each other most directly until about forty
years, and orientation would lessen with age. Lastly, for female-female dyads, orientation
would stay roughly the same at each age, with the exception of forty to fifty years where
women would surprisingly adopt the most direct orientation of all [266]. These relatively
recent findings therefore contradict the prior opinion that women would generally adopt
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more direct body orientations than men.
Apart from body orientation, Shuter [301] reports that women were more likely to touch
other women than men were likely to touch other men. The least amount of touching was
observed in mixed dyads. Shuter also distinguished between touching and hand-holding.
Most notably, hand-holding was regularly observed among females, regardless of national-
ity, whereas for male or mixed-sex dyads, most hand-holding was observed for members
of supposed contact-cultures, such as Italians. According to Berman and Smith [31], “less
attention has been paid to the implications of touch between participants of equal status
as a sign of friendship, support, and solidarity”. In their exploration of 256 subjects, no
significant differences were found for touching or proxemic behaviour between genders.
Berman and Smith therefore account touch and proxemics solely to the type of social situ-
ation. Similar results were reported by [266]. Touching occurred most often in mixed, but
equally often in same-sex dyads. This was consistent throughout all groups for non-hand
touches, or touches that lasted longer than 2 seconds, for instance when touching or hold-
ing someone else’s arm. According to [216] in [266], such behaviour is typically related to
a “tie sign” between partners. As touching is often a reciprocal reaction to being touched,
it is argued that general behavioural differences between males and females should be
investigated after successful determination of who initiated the contact.
In a study of 186 subjects, all of which were introductory students of psychology, Dosey and
Misels investigated the influence of stress and gender on interpersonal distance [78]. Pairs
of the same, opposite or mixed sex were randomly chosen and the approaching distance
was measured, i. e. the distance until which one would approach the other and then stop on
their own. The results showed that women would approach other women more closely than
they would men. From the perspective of men, there was no notable difference whether
men would approach other men or women. Although most variance in interpersonal dis-
tance in the previously discussed work of Baxter (see section 2.4.1.1) was accounted for
by culture [28], a significant part was also reported due to gender [28]. In accordance with
later studies, male-male dyads demonstrated the greatest distances, whereas mixed dyads
showed the least distance. This is somewhat contrary to the notion of female-female dyads
as the most closest interactants. At the bottom line, Baxter states that it is not exactly
clear whether his findings were generally due to gender or culture, as presumed friendly or
familiar relationships were more often observed in certain ethnic groups than in others. In
a similar laboratory study, Hartnett et al. [137] further distinguished between approaching
distance and distance when being approached. In order to eliminate any territorial, social
or cultural effects, experimenters wore white labcoats and were instructed to act without
and show no emotion. In addition to influences caused by gender per se, the study also
evaluated the heterosexuality score of each participant so as to determine whether persons
with a high heterosexuality score, and thus a supposed higher interest in the opposite
sex, would exhibit a tendency towards smaller distances. The results [137] show a notable
trend, though not significant, where men with a higher score would let women approach
up to closer distances. In general, women would not actively approach other persons or
experimenters as close as they would allow for being passively approached, especially by
experimenters. It is discussed whether this may be a consequence of social norms with
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respect to the gender role of females, or generally the “aggression behaviour” of men ver-
sus women, i. e. that women perhaps demonstrate slightly more obedience under “official
circumstances”, such as a laboratory experiment. If this were true, it would agree with the
finding that women tend to higher scores on agreeableness (being task oriented and rule
abiding). To the contrary, this may as well not be linked to gender at all, but merely be
an effect of respect and/or social state, as e. g. reported by Cristani et al. [67].
According to Uzzell et al. [330], the present-day results of researching the influence of
gender on interpersonal distance are ambigious. Nevertheless, there seems to be a certain
agreement that, generally speaking, male-male dyads interact at greater distances than
pairs of females. This is sustained by the studies of Evans and Shuter [90, 301], and may
be further explained in terms of territoriality and personal zones. Edney, for instance,
observed groups of people on a public beach [85]. He found that groups of three (male,
female, or mixed), as well as groups of only females, would occupy considerably less space
than groups of four (male, female, mixed), any group of men, or single men. Interestingly,
mixed groups used less space than groups of either men or women. The authors suppose
other influences like the actual reason for visiting the beach, like being there with one’s
family, friends, or as a single. Following their measurements on the so-called comfortable
interpersonal distance scale, Veitch et al. [332] conclude that the personal zones of men
and women differ indeed. Women generally have smaller personal zones (∼ 2.32m2) than
men (∼ 2.79m2). The same relation holds for the accumulated zones of female-female ver-
sus male-male dyads.
As mentioned before, Hartnett et al. were among the first to account for more than gen-
der per se when they tried to quantify sexual attraction through a heterosexuality score
during their assessments of approaching distances [137]. Likewise, Uzzell et al. suggest the
clear distinction of biological sex, gender role, and gender identity [330], where gender role
“is a label for the masculinity or femininity of someone’s (social) behavior”, and gender
identity refers to the psychological sensation of the actual biological sex, which might a
factor e. g. for transsexuals. They relate to previous studies of [139] and [293], according to
which gender alone has no sufficient meaning, but has to be seen in conjunction with race
and age. In a similar manner, West and Zimmerman made a distinction between sex and
gender [346]. In their quantitative study of 72 participants, for which they used measure-
ments from digital video recordings, they ultimately concluded that gender role is in fact
responsible for more variance than biological sex [330]. Others presume that the behaviour
of men and women is first and foremost affected by their way of self-representation, and
hence suggest that gender-specific differences always ought to be interpreted in the social
context in which they occur [31]. Ridgeway and Smith-Loving thus postulate in [270] that
all theories regarding the influence of gender should respect three basic aspects: First,
women and men alike perceive gender as a profound factor in interaction. Second, studies
of women and men with equal power or state generally fail to demonstrate significant dif-
ferences. Most differences are probably due to socio-emotional, non-verbal contexts which
are likely connected with expressed or displayed behaviour. Third, most interactions be-
tween men and women take place in a structural context which already implies different
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roles or status. Correspondingly observed differences are therefore likely to be confused
with being related to gender.

2.4.1.3 Other parameters

A couple of studies have explored the influence of further profile parameters and variables.
Reis et al. e. g. supposed that physical attractiveness has potential influence on how humans
interact in social situations [263, 264]. According to their results, this factor would mostly
affect men. More precisely, physically attractive men tend to more social interactions with
women than with other men, while attractiveness in general attributes positively to the
affective quality of social experience for both genders. Next, Dosey et al. describe personal
zone as a buffer zone whose main purpose is the protection of emotional well-being [78],
which, amongst other things, is a function of stress perception. Arguably, the way that
stress is perceived can be thought of as a personal parameter. In their study, Dosey et
al. monitored the interpersonal distances of 189 subjects, partially under induced stress.
They found that distance significantly increased under stress, and report an average dis-
tance increase from 6.35cm to 9.5cm. Other than that, according to Edney [85], it appears
as if occupation had an effect on territoriality and hence the personal zone. Moreover,
Cook investigated whether being introverted or extroverted influenced proxemics in terms
of seating behaviour [61]. According to his results, extroverted persons have a tendency
of moving in or sitting closer, and are apt to adopt rather frontal configurations. The
behaviour of extroverted persons was also reported to be the most consistent. His view
is shared by Patterson and Sechrest who found that the personal zones of extroverted
persons are smaller than those of introverted persons [227]. In addition to his findings
that gender may attribute to the choice of seating arrangement and distance, Sommer
also explored whether mental health (of both sexes alike) might be influential. He assumed
that due to the fact that mentally ill people often have problems in their communication
with others, their problems might alter their proxemic behaviour. For this, he observed
both patients and healthy persons in a mental hospital [307], and found that schizophrene
persons tended to sit closer to other persons. This tendency towards violating the personal
space of others is contradictory to Hall who reported that schizophrene persons would of-
ten describe violations of their own space as a feeling of the other persons being literally
inside them [133]. Likewise, Evans [90] argues that individuals with personality disorders
or other mental illnesses need more space than others.
Another class of studies reports that proxemic behaviour depends on age. Both Heshka
[143] and Baxter [28] found that younger and elder dyads stood closer together than
middle-aged ones. The tenor is that distance increases with age. Starting from an age of
about forty years, this appears to be counteracted by other effects such as loss of hearing
or sight [143, 28]. As discussed before, Remland et al. [266] report a high correlation be-
tween age and body orientation, particularly so for women between forty and fifty years
who adopted the most direct body orientations towards others in comparison to all other
groups of age or gender. Marsh et al. [203] refer to an exhaustive and complex study by
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Terracciano et al. [318], according to which neuroticism decreased non-linearly with age,
and so did extraversion, whereas a linear descent was found for openness, as opposed to
a linear ascent in agreeableness. Conscentiousness was reported to grow until an age of
about sixty years, followed by a subsequent decline (both non-linear). Age thus certainly
has an impact on social behaviour and proxemics, but it remains unclear whether the
influence of age could be canceled out as an independent variable.
Without doubt, social relationship is a major determinant in proxemic behaviour, and
so are topic, purpose and “tone” of a transaction [193]. Although equal status may often
be anticipated, in many encounters “some participants have different rights than others”
[167] and “this, too, is reflected in spatial-orientational arrangements” [167]. Sommer [306]
already mentioned that e. g. the seating arrangement of individuals is a consequence of
purpose. People who want to work together sit next to each other, those who want to chat
tend to sit at adjacent corners of a table, rivals choose opposing places, and strangers likely
maximize distance. Sundstrom and Altman [315] describe what they call the comfortable
distance, which varies with the status of a relationship and also depends on additional
parameters such as whether people sit or stand, the topic of a discussion, gender, orienta-
tion, and crowding [132, 133, 315]. The dependency of interpersonal distance on type and
quality of relationship was discussed by Bell [29]. Heshka et al. observed interpersonal dis-
tance of 57 subjects under the influence of whether they were good friends, acquaintances,
or strangers [143]. They later combined the first two categories as it turned out that too
often one would assess the other as a good friend while being assessed as an acquaintance.
No significant differences were found for male-male pairs, but instead for female-female
and mixed dyads. Not quite unexpected, the behaviour of male strangers differed much
from female and mixed stranger dyads. Women positioned themselves significantly farther
apart from others than men, which Heshka et al. relate to the socializing process “which
encourages aggressiveness and initiative in males, and caution and reverse in females” [143].
On a sidenote, interpersonal distance between stranger male-male dyads was reported to
be less than as assumed by Hall for American same-sex strangers [129]. Also recall the
finding of Cristani et al. [67] according to which physical distance is proportional to social
distance, and hence interpersonal distance is a function of mutual relationship. Vice versa,
distance can hence serve as a social cue for the type and quality of a relationship.

2.4.1.4 Critique

The previous sections have outlined related research on potential influences of profile pa-
rameters like culture, gender, age, and other variables. It appears that a number of these
studies are inconclusive or even contradict each other. Some studies have measured signifi-
cant influences which were not reproducible by others. Arguably, it is presumed that this is
more often than not a consequence of the fact that other latent variables may be involved
which are yet unknown. Jan et al. [153] remark that Hall not only failed to provide any
form of qualitative or quantitative proof for his theories regarding e. g. the influence of cul-
ture, but also that subsequent studies were often not exhaustive or subject to systematical
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or methodical errors. Some studies explored effects in the context of ongoing interactions,
yet others deduced their results from measurements in the context of personal space inva-
sion [315]. The three prevalent research methods in the field were identified as simulation
methods, laboratory methods, and field methods [315]. Simulation methods, for instance,
frequently make use of doll, figure or symbol placements, followed by subsequent assess-
ment by the investigated subjects. In laboratory settings, subjects also knew they were
being observed, and (w.l.o.g.) controlled settings as well as controlled (latent) variables
are often hard to guarantee. Lastly, field methods are based on observations in everyday
settings. This is likely to have a positive effect on canceling out other variables and on the
subjects’ behaviour who are typically not aware of the fact that they are being monitored.
Field methods can however have adverse effects, namely that unknown variables or spe-
cific portions of the settings have a potential influence on the results. Also, earlier studies
using field methods were particularly prone to inaccurate measurements and subjective
assessment of the experimenters, for example the studies on interpersonal distance and
relative orientation in selected New York subcultures, [157], which were assessed from a
non-negligible distance and by means of a rule of thumb, or those of dyads in natural
settings such as parks or public places [143], for which the measurements were taken from
distant photographs [157, 143].
Research nonetheless agrees that Hall’s theories have yet to be refuted. In fact, despite
all criticism it seems almost certain that there are significant influential factors on prox-
emic behaviour, and researchers emphasize the importance of conducting more studies to
achieve definite results [153]. This would hopefully overcome reliance on overly simplified
distinctions such as contact and non-contact cultures, or gender in terms of biological sex.
Remland et al. [265] further emphasize that most related research has been conducted in
America. Doing more research in other countries (or, generally speaking, in other contexts)
could only help to determine what could possibly be regarded as the greatest common de-
nominator. It should be noted, though, that some researchers were well aware of the typical
shortcomings in their research, such as e. g. Watson et al. [339], who stated their need for
better technical equipment and methods for more accurate measurements and improved
quantative studies. Most notably, they were furthermore interested in the ability to work
on smaller spatio-temporal scales. Other researchers similarly express the need for meth-
ods which are not solely based on pure human observation or manual video analysis but
are supported by more sophisticated technical means [265]. As discussed in chapter 1, this
would allow subjects to act more freely and unconsciously, or achieve higher accuracy and
resolution [137]. Nowadays, the high advancements in sensors and fields such as Computer
Vision have greatly alleviated issues of accuracy, precision, and smaller spatio-temporal
scales. Corresponding techniques have been used in laboratory and/or field settings e. g.
by Groh et al. [123] or Cristani et al. [66].
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2.4.1.5 Arity

Common shapes of FFSs include L-shaped, V-shaped, side-by-side, circular, semi-circular,
rectangular, or linear formations [204, 166]. L-shaped, V-shaped and side-by-side forma-
tions are common representatives of pairwise interaction, whereas three persons often
adopt a triangular (circular) or semi-circular formation, and greater groups exhibit a ten-
dency towards circular formations of increasing size. Territory grows with the number of
persons, but its growth is not regular because the space which is occupied by a single
person appears to be inversely proportional to group size [85]. Marshall et al. [204] also
differentiate between FFSs and what they call a common-focus gathering. As an example
for the latter, consider a group during a museum visit. A member of that group might
temporarily leave the group and shortly after return from an information desk to share the
obtained information. Such common-focus gatherings are more closely related to audience
situations than to regular FFSs [204], which also follows from the definition of FFSs, as
under the given circumstances not all members have equal access to O-space. Next, recall
that formations are usually chosen and communicated unconsciously, and that groups
work together in a natural effort to create and maintain a common spatial-orientational
configuration [167]. Which formation is chosen eventually depends on the whole context of
the interaction, which to a large degree is composed of physical and socio-psychological as-
pects. Thus a formation may be e. g. chosen as a result of the geometry of the environment,
potential obstacles, or it may be subject to sociofugal and sociopetal effects such as those
imposed by furniture or architectural design. Socio-psychological aspects may attribute to
the arrangement e. g. in terms of social relationships or the purpose of the transaction, for
instance when interacting with a close friend as opposed to a superior at work, riding on
a subway, being a member of an audience, or sharing a table at a restaurant. However,
the problem of gaining continuous and reliable access to accurate, current and exhaustive
information about the physical and social context is intractable, especially in a mobile com-
puting scenario. Despite the numerous potential physical and socio-psychological aspects,
one major determinant in the choice of formation is the number of interacting persons.
Although by far not exhaustive, proxemic behaviour certainly is also a function of group
size, in terms of the occupation of space as well as the arrangement of the individual bod-
ies can be regarded as a function of arity. Arity, as opposed to other (latent) variables, is
quantifiable and can be measured independently of other contextual parameters. It is also
easily monitored or controlled as an experimental parameter.

Conversational groups are never unlimited in size [79]. The higher the number of partic-
ipants, the more likely it is that subgroups split off permanently or temporarily, and/or
regroup at later times [206, 79]. This behaviour can also be observed in the present dataset
(see section 2.2.3), although that may not be strictly comparable. Recall that the subjects
were given instructions which would foster that they would regularly switch between, or
form new, groups. The reason behind subgroups splitting off from larger groups may be
related to the presumption that group size is limited due to cognitive abilities of humans
[80]. According to Hall [133], the quality of sensory input is inversely proportional to dis-



2.4 improving the model through additional parameters 93

tance. This also means that the greater the distance, the more social cues have to be taken
into account to obtain the same amount of information. Eye-sight, for example, influences
group size. As the field of vision is limited, humans can track only a certain number of
others, and maintaining at least peripheral view on other interactants is a vital component
of groups [79]. According to Kendon [166], humans have a field of vision of about 80◦ to
either side before having to turn their upper bodies. Assuming an ideal circular configura-
tion and a distance of 70cm between adjacent persons (see section 2.2.5) therefore leads to
a theoretical limit of eleven persons. Other than that, recall that FFSs require a significant
overlap of the transactional segments, and therefore also imply a limit on the number
of interacting persons. Dunbar [79] furthermore distinguishes between groups and cliques,
for which group size refers to “the total number of individuals present in an interacting
group” and clique size denotes the “the number of individuals taking part in a particular
conversation, as evidenced by speaking or obviously attending to the speaker” [79]. Cliques
seemingly obey a natural limit of four persons, independent of gender. The reason for such
a practical limit might be rooted in the production and detection of speech. According
to [305] in [79], the maximum comfortable distance for conversation is 1.7m. Dunbar con-
cludes that this “imposes a limit of five on the number of individualds who could take
part in a conversation”, given a respective distance of 50cm between adjacent persons in
circular arrangement. Comparing this to the present dataset, according to which 70cm are
closer to the truth, one may hence estimate a maximum of 2πr/0.7m/person ≈ 7persons
for r = 1.7

2
m. This estimate would then also be in agreement with Cohen [57], who came

to an equivalent conclusion, albeit under consideration of ambient noise.
A quantitative study with 1057 groups of up to fourteen individuals is described in

[79]. The major part of the groups were observed in a college dining hall. Groups were
sampled every fifteen minutes as long as all members remained. In addition to the dining
hall scenario, groups were also observed in the context of casual talks after a firedrill, as
well as during a large reception at a museum. Generally speaking, it certainly makes sense
to make a distinction between cliques, as interacting subsets of a group, and groups as a
whole. In regard of Dunbar’s study, it can however be assumed that the environment of
the dining hall, more precisely the seating and table arrangement (Dunbar describes tables
that could serve up to thirty persons), might have had a non-negligible influence on the
formation of cliques within larger groups. To some extent, the same may be true for the
museum reception. As a matter of fact, Dunbar’s paper contains no precise description
of that environment, but one may argue that such events often feature numerous smaller
tables which clearly yield sociofugal and sociopetal effects. Therefore it is assumed that
cliques respective groups could not freely adopt FFSs during Dunbar’s experiments. In
regard of the present work, and ignoring the discussed spatial constraints due to the
infrared tracking process, groups could freely move and split at all times. Arguably, not
all members of the groups were active interactants at all times, but cliques could easily
split off and form new groups in their own right. A clique in Dunbar’s sense is hence more
closely related to a group in the present dataset, whereas a group in Dunbar’s sense is more
closely related to all participants of the experiment as a whole. This is further corroborated
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(a) (b)

Figure 26.: Distribution of cliques as reported by [79] (a) vs. groups from the present dataset (b).

by the finding that clique size grows about linearly for groups of up to seven individuals
[79]. Interestingly enough, Dunbar observed that maximum clique sizes were larger for
groups of six to nine than in even bigger groups, which he relates to an “overshoot effect,
in which individuals initially try to maintain the group as one clique as its size increases”
[79].

Figure 26a illustrates the distribution of clique sizes as observed by Dunbar [79]. Similar
distributions were reported by other researchers [152, 217] for freely forming groups in
various settings. With 15486 respective 1353 sampled groups, the latter seem to be equally
reliable. Also, since both studies investigated groups as a whole, not cliques, the reported
distributions further attribute to the argument that groups in the present work relate to
cliques as seen by Dunbar. For comparison, figure 26b shows the distribution of group
sizes from the present experiment. The maximum clique size as observed by Dunbar is
seven, whereas up to nine individuals formed a group in the present experiment. The
latter is presumably an effect of the rectangular space of the recording area. According to
table 2 and figure 5, groups of nine actually showed up twice during the experiments. The
observations each cover relatively short time spans, yet serve to illustrate the tendency of
larger groups to split up temporarily and then regroup. All in all, both distributions in
figure 26 are roughly similar. It should be noted that in spite of the much greater number
of occurrences of groups during the present experiment, the actual total number of groups
(34) is less than Dunbar’s (1057) by almost two orders of magnitude (see table 2). Dunbar
mostly assessed groups at time frames of fifteen minutes, whereas time frames correspond
to only one sixth of a second in this work. It is therefore most likely that the distribution of
groups, as present in interaction geometry, will approximate Dunbar’s distribution along
with increasing numbers of samples. At the bottom line, the similarities of the distributions,
together with the much larger sample size in the aforementioned studies, suggests that
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Dunbar’s distribution may be tentatively regarded as an appropriate class prior for group
cardinality once. As such, it could easily be incorporated in the proposed algorithmic
model for detection of social interaction.

2.4.1.6 Discussion

The prior sections discussed potential influences of profile parameters and (latent) vari-
ables on proxemic behaviour. So far, related research has mostly investigated factors like
culture, gender and age. In addition to such a priori available personal profile parameters,
group size was discussed as another major determinant in interaction geometry. Practi-
cally speaking, the influence of the latter was already apparent from the marginal and
joint distributions of δθ, δφ and δd in the experimental dataset (see section 2.2.5; figures
9, 10, 11, 24; appendix B). Up to this point, the proposed model has been built on the as-
sumption that a greatest common denominator for interaction geometry exists regardless
of other parameters. A corresponding classifier has been evaluated and the results indicate
that this assumption is indeed valid, if only up to a certain degree. Subsequent analysis
of the misclassified samples, in particular the false negatives, suggests that using distinct
and more specialized models, e. g. conditioned on group cardinality, might improve per-
formance. On the other hand, one has seen that as group size increases, so does variance,
consequently leading to poor classification performance, in particular for groups of five or
more (see table 12). This finding is further corroborated by qualitative comparison of the
distributions of the variables for S⊕ and S⊖, independent of group size (see figures 7).

In order to determine whether incorporating such kind of parameters into the model has
indeed impact on the detection of social interactions, and, vice versa, whether doing so
allows for gathering a posteriori information such as group size, a new dataset was sampled
and adaptions were made to the model accordingly. From the set of potential parameters,
gender and arity were selected as representative variables for the following reasons: As
the number and domains of potential variables are practically unknown, comprehending
and integrating all of them is pratically impossible, and so is controlling all variables in
either field or laboratory settings. Furthermore, once the number of independent variables
increases, the number of required samples grows exponentially [34]. Gender and arity stand
out because both are quantifiable and controllable. Culture, on the other hand, is rather a
superposition of numerous known and unknown factors. It is presumed that culture cannot
be measured on a discrete scale, or may even be subject to changes after spending a certain
time abroad, regardless of the original culture of an individual [339]. Following the findings
and suggestions of [137, 346, 330], it is still arguable whether gender should be regarded
in terms of biological sex, or gender role, or gender identity. Also, recall that gender-
related experiments should be conducted under circumstances of equal power and status,
so as to rule out other factors from a socio-emotional, non-verbal or structural context
[270]. Distinguishing between roles would however require a substantial increase in the
number of subjects. Nevertheless, it is assumed that the overall distinction of biological
sex as a dichotomous variable is sufficient for the determination of basic influences of
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gender on proxemics, even if it will remain unclear precisely which one of the three sub-
categories had the most impact. Apart from gender, recall that arity was deliberately
not controlled during the first experiment, but would be easy to control and monitor
throughout subsequent experiments. From the previous discussions in section 2.4.1.5) it
follows that groups of more than four participants are relatively unlikely. This, together
with the fact that the distributions of the variables from the first experiment show minor
effects due to the restricted size of the available space in which interactants could freely
move (see section 2.2.5), suggests a maximum group size of four for subsequent experiments
under the given conditions.

2.4.2 A second dataset

As a consequence of the considerations layed out in section 2.4.1.6, another series of ex-
periments was conducted in July 2013 [81]. In this series, groups of two, three, or four
participants were observed over the course of about 15 minutes each. All experiments
were conducted and therefore all groups observed individually. Also, the participants of
the groups were selected such that groups were composed of either males only, females
only, or both sexes. The small group sizes were a deliberate choice to ensure that all
individuals were part of a single social situation at all times, and that they could freely
move about in the available space of 3m× 3m. It was explained to the participants that
the experiments were about algorithmic models of social interaction, but no further de-
tails were provided so as to reduce the risk of additional influences due to the laboratory
setting. The participants were asked to engage in casual conversation. Example topics
like someone’s “favorite meal” or “best vacation” were printed on posters and distributed
throughout the room, intended to prevent conversations or interaction from coming to a
halt. Each session was monitored by two experimenters who took great care to not engage
in any interaction with the participants and displayed behaviour as if they were occupied
with doing other things aside from the experiment without even noticing what was going
on. All the same, the experimenters took notes on the general atmosphere and whether
the groups were actively involved in conversation. According to the results in [81], groups
“quickly found a subject of conversation that appealed to all members”, regardless of the
suggested topics, and “awkward pauses never occurred at all.”.
Over the course of three weeks, 30 males and 21 females participated in the experiments,
most of which were students, whereas others were not affiliated with university at all. In
advance of each session, gender, age, height, and who was either an acquaintance or a
friend of whom, were determined by a questionnaire which was handed out to the par-
ticipants. The corresponding statistics on gender, age and height are given in table 14.
All in all, the participants were distributed among five groups of two, seven groups of
three, and five groups of four individuals. Table 15 provides an overview of group sizes
and dyadic gender composition. Note the singular sample of female-only groups of two.
In spite of the overall good ratio of 30:21 between male and female participants, their
schedule, along with the schedule at which the infrared tracking system was available, led
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Gender
Variable Measure Male Female All
Age Mean 23.5 23.7 23.6

Median 23 24 23
StdDev 3.1 3.7 3.3

Height Mean 181.0 170.1 176.6
(cm) Median 182 170 178

StdDev 6.2 5.5 8.0

Table 14.: Gender, age and height of the second ex-
periment’s participants.

Arity
Biological sex 2 3 4

∑
male-male 2 5 10 17
male-female 2 12 8 22
female-female 1 4 4 9∑

5 21 22 48

Table 15.: Dyads per group size and bi-
ological sex as in [81].

to this rather unfortunate sample size. One may also note that eight ouf of theoretically
5 ·
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)
+ 7 ·

(
3
2

)
+ 5 ·
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4
2

)
= 56 dyads had to be removed due to marker failures.

Similar to the first experiment, each individual wore an infrared marker on their left
or right shoulder, and the same infrared tracking system [8] was used to record the posi-
tions and orientations of the markers. Likewise, the recorded data were post-processed as
described in sections 2.2.2 and 2.2.4, yielding position and orientation of each person at
every time-frame. Finally, positions and orientations of the individuals led to the values of
the introduced variables of interaction geometry, δθ, δφ, and δd. The data of each session
were annotated according to group size and gender of the interactants. According to the
previous findings and discussions, it is expected that the distributions of δθ, δφ and/or δd
are functions of either one or both of arity and gender. Density estimates of the variables
of interaction geometry of the overall second dataset, as well as in regard of group size,
gender, constant group size but varying gender, and constant gender but varying group
size, are illustrated in figures 27, 28, 29, 30, and 31. All in all, the picture that shows is
quite similar to the one from the first experiment for all variables. As expected, arity and
gender both prove to be influential, which will be discussed in the following sections.

2.4.2.1 δθ

The overall distribution of δθ is similar to the first experiment (figure 27a vs. 8a). Due to
the restricted group size, the available space, and the assigned task, the movement dynam-
ics were much less during the second experiment. This led to more clearly established FFSs,
which also shows in the fact that almost no interactions were observed for |δθ| ⩽ 30◦.
Among groups of two, three, or four individuals, the distributions of δθ exhibit clearly dis-
tinct peaks and variances (figure 28a). Interestingly enough, groups of two mostly engaged
in full-frontal configuration, which they basically never did during the first experiment. It
appears as if there simply was no good reason for other configurations because there were
no significant spatial or (known) social factors present during the second experiment. More
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(a) (b) (c)

Figure 27.: Kernel density estimations of δθ, δφ and δd, using a Gaussian kernel and bandwidths
of 10◦, 10◦ and 25mm, respectively.

(a) (b) (c)

Figure 28.: Kernel density estimations of δθ, δφ and δd with respect to arity, using a Gaussian
kernel and bandwidths of 10◦, 10◦ and 25mm, respectively.

(a) (b) (c)

Figure 29.: Kernel density estimations of δθ, δφ and δd with respect to biological sex in dyads,
using a Gaussian kernel and bandwidths of 10◦, 10◦ and 25mm, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 30.: Kernel density estimations of δθ, δφ and δd with respect to biological sex in dyads of
groups of sizes two, three and four, using a Gaussian kernel and bandwidths of 10◦,
10◦ and 25mm, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 31.: Kernel density estimations of δθ, δφ and δd for same-sex dyads of groups of sizes
two, three and four, using a Gaussian kernel and bandwidths of 10◦, 10◦ and 25mm,
respectively.
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precisely, it seems plausible that, during the first experiment, groups of two more often
chose L- or V-shaped F-formations in order to be able to monitor other groups and in-
dividuals, or display “openness” of their respective group so that others might join. The
peaks for groups of three or four are close to the idealized values (refer to table 4, but the
variance is notably less in both cases. In terms of δθ, groups of four seem to adopt the
most stable orientations. On the other hand, the probability of subgroups splitting off is
fairly low for such small groups in any case.
On first sight, the distributions of δθ with respect to gender seem to be less distinct (figure
29a), yet still, for both peaks and variances, differences are apparent. For example, the
peaks differ about ten to twenty degrees, which, taking into account the distance between
a person’s left and right shoulder blades, will almost certainly (though unconsciously) be
perceived by other interactants. Also, the most direct relative orientation towards each
other was present in mixed dyads, while it was the least for male-male dyads.
Figures 30a, 30d and 30g illustrate the distributions of δθ within classes of equal arity.
From these it follows that there a greater difference between dyads of varying gender in
groups of two and four than in groups of three. The orientational behaviour in groups of two
is especially interesting, as it further corroborates the notion that male dyads adopt less
direct attitudes than female or mixed-sex dyads (figure 30a). Comparison with the graphs
for other group sizes suggests that orientation with respect to gender should not be seen
independent of arity like it used to be common practice in other related studies (see section
2.4.1.2). From a socio-psychological perspective, adopting less frontal configurations might
be more important in groups of two in order to avoid subliminal aggressive behaviour [143].
Furthermore, orientation seems to be significantly more dynamic for mixed-sex than other
dyads in groups of four. Lastly, comparison of mixed-sex with male-male and female-female
dyads also reveals a tendency for clearly more frontal configurations for mixed-sex dyads,
particularly so in groups of four (figure 30g).

2.4.2.2 δφ

According to figure 27b, overall no interactions took place in the rear of any person,
which is as expected, again given the small group sizes and the experimental setting. In
sum, most interactions occured at polar angles of 55◦ and 115◦. Not unexpectedly, these
peaks do not appear in the distribution of δφ from the first experiment (figure 10) as
the current distribution is biased towards groups of three and especially groups of two
which, as discussed before, adopted full-frontal configuration in the second experiment,
but basically never in the first.
δφ varies significantly with arity (figure 28b). As expected, the peaks of δφ’s distribution
for groups of two, three, or four, closely approximate the idealized values (refer to table
3), and variance follows group size. With respect to gender, mixed-sex dyads were located
more directly towards each other at polar angles of about 60◦ and 114◦ as opposed to 46◦
and 121◦. They also showed less dynamics (figure 29b).
Once group size is taken into account, the least variance shows for groups of two females,
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and the most for groups of two males (figure 30b). The shape of δφ’s distribution for the
latter suggests that some men adopted more frontal positions than others. These findings
should nonetheless be considered only with great care due to the small sample sizes for
groups of two (see table 15).
Similar to δθ, there is no significant difference between dyads of varying gender in groups
of three (figure 30e). For groups of four, however, one notices a regular distribution of δφ
for male dyads, suggesting that the corresponding FFSs were constantly maintained (figure
30h). This is likewise the case for female dyads, yet it appears if some women stood closer
together than others, probably as a result of their social relationship. In case of mixed-sex
dyads in groups of four, the presence of local maxima at 80◦ and 110◦ indicate that one
or more persons kept more distance to their opposite gender. The distribution of δd for
groups of four (figure 30i) supports this picture because one would ideally expect three
instead of four peaks. Obvious differences in proxemic behaviour can also be seen from
the comparison of the distributions of δφ for varying arity within classes of equal dyadic
gender composition (figures 31b, 31e, 31h).

2.4.2.3 δd

The overall distribution of δd features two peaks at 962mm and 1175mm, regardless of
group size or gender (figure 27c). As was previously discussed in the proceedings of the first
experiment (section 2.2.5), basically no interactions take place at distances below 750mm
or beyond 1500mm. The latter limit is obviously due to limits in group size and/or avail-
able space, whereas the former clearly follows “commonly agreeable” rules of proxemic
behaviour which means that interactions at very close range are typically avoided.
According to figure 28c, δd’s distribution has multiple peaks, namely at 825mm and, each
about 10cm to 15cm apart, at 1010mm, 1162mm, 1263mm, and 1454mm. The first peak
originates from a group of two turkish females who were also friends. While this peak
exists in its own right, it should be regarded with care due to the nature of the social
relationship in conjunction with small sample size (table 15). But even if this peak were
canceled out, one can still see that the variation in distance is comparatively high for
groups of two. In comparison, part of the peaks and variances in groups of three or four
can be explained merely in terms of distributing N persons subject to e. g. circular forma-
tions. The latter distributions are shaped more clearly with peaks at 967mm and 1214mm
(groups of three), or 929mm, 1086mm, and 1388mm (groups of four). This is interesting
because the two peaks for groups of three differ in their magnitudes, meaning that more
often than not one out of three individuals stood farther apart than the other two, which
is not visible from the corresponding distributions of δθ and δφ that both closely approx-
imate idealized configurations (figures 28a, 28b). On the other hand, δd’s distribution for
groups of four follows basic expectations. What stands out for all group sizes is that, with
a mean of 933.3mm and median of 967mm (canceling out the first peak in groups of two
and regarding the first two peaks in groups of four as a single peak), the average distance
in this experiment is greater by about 20cm than in the first experiment. This is certainly



2.4 improving the model through additional parameters 103

an effect of the additional available space since less persons crowded the room, but it also
does not agree with related research where 50cm or more likely 70cm are considered as
typical values [57, 79].
In the context of gender (figure 29c), the distributions of δd for mixed-sex dyads is es-
pecially different from those of male-male and female-female dyads. In mixed-sex dyads,
the average distance between individuals of distinct sexes was significantly higher. The
same is also apparent from the distributions for varying gender under constant group sizes
(figures 30c, 30f, 30i), from which it follows that in groups of two or three mixed-sex dyads
stood much farther apart than same-sex dyads. From the cases of arities two or three, the
basic notion is that female dyads stand closer than male dyads, which in turn stand closer
than mixed-sex dyads. All the same, there is non-negligible second peak at about 1500mm
for male dyads in groups of two which contradicts generality. Also, this relation is not
valid for groups of four, where male dyads stand closest, followed by mixed-sex and female
dyads.

2.4.2.4 Discussion

Overall, the distributions of δθ, δφ, and δd are similar to those from the first experiment,
and the same holds once the dataset is split by group size. Compared to the first experi-
ment, much more space was available for the participants, leading to an increased average
interpersonal distance. Except for groups of two, it is supposed that the available space,
the limited group size, and the experimental settings had no further influence on the con-
crete choice of the respective formations. Circular formations were however prevalent in
both experiments.
Orientationwise, the least direct orientations were found for male dyads, followed by mixed-
sex and then female dyads, regardless of group size. In this context, δθ’s variance was no-
ticeably less for mixed-sex than for other dyads. Recall that Jones had similarly reported
that women adopted the most direct orientations towards others [157]. According to his
results, male-male dyads showed the least direct orientations, which matches the present
results, but then he found that mixed-sex dyads were less directly oriented than female-
only dyads, as opposed to the current results. In a later study, Shuter took culture into
account as well [301]. Jones’ and Shuter’s results line up for American citizens, whereas
Shuter reports that in case of Germans, men and not women adopted the most direct
orientations. Furthermore, Remland et al. also found that men in general were the least
directly oriented, partially dependent however on age [266]. Contrary to Jones and Shuter,
but in accordance with the current results, they suggest that mixed-dyads were the ones
with the most direct orientations.
In regard of interpersonal distance, Dosey and Misels found that women would approach
other women more closely than men, whereas men would would keep the same distances
to men and women alike [78]. Hartnett et al. suggested that distance might also depend on
a heterosexuality score, according to which men with a high score would allow women to
approach them more closely [137]. Recall that Uzzell et al. stated that hitherto results of



104 social interaction geometry

research on interpersonal distance were ambigious [330]. Nevertheless, related work seems
to agree on the assumption that male-male dyads displayed the farthest interpersonal dis-
tances. Comparing this to the current results, it turns out that mixed-sex dyads in fact
kept significantly more distance than same-sex dyads. The distributions of δd for female
and male dyads turned out to be quite similar, but still suggest that female dyads stand
closest. Also recall that territory grows with group size, even though not regularly [85].
This means that the space occupied and allocated by individuals may become less with
increasing group size. The distribution of δd with respect to group size indeed suggests
that this assumption might hold because in groups of four, the closest distances were
found between adjacent members, provided that the small sample for female-female dyads
in groups of two is canceled out.
At the bottom line, the current results should not be generalized in a way such that fe-
male dyads always stood closer than mixed than male dyads. The same applies to relative
orientation. Nevertheless, the overall experimental setting can be arguably considered un-
constrained in terms of space, and the behaviour of the participants during their casual
conversations was reported to be spontaneous and without significant awareness of the
experimental situation. From the results it is clear that arity has the most significant in-
fluence on all variables, but gender proved to be a non-neglibile factor as well, especially
in mixed-sex as opposed to same-sex scenarios. The results furthermore suggest that there
is a correlation between both variables, even though one might be tempted to regard them
as independent. For example, one may note that territories occupied by females were com-
paratively smaller than those occupied by males (for illustration purposes, see figure 35).
The variables’ distributions with respect to arity, gender, or both, suggest that they can
indeed be incorporated in an algorithmic model for the detection of social interaction, be
it in the form of a priori profile parameters (gender), or as latent variables (arity).

2.4.3 Evaluation

The analysis of the newly acquired data has shown significant differences in the distri-
butions of δθ, δφ, and δd, for distinct genders and/or group sizes. Quality and quantity
of those differences lead to the assumption that algorithmic models for social interaction
will be capable of modeling and classifying such data accordingy, which will be further
evaluated in this section. Again, the multimodality of the present distributions, along with
the very good results from the evaluation in section 2.3.5, suggest the use of GMMs. For
this, the data from the second experiment were partitioned according to gender, arity, or
both, and the corresponding models were evaluated by 10-fold stratified cross-validation.
Figure 32 illustrates the performance characteristics for each classification task. Models
were computed for varying numbers of components, ranging from one to fifty. This was also
done as additional means to double-check the basic decision towards GMMs with roughly
ten components (see sections 2.3.4 and 2.3.5).
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Predicted
Actual mm mf ff Precision Recall F1-Score

mm 95612 40996 8702 64.8% 65.8% 65.3%
mf 34466 140646 14742 72.1% 74.1% 73.1%
ff 17386 13568 46568 66.5% 60.1% 63.1%
(a) Male-male, male-female, or female-female dyads (68.5% accuracy).

Predicted
Actual 2 3 4 Precision Recall F1-Score

2 19107 12248 11651 72.5% 44.4% 55.1%
3 3210 160836 24782 76.8% 85.2% 80.8%
4 4032 36315 140505 79.4% 77.7% 78.5%

(b) Groups of two, three, or four (77.7% accuracy).

Predicted
Actual 2mm 2mf 2ff 3mm 3mf 3ff 4mm 4mf 4ff Prec. Rec. F1

2mm 4944 448 0 1289 5912 292 3777 1616 250 44.9% 26.7% 24.0%
2mf 197 10269 0 342 2739 13 1698 531 1225 64.4% 60.4% 62.3%
2ff 2 2 7356 0 7 83 2 12 0 97.4% 98.6% 98.0%

3mm 701 362 0 15625 16286 1695 5489 2944 1248 46.8% 35.2% 33.0%
3mf 2184 1487 9 4099 87708 7564 4136 1510 1993 65.1% 79.2% 71.5%
3ff 403 58 60 1884 5388 21731 3533 509 222 53.9% 64.3% 58.7%

4mm 1308 462 3 3690 6709 3504 57846 5552 3358 60.5% 70.2% 65.0%
4mf 1040 1751 128 3433 7426 3192 14095 28835 2250 66.1% 46.4% 54.5%
4ff 223 1118 0 3007 2646 2243 5107 2088 19838 65.3% 54.7% 59.5%

(c) Male-male, male-female, and female-female dyads in groups of two, three, and four (61.6% accuracy).

Table 16.: Confusion matrices after 10-fold stratified cross-validation of GMM-based classifiers on
the second dataset.
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(a) Male-male, male-female, and
female-female dyads.

(b) Groups of two, three, and four.(c) Male-male, male-female, and
female-female dyads in groups
of two, three, and four.

Figure 32.: Performance characteristics after 10-fold stratified cross-validation of GMMs with 10
components.

Figure 32a shows that gender could be classified in socially interacting dyads with an
average accuracy of about 70%, for which the classifier chose the most likely model among
models of male-male, male-female, and female-female dyads, solely based on the likeli-
hood of the given observations under those models yet without prior knowledge of the
true gender as input, thereby showing that gender-specific behavioural patterns are in-
deed characteristic. Precision and recall are comparatively higher for mixed-sex than for
same-sex dyads. The fact that the classifier missed female-female dyads more often than
others is compensated by its precision for that class. From the confusion matrix in table
16a it follows that male-male dyads were partially confused with male-female dyads, and
vice versa, but rarely with female-female dyads. Female same-sex dyads, on the other hand,
were slightly more often mistaken for male same-sex dyads than mixed-sex dyads. Con-
sidering the results for mixed-sex dyads, this suggests that the classifier is slightly biased
towards interacting males, which is probably the case because the respective data show
the most regular distribution, especially in comparison to females (see figure 29, further
amplified by the much smaller class prior for female same-sex dyads.
Next, figure 32b features an average accuracy of about 80% for the discrimination of group
size. In other words, samples of dyadic interaction are classified as belonging to a pair of
persons within groups of two, three, or four. Precision and recall are about the same for
the latter groups, but noticeably less for groups of two. The confusion matrix in table 16b
shows that indeed a little more than 55% of the dyads in groups of two were mistaken
for dyads in groups of three or four with an almost identical rate of failure. Vice versa,
dyads in groups of three and four were classified as dyads in groups of four and three ev-
ery now and then, but only seldom as groups of two. Groups of three have a significantly
higher recall than the other two classes, whereas the classifier was most precise in case of
actual groups of four. In accordance with section 2.4.2, the most discriminant properties
of the variables of interaction geometry in the second experiment for groups of two versus
other arities are their distinctly peaked distribution of δθ and δφ, indicating full-frontal
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Gender Arity Arity & Gender
Measure δθ δφ δd δθ δφ δd δθ δφ δd

Mutual information 0.062 0.050 0.127 0.285 0.158 0.079 0.364 0.226 0.322
Uncertainty coefficient U(class|X) 0.060 0.048 0.122 0.298 0.165 0.083 0.186 0.115 0.164
Symmetric uncertainty (

2·I(X; class)
H(X)+H(class) ) 0.071 0.042 0.105 0.339 0.140 0.068 0.272 0.138 0.194

Table 17.: Relevance of δθ, δφ, or δd with respect to the class attributes.

and stable formations during the recordings. Nevertheless, similar to the prior discussion
about the classification of female same-sex dyads, the sample size was much less than that
for groups of three and four, and so is the class prior, thus effectively canceling out the
aforementioned peaks.
The last of the three classification problems is concerned with the discrimination of vary-
ing gender dyads in groups of varying size. This task is therefore a nine-class classification
problem. Figure 32c shows the results, where e. g. “3mf” represents the class of male-female
dyads in groups of three. As the figure shows, the average accuracy is down to about 65%.
This is nevertheless an acceptable result, regarding the results of the – so to speak –
marginal classification problems. Overall, recall is relatively wide-spread among the nu-
merous classes, whereas precision is generally closer to the average. It is not surprising
that the corresponding precision and recall are “out of the roof” for female same-sex dyads
in groups of two due its small sample size. In this nine-class problem, the distributions of
δθ, δφ and δd are so characteristic for this class (see figure 30) that even the small class
prior would not cancel out the effects on the overall model. Likewise, δd’s distribution for
dyads of varying gender in groups of three is especially characteristic for female-female and
male-female dyads, but here the effect is canceled out due to the similarities for δθ and δφ.
The confusion matrix in table 16c further illustrates that the classifier’s performance was
rather poor for classes “2mm”, “3mm”, and “3ff”. Despite the slightly better performance
for “4mm”, one can detect a general tendency towards less performance for male-male
dyads, regardless of arity. To the contrary, mixed-sex dyads are detected well, as similarly
indicated by the results in table 16a. The overall results for female-female dyads are yet
too ambigious with respect to varying arity to allow for generalization of the performance.
Finally, it should be noted that the models show consistent performance in all three classifi-
cation domains. Accuracy, precision and recall increase slightly with an increasing number
of components. Especially the results of the nine-class problem suggest the use of more
components. The objective, however, is not the further optimization of the classifier for
this particular dataset, but achieving acceptable results for the general problem. In this
regard, the demonstrated results corroborate the choice of about ten components for GMMs
as algorithmic models for the detection of social interaction.

Similar to section 2.3.5.5, δθ, δφ and δd can be ranked in terms of their relevance for
each of the three problem domains, as illustrated in table 17. According to the uncertainty
coefficients, δd is predominant for the classification of dyads in regard of gender, followed
by δθ and δφ with roughly equivalent importance. This attributes to the related work
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and prior discussions which already assumed that differences in interpersonal distance
were characteristic among both sexes. For the group size problem, on the other hand, the
coefficients for δθ, δφ, and δd are each about half of their predecessor, in that order. Recall
that, in spite of the fact that all values were computed for unit-less variables and that the
uncertainty coefficient is a supposedly normalized quantity, the underlying representation
is still non-linear. Therefore it cannot be reasoned that one variable were twice as impor-
tant as another. From the information-theoretical perspective one could however argue
that on average twice as many nats are needed in order to convey the same information,
given the class attribute. This perspective also allows for a comparison of the gender- and
arity-problems in so far as that arity can be considered as more influential on interaction
geometry than gender. For the nine-class problem, δθ and δd are equally ranked in terms
of uncertainty, followed by δφ, even if the latter does not weigh significantly less. This
can be losely interpreted as being accounted for by the “sum” of the separate informations
according to gender and arity.
At this point, δd and δθ seem to be prevalent for the modeling of interaction geometry.
The evaluation of the first experiment however showed δd and δφ to be the most important
variables, in that order (see table 13). Nonetheless, in both cases δd is the predominant
factor, which also fits into the results from related work and the discussion from section
2.4.1. Especially in regard of the ranking of δθ and δφ, the overall sample sizes should be
taken into account and therefore the results should not be generalized too much. Further
experiments at much larger scale will help to determine which one has more utility, if at
all. It is also likely that further experiments will show that the utility of the variables
further depends on the social and/or physical context in which the respective transactions
occur. For mobile agents, it is more difficult to measure δφ than δθ or δd as it requires
either precise knowledge of location on small spatio-temporal scales or equivalent, yet less
accurate, means like the one presented in the remainder of this work (chapter 3).

2.4.3.1 Reevaluation of the first dataset

The previous section evaluated the performance of the newly acquired dataset for varying
gender and group size. Due to the experimental design, these data lack a class equivalent
to S⊖. Also, the problem domain was limited to groups of two, three, and four. Since the
proposed models are generative, the lack of S⊖ could be compensated by drawing sam-
ples from the model computed for S⊖ on the previous dataset (see section 2.2.5). However,
obtaining virtual data for S⊖ from the first dataset is not reliable in the gender-related con-
text of the second dataset. After all, only two females participated in the first experiment.
In regard of group size, though, the data from the first experiment can be re-evaluated
instead. In addition to the availability of S⊖ and the comparatively greater sample size,
this would also allow to analyze the task with respect to group sizes from two to nine
(except for eight, refer to table 2 on page 28).
The first dataset was therefore split into classes S⊕2 , …, S⊕7 , S⊕9 , S⊖, with class priors cor-
responding to the relative frequencies within the dataset. Table 18 features the confusion
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t

(a) Gaussian Mixture Model (GMM) (b) Semi-Wrapped Gaussian Mixture Model
(SW-GMM)

Figure 33.: Performance characteristics of GMMs- and SW-GMMs-based classifiers for a varying num-
ber of components after 10-fold stratified cross-validation on S⊕2 , …, S⊕7 , S⊕9 , and S⊖.

matrix of this eight-class classification problem for a GMM-based classfier. Most notably,
whereas overall accuracy is comparable to that of the three-class problem in the previous
section, precision and recall are far from reasonable for all but S⊖. Comparing the results
for S⊖ with those of the original evaluation (table 11 on page 73), one may notice a de-
crease of precision together with an increase of recall. This is unfortunate as it obviously
implies an increase of false positives for the whole equivalence class of S⊕. Other than
that, among S⊕2 , …, S⊕7 , S⊕9 , the classifier least often predicted samples as S⊕7 , regardless
of the actual class. This is explained by the small class prior of only ∼ 2.5% in conjunction
with the overly high variance of the samples for groups of seven (refer to the scatterplots
in appendix B). In general, the higher the variance of the variables in one of S⊕n , the more
samples from the corresponding classes were predicted as S⊖.
A considerable fraction of the erroneous decisions occurred in favor of neighbouring classes.
This is probably caused by the increasing variance of δθ, δφ and δd for groups of more
than four or five individuals. In other words, this means that an increasing number of per-
sons will position and orient themselves in more possible ways, especially in circumstances
where the available space is limited, like it was the case during the first experiment. Even-
tually, this again leads to the question whether precision can be improved by increasing
the number of Gaussians, or using SW-GMMs instead of GMMs, as some periodic proper-
ties might be attenuated only once the whole dataset is split in distinct S⊕n . Once more,
it should be noted that here the idea is not optimizing the classifier for this particular
dataset, but finding out whether more Gaussians can possibly capture class-specific (in
other words: arity-specific) effects. To evaluate this, GMM- as well as SW-GMM-based clas-
sifiers were computed for varying number of components, as illustrated in figure 33. Not
unexpectedly, the results show only marginal improvements for an increased number of
modes for both GMMs and SW-GMMs. It follows that there are no elementary differences
between the variables’ distributions for distinct group size in the “real world”, or that
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Predicted
Actual S⊕2 S⊕3 S⊕4 S⊕5 S⊕6 S⊕7 S⊕9 S⊖ Prec. Rec. F1-Score
S⊕2 4103 1491 5270 1289 70 11 1830 876 51.1% 27.5% 35.7%
S⊕3 1318 11267 9821 2436 111 24 1552 1593 43.7% 40.1% 41.8%
S⊕4 1065 3696 42566 4170 939 167 4954 2815 48.1% 70.5% 57.2%
S⊕5 255 5648 10669 14294 2909 250 10552 19763 32.0% 22.2% 26.2%
S⊕6 157 244 3586 5335 5136 525 8403 2594 31.2% 19.8% 24.2%
S⊕7 3 315 2732 3575 904 1658 4911 11270 32.9% 6.5% 10.9%
S⊕9 594 1485 8647 8790 3513 1079 41673 83331 38.7% 27.9% 32.5%
S⊖ 538 1640 5275 4762 2865 1319 33788 407131 76.9% 89.0% 82.5%

Table 18.: Confusion matrix of S⊕2 , …, S⊕9 , S⊖ after 10-fold stratified cross-validation of a GMM-
based classifier (63.9% accuracy).

Measure δθ δφ δd

Mutual information 0.054 0.061 0.160
Uncertainty coefficient U(class|X) 0.038 0.043 0.111
Symmetric uncertainty (

2·I(X; class)
H(X)+H(class)) 0.040 0.046 0.115

Table 19.: Importance of δθ, δφ, or δd with respect to S⊕2 , …, S⊕7 , S⊕9 , and S⊖.

Predicted
Actual S⊕combined S⊖ Precision Recall F1-Score
S⊕combined 245992 122242 83.1% 66.8% 74.0%
S⊖ 50187 407131 76.9% 89.0% 82.5%

Table 20.: Confusion matrix of S⊕combined vs. S⊖ based on the results from table 18 (79.1% accuracy).
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the sample size is insufficient to emphasize these differences. The former can certainly be
neglected due to related work and prior discussion in sections 2.4.1 and 2.4.1.5.
Now that the data for S⊕ have been split into subclasses, the relevance ranking of the
variables has changed (tables 19 and 13). After the split, the information gain of δd has
significantly increased, whereas δφ and δd can now be seen as conveying about the same
amount of information. Recall that for the same problem in the previous section, δθ turned
out to be the most dominant variable (table 17) while δd seemed irrelevant in comparison.
These findings do however not contradict each other. Instead, they relay that the impor-
tance of relative distance is proportional to group size. Clearly, shoulder orientation and
polar angle varied more in the second experiment when there were only small groups and
no further constraints on spatio-orientational arrangements. During the first experiment,
larger groups naturally occupied more space, and relative differences in shoulder orienta-
tion and polar angle tend to vanish with increasing group size.
So far, separate models per group size do not offer reasonable advantages. Aside from
investigating separate S⊕n , though, the question is whether – and if so, by how much –
the overall task S⊕ vs. S⊖ may yet benefit from separate models per group size. As an
idea, one could subsume the results for S⊕n from table 18 under a single virtual equiva-
lence class S⊕combined (table 20), and then compare these numbers to those for S⊖. Doing so
results in slightly better precision for S⊕combined in comparison to the results for S⊕ from the
first experiment (refer to table 11), together with a sligh decay of recall. It may therefore
seem as if favoring one model for S⊕ over combining multiple S⊕n is merely a matter of
trading off recall for precision. A comparison of the results for S⊖ from tables 11 and 20
however reveals significantly less false positives for S⊕combined – as such a notable benefit,
although one may argue that whether false positives outweigh false negatives is a matter
of application-specific intent. Summing up, however, it was shown that the overall model
can indeed be improved by incorporating arity.

2.4.3.2 Posterior probability of group size

It was mentioned that in addition to potential improvements of the model itself, the incor-
poration of latent variables such as group size could also help in the search for a function
p(n|x,θ), yielding a probability distribution over the arity n, given a sample and a model
of interaction geometry. A posteriori, such a function could e. g. provide auxiliary infor-
mation for negotiations between two or more mobile agents about social situations.
From the previous section it is clear that computing one model per group size and classify-
ing new samples according to these models yields poor precision and recall for the distinct
classes. It was however shown that using this mechanism and combining the results into
one virtual equivalence class S⊕combined yields an increase in precision, albeit at the cost of
a few more false negatives, while the classifier’s overall accuracy remains about equal in
comparison to the first approach (refer to tables 11 and 20). Also, recall the assumption
that the higher variance which goes along with both larger groups and S⊖ plays an im-
portant role in the results. Therefore the idea is to use a two-way procedure where first
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Predicted
Actual S⊕2 S⊕3 S⊕4 S⊕5 S⊕6 S⊕7 S⊕9 Prec. Rec. F1-Score
S⊕2 4758 1630 4817 1245 91 35 2364 49.9% 31.8% 38.9%
S⊕3 1578 11356 9520 3201 146 77 2244 44.4% 40.4% 42.3%
S⊕4 1608 4234 41273 4793 1121 362 6981 50.5% 68.4% 58.1%
S⊕5 412 5895 10637 19936 3013 556 23891 40.4% 31.0% 35.1%
S⊕6 149 315 3584 4905 5374 744 10909 37.7% 20.7% 26.7%
S⊕7 7 343 2908 3678 933 3752 13747 45.1% 14.8% 22.3%
S⊕9 1022 1798 8919 11607 3578 2797 119391 66.5% 80.1% 72.7%

Table 21.: Confusion matrix of S⊕2 , …, S⊕9 after 10-fold stratified cross-validation of a GMM-based
classifier (55.9% accuracy).

the data are classified as S⊕ or S⊖, and second those data which were predicted as S⊕
are further classified according to group size. Consequently, the one model for S⊖ will be
disregarded during the second step, hence getting rid of a bit uncertainty.
Table 21 lists the results after cross-validation of a classifier built on S⊕2 , …, S⊕7 , S⊕9 , but
not S⊖. According to the results, the precision has increased for all groups of size greater
than four, particularly so for groups of nine. Also, recall has improved for all classes, again
even significantly for groups of nine. As a matter of fact, though, the classifier’s overall
performance is still far from satisfying. To overcome this issue one could of course further
reduce the number of classes in an attempt to eliminate variance and corresponding un-
certainty. In this regard, one could argue that groups of five or more persons are quite
rare (see also section 2.4.3.3). And indeed, taking into account only the classes S⊕2 , S⊕3 ,
and S⊕4 yields a notable increase in accuracy. Not unexpected, this is even more so than
in comparison to just leaving out S⊖, where variance is high but the distribution of the
samples differs more from S⊕2,3,4 than S⊕5,6,7,9 differs from S⊕2,3,4. Altogether this shows that
a posteriori information on group size is realizable, if only for smaller groups, which may
yet be unsatisfactory. Table 21 however also reveals that part of the erroneous predictions
happened in favor of neighbouring classes. One notable exception is S⊕6 for which most
samples were predicted as S⊕9 instead. This is likewise the case for S⊕5 , yet less emphasized.
Again, this is probably a consequence of the sample size, i. e. the relative short durations
for which groups of five, six and seven were observed (see table 2). The distributions of
δθ, δφ and δd for S⊕2 , on the other hand, have a lot in common with those for S⊕4 (see ap-
pendix B). Thus, deciding between the latter two classes is often merely a matter of their
class priors. The obvious question is whether this notion of frequent predictions towards
adjacent classes can be exploited, for instance in terms of the expected value

E [N|x,Θ] =
∑
n

n · p(n|x,Θ) . (99)
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Equation (99) obviously expresses what the classifier momentarily expects as group size n,
given the present observation x and the models Θ that correspond to the respective arities.
From this point of view, all results are equally “valuable”, i. e. the classifier weights its
decision according to the certainty or uncertainty of each model. Unfortunately, deciding
for S⊕i when the real class is actually S⊕i+3 is no different from deciding for S⊕i+2, the
latter being much closer to the truth. Decision theory, in comparison, is concerned with
maximizing the outcome, or alternatively minimizing the loss, among two or more “actions”
under the uncertainty of two or more future “states of nature”, each of which may turn out
to be true with a prior probability [223, 30, 235]. These probabilities may be derived from
past observations or just as well be subjectively anticipated. For each pair of action and
state, a value is then assigned that represents the payoff once that course of action were
taken and that state effectively were to occur. As payoff may or may not be personally
assessed in a possibly non-linear fashion, its value can furthermore be expressed in terms
of its utility. For instance, someone might rate being given one million dollars for sure
much higher than being given a 50% chance of winning three million dollars, although the
expected values are in fact not far apart [235]. This approach could be transferred to the
present problem as follows: Actions are given in terms of “choose S⊕2 ”, “choose S⊕3 ” and
so forth. States of nature then refer to the ground truth of the group size, and their prior
corresponds directly to the posterior

p(n|x) ∝
∑
k

p(n|x,θk)p(k) (100)

which was previously determined by the classifier. Let ai denote the action “choose S⊕i ”
and let sn denote the state “ground-truth is S⊕n”. For each pair of action i and state n, the
payoff is then given by vni = 1/(1+ |n− i|). The latter introduces a penalty for increasing
distance between chosen action and actual state, i. e. vni represents an assessment of utility.
The payoff table V is subsequently defined as follows:

Decide for S⊕j
S⊕2 … S⊕9

Tr
ut

h
is
S
⊕ i S⊕2
1

1+|2−2| … 1
1+|2−9|

S⊕5
... . . . ...

S⊕9
1

1+|9−2| … 1
1+|9−9|

For every action, its expected outcome with respect to the state is thus determined by

Ei [vNi|x,θ] ∝
∑
n∈N

vni · p(n|x,θn)p(n) (101)

and hence the second step of the classification problem consists of finding

argmaxi Ei [vNi|x,θ] . (102)
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Predicted
Actual S⊕2 S⊕3 S⊕4 S⊕5 S⊕6 S⊕7 S⊕9 Prec. Rec. F1-Score
S⊕2 3964 1913 5418 1721 194 30 1700 55.9% 26.5% 37.3%
S⊕3 1128 11376 9996 3696 172 81 1673 45.1% 40.5% 42.4%
S⊕4 930 3845 43486 5065 1211 351 5484 50.8% 72.0% 59.2%
S⊕5 172 5570 10704 22860 2977 673 21384 39.0% 35.5% 34.5%
S⊕6 88 335 3584 6363 6048 843 8719 37.2% 23.3% 25.8%
S⊕7 1 272 2754 4198 1087 4662 12394 46.6% 18.4% 21.6%
S⊕9 810 1920 9686 14772 4593 3357 113974 68.9% 76.4% 72.7%

Table 22.: Confusion matrix of S⊕2 , …, S⊕9 after 10-fold stratified cross-validation of a two-step
GMM-based classifier and maximum expected payoff (56.0% accuracy).

The performance results of this two-way procedure are shown in table 22. From these it
follows that precision got better merely for S⊕2 , while recall increased for all classes except
S⊕9 . Notably less samples from other classes were predicted as S⊕2 , yet more instances from
S⊕2 where mistaken for S⊕4 . The performance of S⊕5 has considerably improved in so far as
that much more instances were correctly predicted and also much less were mixed up with
S⊕9 . For S⊕3 , the “distance” to erroneously predicted samples decreased, and also much
less S⊕3 were mistaken for S⊕9 . Nonetheless, too many S⊕3 are still misclassified as either
S⊕4 or S⊕5 . Last, just like before S⊕6 are often seen as S⊕5 , but again notably less as S⊕9 .
All in all, the two-step procedure has helped to reduce uncertainty, in particular between
instances of S⊕9 and the remaining classes, and has furthermore brought any misclassified
instances closer to the ground truth. Unfortunately, though, the overall performance in-
crease through maximum expected payoff is insignificant in comparison to the standard
maximum posterior approach. It should also be noted that much of the classifier’s accuracy
is due to the comparatively large number of samples from S⊕9 .
Surely the results are better than making random decisions between the seven classes,
and the predictions could possibly still be used as additional input for mobile agents that
negotiate about social situations. The standalone performance is however not enough for
reliable a posteriori information on group size. The presented procedure, which borrowed
its idea from decision theory, is considered a first approach to solving this problem. Even
though only marginal improvements were observed, they suggest further research in this
area. In spite of the fact that simple adaption of the payoff vni in form of a simple expo-
nential decay did not yield significant results, adapting values and distribution of payoff
as well as further research on the class priors seems promising. Section 2.4.3.3 discusses
prior probability distributions of group size in more detail.
As identification of group size is primarily a problem of at least two agents, it would also
make sense to include the (uncertain) knowledge of other agents into the process. This
augmentation of decision theory towards maximization of utility among multiple agents
can then be seen as a problem of game theory. As samples are always measured with
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respect to dyads, the first logical step into this direction could consist of incorporating the
partner’s measurements of the variables which should always be available, or else could be
estimated as discussed in section 2.2.5.4. At the same time this would yield the possibility
to include other class priors or even other specific models, for instance those which were
learned by other agents during their lifespan.
What certainly has to be taken into account with respect to the present work is that each
of the models for S⊕2 , …, S⊕7 , S⊕9 features rather distinct peaks which are specific for the
respective group size, whereas there often is a natural overlap in the underlying data. Due
to these overlaps, it is expected that a posteriori estimation of group size will in any way
not improve by much for this particular dataset. Generally speaking, the more dynamic
or, to the contrary, the more limited a situation is, e. g. in terms of physical constraints,
the more likely such overlaps will be attenuated. The latter does however not contradict
the general case of modeling interaction geometry. As far as dynamics in social situations
are concerned, an alternate approach will be presented in chapter 5.

2.4.3.3 On class priors for group size

Section 2.3 discussed that, among other things, one advantage of generative classifiers is
their incorporation of class priors. The posterior probability of a class, given an observation
and a set of class-dependent model parameters, is determined by its likelihood, weighted
by the prior probability of the class. Under Bayes’ Rule, classifiers then choose the class
with the maximum posterior. From a frequentist perspective, these class priors can be won
by analyzing the relative frequencies of each class in a dataset, as opposed to Bayesian
inference which models uncertainty of variables in the form of probability distributions in
their own right [218]. For the evaluations in sections 2.3.5 and 2.4.3, the class priors were
computed based on the number of occurrences of each class in the respective datasets
because the overall number of observed subjects and groups is rather small and hence
these priors resemble the objective truth during the experiments. The distributions of the
class priors should nevertheless be generalized in order to arrivate at a preferably universal
model. As a matter of fact this turns out to be a very difficult problem. The class priors for
males and females, for instance, could be chosen according to demographic studies, from
which it follows that e. g. a German is about 1.05 times more likely a woman than a man
[3]. World-wide, it is however 1.01 times more likely the other way around. The census
furthermore shows a significant change of this ratio along with increasing age [4]. Coming
back to social interaction detection, it is also quite clear that such a class prior strongly
correlates with the actual social situation and its environment. However, following the
discussions in section 2.4.1 this comes to no surprise.
Social networking has attempted to overcome these matters by means of random graphs,
based on the seminal works by Erdős and Rényi [87, 88]. A random graph GN,M ofN nodes
and M edges is constructed via drawing one out of

((N2)
M

)
equiprobable graphs. Another,

recently more widely adopted formulation is that of a random graph GN, whose vertices
represent individuals and whose edges represent domain-specific social links, such as the
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fact that adjacent individuals participate in the same social situation, and where each of
the

(
N
2

)
pairs of nodes is connected with probability 0 ⩽ p ⩽ 1, i. e. all edges have the

same probability and all are drawn independently of each other [40]. Thus the average
number of edges is expected to be

(
N
2

)
· p.

Since each draw is equivalent to a Bernoulli trial, the probability of a vertex v with degree
d follows a binomial distribution:

p(deg(v) = d|N,p) =
(
N− 1

d

)
pd(1− p)N−1−d (103)

It can be shown that, if N · p → λ for constant λ, N → ∞, and p → 0, this distribution
approximates a Poisson distribution:

p(deg(v) = d|λ) =
λd

d!
e−λ (104)

This kind of distribution of the vertex degree is in fact often found in related works
[152, 217, 222, 219]. Erdős, Rényi, and Bollobás have shown several important properties
for these graphs, such as the expected number and size of cliques as a function of N · p, or
consequently the probability p(k) = (1− pk)N−kp(

k
2) that k vertices span a clique in GN,

i. e. a complete subgraph of k vertices.
It is tempting to use equation 104 for modeling the prior probability of group sizes in social
interaction, for which groups of one are interpreted as individuals which are not part of
any group. From this point of view, groups of zero hence do not exist. For this, a zero-
truncated Poisson distribution compensates for the missing zero by scaling the remainder
of the distribution as follows:

p(deg(v) = d|λ) =
1

1− e−λ
λd

d!
e−λ (105)

Poisson distributions have been used for modeling group size [152, 79] (see figure 34).
They fit both distributions [152] and [79] well (see figures 34a and 34b), which can e. g.
be verified via Pearson’s χ2-test for goodness of fit. To the contrary, Moussaïd et al. [217]
reported that Poissons were a suitable match for only one out of two populations in their
research, which they assume to be a consequence of the distinct environments in which
the observations were made. In the context of random graphs, emphasis should be put on
sufficiently high number of vertices, in turn relating to sample size. While sample sizes
were arguably high in the studies from James and Dunbar, they were considerably less (in
terms of groups) in case of Moussaiïd [152, 79, 217]. Also, note that Dunbar did not report
any statistics with respect to groups of one. Similarly, groups of one did not occur during
the second experiment of the present work, albeit as a result of the experimental settings.
The distribution of groups in the first experiment is in principle similar to both [152] and
[79], yet in spite of the presence of groups of one, corresponding to individuals outside
of or transitioning between groups), the distribution is rather heavy-tailed and therefore
not a good match for a Poisson (see figure 34c). Apart from Poisson distributions, James
also fitted negative binomial distributions and found that the latter were a significantly
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(a) Group sizes according to [152].(b) Clique sizes according to [79].(c) Group sizes from the first ex-
periment.

Figure 34.: Distribution of the group sizes plus fitted zero-truncated Poisson distributions (red).

better match for about 94% of the 18 populations which he had observed [152], whereas
Poissons would match only about 61% at the same significance level (p < 0.05). A negative
binomial distribution is of the form

p(k|r) =

(
k+ r− 1

k

)
(1− p)rpk (106)

and can be understood as the probability of observing p(k|r) groups of size k until encoun-
tering r groups of different sizes. James argues that the mean of a Poisson is constant in
spite of the fact that environments and settings might change between observation periods
[152]. He therefore assumes that a Poisson would “fit those distributions from social sit-
uations where the relationships governing the combinations of individuals were relatively
stable” [152]. A negative binomial, on the other hand, were are supposedly better match
for “diverse empirical distributions” since it could subsume a “family of different Poisson
distributions” [152]. The relation between the negative binomial and the Poisson distri-
bution can be shown analogously to equation (104) by considering the limit r → ∞ for
constant λ = r p

1−p .
At the bottom line, none of the presented approaches is yields a panacea for the issue of

modeling class priors. Related models are based on nothing but random graphs for which
the probability of each edge has the same probability and is drawn independently from
the others. In a recent review, Newman et al. reason that random graphs “turn out to
have severe shortcomings as models of such real-world phenomena” [222]. From the studies
of numerous social (and other) networks, it follows that in many cases vertex degree is
unlikely to follow a Poisson distribution, so that one has to mind the possibility that im-
portant properties of the corresponding networks are being ignored once such distributions
were used [222]. To the contrary, social networks derived from real-word data are often
found to obey heavy-tailed distributions. Heavy-tailed distributions exhibit a “heavier” tail
than the exponential distribution, hence their name. These properties express themselves
in great skewness and/or kurtosis. Among the family of heavy-tailed distributions, the
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fat-tailed distributions typically follow the power law, stating that one variable changes as
the power of another. Fat-tailed distributions are widely found in social networking theory
[219]. It is in fact an important insight that actual distributions from studies are mostly
far from random [219]. Coming back to the experiments that were presented as part of this
work, it is without doubt transparent that the distributions of group size and gender were
strongly influenced by the experimental settings, more precisely the fact that the gender of
dyads was not chosen randomly, and neither random are the observations of groups of nine
individuals. Moreover, most random graphs fall short of the ground truth since in general
they consider only undirected edges. Clearly, it can make a difference how probable it is
to have an edge from A to B as opposed to an edge from B to A. For example, recall
the finding that pairs of persons judged their mutual relationships differently in terms
of being good friends or merely acquaintanced [143]. For these reasons, Newman et al.
postulate the generalization of modeling towards non-poisson distributions and therefore
investigate directed graphs, bi-partite graphs, and random graphs with arbitrary distribu-
tions of vertex-degree [222].
Yet another phenomenon which is commonly found in social networks is that of triadic
closures, describing that strong ties from A to B and A to C imply at least a weak tie
from B to C [118]. Social network analysis makes use of this in terms of the clustering
coefficient in order to quantify the degree of clustering of a particular graph [341, 222].
The clustering coefficient, for example, plays an important role for the small world model
by Watts and Strogatz [341]. In comparison to modeling random graphs, the small world
model is based on the notion that the distance between vertices may actually relate to e. g.
geographic or social distance, and that in such cases the probability of being connected
tends to be higher for many scenarios. The model thus minimizes the average path length
between vertices, whereas it maximizes the cluster coefficient [341, 219].
Summa summarum, it follows that class priors may be generalized under certain condi-
tions, one of which is invariance of environment and/or context over the course of the
observations. A lot of research has been done on random graphs, and many (social) net-
works have been successfully modeled this way. Among others, negative binomial, Poisson
and fat-tailed distributions are predominant in the field, but both, distributions and their
parameters, have to be chosen with great care and are usually application-specific. New-
man goes as far as saying that the field still had to be considered as being “in its infancy”
[219]. In regard of the present work, the modeling of class priors is therefore an open
question albeit an essential one. It is already clear that, just like profile parameters, the
distributions of gender, group size, or even the choice of F-formation are significantly in-
fluenced by multiple factors such as the environment, the purpose of a social transaction,
or personal parameters. For this work, the relative frequencies of the classes have been
used to model prior probabilities since they reflect the ground-truth during the respective
experiments. In the attempt of finding a preferably universal model, more experiments
will have to be conducted in order to determine one distribution that minimizes the error
in relation to the actual distributions. It is highly likely that no such single distribution
can be found and hence that distributions of class priors have to be chosen depending on
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other data that are known to involve (mobile) agents, and that distributions more often
than not must be chosen according to specific applications.

2.4.4 Discussion

The last part sought to investigate options for improving the model for social interaction
geometry through integration of profile and/or other parameters. Corresponding questions
were how a priori knowledge could be integrated, and if so, to what extent would it yield
improvements for the underlying problem of determining interaction as evidence for social
situations. Lastly, it was investigated whether the model could be improved in a way such
that information like group size can be inferred a posteriori.
According to the related work in socio-psychological research over the last decades, it
was determined that a multitude of latent and non-latent variables influence proxemic
behaviour at various degrees. Among those variables that have sincere and noticeable
effects on proxemics are for instance culture, gender and age. Aside from such more or
less personal profile parameters, physical and other environmental constraints naturally
have their share in altering proxemic behaviour. These parameters are often difficult or
perhaps impossible to compute or understand in their entirety. Nevertheless, a particu-
larly intuitive and rather expressive non-personal variable is given in terms of the number
of interactants in a social situation. A small number of related papers have investigated
group size from different perspectives and under varying circumstances. Their findings and
possible consequences for the distribution of prior probability of arity were discussed in
section 2.4.3.3.
Since gender and arity were considered as the most suitable variables because they can
easily be quantified, and especially because they are (mostly) unambigious, a second series
of experiments was conducted in order to determine if, in general, these two parameters
convey enough information to have considerable influence on the algorithmic model for
social interaction geometry. Indeed, in accordance with related work, the variables δθ, δφ,
and δd feature characteristic conditional distributions with respect to gender and/or arity.
It is certainly justified to consider related work as ambigious in this regard. Likewise, no
overly simplifying hypotheses should be concluded from the observed distributions of the
variables, such as the presumption that women would generally interact at closer ranges
than men. Nevertheless, the distributions are distinct enough to safely assume that, even
though not explainable by simple heuristics, they still vary under gender and/or arity alike.
This is corroborated by the information gain of each of the variables with respect to the
classes, from which it e. g. follows that distance is predominant for distinct behaviour of
men and women (in the present data). More generalizing statements would clearly require
much bigger datasets, and due to the high diversity of human behaviour, as well as the
influence of further latent variables, it is also doubtful that individual (marginal) variables,
such as shoulder orientation or relative distance alone, will categorically obey any kind
of generalization. On the other hand, the integration of multiple variables of interaction
geometry does in fact show interesting properties which also align with the common notion
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in related work, for instance that women claim smaller territories than men or how groups
of different sizes are likely to adapt certain formations. For the second dataset, this is illus-
trated by figure 35. Likewise, the data from the first dataset were analysed with respect to
varying arity in order to find further confirmation, and also because naturally occurring
groups of up to nine people were observed in the original experiment while cardinality was
a controlled parameter in the second experiment. Note that whereas figure 36 illustrates
the distinct zones of interaction for groups of up to nine individuals, it also confirms that
variance and overlap are proportional to arity, which has been identified as one major
negative impact on classifier performance for a posteriori information about group size.
In a corresponding series of evaluations of the second dataset, the dataset was parti-

tioned according to gender and/or arity, and models were computed based on GMMs. More
precisely, the performance characteristics were determined for classifiers built on top of
models for male-male, male-female, and female-female dyads, and/or groups of two, three,
or four participants (see table 16). The results show that gender and arity can indeed be
inferred, with acceptable accuracy in case of gender and noticeably better accuracy in case
of group size. Combining gender and arity, and hence computing separate models for each
of {mm,mf, ff}× {2, . . . , 7, 9} resulted in comparatively poor performance, particularly for
male-male dyads in groups of two or three. It was presumed that this is a consequence
of both the variables’ distributions as well as the class priors, suggesting that subsequent
experiments ought to be conducted for further clarification. At the bottom line, though,
the results prove that both gender (more precisely biological sex) and arity have in fact
significant influence on proxemic behaviour, and thus should be respected by algorithmic
models of social interaction geometry.
The first dataset was subsequently reevaluated according to group size. This dataset is
about twice the size of the second dataset and features groups of up to nine individuals.
Also, the second series of experiments was designed such that all subjects were continu-
ously engaged in mutual interaction (S⊕), so that this reevaluation allowed for embedding
arity in the larger context of S⊕ vs. S⊖. Due to the fact that for some group sizes the
number of samples is still small, which is not unexpected since larger groups naturally
occur less often (refer to section 2.4.1.5), and because some observations lie close to the
periodic limits of δθ or δφ, classifiers were now based on either GMMs or SW-GMMs for
S⊕2 , …, S⊕7 , S⊕9 , and S⊖. Arguably, the overall accuracy of the classifiers was acceptable at
about 64%, but precision and recall were insufficient. SW-GMMs would not perform better
than their non-periodic counterparts.
Further analysis of the confusion matrix (see table 18) revealed that erroneous predictions
often occurred in favor of adjacent classes and that the higher variance of the variables
for bigger group sizes (n ⩾ 5) played an important role in the decision process. Following
the discussions in section 2.2.5, the variance is partly due to spatial constraints during the
first experiment, but naturally also due to increasing “degrees of freedom” along with in-
creasing group size (figure 36). The video footage, for example, features an occasion where
a group of three stood very close to a group of two, effectively reflecting the interaction
geometry of a group of five, and very likely a consequence of the limited space. In any way,
such corner cases do exist and should not be neglected. Proxemic behaviour in groups of
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(a) Male-male dyads in
groups of two.

(b) Male-female dyads in
groups of two.

(c) Female-female dyads
in groups of two.

(d) Male-male dyads in
groups of three.

(e) Male-female dyads in
groups of three.

(f) Female-female dyads in
groups of three.

(g) Male-male dyads in
groups of four.

(h) Male-female dyads in
groups of four.

(i) Female-female dyads in
groups of four.

Figure 35.: Orthographic projection of the intensity of social interaction according to group size
and gender, based on models corresponding to the second dataset.
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(a) Arity 2 (b) Arity 3 (c) Arity 4

(d) Arity 5 (e) Arity 6 (f) Arity 7

(g) Arity 9

Figure 36.: Orthographic projection of the intensity of social interaction according to group size,
based on models corresponding to the first dataset.
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two, on the other hand, is presumably subject to greater influence of variables like gender
or mutual social relationship than in bigger groups. Nevertheless, it is expected that par-
ticularly the characteristics of groups of five or more members would be attenuated once
more data were sampled. This is also reasonable in the common sense that more degrees
of freedom require more data [34, 218], when seen in terms of possible formations and
variations of proxemic behaviour instead of only variables of interaction geometry. As the
set of S⊕2 , …, S⊕7 , S⊕9 is equivalent to S⊕, the results were then subsumed under a single
virtual class S⊕combined which, in the larger context of presence vs. lack of social interaction,
led to an increase in precision for S⊕combined in comparison to the original evaluation (tables
18 and 11), albeit at the cost of recall. Whether applications would trade off recall for
precision or rather stick with the original approach is certainly domain-specific. In the
end, the increase in precision adds to the assumption that incorporating parameters such
as arity, e. g. by means of multiple specific models, tends to improve the overall approach.
At this point, one notable finding is that relative distance becomes increasingly important
once group size is taken into account, not only when seen from an information-theoretical
perspective but also explainable by the understanding that relative orientation and polar
angle become less important at scale with increasing group size. This is also why the results
of evaluating the second dataset do not contradict those from reevaluating the first dataset.
According to the former, δθ and δφ conveyed the most information whereas this is not
the case for the latter. As the second series of experiments was restricted to groups of two,
three, or four, the comparatively higher ranking of δθ and δφ is clear, just like the insight
that this effect vanishes the more groups grow in size. Another, yet very important, result
is certainly given by the finding that groups of two, three, or four individuals behaved
very much alike in the first experiment and the second series of experiments although they
were totally unrelated. This strongly attributes to the hypothesis on the generalizability
of algorithmic models of social interaction geometry.
The next research question of this section was concerned with a posteriori information
about group size. So far, the classifier was designed with the main goal of predicting pres-
ence or lack of social interaction from samples of dyadic transactions. Even though the
dataset was partitioned according to group size, and corresponding models were learned
for the reevaluation with respect to group size (and possible improvements of the principle
S⊕ vs. S⊖ problem), group size is a priori unknown. Among other things, mobile agents
might benefit from a posteriori knowledge about group size, for instance when negotiating
on the whole set of persons who are the supposed members of a particular social situation.
The classifier performed poorly with respect to discriminating between all of S⊕2 , …, S⊕7 ,
S⊕9 , and S⊖. To the contrary, satisfying results were shown for the general classification
of data according to S⊕ respective S⊖, with about 80% accuracy and arguably acceptable
precision and recall of both classes. Therefore the idea was using a two-fold procedure
where the first step is only concerned with discriminating between S⊕ and S⊖ (or S⊕combined
and S⊖ for that matter), and the second step further processes the certainty or uncertainty
of the first classifier about group size for an improved prediction thereof. Computing the
expected value for group size would not suffice because at least some of the distributions
of δθ, δφ and δd have too much overlap among groups of different arity. In particular,
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those classes that feature high intra-class sample variance will likely yield GMMs with
highly variant components and therefore mostly evenly distributed probability density, as
opposed to classes with low intra-class sample variance. In the latter case, the probability
density is more likely to have several characteristic modes, but inbetween those modes
the probability density would be comparatively low. As a consequence, the likelihood of
the models for bigger group sizes will most certainly not decline below some threshold,
and therefore the expected value will suffer from the weights of those classes with higher
intra-class sample variance.
For these reasons, an alternative approach was presented, based on the idea of maximiz-
ing the “payoff”, like for example postulated in decision theory. Payoff was quantified as
a function of the distance between chosen and possible group sizes. These values were
weighted with the prior probabilities with which groups of different arities occur, and fi-
nally the group size with the maximum value for expected payoff was chosen. This way it
was possible to reduce the misclassification rate between neighbouring classes which conse-
quently showed in slightly increased precision and recall, even though the overall accuracy
would remain about equal to the results based on maximum posterior selection (tables
21 and 22). The results support the reasoning that a posteriori estimation of group size
can be realized. In spite of the fact that the classifier is far from being usable in terms of
precision, it is still way better than random, and its predictions, or at least the underlying
models’ likelihoods, might nonetheless serve as auxiliary evidence in the negotations of
mobile agents. The presented approach should be regarded as a first step in this direction,
and future work should e. g. continue with a more detailed analysis and modeling of the
class priors, or with finding ways to reduce intra-class sample variance respective ways to
attenuate the specific characteristics per group cardinality. Generally speaking, for this
particular approach towards posterior estimation of group size, bigger groups will likely
continue to pose a problem. Instead one might think of alternatives like considering only
those observations from e. g. the three mutually closest dyads.
There is no doubt about the influence of profile parameters such as gender or latent vari-
ables like group size, and that the determination of social interaction can indeed benefit
from incorporating such parameters. The remaining question is thus concerned with the
modalities of incorporating additional knowledge into algorithmic models for social inter-
action geometry. Biological sex, for example, is a personal profile parameter. As such, it is
easily available a priori knowledge for all individuals in question of interaction. The fact
that this variable is dichotomous suggests that one could learn distinct models for men and
women, or with respect to the present work, distinct models for male-male, male-female,
and female-female proxemic behaviour in dyads. The appropriate models could then be
selected prior to predicting whether two corresponding individuals interact. Abstracting
over this idea leads to a decision tree where e. g. gender-specific decisions at the root
conclude which models are chosen at the next layer. This concept is easily generalized
for further parameters. On the other hand, the disadvantages of this approach are quite
obvious. First, agents would likely have to store numerous models in order to cover each
and every possible parameter setting. For the basic case of gender in dyads, this leads
to six models ({mm,mf, ff}× {S⊕,S⊖}). Incorporating further variables yields exponential
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growth, subject to their respective discrete domains. This issue can be somewhat com-
pensated by means of techniques such as decision tree pruning [212]. It is also put into
perspective by considering the fact that due to the choice of GMMs for interaction geome-
try, the actual number of parameters for each model is very low and linearly dependent on
the selected number of components. Other than that, one could also think of homographies
from specific variables of interaction geometry to generalized variables of interaction ge-
ometry. Consider for example a fictional finding from which it followed that women would
always locate themselves at closer ranges, and else their zones of interaction, e. g. due to
mutual relationship, would differ from a general model only in terms of scale. While this is
arguably far-fetched, one can still imagine that translation, scaling, and possibly rotation
of the observations of δθ, δφ, and δd might lead from a specific to a general model. If
something like that were possible, it would considerably reduce the necessary number of
models respective parameters. Second, in spite of pruning or the low number of model
parameters, the inclusion of additional variables and their (discrete) domains naturally
imply more degrees of freedom, therefore also requiring exponentially more training data.
Third, there is always a risk that personal profile parameters are (intentionally or unin-
tentionally) configured with the wrong values, thereby introducing systematic errors and
bias. Profile parameters may also be fuzzy or ambigious. Likely examples are gender, age,
or particularly “culture” (refer to section 2.4.1). Fuzziness is an interesting property and
might perhaps be exploited. Recall that the inclusion of profile parameters is primarily
supposed to aid in the discrimination of presence or lack of social interaction. It is further-
more evident that proxemic behaviour, aside from the assumption that there is a “greatest
common divisor” among humans, has its corner cases and that peoples’ behaviour some-
times just does not comply with what is expected under given circumstances (or profile
parameter settings, for that matter). The overall classification of S⊕ and S⊖ might hence
benefit from looking “past the edge”, so to speak, e. g. by means of a weighted average or
likewise a majority vote between models at adjacent nodes in a tree.
It is obvious that further research is necessary to achieve possible and sustainable modal-
ities for the incorporation of additional parameters in algorithmic models for social in-
teraction geometry. Parameters must be chosen with great care and with respect to the
corresponding application domain, for which only those parameters should be considered
that yield a significant information gain. Also, the introduction of specific additional vari-
ables may potentially be a consequence of relying on certain heuristics, which may or may
not enhance the model. However, heuristics are generally subject to some sort of interpre-
tation of a problem domain. Consequently, they may constrain the understanding of the
general domain according to the specific interpretation of the problem domain.





3
P O S I T I O N A N D O R I E N TAT I O N O F I N D I V I D U A L S

3.1 introduction and related work

So far, the construction and evaluation of the proposed model were based on data gath-
ered from surface-mounted motion capturing devices which tracked infrared markers worn
by the subjects who participated in the experiments. For the model to be applicable in
real world scenarios, it is however substantial to find means of measuring interaction ge-
ometry that do not depend on any external infrastructure, such as e. g. computer vision
equipment, GPS, or any active or passive fixated sensors. Instead, mobile agents should
be employed with self-sufficient techniques. Nevertheless, this does not necessarily imply
that other sensors or techniques should not be taken into account when they are available
and could actually help to reduce uncertainty, for instance in regard of location estimates.
As discussed in chapter 1, present-day mobile phones – in particular smart phones – fea-
ture numerous physical and logical sensors, for instance accelerometers, magnetometers,
gyroscopes, GPS receivers, Bluetooth, wireless networking, barometers, thermometers, near
field communication devices, and potentially also ultrasound senders and receivers [288].
Smart phones are capable of continuously sampling, interpreting, and providing sensor
measurements, which they do in a very unobtrusive manner, and prove to be a good
source of information when it comes to the detection of social interaction in terms of
interaction geometry. Modern Application Programming Interfaces (APIs) abstract from
raw sensor output to single variables or rather complete models of orientation angles in
degrees, acceleration in meters per second squared, pedometers, and so forth. In spite of
advanced APIs, however, accurate position and orientation estimates still pose a series of
complex problems, for example as introduced by sensor drift, bias, precision, sample rate,
quantization, calibration, alignment, non-orthogonality, non-linearity as well as numerous
more systematic and random error sources [188]. In the context of interaction geometry,
orientation and location of a mobile device furthermore have to be related to orientation
and location of the user.

This chapter will start with an overview of past and present techniques for estimating
mobile device attitude and position, upon which the wearing habits of mobile phone users
will be discussed. Finally, new approaches for relating mobile phone orientation to the
user’s body with respect to a global reference frame, as well as for measuring distance,
to some extent also including relative position (in terms of δφ), will be presented and
evaluated.

127
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3.1.1 Orientation

In an early study, Mizell [213] used accelerometer measurements to estimate a vector
parallel to the direction of gravitational force, and furthermore determined the dynamic
components of acceleration, regardless of device attitude. For this, the accelerations along
three orthogonal axes were sampled over the course of a few seconds and the samples
were averaged. Except for situations where the device would be in free fall or subject to
enormous acceleration (aside from gravity), the average vector v is parallel to gravitational
force. Since the horizontal plane of the accelerometer, and hence the device, is perpendic-
ular to v, the device’s attitude is therefore determined up to roll and pitch, yet with one
degree of freedom left, i. e. the angle about the yaw axis. Picking one of the samples at
random and subtracting the estimated v yields the dynamic part d of the measured force.
The vertical component p of d with respect to the device’s attitude can then easily be
determined by projecting d onto v. It follows that the horizontal component is given by
h = d− p. Note that the direction of h is ambigious, so that further processing would be
restricted to its magnitude |h|. Kunze et al. have augmented this idea in order to predict
complete device orientation solely based on accelerometer readings [179]. For this, they
employed simple heuristics according to which the acceleration along a pedestrian’s walk-
ing direction is supposed to be highest next to gravitational force. Instead of averaging
over the samples, they use a sliding window technique to determine the gravity vector v
whenever total variance is close to zero and magnitude approaches 9.81 ms−2. The hori-
zontal plane is defined through its perpendicularity to v. Samples from the accelerometers
are then projected onto the horizontal plane, and the walking direction is determined as
the first principal component, i. e. the first eigenvector of the covariance matrix of the pro-
jected samples. This leaves questions about the relative orientation between device and
body as well as the absolute orientation of the device with respect to some East-North-
Up (ENU) global reference frame. Based on the previous work, Henpraserttae et al. [142]
determined a transformation from sensor signals at arbitrary orientations into a global
reference frame, and report fundamental improvements on classification performance for
activity recognition tasks.

Other techniques determine global device orientation from a fusion of acceleration and
magnetic field measurements. For this, acceleration as well as inclination of the earth’s
magnetic field are typically measured along three orthogonal axes. These measurements
already yield information about two principal axes of the local coordinate system, since
accelerometer measurements are always subject to gravity so that a vector pointing to
the earth’s center is easily determined, as is a vector pointing at magnetic north derived
from magnetic dip. The third axis is then determined as the cross-product of these two
vectors, and finally either one of the first two vectors is recomputed as the cross-product
of the other two for orthogonolization, and all vectors are normalized. The former is also
known as the TRIAD algorithm [36, 300]. Nevertheless, this method is clearly suscepti-
ble to disturbances in the magnetic field, additional acceleration apart from gravity, and
clearly suffers from singularities at locations close to the magnetic poles. Such issues can be



3.1 introduction and related work 129

somewhat compensated through the additional incorporation of gyroscopes. Gyroscopes
measure rate of rotation in degrees per second or similar units. Integration over time conse-
quently leads to angles of rotation. Recall that rotation is not commutative, i. e. the order
of rotation matters. A typical rotation sequence is the yaw/pitch/roll sequence, commonly
found in applications for aircraft- or spacecraft attitude estimation. It can be shown, how-
ever, that the order of rotation does not matter for infinitesimal angles [188], from which
it follows that very high sample rates are mandatory in order to keep measured angular
rates at a minimum. Gyroscopes are not influenced by magnetic disturbances or accelera-
tion, which is why they are often fusioned with accelerometer- and magnetometer-based
systems. They are nevertheless susceptible to sensor drift and other systematic or random
errors. In spite of the fact that the fusion of gyroscopes and other sensors for improved at-
titude determination had been known for a long time [170], Barthold et al. were among the
first to exploit the fusion of low-cost gyroscopes with accelerometers and magnetometers
on consumer mobile phones [27]. In order to cope with drift they determined the average
drift of the sensor at different orientations over a series of measurements and subsequently
used the results for corrections during the actual integration process. It should be noted
that even though they used low-cost Micro-Electro-Mechanical System (MEMS) sensors,
operated at low samples rates of only 8 Hz for the accelerometer and magnetometer, as
well as 100 Hz for the gyroscope (note the difference), their estimations were predicted
within 6% of the ground truth.
Further improvements include the use of complementary filters, i. e. combined low-pass
filters to cope with short-term influences on accelerometer and magnetometer readings
together with high-pass filters which are supposed to compensate for long-term drift of
the gyroscopes, as well as linear or extended Kalman Filters (KFs), and finally also the
use of quaternion algebra to avoid singularities such as gimbal lock [174, 17, 94, 276, 58,
43, 344, 323].

3.1.2 Position

Indoor localization techniques are commonly based on a subset of time of flight of signals,
various kinds of fingerprinting and dead reckoning. Bahl and Padmanabhan were among
the first to introduce a radio-frequency based system called RADAR with which a user’s
location could be estimated “within a few meters of his/her actual location” [20]. This sys-
tem consisted of three base stations at three distinct locations on an office floor, operating
at 2.4 GHz. Samples of signal strength and signal-to-noise ratio were collected throughout
their scenario. These samples were then used for comparing actual measurements against
the sampled data for estimations of the user’s location. The authors report a median
resolution of two to three meters, from which they conclude that their and equivalent
systems are likely suited for applications at course room-level granularity. This finding is
further corroborated by [7] in [95], according to whom RF-based methods cannot achieve
accuracies below one meter due to their high frequencies and the lack of appropriate high
precision timers and measuring equipment in consumer hardware.
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In similar fashion, Bluetooth-based indoor localization systems were investigated in a num-
ber of studies [46, 24, 197, 52]. Bluetooth devices transmit at different power levels and
hence cover different ranges, the common range being considered as up to ten meters, al-
though practically the effective range is often much less due to distortions and reflections
of the signal. For enhanced resolution of signal-strength as measured by the mobile devices,
Bandara et al. [24] therefore proposed access points which would attenuate the signal, thus
achieving accuracy within two meters in up to 72% of their test cases. On a general side-
note, Bluetooth devices are assigned the roles of either master or slaves, where one master
can handle a maximum of seven slaves. The latter is an important fact in regard of social
interaction detection, as it would impose an undeniable limitation on cardinality, despite
the fact that groups of seven or more individuals are rather unlikely (figure 26a). Also,
devices are required to engage in a bonding through one of various pairing mechanisms,
of which most require some sort of user interaction during the process.
Next, WiFi-based methods also have a long history in indoor localization [54]. Based on
WiFi, positions are either determined via trilaterion of received signal-strength or by means
of fingerprinting. The latter is similar to RADAR [20] because it requires that the signal
strengths (and possibly additional features) of all access points which can be received at a
set of discrete locations are recorded in advance to estimating a user’s position. It follows
that fingerprinting can only provide position estimates with high average error since the
position of the best matching access point is chosen as the current position, according to
distant metrics between the actual and the previously recorded measurements [92]. Time
of flight, on the other hand, can theoretically provide better estimates of the user’s loca-
tion via trilaterion, but the proposed logarithmic models which relate signal-strength to
distance are rather simplistic [54] as they do not consider any disturbances, reflections, or
signal multihop. To some extent, these issues can be compensated with more or less so-
phisticated filtering techniques such as KFs or Particle Filters (PFs) [92, 50]. Evennou and
Marx [92], for instance, report average measurement errors of 2.56 meters for KFs as well
as 1.86 meters for PFs along a trajectory inside a building with four WiFi access points.
Much like WiFi fingerprinting, magnetic field fingerprinting has been exploited for the
purpose of indoor navigation based on the notion that the earth’s magnetic field is char-
acteristically disturbed by structure in buildings, installed equipment, power lines, water
pipes, and so forth [313, 55, 104]. Chung et al. recorded the deviation between measured
and actual heading along the corridors inside a laboratory building [55]. For every known
location, three-axis magnetometer measurements were determined at four different orien-
tations around the yaw-axis, namely 0◦, 90◦, 180◦, and 270◦. These measurements were
used to build a map so that later the location of a device could be determined by finding
the one location with the closest fingerprint according to Root Mean Squared (RMS) dis-
tance, for which they report a mean prediction error of about three meters and standard
deviation of about four meters. As a side-effect, since the fingerprints had been recorded
at four different headings each, the device’s orientation about the yaw-axis could be de-
termined with a mean angle difference of about 4◦ and standard deviation of about 5◦.
Similar errors were reported in a larger setting of two buildings with multiple floors, both
buildings connected via pathways. Galván-Tejada et al. [104] improved this method by
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using a Fourier transform of the signal, where the analysis of the transformed signal in
terms of its energy signature relaxed the information gathering process in so far as to
help get rid of the need to sample measurements in several orientations about the yaw-
axis. As a matter of fact, though, they only evaluated how the system performed with
respect to recognizing rooms and therefore coarse granularity. Somewhat related to the
prior techniques, Prigge and How [251] used multiple low-frequency magnetic field bea-
cons throughout a building [251], while Pirkl and Lukowicz propose magnetic resonant
coupling, employed as a system of surface-mounted transmitter coils in conjunction with
mobile receivers [239, 240]. The system is characterized by an oscillating magnetic field,
thus effectively reducing disturbances through even large metallic objects. Depending on
the number of transmitter coils, they report quite accurate measurements, ranging from
44 cm accuracy with 33 cm standard deviation for one coil to 4 cm accuracy and only 6 cm
standard deviation with four coils. Nevertheless, aside from the mandatory infrastructure
this method also depends on precisely synchronized time which may be hard to achieve in
autonomous mobile scenarios.

Moreover, a number of acoustic- and optical-based techniques have been published. Az-
izyan et al. presented a method for labeling logical locations such as “Starbucks” or “Mc-
Donalds” [18]. Similar to WiFi or magnetic fingerprinting, this method is based on the
assumption that each location has its own characteristic photo-acoustic fingerprint. Their
SurroundSense framework combines optical, acoustical and motion sensors for estimations
of the user’s location, for which they report an accuracy of up to 87%. A very similar
technique has later been labeled as acoustic background spectrum by [317]. Likewise, Con-
standache et al. [59] have developed a system that is able to compute routes between
any pair of persons, provided that the walking trails of different individuals (among them
naturally also the respective pair) have been learnt together with where and when they
usually encounter. In addition to these data, they do however also require a fixed audio
beacon for global reference.

Different from techniques that rely on external infrastructure, Peng et al. have presented
a highly accurate solution for measuring the distance between two devices using only the
standard microphones and speakers of consumer-level mobile phones [229]. It is remarkable
that their method is neither subject to errors due to uncertainty in time synchronization,
nor any misalignment between timestamp and actual signal emission, nor the time that
goes by between receiving a signal and recognizing it as such due to delays caused by
hardware and/or software. For this, both devices record incoming audio signals. The first
device sends and subsequently receives its own signal. The same signal is also received by
the second device, which in turn sends another signal in response, also eventually received
by both devices. The algorithm then works as follows: Let t0, t1, t2, t3 denote the times
at which the first device receives its own signal (t0) as well as the subsequent signal from
the second device (t3), whereas the second device receives the first signal (t1) followed by
its own (t2). Both devices measure the amount of time (in number of samples) between
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receiving their own and the respective other signal, independently of each other. Let these
be denoted as

δtfirst = t3 − t0 and δtsecond = t2 − t1 . (107)

The times of flight of the signal from the first to the second device and vice versa therefore
are

tof first,second = t1 − t̂0 and tof second,first = t3 − t̂2 , (108)

where t̂0 = t0− delayfirst and t̂2 = t2− delaysecond account for the tiny delays between send-
ing and receiving ones own signal. These delays are system specific and can be determined
a priori. It follows that

δtfirst − δtsecond = t3 − t0 − (t2 − t1)

= (t3 − t2) + (t1 − t0)

= tof second,first + tof first,second + delayfirst + delaysecond . (109)

So the difference between δtfirst and δtsecond amounts to the doubled distance plus the delays
between the two devices. It is trivial to derive the actual distance in units like meters or
feet in relation to sample rate and speed of sound. Note that assuming e. g. a typical
sampling rate of 44.1 KHz and speed of sound 346 ms−1 at 25◦C, the minimal distance
that could be measured would be roughly 0.8 cm. Also note that it is not necessary to
express distance in specific units. Knowledge of the exact speed of sound, which varies e. g.
with temperature, is therefore not essential. Based on [229], Filonenko et al. [95] discuss the
feasibility of a system for trilaterion. They refer to Borriello et al. [41], according to whom it
is possible to emit and receive sound signals at 21 KHz from standard consumer hardware
such as mobile phone speakers, which is slightly above the range perceived by humans.
Trilaterion would however require at least three devices, and if the absolute position of
another device were needed, precise positions would have to be available for these devices.
If a trilaterion system were designed in analogy to [229], it would furthermore be necessary
to synchronize these devices. Existing ultrasonic trilaterion systems would therefore most
often use a centralized approach which in turn requires infrastructure, e. g. in the form of
a “dense grid of sensors on the ceiling” [95].

Finally, Dead Reckoning (DR) is a well-studied technique which estimates the current
position by constantly updating the last known position according to speed and direction
of travel. It is based on Newton’s laws of motion, according to which bodies maintain
their state of motion unless external force is applied, and if that happens, changes happen
proportional to as well as in the direction of the acting force [188]. In other words, keeping
track of directions and magnitudes of the forces which act upon a body allows for extrap-
olation of its position. Simplistic systems therefore keep track of the heading and number
of steps that a person has taken in order to estimate their current location, be it indoors
or outdoors. People perform an average of 8265 steps per day under light to moderate
activity, or 11603 under structured vigorous activity [343]. Personal step size has been
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found to be remarkably constant [158]. In 1997, Judd presented his first dead reckoning
module consisting of three-axis accelerometers and magnetometers [158]. The magnetome-
ter was used to determine the heading along which a person would be walking, whereas
the accelerometer allowed for counting the number of steps as well as computing the hori-
zontal plane, the latter of which is deemed especially important in areas where the vertical
magnetic dip would exceed horizontal magnetic dip [158]. Step size and rotational offset
of the device relative to the body could be manually entered, but also be automatically
determined by means of a KF, provided that additional GPS signals and hence “ground
truth” were available [158, 156]. The latter technique furthermore allows for estimation of
the local magnetic variation, i. e. the angular difference between magnetic and true north.
In a related work, Randell et al. [261] compared different configurations of sensors and sen-
sor placements, and were able to perform step-based DR with a cumulative error of about
four meters and standard deviation of about two meters over a walking distance of 126
meters. They also mention the additional use of gyroscopes for attitude estimation which,
for example, were later also integrated in the NavShoe system for pedestrian tracking [98].
Link et al. did not use gyroscopes but improved location estimates via sequence alignment
algorithms from bioinformatics [192], whereas Jin et al. fusioned DR estimates from two
independent sets of sensors (Android-based mobile phones) as a constrained optimization
problem for which they report error reductions of up to ∼ 74% [155].
Instead of keeping track of the user’s current position, Blanke and Schiele [37] predicted
transitions between known locations in an office with reasonable accuracy, regardless of
placement and orientation of the mobile device. They used a two-step procedure where first
body motion was used for rough estimates of the device’s orientation during one-second
intervals, and second the differential principal component of three-dimensional rotation
samples from the gyroscope would indicate the predominant heading vector when pro-
jected onto the ground plane (as determined by the first step). This method is based on
the assumption that the main axis of rotation is determined by rotations and movements
of the limbs, regardless of whether the device is carried in the hand or in the pocket (figure
37). In total they achieved very good results even though they assumed constant speed
during motion and consequently the system failed when e. g. a person turned without mov-
ing forward at the same time. Back in the context of plain DR, Steinhoff and Schiele later
found DR performance to be only slightly worse for arbitrary placement and orientation of
a mobile phone in comparison to a “well calibrated, dorsally fixated sensor” [312]. Li et al.
further employed particle filters and evaluated their system with more than fifty subjects
over an accumulated distance of more than forty kilometers, for which they report mean
errors between 1.5 and 2 meters dependent on whether the phone was carried in the hand
or in a trousers pocket [190].
The NavShoe system [98] finally went beyond the principle of step counting in favour of
Inertial Navigation (IN), which is but closely related to DR. IN is concerned with keep-
ing track of position with respect to a chosen inertial reference frame, for which Inertial
Navigation Systems (INSs) constantly measure acceleration and rotation rates of a rigid
body (the tracked device) on three orthogonal axes. INSs have advanced from strap-down
systems, consisting of a plate which was strapped down to e. g. an aicraft fuselage and
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Figure 37.: Dominant rotational component when walking (figure taken from [37]).

kept level by means of mechanical gyroscopes, to miniature integrated systems of several
MEMS dies [170]. Note that the measurements are performed at very small time intervals,
for extremly accurate knowledge of the body’s orientation within the reference frame is
mandatory. In the context of of acceleration measurements, it is furthermore important
to differentiate between specific and total force, since the former acts only relative to the
reference frame whereas the latter is subject to gravity [43, 344, 323]. Due to the fact
that INSs estimate position in terms of double integration of acceleration over time, it
is clear that linear errors in acceleration end up as cubic errors in position [349, 188].
Therefore even the slightest error in estimated orientation, say 1◦, and consequently the
acceleration measurements projected into the estimated rotational frame, after only thirty
seconds yield a positional error of sin 1◦ · 9.81 ms−2 · 30s2 ≈ 5 m. In addition to the ap-
plication of Extended Kalman Filters (EKFs), NavShoe managed to reduce the cubic error
to linear scale by introducing a simple heuristic, namely feeding “zero-velocity updates as
pseudo-measurements into the EKF” during stance phases, based on the notion that walk-
ing consists of phases of stationary stance and moving stride, both of which last about
half a second in turns [98]. Nevertheless, at present, INSs can still be considered unfit for
high-performance indoor location, at least with respect to desired sub-meter or hopefully
sub-decimeter accuracy, even if heuristics such as the one employed in the NavShoe or
otherwise sophisticated sensor fusion are employed [98, 92, 350, 347].

3.1.3 Orientation and location relative to the body

Algorithms either require location and orientation to be known or must be invariant to
both [178]. It is evident that orientation and location of the mobile device alone are not
sufficient for exhaustive use in social interaction geometry. Instead, the device must be
related to the user’s body in order to determine mutual distance (δd), angle between
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between shoulder lines (δθ), and perhaps also polar angle (δφ) as a means of relative
position. A number of the previously mentioned works have in fact considered angular
and lateral offsets of the sensors, be it implicitly via adaptive filters [158, 156] or explicitly
via transformations between coordinate systems [142]. Arguably, specific transformations
might be useful in cases where relative orientation and location of the device with respect
to the body were known. Indeed, some devices are apt to be worn at specific locations,
such as watches, headphones or glasses [178]. Without doubt, the situation is much more
complex for handhelds and particularly so for mobile phones, for which, as opposed to
wearables, the form-factor does not automatically imply where or how the device is worn
or carried, especially when the device is not in use [150].
The precise location is furthermore influenced by clothing and what else is carried along,
and varies according to the social and physical context of the user. Ichikawa et al. [150]
conducted a thorough study by means of contextual interviews with a fixed set of ques-
tions. To eliminate subjective views as much as possible, the interviews were conducted in
the public. People were interviewed in Helsinki, Milan and New York. Busy places were
excluded from the studies as people’s behaviour is supposedly biased under corresponding
circumstances. A total of 225 males and 194 females were interviewed, of which 67 were
less than twenty years old, 192 were of age between twenty and twenty-nine, 110 between
thirty and forty-nine, and 48 were over fifty. In 34% of all cases, phones were carried in
the trousers pockets, followed by shoulder bags with 33%. Interestingly, New York citizens
differed significantly from others in that 67 out of 419 participants wore their phone in
the trousers pockets, whereas only 36 respective 41 did so in Helsinki and Milan. Likewise,
only 2 people from Helsinki carried their phones in belt enhancements as opposed to 18
and 15 people from Milan and New York. Whereas the study provides detailed statistics
about whether the phone is worn in the back or front pocket, of which the front pocket is
the clear “winner”, it does not consider the phone’s orientation within pockets or bags, i. e.
whether the screen faces away from the body, or which way is up. 93% of the people how-
ever confirmed that the location where they carried the phone when they were interviewed
was precisely the one where they would usually carry their phone [150]. For the remainder
it was reported that people would wear their phones at different locations because they
expected calls, or simply due to different clothing. Part of the interviewees also mentioned
that they would sometimes store their phones elsewhere so as to avoid being disturbed by
incoming calls. Lastly, the study also revealed huge differences in the wearing preferences
among men and women. In 57% of the cases, men would prefer their trousers pockets
in contrast to 66% of the women favouring their shoulder bags. The principal locations
also turned out to vary with age. Below thirty, most people (40%) carry their phones in
the trousers pockets, followed by shoulder bags (35%) and other locations. People over
thirty supposedly prefer shoulder bags (28%) over trousers pockets (25%), as well as belt
enhancements or upper body pockets over other bags.
A number of studies were eventually concerned with actually determining the mobile
phone’s “context” or relative location and orientation with respect to the body. In this
regard, [285, 284, 109] describe a sensor board including photodiodes, accelerometers,
barometer, thermometer, microphone and a few other entities, which was built into a
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mobile phone and then used to deduce the phone’s context, more precisely whether the
phone was being held in the user’s hand, lay on a table, or was located in a suitcase. Kunze
et al. infer relative device location from motion patterns [178]. They argue that motion
patterns are rather specific to the location where a device is worn, be it for instance in
a trousers pocket or in a hand, and that walking can be easily recognized regardless of
device location and orientation. Also, potential movements might be constrained at cer-
tain locations, such as e. g. tilting the head about more than 90◦. This view is largely
theoretical and the authors name a few situations where such assumptions will not hold
(when seen from a sensor’s perspective), for example if a person were in the process of lying
down. Therefore, and because they deem that walking is easily recognized, their method
is restricted to phases where the user walks. In their experiments, sensors were placed at
either the wirst, the head, the left trousers pocket, or the left breast pocket. Features were
computed from the distributions of rate of turn, acceleration and magnetic field sensing,
using a one-second sliding window with a half-second overlap. According to their results,
they were able to predict on-body location with an accuracy of about 80% when algorith-
mically detecting walking patterns, or 90% when the frames had been previously labeled
accordingly [178]. In a later work, Kunze et al. [179] then determine the relative orientation
of the device with respect to the body, provided that the user is walking. For this, they
first determine the gravity vector and thus the horizontal plane, and subsequently project
all three-axis acceleration measurements onto that plane. The principal component of the
latter then points into the direction in which the user is walking. On the downside, how-
ever, this does only relate the device to the body, but does not allow for further alignment
within a global reference frame between multiple devices. Shi et al. [296] used low-cost
gyroscopes and accelerometers to infer radius and angular velocity, based on the notion
of specific motion of a limb around a joint in a rigid body model. They demonstrate that
their algorithm is invariant to orientation as it only uses the magnitude of the vectorial
measurements. In comparison to Kunze et al. they use a significantly larger window of
ten seconds for which they compute the sample distribution’s mean, variance, kurtosis,
skewness and characteristic quartiles. Their results show that they could predict device lo-
cation with about 91% accuracy from different recordings, each of ten minutes length and
with no instructions regarding device orientation given to the experiment’s participants. It
should be noted, however, that only four individuals participated in their experiments. In
a slightly larger study [331], Vahdatpour et al. asked 25 participants to attach sensors to
their bodies inside predetermined regions, but without further instructions on the precise
locations or modes, e. g. whether the sensors ought to be attached to the skin or clothing
(figure 38). Similar to [178] and [296], they conclude that walking were the predominant
activity during the day and therefore their method would be mainly based on walking
patterns. Aside from phases where the users walk, they also consider “general activity”. In
addition to features in the time domain, they compute features in the frequency domain,
for instance with respect to energy because they assume that e. g. sensors closer to the
foot experience stronger impulses than those farther away. For phases of “general activ-
ity”, however, they are primarily interested in changes of orientation over time. Like [296]
they use accumulated or maximum values from the features which were computed for each



3.1 introduction and related work 137

Figure 38.: Predetermined regions for sensor placement. Figure taken from [331].

axis of the sensors to ensure that their method is invariant under rotation. In a first step,
their method performed better than [178] in regard of detecting walking patterns, and in
a second step, prediction of location was reported to be near perfect when classification
was done on the basis of per-user training data. Interestingly enough, they are the first
to state that this would likely not apply to real life scenarios where personalized training
data are not guaranteed to be available. Nonetheless, a final evaluation of the classifier
based on training data randomly drawn from the whole set of participants exhibits about
89% accuracy and very satisfying precision and recall for each location.

3.1.4 Discussion

The survey of related work has shown that a variety of methods allow for more or less
accurate estimation of device orientation and location. Some studies have also considered
angular and lateral offsets of the sensors from the body. The fusion of three-axis accelerom-
eters, magnetometers and gyroscopes allows for highly accurate attitude estimates, and
the remaining uncertainty can be reduced effectively through well-studied mechanisms like
Kalman or particle filters. Such filters not only help to reduce sensor noise or the effects
caused by drift, but also smooth sudden acceleration or rotation, which is likely experi-
enced in a scenario where a mobile agent is carried in a hand, a bag, temporarily stuffed
away, or perhaps even during sports. Whereas filter design can be arbitrarily complex, the
resulting models are often linear or, for instance in case of the EKF, linear approximates
to non-linear transformations in terms of Taylor series expansion, and can therefore eas-
ily be employed in realtime applications. Also, nearly all modern smart phones feature a
minimum set of the aforementioned types of sensors, are capable of sampling at reason-
ably high frequencies, and provide sufficiently high resolutions for quantization of the raw
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signals. However, using numerous sensors simultaneously, possibly at high sampling rates
and for longer periods of time, is certainly an issue (e. g. in terms of trading power for
for battery life) that will have to be further explored. Constandache et al., for instance,
have investigated the trade-off between a given energy budget and localization accuracy
[60], whereas Priyantha et al. propose that sensing and processing should be offloaded to
additional dedicated processors [252]. In yet another work on orientation estimation [38],
Blanke and Schiele completely avoided the use of gyroscopes in favor of reduced energy
consumption. Instead, they sampled accelerometers and magnetometers at merely 50 Hz.
The samples were then smoothed with a KF in conjunction with an adaptive noise model
for magnetic disturbances and motion. Depending on the on-body locations of the sensors,
their system revealed maximum errors between 7◦ and 27◦ in comparison to a commer-
cially available high performance system.
One major issue of orientation estimates in the context of social signal processing, or
more precisely social interaction geometry, is the problem of relating sensor attitude (or
location) to the user’s body or any global reference frame. Some of the related works
have done so through adaptive filtering, while others have proposed static transformations
which may be selected depending on the presumed on-body location of the device. Several
of the previously stated studies have shown that a device’s on-body location can in fact
be predicted with high accuracy. In addition to that, others have shown that the most
popular locations where people wear their mobile phones are trouser pockets and shoulder
bags, followed by only a few other locations, albeit much less frequent. It follows that if
one were to learn specific models for each reasonable location, the necessary number of
distinct models would be rather low. What still has to be accounted for, though, is the
variety of orientations and, if things were taken to the extreme, also whether devices were
carried inside protecting cases or sleeves. Also, sensor performance might vary depending
on the specific type of surrounding clothing or textiles. At the bottom line, computing
specific models for each of the most popular locations, in conjunction with varying models
depending on possible and location-dependent orientations, is without doubt realistic and
practical, whereas incorporating additional means of dealing with protective cases or tex-
tiles is most certainly not due to the multitude of options and the required vast number
of potential models. The insignificance of the latter is corroborated by Maurer et al. [207]
who evaluated various sensor locations during the recognition of basic activities such as
walking, sitting, running, or standing, and found that sensors worn in pockets perform
only slightly less than those placed in bags.
Next to orientation and on-body location, some of the related work was concerned with
(mainly indoor) localization of devices with respect to some global reference frame. In
regard of social interaction geometry, it does not matter whether position in a global ref-
erence frames is expressed in latitude/longitude or arbitrary units, and also not whether
the frame is related to earth, as long as metrics exist that allow for accurate relation
of multiple devices to each other. Pedestrian DR and, in its more general form, IN are
well-studied techniques which are already employed in present-day smartphone scenarios.
Using sensor fusion and sophisticated filter designs, these techniques allow for accuracies
of about 1.5 meters. Nevertheless, since both DR and IN are prone to quick accumula-
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tion of errors, countermeasures have to be taken. The NavShoe [98], for instance, feeds
pseudo-measurements of zero velocity into the corresponding filter during stance phases,
i. e. during those periods when the foot is firmly placed on the ground as the user is walking,
therefore effectively keeping prediction errors within reasonable limits. On the other hand,
further data sources can be incorporated for localization, even if that would mean using
external infrastructure such as GPS or WiFi beacons. The latter are likely not available in
many outdoor and particularly indoor scenarios. Other than that, there is no good cause
against using supplemental infrastructure-dependent mechanisms to improve localization
quality.

Most time-of-flight-, fingerprinting-, pedestrian DR- or IN-based techniques do nonethe-
less provide only coarse location estimates at a level that is insufficient for applications
of social interaction geometry models. The distribution of δd in the data from both the
first and second experiments (figures 8e, 11, 28c, and 29c), as well as the corresponding
shapes of the Gaussians in the final models, are relatively “broad”, so to speak, therefore
implying that, in particular, centimeter-level accuracy is not mandatory. Still, average
measurement errors of one meter or more are effectively too much.
From the evaluation of the algorithmic model for detection of social interaction geometry
(sections 2.3.5 and 2.4.3), it is evident that the most important variables in dyadic inter-
action are mutual distance (δd) and the relation of the shoulder lines (δθ). The relative
position in terms of the polar angle (δφ) naturally refines the model and conveys more
information to the classifier, but it correlates with both shoulder orientation and distance
to a large degree, and is also much harder to determine, since either precise knowledge
of the absolute position or general means of trilaterion are required. If δφ were to be
left out, that would leave the model with shoulder orientation and distance only. The lat-
ter is especially interesting as, despite of the aforementioned, too inaccurate localization
techniques, ultrasound-based methods like the BeepBeep framework proposed by [229] are
in fact capable of highly accurate estimates of distance between mobile devices, indepen-
dent of any external infrastructure or explicit time synchronization. BeepBeep and related
methods were further discussed in [95] to the point of application among more than just
two devices, although that particular discussion seemed to be largely theoretical.

The remainder of this chapter will therefore present alternatives for estimations of ori-
entation and location of the user based on their mobile phone. Section 3.2 shows a system
for the estimation of the user’s body attitude from device attitude. The proposed system
is based on a linear regression model from various sensor signals to the orientation of the
shoulders about the yaw-axis, as well as the angle between the torso and the leg at which
the mobile device is worn, the latter of which comes as a by-product and might e. g. be use-
ful in scenarios that benefit from information such as whether a person is standing, sitting
or walking. Nevertheless, relative orientation δθ about the yaw-axis is the only relevant
attitude measure for application in social interaction geometry. Section 3.3 subsequently
presents an ultrasound-based system for measuring distance among multiple users. The
proposed system makes use of a mobile array of conventional ultrasound sensors in order
to estimate interpersonal distances δd at reasonable accuracy for the proposed interaction
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geometry model. In addition to the mandatory distance measure, the system can further-
more aid in the estimation of relative position in terms of the polar angle δφ. Readers
should note that a similar system was proposed in [205], based on a preliminary version
of the model presented in chapter 3, previously published by Groh et al. in [123]. In [205],
Matic et al. estimate relative distance and orientation through WiFi- and a logical ori-
entation sensor provided by the Android platform. In addition to interaction geometry,
their model includes a binary variable indicating speech activity as further evidence for
social interaction. For this, accelerometers were strapped around the subjects’ chests. For
their WiFi-based distance estimates, they report a 50% percentile of 0.5m measurement
error when using the same phone model, and up to 1.8m when using different models.
Both on-body location and orientation of the devices were controlled and constant param-
eters throughout their experiments, avoiding the necessity of dynamically relating device
location and orientation to the user’s body. Interestingly, the authors suggest to measure
the stability of orientational arrangements in terms of the standard deviation of relative
orientation. It is briefly mentioned that using this feature instead of absolute measures
could furthermore render the transformation between device and body orientation obso-
lete. Without doubt, their proposed feature contributes to models of interaction geometry
as additional means of robustness. Solely relying on that feature, however, would lead to
a loss of important information. For example, pairwise orientation is of course also sta-
ble if one person were to face the back of another. In such and similar cases, using only
the proposed feature together with interpersonal distance is clearly not sufficient for the
distinction of interaction from non-interaction. Second, akin to the fact that measured
distance correlates with social distance [67], similar holds for orientation and the affective
meaning of a social situation, subsequently shown by the same first and second authors in
[206].

3.2 a system for measuring personal heading

Previous studies have explicitly defined static transformations from device to body orienta-
tion in terms of rotations dependent on the specific location where the device is worn [142],
or implicitly incorporated such transformations by means of adaptive filtering [158, 156].
Others have related device attitude to the direction into which the user was heading via
PCA of the projection of three-axis acceleration measurements onto the horizontal plane
while the user was walking [179]. In the context of social interaction geometry, the most
relevant information about a user’s orientation is without doubt given in terms of his or
her heading, as the difference between the two distinct headings in a dyad yield people’s
relative orientation towards each other. Instead of manually defining one or more such
transformations, a time-invariant general linear model [201, 34] is proposed which relates
a number of sensor measurements and derived features to the user’s heading and the angle
between the torso and the leg at which the device is worn. Note that the latter is not
used in the context of social interaction geometry, but comes easily as a by-product in
the overall process. The system fusions mobile phone accelerometers, magnetometers and
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gyroscopes, and is therefore able to estimate the user’s heading with respect to a global
ENU reference frame, as opposed to the local reference frame commonly found in activity
recognition tasks. Similar to the works of Schwarz [289] or Roetenberg [272], who com-
bined inertial sensors with methods from Computer Vision (CV) for estimating different
postures of the human body, the model is trained from a dataset which provides the sensor
measurements along with the corresponding ground truth. This dataset was acquired by
combining measurements from mobile phone sensors with body posture estimates from a
Microsoft Kinect system. The final model, in either personalized or general form, works
independent of CV systems such as the Kinect and will be shown to have sufficient accu-
racy for algorithmic models of social interaction geometry, such as the one presented in
section 2.3. Note that the model and the dataset were created in the proceedings of [69].

3.2.1 How the Kinect works

According to Microsoft, the Kinect was built to “revolutionize the way people play games
and how they experience entertainment”, enabling “people to interact with the games
through their body in a natural way” [357]. Aside from gaming, though, the system has
been adopted by computer science, robotics, and various other fields, for example as a
means of altitude control for helicopters [314], for three-dimensional object manipulation
on a desktop display [259], or for human pose estimation as will be discussed below.
Before the advent of the Kinect and related techniques, body-pose was for instance esti-
mated in several phases [108]. If possible, the current state was first extrapolated from
previous state(s), as it was “deemed more stable to do the prediction at a high level (state-
space) than at a low level (image-space)” [108]. Backtransformation from state-space to
image-space would identify the relevant parts of the image, from which features would then
be extracted, and finally the new state would be estimated according to the segmented
image [108]. Setups of multiple cameras, or alternatively monocular image sequences, were
common for three-dimensional pose estimation, and skeletal models of the body were used
to incorporate domain knowledge such as the length of the limbs or the degrees of freedom
of the joints [214]. On top of these skeletal models, volumetric and non-volumetric flesh
models helped in relating state-space and image-space. Many approaches required the full
visibility of at least the face and upper body, and were apt to experience problems as soon
as parts of the body were occluded or cut off from the available image region [214, 164].
The “loss of depth and limb labeling information would furthermore make the “recovery
of 3D pose [...] ambigious” [9]. Later works have combined computer vision and inertial
sensing for further improvement of estimating limb position and orientation [245, 246].
The Kinect platform [1] consists of an infrared laser, infrared sensor, an RBG camera, a
single tilt motor and four microphones. Through these it is capable of full-body three-
dimensional motion capture, facial recognition, and voice recognition [357]. As a matter of
fact, technical details have never been made available to the public by Microsoft, but were
reverse engineered and correlate with a number of patents of PrimeSense, the company
behind the system design [112]. In addition to the RBG image from the regular camera,
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Figure 39.: Structured light principle. Figure taken from [356].

the system provides a depth map. Only the infrared laser and sensor are used for three-
dimensional image reconstruction, based on the principle of structured light [356]. The
structured light principle works by projecting a coloured or otherwise encoded pattern
onto the scene from one point of view and capturing it from another. The relative distance
between a particular point in the image plane as seen from the projector and the same
point in the image plane as seen from the camera is inversely related to its depth. For
each pixel its depth can hence be reconstructed, provided that calibration data for the
projector and the camera are available, along with the details of the used pattern. The
principle is illustrated in figure 39. Here the Kinect uses its infrared laser to project a pat-
tern consisting of dots of varying size and spacing which is then captured by the infrared
sensors. Both sensors are laterally displaced from each other, hence accounting for distinct
points of view. The captured pattern is compared against a reference pattern, for which
the system was calibrated at a plane at precisely known distance. All in all the system
is accurate within one or two centimeters [168, 169], for which the “depth from stereo”,
i. e. the structured light principle, is further augmented by “depth from focus”. The latter
stems from the fact that objects at greater distances are perceived as more blurry. For
this the system further incorporates an astigmatic lense with different focal lengths along
the horizontal and vertical axes, so that a (theoretically) projected circle would appear as
an ellipse “whose orientation depends on depth” [196].
The pose of the whole body is estimated from the computed depth map. After foreground
segmentation, a randomized decision forest is used to predict which pixel of the depth map
belongs to which part of the body, for which a total of 31 body parts are considered [298].
Each decision tree yields a probability distribution over the pixels for a specific body part.
The modes of these distributions are subsequently computed via mean shift estimation
[101]. Once the positions of the limbs, or more generally the body parts, have thus been
determined, a set of candidate joints is then predicted [113, 298]. This process is illus-
trated in figure 40. The very high accuracy of the model is due to the fact that it has been
computed on a huge dataset. This dataset is comprised of about 100,000 segmented and
annotated images which, in addition, have been synthetically altered according to fifteen
base characters, considering “both male and female, from child to adult, short to tall, and
thin to fat” [196, 298]. Furthermore, height and weight are varied at random by ±10%.
Each distinct pose is mirrored to prevent one-sided bias to the left or right. Consequently,
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Figure 40.: Candidate joints prediction. Figure taken from [298].

the final dataset consists of millions of samples.
As the Kinect works on a frame-by-frame basis, no spatio-temporal tracking is necessary,
although it could improve the predictions [196]. The system proposed by [298] is capable
of processing at 5 Hz. However, the Kinect is subject to hardware and software delay, still
resulting in about 30 Hz, which is relevant with respect to the further proceedings of this
section. In regard of general-activity poses, i. e. those not subject to prior constraints re-
garding the range of motions, improvements have been reported concerning e. g. occlusions
of body parts, acknowledging the fact that joints are inside the body whereas segmenta-
tion is done on the surface [113], or introducing so-called metric space information gain in
order to optimize entropy of the probability distributions in metric space [247].

3.2.2 A model for linear regression

Linear regression models predict the values of one or more response variables t, given
the values of one or more regressor variables x, for which the models need only be linear
in their parameters but not necessarily the input [34, 218]. For a single scalar response
variable, the model is generally defined as

y(x,β) = β0 +
M−1∑
i=1

βiσi(x) , (110)

where x = (x1, . . . , xD)T is a vector of the input variables, and β and σ denote the set
of M model parameters and M− 1 basis functions. Letting σ0(x) = 1, the model can be
conveniently rewritten as

y(x,β) =
M−1∑
i=0

βiσi(x) = βTσ(x) (111)

with β = (β0, . . . ,βM−1) and σ(x) = (σ0(x), . . . ,σM−1(x)).
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The proposed model considers two target variables, namely the user’s heading and
angle between torso and leg. The basis functions simply correspond to identity, so that
σ(x) = [1, x]T . The model is therefore a multiple linear regression model of the form

t = y(x,B) + ϵ = BTx+ ϵ , (112)

for which the parameters have been arranged in the matrix B and ϵ models the statistical
error. Note that ϵ is supposed to follow a normal distribution. This is particularly jus-
tifiable in the context of sensor measurements because they can be regarded as the sum
of multiple random variables, i. e. the measured entities themselves plus systematic and
random errors from numerous hardware and software sources. The normal distribution
then follows from the central limit theorem [188].
Estimation of the model parameters is straightforward, e. g. via gradient descent. Due to
the linearity of both the parameters and the input, the values of each of the response vari-
ables in equation 112 correspond to points on a hyperplane. Therefore, a common choice
of loss function is squared loss. Given a matrix X ∈ RN×D, whose rows correspond to a
set of N vectors of D independent regressor variables, along with a matrix Y ∈ RN×K,
whose rows determine the corresponding K-dimensional responses, the loss function f is

f =
1

2
(XB− Y)2 . (113)

Differentation with respect to B leads to the closed-form solution

df

dB
= XT (XB− Y)

!
= 0 ⇔ XTXB = XTY ⇔ B = (XTX)−1XTY , (114)

given by the Moore-Penrose pseudo-inverse of X. This form allows for the estimation of the
model parameters also for underdetermined systems, i. e. when X is not of full rank. Note
that, from a probabilistical perspective, linear regression is equivalent to modeling the
predictive distribution p(t|x). It can be shown that the squared loss provides an optimal
solution through the conditional expectation of t [34], or equivalently that it is the best
linear unbiased estimator of the model parameters [242].

As already indicated at the beginning of this section, the proposed system should predict
the user’s heading with respect to the world ENU reference frame, as well as the angle
between torso and leg. It is important, though, that the underlying model itself is decoupled
from absolute values such as the heading. For this, the model responds with the difference
∆hbd between the device heading hd and the body heading hb, the latter of which is
defined orthogonal to the user’s shoulder line. Let x = (hd, x2, . . . , xD) a vector of values
of the regressors, i. e. the device heading and additional features x2 …xD. Then the two
variables, under a linear regression model, are related as

hb ∼ β0 +β1hd +β2x2 + . . .+βDxD , (115)

from which it follows that

hb −β1hd ∼ β0 +β2x2 + . . .+βDxD . (116)
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The term on the left-hand side thus describes the difference between the two headings if,
and only if, β1 = 1. This is however an elementary assumption of the proposed model,
meaning that the location and orientation of the mobile phone are supposed to be invariant
with respect to the body. As a consequence, the differential heading ∆hbd is henceforth
defined as:

∆hbd = hb − hd (117)

It follows that one can easily add hd to ∆hbd so as to predict the absolute heading.
Note that using the differential instead of the absolute heading not only makes the model
invariant to absolute orientation. The corresponding removal of hd from the right-hand
side of the equation also yields a major simplification of the model, as it helps to avoid
the mandatory specific treatment of hb and hd due to their periodicity.

3.2.3 The dataset

A new dataset was compiled from measurements of the stationary Kinect and a mobile
phone in a series of six experiments, each of which was conducted with another subject.
The subjects carried the phone in their left or right trousers pocket in various orientations.
Great care was taken so as to avoid occlusions of the body parts as well as possible inter-
ferences. A custom software system was used to record and process the datastreams from
both devices [69]. The system is comprised of two subsystems, one on a personal computer
with a cable-connection to the Kinect, and one a mobile phone. The measurements from
the Kinect as well as those from the mobile phone sensors were acquired using Microsoft’s
Kinect and Windows Phone 7 software development kits [63, 64]. For this, the mobile
phone application sent a continuous stream of data to the personal computer via TCP/IP
networking. Both datastreams were then aligned and multiplexed in order to correct for
the corresponding delays, the latter of which had been thoroughly determined in a series of
recordings prior to the actual experimental sessions. These more or less systematic delays
are caused by the long chain of hardware and software components. For the Kinect, the
average delay was determined to be 70 ms as opposed to 150 ms for the mobile phone.
Consequently, the Kinect measurements were buffered and multiplexed with those data
arriving from the phone after an explicit delay of 80 ms. In accordance with section 3.2.1
it was furthermore determined that the Kinect provides new data about every 32 ms with
a standard deviation of 1.2 ms, which is why a sampling rate of 31 Hz was chosen for
sampling from the Kinect. The mobile phone, on the other hand, is capable of providing a
constant stream of new measurements at 20 Hz. In order to avoid sophisticated frequency
harmonisation, e. g. in terms of up- and subsequent downsampling [359], or spherical in-
terpolation for quaternions [297] (refer to section 2.2.2.2), the respective least recently
received data from the devices were processed.



146 position and orientation of individuals
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Figure 41.: Windows Phone™ coordinate system.

3.2.3.1 Postprocessing

Various features were computed during postprocessing of the newly acquired dataset. The
basic features are given by the raw values of the three-axes sensor measurements of the
gyroscope, accelerometer, and magnetometer. As for the heading, recall that although the
underlying regression model will respond with the differential heading ∆hbd, the abso-
lute headings hd of the device and hb of the body have to be known for training. The
orientation of the device is computed and provided by the mobile phone’s firmware, for
which it integrates and filters accelerometers, magnetometers and gyroscopes, expressed
as a rotation quaternion q. This rotation quaternion describes the orientation of the axes
of the device’s local coordinate system in the world ENU reference frame. According to the
SDK [64], the axes of the phone are laid out as depicted in figure 41. For the set of features,
hd is computed from this rotation quaternion. Generally speaking, the device heading has
to be defined in relation to a particular entity such as e. g. the phone’s y-axis, z-axis, or
the intersection of its y/z-plane with the global x/y-plane of the world’s ENU reference
frame. In the context of the model, this choice is arbitrary provided that the reference is
the same throughout the whole process. However, if only one of the phone’s x-, y- or z-axes
were chosen specifically, that would lead to singularities whenever the phone were oriented
such that this axis were parallel or even very close to the global z-axis, in other words the
gravity vector. In order to avoid these singularities, hd is determined as a weighted sum
of the angles between the global ENU y-axis and the phone’s y- and z-axes, respectively.
As is known from section 2.3.2.1, in general the circular mean and arithmetic mean tend
to differ. Likewise, the weighted sum has to take into account the circular properties of
the aforementioned angles. Therefore, let

y = q(0+ 0i+ 1j+ 0k)q∗ = 0+ yxi+ yyj+ yzk (118)
z = q(0+ 0i+ 0j− 1k)q∗ = 0+ zxi+ zyj+ zzk (119)
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for the rotation quaternion q and the quaternion product as discussed in section 2.2.2.2.
It follows that ||y||+ ||z|| = 1 which is then also true for the projections y′ = (yx,yy)T

and z′ = (zx, zy)T onto the x/y-plane. Now let

r = (rx, ry)T = (αyx + (1−α)zx,αyy + (1−α)zy)
T , (120)

where α = ||y|| = 1− ||z||. This would allow for a preliminary definition of hd:

hd = arctan2(ry, rx) = arctan2 (αyy + (1−α)zy,αyx + (1−α)zx) (121)

The quality of the result is further increased by applying a logistic function of the form

f(α) =
1

1+ e−λ(α−
1
2 )

. (122)

Depending on the choice of λ this function will help to attenuate either one of y or z,
considering their respective length. Thus hd is finally defined as

hd = arctan2 (f(α) · yy + (1− f(α)) · zy, f(α) · yx + (1− f(α)) · zx) , (123)

for which, in this particular context, λ = 16 has empirically proven to yield the best results.
Now that the device heading has been defined in relation to both the phone’s y- and

z-axes, the device attitude needs to be adapted accordingly to yield heading-invariant
attitude information. This adaption is done by transforming the device’s rotation quater-
nion q by an inverse rotation of hd about the z-axis, yielding the updated quaternion q′.
Rewriting the quaternion rotation operator in matrix notation (as in equation 5) yields
the DCM

2 ·

 q ′2
0 + q

′2
1 −

1
2
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1q
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′
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 (124)

which is equivalent to the following DCM based on a yaw/pitch/roll rotation sequence in
terms of Euler angles ϕ, θ,ψ: cosψ cosϕ+ sinψ sin θ sinϕ − cosψ sinϕ+ sinψ sinθ cosϕ sinψ cos θ

cos θ sinϕ cos θ cosϕ − sin θ

− sinψ cosϕ+ cosψ sinθ sinϕ sinψ sinϕ+ cosψ sin θ cosϕ cosψ cos θ

 (125)

Let Rij reference the element at row i and column j of the above matrix. Then yaw (ϕ),
pitch (θ) and roll (ψ) of the heading-invariant device attitude adhere to

ϕ = sgn
(

sin−1 R21

cos θ

)
cos−1

R22

cos θ
, (126)

θ = sin−1(−R23) and (127)

ψ = sgn
(

sin−1 R13

cos θ

)
cos−1

R33

cos θ
. (128)
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Together, hd and hb serve to determine the differential heading and hence the correspond-
ing response variable ∆hbd, whereas the three Euler angles ϕ, θ and ψ serve as regressor
variables. A number of additional features moreover yield temporal information like the
mean, the variance (as in energy), and the Pearson correlation coefficients for the angles
respective pairwise angles over the past second. These temporal features might lead to
the question as to what extent the irrefutable correlation between temporal adjacent sam-
ples constitutes a problem since typical machine learning models assume i.i.d. samples
[76]. Many models however perform quite well in spite of erroneously (and knowingly) as-
sumed independence, for instance Naïve Bayes, instead of exploiting e. g. sequential data.
Also, even if there were no such features like these that correspond to shifting windows,
there is likely always an underlying physical dependency between subsequent samples. For
this dataset, the short (one second) temporal correlation of the samples is considered in-
significant in relation to the size of the dataset. Furthermore, the order of the samples is
randomized and only a subset of the data will be used during training.
Three more features were added for a rough assessment of periodicity in the movements as
reflected in the Euler angles. Walking and running, for example, are expected to show up
with different base frequencies in one or more of the signals ϕ, θ and ψ. The step frequency
of humans usually lies well down below 200 steps per minute [48], which is equivalent to
a maximum frequency of about 5 Hz. The sampling rate of the sensors lies well above
the Nyquist frequency of 10 Hz. With the chosen sampling rate of 20 Hz, a corresponding
Short-Term Fourier Transform (STFT) yields the amplitudes (and phases) of N

2
discrete

frequencies of N bins of the windowed input signals, ranging from 0 Hz to ⌊N
2
⌋ · 20 Hz

N
in

equidistant intervals [359]. That frequency which corresponds to the largest amplitude is
then selected as the feature value for ϕ, θ and ψ, respectively.
Finally, αlt is determined as the angle between the torso and the leg corresponding to the
trousers pocket in which the device is worn. For this, the axis of rotation is defined as a
line through both hip joints. This line corresponds to the intersection of a plane through
the hip joints and the center of the shoulder joints with another plane through the hip
joints and the knee of the respective leg. αlt therefore corresponds to the angle between
the front-facing normals of these planes. Despite the arguable limits of human motion, the
angle is defined on the whole interval [0, 2π], for which e. g. π corresponds to a setting
where a person were lying flat on the back. The angle is hence defined as

αlt = π+αsgn cos
−1(nhs ·nhk) , (129)

where nhs and nhk denote to the normals of the planes between hip and shoulder or
knee, respectively, and αsgn is either +1 or −1, depending on the direction from which
an observer looks at the body. As a reference, the observer is assumed to be located to
the left of the body, so that αsgn = +1 if, and only if, nhs × nhk points away from the
observer.
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3.2.4 Evaluation

Due to the fact that both response variables ∆hbd and αlt are independent of each other,
they were each modeled and evaluated individually. For those features related to STFT,
Pearson correlation, mean or variance, appropriate window sizes were chosen, and for each
model the best subset of regressor variables was determined. The results were then verified
via 10-fold cross-validation. The final set of regressor variables for predicting ∆hbd is given
by the yaw (ϕ), pitch (θ) and roll (ψ) angles, along with the corresponding temporal
features, namely the standard deviations and the Pearson correlation coefficients:

∆hbd ∼
(
ϕ,θ,ψ,σϕ,σθ,σγ, ρϕθ, ρϕψ, ρθψ

)T
θ+ ϵ (130)

Somewhat unexpected, αlt is also best modeled by the same set of regressors:

αlt ∼
(
ϕ, θ,ψ,σϕ,σθ,σγ, ρϕθ, ρϕψ, ρθψ

)T
θ+ ϵ (131)

The final feature sets were determined as follows: The original set of features was first
partitioned into thirteen equivalence classes such as angles, raw measurements from the
accelerometers or magnetometers, related means, standard deviations, correlations, etc.
Denote this set of feature groups as F. The final set of features was then selected by cross-
validating all models arising from the elements of the powerset 2F \ ∅. All the same, the
window sizes for the temporal features were varied between a half and three seconds in
intervals of a half second. The regressors were selected based on the comparison of the R2
respective adjusted R2adj scores. The R2 score is defined as

R2 = 1−

∑
i(yi − ŷi)

2∑
i(yi − ȳi)

2
(132)

and quantifies which fraction of the variance of the data is explained by the variables as
opposed to a model with constant mean [171]. As R2 is monotonically increasing when
new parameters are added to the model, R2adj is defined so as to compensate for an increase
that might have been caused by chance:

R2adj = 1−

∑
i(yi − ŷi)

2/dofr∑
i(yi − ȳi)

2/doft
, (133)

The degrees of freedom dofr = N −M − 1 and doft = N − 1 for N observations and
M parameters account for the fact that both sums of squares (divided by N) are biased
estimators of variance. Table 23 shows the values of these measures for the final sets of
regressor variables. According to these results, the models explain about 65% and 85%
of the observations’ variance. The values of the adjusted measures are in fact very close
to the normal scores, thereby indicating that all of the selected variables contribute to
the model. This is further corroborated by the p-values under the null hypothesis that
the regressor’s coefficients were zero. Interestingly, the scores get much better (∼ 92%)
when the intercept term is removed from the model. On the other hand, this leads to a
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∆hd αlt

R2 0.656 0.857
R2adj 0.645 0.852

Table 23.: Goodness of fit for the response variables ∆hd and αlt after 10-fold cross-validation.

ϕ θ ψ σϕ σθ σψ ρϕθ ρϕψ ρθψ

ϕ 1.00 -0.85 0.04 0.80 -0.78 0.17 0.80 0.50 -0.12
θ -0.85 1.00 0.05 -0.70 0.84 -0.13 -0.63 -0.33 0.16
ψ 0.04 0.05 1.00 0.19 0.00 0.78 -0.05 0.13 0.87
σϕ 0.80 -0.70 0.19 1.00 -0.76 0.21 0.61 0.47 0.09
σθ -0.78 0.84 0.00 -0.76 1.00 -0.15 -0.76 -0.31 0.08
σψ 0.17 -0.13 0.78 0.21 -0.15 1.00 0.15 0.33 0.41
ρθϕ 0.80 -0.63 -0.05 0.61 -0.76 0.15 1.00 0.54 -0.24
ρψϕ 0.50 -0.33 0.13 0.47 -0.31 0.33 0.54 1.00 -0.06
ρθψ -0.12 0.16 0.87 0.09 0.08 0.41 -0.24 -0.06 1.00

Table 24.: Pairwise correlation of regressor variables.

non-normal distribution of the residuals. Whether to remove the intercept term is thus
a question of “usefulness” versus “correctness” of the model. It is worth mentioning that
some of the regressors exhibit linear correlations (table 24). This is not surprising from
a physical point of view, and also statistically speaking for the temporal features, for
instance in cases where signals and their standard deviations are constant for some time.
On a final note in regard of window size for the temporal features, the best results have
been found for windows of one second, or about one and a half seconds (32 frames at 20 Hz)
for the STFT-based features. The latter were however not included in the final models.

Next, analysis of the residuals should attribute to the “correctness” of the models. Ac-
cording to section 3.2.2, linear regression models assume that the values of the response
variables correspond to points on a higher-dimensional manifold, in this particular case
a hyperplane. The remaining statistical error ϵ is explained by Gaussian noise. In other
words, ϵ ∼ N(0,σ2) follows a normal distribution with zero mean and constant variance
σ2, or equivalently

y|x ∼ N(βTx,σ2) , (134)

for which the mean of the true distribution of y, given x, is linearly increasing in x [34,
218, 184]. Recall that the residuals only serve as estimates, whereas mean and variance
of the true distribution of the statistical error are generally unknown. It follows that the
residuals have to be independent and adhere to a normal distribution with zero mean and
constant variance [171]. As opposed to errors, residuals do not have constant variance,
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though. This is a consequence of the fact that observations gain more influence from the
model parameters with increasing distance from the mean. Clearly, small changes in the
model parameters have more impact on the residuals of “distant” observations. Therefore
the residuals ϵ need to be standardized (also known as studentized residuals [62]). For this,
observations y and predictions ŷ are related by ŷ = Hy through the so-called hat matrix
H. The hat matrix has thus a notion of indicating the influences of each observation y on
each of the predicted values ŷ. From equation 114 it follows that

ŷ = Xβ = X(XTX)−1XTy ⇒ H = X(XTX)−1XT . (135)

Furthermore, the relation between y and the residual ϵ is given by

(I−H)y = y− ŷ = ϵ . (136)

According to equation 135, the hat matrix is symmetric. The so-called leverages Hii de-
termine the variance of the i-th residual as Var[ϵi] = σ2(1−Hii). This can be used to
compute the standardized residual

ϵ̃i = ϵi ·
1

σ
√
1−Hii

. (137)

As a result, figures 42 and 43 yield qualitative evidence towards the correctness of the
assumptions of the models, a bit more so for the ∆hbd than for αlt. Note that only a subset
of the data is shown to avoid clutter. The apparent clusters stem from the fact that the
subjects were sometimes standing and sometimes sitting, and that the transitions between
these states were comparatively short [69]. The plots of the predicted (fitted) values versus
the non-standardized residuals support the zero-mean assumption (figures 42a, 43a). For
∆hbd one can see that the residual has a relatively constant mean of 0◦ except for the
beginning of the domain and values around 45◦. The quality of this assumption is obviously
less for αlt, especially so beyond 160◦. All the same, both residual errors seem to follow
a normal distribution (figures 42b and 43b). The results are convincing for hbd, whereas
outliers are observed for αlt. This is arguably not so much of a problem for the applicability
of the model, as most outliers are observed beyond twice the standard deviation and
hence in less than 32% of the observations. The notion that the residuals of both response
variables each follow a normal distribution is further corroborated by figure 44 which
illustrates the residuals in comparison to a normal distribution.
The property of equal variance among the residuals is also called homoscedasticity. For
linear regression models of the form y = Xβ+ ϵ, the homoscedasticity assumption means
that variance does not depend on X, i. e. Var[ϵ|X] = Var[ϵ], in other words that each
observation is equally important for estimating the mean squared error. Figures 42c and
43c illustrate predicted values in relation to the square root of the absolute value of the
standardized residuals. Both figures exhibit a systematic trend, suggesting that the model
could be improved by a polynomial (e. g. quadratic) term.
Figures 42d and 43d provide a notion of the influence of each observation on the model
parameters. This is also interesting in regard of possible outliers, for which Cook’s distance
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may be used as a metric. Cook’s distance estimates the influence of a particular observation
by determining the effect that removal of this observation would have on the model [62].
The typical thresholds of 0.5 and 1 are outside of the limits of any points though. Also note
that the major part of the standardized residuals is well within ±2σ. At the bottom line,
in terms of “usefulness”, both models show satisfying results with residual standard errors
of about 9.7◦ for hbd and 10.2◦ for alt. Both models are justified in terms of statistical
“correctness” according to computational and qualitative analysis.

3.2.4.1 Discussion

The main purpose of the proposed system is an estimate of the user’s current heading,
given only the measurements from consumer-level mobile phone sensors. The user’s head-
ing is the direction of the vector orthogonal to the shoulder line and pointing into the
direction which the user is facing. Instead of the absolute heading, the underlying linear
regression model predicts the difference between the body heading and the device heading
which simplifies the process and avoids special treatment of circular variables. An estimate
of the absolute heading is therefore easily given by the sum of differential heading and
device heading. In this work, the device heading is defined as a function of the measures
of orientation along the y- and (negative) z-axes which was done for the following reasons:
Generally speaking, the choice of the reference frame is arbitrary. Existing software devel-
opment kits typically define the phone’s heading with respect to its y- or z-axis, or switch
between those axes whenever a relevant major orientation change is detected. Problems
may arise for attitudes close to the gimbal lock, e. g. when the phone is held in a way
such that the reference axis is close or even parallel to vector pointing along gravitational
force. Also, mobile devices are carried in various locations and/or orientations. According
to related work, most people carry their phones in their trousers pockets or in a shoulder
bag [150]. The corresponding study does not mention which side of the phone is up, for
instance when carried in the front pocket, but it is reported that people are generally apt
to protect their phone by carrying it in a position where its front faces their body, so as to
protect the phone’s screen. So instead of arbitrarily choosing a reference for the heading,
the system defines the device heading as a function of both the phones y- and z-axes.
Due to the use of the differential heading hbd, the choice of the reference for the device
heading, and the corresponding correction of the phone’s measured attitude, the system
is invariant to absolute orientation. In principle, the linear regression model can be re-
garded as an affine transformation, at least when the model only uses the computed yaw,
pitch and roll angles as input variables. Others have similarly computed the user’s heading
in terms of the gravity vector and a PCA of the acceleration signals, projected onto the
horizontal plane, in order to determine pedestrian walking direction [179], or by defining
fixed transformations for certain locations on the body [142]. In comparison, the proposed
system is based on a slightly higher-dimensional model. The addition of a set of temporal
features has been shown to reduce the overall residual error which is caused e. g. by motion,
particularly so by motion of the leg when the device is carried in the trousers pocket. Nev-
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(a) (b)

(c) (d)

Figure 42.: Residual analysis for the differential heading, analogous to [69].
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(a) (b)

(c) (d)

Figure 43.: Residual analysis for the angle between leg and torso, analogous to [69].
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Figure 44.: Distribution of the residuals for the differential heading and the angle between leg and
torso. Figure taken from [69].

ertheless, other methods like the PCA-based determination of the walking direction could
for instance be used as input to adaptive filters and therefore attribute to the system’s
overall accuracy.

The model was trained on data from several recordings and persons. Performance will
likely increase if personalized models were used instead. It is however unlikely that users
have access to the necessary equipment such as the Kinect, or would be willing to undergo
a training procedure. Nevertheless it is necessary that more models are created in corre-
spondence to the variability of principle wearing locations and orientations. As [178] have
shown, the latter can be accurately determined from patterns in the signals of mobile phone
sensors. An application could therefore periodically check for principle changes and adapt
by selecting another model accordingly. At last, note that the purpose of developing the
proposed system is certainly not outperforming existing systems, although the additional
use of temporal features has proven to be beneficial for the overall process. Instead, in the
context of this thesis, the system has been developed to prove that algorithmic models
for social interaction geometry are not only feasible from a theoretical point of view, but
indeed also practicable in “real life” along with present-day consumer hardware. According
to the evaluation, the standard residual error of the differential heading is about 9.7◦. As
a consequence, the computation of the angle δθ between the shoulder lines of two persons
is subject to the random errors of two corresponding systems. Residuals are assumed to
follow a normal distribution (figures 44, 42). It can be shown that normal distributions
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Predicted
Actual S⊕ S⊖ Precision Recall F1-Score
S⊕ 279358 88876 81.3% 75.9% 78.5%
S⊖ 64321 303913 77.4% 82.5% 79.9%

Table 25.: Confusion matrix after 10-fold stratified cross-validation of a GMM-based classifier with
10 components, assuming Gaussian noise with σ = 13.7◦ on δθ (79.2% accuracy).

are closed under convolution [154]. In other words, the sum Z of two normally distributed
random variables

X ∼ N(µ1,σ21) and Y ∼ N(µ2,σ22) (138)

is itself normally distributed with

Z ∼ N(µ1 + µ2,σ21 + σ
2
2) . (139)

Since µ1 = µ2 = 0 and σ21 = σ22 = 9.72, it follows that the proposed system could predict
δθ with a standard deviation of

√
2 · 9.7 ≈ 13.72◦. This is well within limits of applicability

for the presented GMM-based model for social interaction geometry, as is easily shown by
adding this amount of Gaussian noise onto the test data during 10-fold stratified cross-
validation of the model. Indeed, such a model performs very well even in the presence
of noise (79.2% vs. 80.3% accuracy, compare tables 25 and 11). Vice versa, these results
contribute to the understanding that GMMs are supposed to be a good match for modeling
interaction geometry in general, and that the presented model is likely not subject to
overfitting in a statistical sense.

3.3 a system for measuring interpersonal distance

Section 3.1.2 already introduced several techniques for the estimation and tracking of po-
sition and/or measuring distance. Among this related work, Peng et al. [229] have demon-
strated a remarkably effective approach for measuring distance for which they used only
consumer-level hardware. Based on specifically encoded audio signals, so-called chirps, they
were able to achieve accuracies of up to centimeter-level. Also recall that their approach
does not depend on any special means of synchronization because distance is computed
as a function of the time-of-flight of signals between both local/local and local/remote
sensors, subject to a priori determined systematic delays of the respective hardware (see
equation 109). As the signals’ time-of-flight is given in terms of audio samples, typical
hardware operating at e. g. 44.1 KHz could therefore achieve a theoretical limit of as little
as 0.8 cm, assuming 343 ms−1 for the speed of sound at 20◦C. Peng et al. also measured
the frequency responses of typical consumer-level sensors to chirps from 1 KHz to 20 KHz
[229] and found that these are mainly tuned for operations with respect to the vocal spec-
trum. More specifically, the frequency responses indicated that signals beyond 8 KHz were
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attenuated too much, which is why they decided to use chirps inside the audible range be-
tween 2 KHz and 6 KHz. Despite the benefits of being able to use consumer-level hardware,
being independent of special synchronization mechanisms, and achieving centimeter-level
accuracy, the use of audible signals for measuring distance is without doubt undesirable
for SSP scenarios. Ultrasonic methods, on the other hand, will most likely require dedi-
cated hardware, which is also corroborated by the analysis of the frequency responses of
mobile devices in [229]. The enormous variety of sensors which are already available in
modern mobile phones however suggests near-future applicability of the latter techniques.
According to [194], for example, Qualcomm is a hardware manufacturer planning on in-
corporating ultrasonic sensors in the next generation of consumer-level mobile hardware.
The following sections investigate the feasibility of ultrasonic distance measurements in
the context of social interaction geometry.

3.3.1 Prerequisites

Assuming operations at frequencies of about 40 KHz and speed of sound of 343 ms−1 at
20◦C, the respective wavelengths of ∼ 0.8cm yield theoretical sub-centimeter accuracy for
ultrasonic range finding sensors. The quality of the results is influenced by several factors
such as noise, operating modes, or the precision and granularity of timing devices. Noise
may originate from either active or passive sources. For example, other mobile agents
which are not yet part of a common distributed network of agents could interfere with an
existing, already synchronized, network. Reflections caused by objects or walls constitute a
source for passive noise. Walls typically cause diffuse reflections, possibly leading to phase-
shift and therefore offsets on the receiver’s side. Other than that, timing as well as the
granularity of e. g. the system clock plays an important role. The system clock has to allow
for operating frequencies higher than those of the sensors. Timing devices must obviously
be precise and not prone to systematic or random bias. Systematic errors like the ones
caused through computational delays can be regarded as constant and thus be accounted
for. However, timing is also important with respect to the operating mode of the sensors.
Ultrasonic sensors work in either echo or sender/receiver mode. In echo mode, the sensor
functions as a transducer, i. e. it sends and receives its own signal. In sender/receiver mode,
one or more dedicated sensors receive the signal burst from yet other sensors. Echo mode
thus has the advantage of relying only on a single sensor’s internal timing, whereas very
accurate and precise synchronization is mandatory for the latter.
Second, recall that speed of sound is proportional to the absolute temperature of a fluid
medium, and is independent of density or pressure for ideal gasses. Although air is really
not an ideal gas, for the purpose of distance measurements it can be treated as such
because the effects of variations in density or pressure are by magnitudes smaller than
those of changes in temperature. The speed of sound c can thus be given as a function of
temperature ρ (◦C) as follows:

c = 20.05
m

s
·
√
ρ+ 273.15K (140)
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Reasonable variations in temperature for indoor scenarios may range e. g. from 17◦C
(3̃41ms−1) to 23◦C (3̃45ms−1), for which the shift in temperature would yield a max-
imum error of 8.78 · 10−5 m at 40 KHz. Taking into account the median of 0.985 m for
interpersonal distance δd during social interaction from the present dataset (see section
2.2.5), this shift would cause an offset of merely 1 cm and is thus negligible for applica-
tions of models of social interaction geometry. Also note that the location where a mobile
device is worn is not important in terms of temperature. Although the device’s and thus
implicitly the sensor’s temperature might change due to the emission of body heat, this
has no further influence on the signal’s comparatively “long” run between devices through
the medium air. In regard of on-body location, it is yet more important to consider a
sensor’s line of sight and dealing with possible obstructions, which might also constitute
a point for further research.

3.3.2 System configuration

The proposed system is a proof of concept [202], consisting of up to four small enclosures,
each of dimensions 10cm× 3.5cm× 7cm, and each housing an array of 6 ultrasonic sensors.
For every sensor box, the sensors are layed out such that they would cover a range of
225◦, with two sensors facing the front, two to the side and two at 45◦ angles (see figure
45). Other configurations are imaginable as a potential result after further analysis of the
dataset from section 2.2.5. Since the sensor boxes are supposed to be fastened to a person’s
belt or hip in experimental setups (near the trousers pocket as the most prominent wearing
location [150, 190]), the respective angular offset should be taken into account for all types
of configurations. According to the manufacturer, the employed SRF02 ultrasonic sensors
feature a beam angle of 55◦ at −6 dB and are accurate within ±1 cm from 15 cm up to
5 m, subject to only slight systematic frequency shifts due to temperature [5]. The wide
beam could in principle allow for more precise measurements within intersecting areas,
for example by averaging the measurements from the respective sensors, and of course
provided that the sensors would not operate at the same time, thus avoiding interfering
patterns. Control measurements which were performed in advance of any experiments
however show that the measurement error in fact grows exponentially beyond 30◦ (see
figure 45c). Each of the sensor boxes is connected to a dedicated linux-based mobile phone
via USB. As the sensors are controlled via I2C, each sensor box also contains a USB-to-I2C
bridge for communication with the phone.
The system is similar to one of Hazas et al. [138] who had previously used external sensor
platforms connected to laptop computers. In addition to ultrasonic sensors, these platforms
featured radio-frequency transmitters and receivers, the latter of which were mostly used
for synchronization and the communication of small data packets between the devices.
Each of their sensor platforms hosted exactly three ultrasonic sensors which were layed out
such that they would operate in a mostly two-dimensional layer with sensors at subsequent
angles of 90◦. Hazas et al. [138] report that they achieved good time synchronization
through the use of the RF transmitters. In order to avoid collisions, each laptop kept
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(a) (b) (c)

Figure 45.: Placement, coverage and measurement errors with respect to angular offset for the
SRF02 sensors (left and middle pictures taken from [202]).

record of all other devices it had seen. After one laptop had sent out its signals, it would
then wait for the amount of time that it would need for the known number of other devices
to send. Having tested mostly stationary setups, they report accuracies from 6.9 cm to
8.6 cm for distance measurements, and up to 25◦ for relative orientation in roughly 80%
of their measurements, depending on the quality of the line of sight between devices [138].
The key differences to [138] are comprised of a less coarse sensor layout, application in a
mobile social interaction scenario with much less obstructions through portable devices,
and the abstinence from components such as additional RF transmitters. In terms of
mobility, one may further note that the laptops in [138] were always firmly placed on top
of a table.

3.3.2.1 Synchronization and sequencing

As operating the sensors in echo mode was considered impractical for SSP scenarios,
sender/receiver (Tx/Rx) mode was used instead. Recall that this however requires precise
temporal synchronization. This synchronization would not only involve the exact time
where distinct parties would commence sending or receiving, but also preventing internal
clocks from shifting apart. Using the aforementioned devices and sensors, it turned out
that initial synchronization with a dedicated master device would yield an initial resolu-
tion of 50 ms (≈ 34 mm at 343 ms−1), but within about 30 s the subsequent shift would
go as far as rendering the devices incapable of performing any measurements at all, in
spite of using the operating system’s high resolution timer in conjunction with real time
priority for the process. Wireless broadcasts for continuous synchronization turned out
to be useless as well. Random delays of up to 2.5 ms were observed, thus inducing mea-
surement errors of up to 85 cm. It is assumed that these delays were caused through the
implementation of the wireless stack and corresponding parts of the operating system’s
kernel [202]. Therefore, even though it would mean that the actual implementation of
the system would not be independent of external infrastructure anymore, synchronization
was eventually achieved by means of externally controlled signals, for which a laptop was
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connected to each of the mobile phones’ audio jacks. The external clock then consisted of
an eight-byte audio “impulse” at a frequency of 48 KHz. Although a sound wave would
travel ∼ 5.72 cm during these 8 samples, the effect is canceled out as it affects both sender
and receiver.
Due to the fact that the SRF02 cannot be configured to modulate data payload onto the
emitted signal, the sensors and sensor boxes are operated as a token ring. Ranging may
occupy a single sensor for up to 66 ms [5], implying an upper bound of 15 measurements
per second. In addition to the sensor’s own processing, the complete routine that controls
the sensor and processes its results takes up to 150 ms. In order to avoid interferences
caused by reflections or short-time drift between synchronization points, and taking into
account further delays that may be caused by switching agents, or simply through IO
operations of the operating system itself, the final polling interval was set to 300 ms. For
a network of n agents with k sensors each this means that each sensor will be polled at
n · k · 300 ms intervals. Although the general dynamics of social interaction are typically
not considered very high (corroborated by analysis of the datasets in the previous chap-
ters), still, a cycle of this length constitutes a limiting factor in terms of the maximum
number of agents. Depending on the application, a (weighted) decision must be made on
what type of respective measurement error should be minimized: Is it more important to
have accurate readings per person, or should group dynamics be captured as much as pos-
sible? The former would imply that at first all sensors of one device should measure, one
after another, and only then should the process continue to the sensors of the next device.
On the other hand, processing e. g. one frontal sensor of agent A, directly followed by the
equivalent sensor of agent B etc. would minimize errors with respect to group dynamics,
and minimize the differences between symmetric measurements of δdAB and δdBA at or
around one point in time.

3.3.3 A third dataset

Yet another series of experiments was conducted for the evaluation of the present proposed
system in sequence to those related to the influence of profile and latent parameters de-
scribed in section 2.4.2. Groups of two, three and four participants were recorded in the
same surroundings for about 15 minutes each. In addition to the high-precision infrared
tracking system, data from the mobile phones and sensor boxes were recorded as well. For
this, the sensor boxes were fastened to the participants’ belts or hips as described before.
Recall that for the necessary synchronization the devices also had to be connected to a
laptop via cables plugged into the phones’ audio jacks. The cables were designed to be very
thin and long enough so that people could freely move without further obstruction, and
layed out such that subjects need not worry to step onto them or otherwise get entangled.
As the question may arise at this point, note that neither the sensor boxes nor the cables
were present in any of the prior series of experiments.
Each mobile device transmitted a continuous stream of its sensed data via a wireless net-
work. Contrary to the discussed means of synchronization, timing and bandwidth pose no
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problems for the mere communication of these datastreams. The data from the infrared
tracking system were post-processed as described in sections 2.2.2 and 2.4.2, and provide
the ground-truth for evaluation of the distance (and possibly orientation) measurements
from the ultrasonic sensors. All the same, the data from the ultrasonic sensors were divided
into frames. For a group of n persons, a single frame consequently consists of exactly 6n
measurements, and represents an interval of n · 300 ms starting at time t. For each pair of
frame and agent, the median of 4 out of 6 distance measurements was computed, leaving
out the minimum and maximum values. This was done for two reasons: First, in order to
guard against outliers. And second, in order to satisfy the notion that the chosen layout
of sensors would likely yield extrema for those sensors which would either be obscured or
otherwise point into an irrevelant direction.
While the main focus is on distance measurements, the positioning of the sensors also
allows for a coarse estimation of the direction δφ where other agents are located. For this,
the covered area around a sensor box is divided into nine sectors, each of which is uniquely
determined through its adjacent sensors. From left to right, the first sector therefore corre-
sponds to the 45◦ area around sensor 0, the second sector corresponds to sensors 0 and 1,
and so forth (refer to figure 45). For each sector, the readings of the respective sensors are
averaged, and the sector with the resulting maximum received signal strength is selected
for each pair of agent and frame. Consequently, δφ is roughly determined as the mean
angle of the corresponding sector.
The same manner of dividing the sensed area into nine sectors and evaluating the respec-
tive signal strengths also allows for the determination of δθ. Let sA, sB ∈ {0, 1, . . . , 8} be
the indices of the sectors corresponding to the maximum signal strength as perceived by
agents A and B. Then δθAB, δθBA can be determined as follows [202]:

δθAB = −sgn(sA − sB) ·
(
1−

|sA−sB|
8

)
· π

δθBA = −sgn(sB − sA) ·
(
1−

|sB−sA|
8

)
· π (141)

Note that the lateral and angular offsets of the devices can be neglected because equation
(141) describes only angular difference, and position as well as orientation of the sensor
boxes were controlled parameters throughout the experiments, i. e. the lateral and angular
offsets were the same for both A and B. Without question, a certain systematic error will
still remain due to the unavoidable uncertainty when fixating the sensor boxes to the belt
or the hips of the subjects. This uncertainty would as well be the case in real-life scenar-
ios, although related work and the prior results have shown that on-body location and
orientation of a device can be determined very accurately. Due to the spatial constraints
during the recording process (refer to chapter 2), the effect of such a systematic error is
however negligible. In case of the present experiment, the infrared tracking system would
allow for computing the angular offset as opposed to manual measurements on each par-
ticipant. For this, that angle of rotation around the yaw axis was determined which would
minimize global error in comparison to the infrared-tracking system. The resulting angle
corresponds to a counter-clockwise rotation of 47◦, and somewhat follows the intuition of



162 position and orientation of individuals

Residual error
Variable Mean Standard deviation
δθ 29.15◦ 16.93◦

δφ 20.28◦ 31.26◦

δd 24.4cm 8.64cm

Table 26.: Mean and standard deviation of the residual for measurements based on ultrasound vs.
infrared-tracking

40◦ ∼ 50◦ for wearing the device on the right hip. As a result, every reading of δφ and δθ
was rotated accordingly.

3.3.4 Evaluation

The computation of the values for δd, δφ and δθ, followed by a per-frame comparison of the
results with the ground-truth provided by the infrared-tracking system, leads to the results
described in table 26. While for each of the three variables the values of the residual’s mean
and the standard deviation seem surprisingly high, performance still needs to be evaluated
with respect to the developed algorithmic model for the discrimination of S⊕ and S⊖

according to social interaction geometry. Recall that the GMM-based models from section
2.2.5 were computed and evaluated based on a significantly larger dataset D, involving
groups of two to nine persons over the course of about thirty minutes, and featuring
much more group dynamics as the subsequent experiments. The present system was thus
evaluated for all sets of variables in V = {δd ∈ X|X ∈ 2{δθ,δφ,δd}}, i. e. all combinations
involving distance measurements. More precisely, cross-validation was performed for each
set v ∈ V on the original dataset D (refer to section 2.2.5), where for each partition of
training- and test-data, Gaussian noise corresponding to table 26 was superimposed onto
the respective variables in v. The results of this evaluation are given in table 27.
Perhaps surprising, in spite of the notable offset and additional noise, for v = {δd} the
model performs stable and only slightly less accurate than on the unaltered dataset (refer
to table 10). One also notes a slight increase in precision for S⊕, albeit at the cost of
recall. For S⊖, on the other hand, recall increases at the cost of precision. For v = {δφ, δd}
overall accuracy is already lower by ∼ 10%. This goes along with a huge decrease in
recall for S⊕ and precision for S⊖. Yet the result is not unexpected, taking into account
the course granularity of δφ and the exponential increase of per-sensor measurement error
beyond angles of 30◦, the latter particularly so for true angles “inbetween” adjacent sensors.
At last, once δθ comes into play, the performance loss is significant. This is somewhat
unexpected when considering the “importance” of each of the variables (refer to section
2.3.5.5). According to the mutual information of δθ, δφ and δd for the discrimination of
S⊕ and S⊖, δd is by far the most important, followed by δφ and only then by δθ. On
the other hand, mutual information can only serve as an abstract measure and does not
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express information about e. g. the distribution of a variable. Therefore, δφ may still be
more important than δθ, but the course granularity of both variables as determined by
means of ultrasound is not acceptable for δθ.
Finally, it can be argued that the mean residuals from table 27 are systematic errors. As
such, a second round of cross-validations was performed for which the respective means
were disregarded, so that the superimposed Gaussian noise was only determined by the
magnitudes of the standard deviations. The results of this second evaluation are given in
table 28. This time, the performance for v = {δd} is en par with that of the unaltered
dataset. Even once δφ is taken in addition to δd, accuracy is 10% less, but recall and
precision are not affected as much as before.

3.3.5 Discussion

Overall, the system’s evaluation yields acceptable performance. It has been shown that
the main task of the ultrasound system, namely measuring interpersonal distance δd in
a social interaction scenario, can be achieved with reasonable accuracy. One may argue
that residuals of 24.4± 8.6cm are far from reasonable, which may be true in general, but
without doubt they constitute a satisfying result for the overall presented algorithmic
models for the discrimination of S⊕ and S⊖. They sustain the overall robustness of the
GMM-based models and corroborate the choice of these models following the notion that
human behaviour is best described in a fluent way as opposed to hard limits. Furthermore,
both δφ and δθ come as a byproduct of the ranging process. In case of δθ, the quality of
the measurements is insufficient, but the same is not necessarily true for δφ. In any case,
these measurements could either serve as a backup, or be combined with those from other
systems through e. g. a Kalman filter so as to improve and stabilize the overall process.
Cross-validation of the data with super-imposed noise on δθ, but not the other variables,
shows that merely the combination of ultrasonic-only measurements of both (or all three)
variables lead to bad results. Nevertheless, the main focus of the presented system is on
distance measurements which could not be provided by other means such as the system
from section 3.2, which is why δd cannot be disregarded.

It was argued that the means of the residuals may be seen as systematic errors, and thus
be disregarded based on the notion that systematic errors can more or less easily be can-
celed out. This statement must of course be handled with care. Without doubt, the lateral
(dis-)placement of the sensor boxes can be seen as systematic error and the angular offset
of each device was corrected according to minimization of the global measurement error.
In a real-world scenario such errors with respect to orientation are not always systematic,
though. A system such as the one presented in the previous section has of course system-
atic errors, for example in the underlying model, and those could actually be canceled out.
Nevertheless, it is certainly more appropriate to regard residuals of location- and orienta-
tion measurements as random errors when they originate from such a system. The same
does arguably not hold for distance measurements. Letting aside random errors caused by
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obstructions, reflections, dynamics, etc., a static bias like the one in the presented system
can easily be corrected. One reasonable source for such a bias is e. g. given by the fact
that the devices were placed on the right hip. Assuming a constant displacement of the
device from the center of the body, the Pythagorean theorem serves to explain a quadratic
component of the error, albeit depending on the actual distance. A lateral displacement
of 20cm, for example, would result in an error of 12cm for an object at an actual distance
of 1.1m.

Another remaining issue is that the presented system is currently restricted to measure-
ments within the forward hemisphere of its carrier. More precisely, the current layout is
constrained according to the discussed lateral and angular offsets caused by fastening the
device to the user’s right hip. In a scenario where two people stand in an L-shaped configu-
ration, the person to the left might simply be unrecognizable for the sensors of the person
to the right. The same might hold for people standing in a line or even behind someone
else. Hitherto analysis of the datasets in chapter 2 has shown that such interactions occur,
even though they are very rare. One could of course at least remotely imagine wearable
computing devices such as ultrasonic sensor necklaces, but at present that does not seem
convincing. Both problem statements are however relaxed by the fact that at least one
of the two devices will be able to see the other. Also recall that models based on a less
accurate representation of position and distance, such as the “R2B” model (see figure 25),
yield performance in an order of magnitude that mitigates the discussed issues.

Finally, one has to note that the experimental setup was surely not optimal in this case.
Although great care was taken in order to avoid obstructions or impose constraints on
the participants’ behaviour, it is possible that the interactants moved less and were more
conscious of the experiment as is. However, the fact that the results of these experiments
were transferable to an absolutely independent and much more dynamic scenario/dataset
render this critique less crucial. Moreover, when the related works of Peng et al. [229] and
Hazas et al. [138] are taken into account, it is most likely that a composition of these three
systems would result in a practical system for applications in social interaction geometry.
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S⊕ S⊖

Variables Gaussians Acc Prec Rec F1-Score Prec Rec F1-Score

δd

5 77.69% 86.82% 58.92% 70.20% 73.73% 92.79% 82.17%
10 77.92% 85.55% 60.75% 71.05% 74.38% 91.74% 82.15%
25 78.60% 84.95% 63.22% 72.49% 75.44% 90.98% 82.48%
50 77.49% 83.32% 61.95% 71.06% 74.61% 90.01% 81.59%

δφ, δd

5 67.33% 82.44% 33.99% 48.13% 63.92% 94.17% 76.15%
10 67.91% 82.26% 35.78% 49.86% 64.46% 93.78% 76.40%
25 68.87% 79.66% 40.59% 53.77% 65.70% 91.65% 76.54%
50 67.37% 75.70% 39.60% 51.99% 64.85% 89.74% 75.29%

δθ, δd

5 53.09% 16.77% 1.27% 2.33% 54.39% 94.82% 69.12%
10 53.63% 19.00% 1.72% 3.09% 54.67% 95.42% 69.51%
25 52.34% 24.32% 6.86% 9.48% 54.40% 88.95% 67.34%
50 47.13% 27.57% 14.52% 18.59% 51.73% 73.39% 60.55%

δθ, δφ, δd

5 53.63% 36.84% 7.23% 11.72% 54.92% 91.01% 68.50%
10 53.87% 34.05% 3.70% 6.54% 54.86% 94.27% 69.35%
25 50.79% 29.82% 6.96% 10.82% 53.35% 86.08% 65.81%
50 47.45% 34.30% 20.10% 25.20% 51.94% 69.47% 59.40%

Table 27.: Performance of GMMs with superimposed noise corresponding to ultrasound measure-
ments.

S⊕ S⊖

Variables Gaussians Acc Prec Rec F1-Score Prec Rec F1-Score

δd

5 80.03% 80.09% 73.52% 76.66% 80.00% 85.28% 82.55%
10 79.95% 79.56% 74.07% 76.72% 80.22% 84.68% 82.39%
25 80.64% 78.85% 77.33% 78.08% 82.03% 83.30% 82.66%
50 81.08% 79.03% 78.38% 78.70% 82.71% 83.25% 82.98%

δφ, δd

5 72.05% 77.22% 52.97% 62.84% 69.78% 87.42% 77.61%
10 71.51% 76.26% 52.46% 62.16% 69.41% 86.85% 77.16%
25 72.82% 75.33% 58.09% 65.59% 71.51% 84.68% 77.54%
50 72.31% 74.35% 57.89% 65.09% 71.23% 83.92% 77.05%

δθ, δd

5 79.19% 79.90% 71.28% 75.34% 78.72% 85.56% 82.00%
10 78.68% 79.58% 70.22% 74.61% 78.10% 85.49% 81.63%
25 79.32% 78.48% 73.90% 76.12% 79.93% 83.68% 81.76%
50 79.09% 77.73% 74.45% 76.05% 80.11% 82.83% 81.44%

δθ, δφ, δd

5 71.42% 76.83% 51.43% 61.62% 69.12% 87.51% 77.23%
10 70.60% 76.15% 49.63% 60.09% 68.32% 87.48% 76.72%
25 71.90% 74.67% 55.99% 63.98% 70.51% 84.70% 76.95%
50 71.40% 73.08% 56.81% 63.92% 70.52% 83.15% 76.31%

Table 28.: Performance of GMMs with superimposed noise corresponding to ultrasound measure-
ments for which the mean systematic error was cancelled out.





4
S E N S O R F U S I O N A N D D E D U C T I O N O F N - A RY S I T U AT I O N S
F RO M DYA D S

4.1 introduction and related work

Humans have the ability to assess the presence and quality of social situations very effi-
ciently [166, 226, 336, 271]. In this process, most information is conveyed in a non-verbal
manner. Individuals mutually strive to clearly establish or neglect social situations upon
entering corresponding scenarios, and once established, they work together to maintain
existing situations, for instance when unconsciously compensating for movements of oth-
ers in ongoing FFSs so as to sustain and/or protect their shared transactional O-space (see
section 1.2.2). Nevertheless, all interactants still yield subjective perspectives based on
which kind and extent of information is available to them, but also dependent on personal
context. In turn, their assessments might or might not be known to all or a subset of the
other members, and that to varying extent. The other members could then incorporate
this information when building their own subjective opinions, weighted by the quality of
mutual relation and trust.
Analogously, consider a decentralized Mobile Social Networking (MSN) scenario [353, 249]
where each individual is represented by their own mobile agent, e. g. a software agent
running on a mobile phone. In such a scenario, an agent could collect measurements from
a great variety of physical and logical sensors, leading to its personal belief about one or
more dependent variables, such as for example the likelihood of the individual represented
by the agent being engaged in social interaction with another particular individual, possi-
bly based on algorithmic models of interaction geometry (see section 2.3). Clearly, these
personal opinions of an agent are a result of the underlying sensor models, the kind and
quality of the involved physical and logical sensors, and the respective uncertainty. Also,
not all sensors might be available at all times. Furthermore, different agents might (and
likely will) use different sets of sensors. Multiple agents will therefore generally deduce
different views on a particular social setting.
Overall, perhaps depending on the type of application, one may presume that agents
would greatly benefit from sharing their (raw) data and/or (abstract) subjective opinions.
Whereas an in-depth discussion and evaluation of the full consensus process among mul-
tiple agents is out of the scope of this work, it will be shown that combining subjective
beliefs leads to a significant improvement for the question about the participants of so-
cial situations. Readers should note that the following is to some extent a recapitulation
of the paper “Combining Evidence for Social Situation Detection” by Groh et al. [125],
co-authored by the author of this thesis.
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4.2 foundations

Classical sensor fusion differentiates between complementary, competitive and cooperative
sensors [45, 253]. Whereas fusioning of the sensor outputs is usually not necessary for
complementary sensors, it is only naturally to do so for competitive sensors. This is also
the classical case in the field of sensor fusion, and as well predominant in decentralized
MSN scenarios.
From the perspective of traditional sensor fusion, sensors output a value v(t) at any time
t within a confidence interval ϵ(t) with confidence 1−α. In a rather trivial scenario where
the outputs of two physical sensors which measure the same entity should be fusioned,
it is quite common to model the measurement error with a normal distribution. The
latter follows from the central limit theorem according to which the sum of multiple
random variables converges towards the normal distribution, no matter what the original
distributions of those variables might be. Fusioning of the two sensors can therefore be
achieved by convolving the respective normal distributions of the two sensors, resulting
in yet another normal distribution whose mean corresponds to the expected outcome and
whose variance corresponds to the accumulated uncertainty. On a sidenote, this is also
the basic principle behind the popular Kalman filter [273, 342]. Fusioning techniques like
the one just described can cope with uncertainty but lack the ability to model subjectivity.
Moreover, the given scenario is limited to sets of homogeneous sensors. In decentralized
MSN it is however likely that distinct agents build their subjective beliefs about the state
of a system based on the output of varying sets of heterogeneous logical and/or physical
sensors which furthermore may or may not be available at all times. For example, one
agent might deduce social activity from interaction geometry while another relies on the
analysis of turn-taking patterns from audio recordings.
From a much less simplistic perspective, probability theory would allow for modeling sensor
networks in terms of Bayesian Networks (BNs), leading to representative and coherent
models that are well understood. BNs are easily visualized and therefore also often easy
to interpret. Numerous methods exist for filtering, smoothing and/or extrapolating time
series of measurements[34, 218] in BNs. Once modeled, a multitude of statistical methods
allow for the estimation of the network parameters, such as EM-based methods (refer to
section 2.3.1.1). Their nature however requires corresponding sets of training data recorded
in either real-life or experimental settings. It is quite clear that the outcome of the final
model depends on the quality and quantity of those training data. In regard of applications
in SSP, and in particular so for social interaction geometry, there can be no doubt that there
will ever only be finite training data which surely cannot represent every possible twist in
human behaviour. One may presume though that the modeled aspects of human behaviour
are uniform enough in a way that allows for generalization of correspondingly modeled and
learned BNs (see sections 2.3.5.6 and 2.4, as well as the results of the evaluation in sections
2.3.5, 2.4.3 and 2.4.3.1). Once the model parameters have been learned, BNs can easily be
adopted by mobile agents and would henceforth be essential for their respective view of the
world. Yet in spite of their obvious benefits in terms of incorporation and application, e. g.
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with respect to the limitations of mobile hardware, BNs seem less suited for the exchange of
measurements and subjective opinions between agents. Such models would require strong
a priori knowledge about the participating systems’ sets of sensors as well as their precise
communication structure, especially so in case of MSN and its presumed heterogeneous
infrastructure. It is certainly possible to model a respective BN, yet the required number
of model parameters would probably grow enormously, thus – aside from modeling issues –
creating an exponential growth in the demand for training data [34, 218].

According to Helton, [141] in [290], there is a dichotomy between aleatory and epistemic
uncertainty. Aleatory uncertainty arises from the fact that a known system behaves in
a random way, whereas epistemic uncertainty is due to ignorance of the system’s exact
behaviour. Probability theory usually handles the former through a frequentist approach
[218], the disadvantages of which for sensor fusion have been discussed above. Epistemic
uncertainty, on the other hand, is modeled with a Bayesian approach, which has the
disadvantage that it requires precise knowledge of all system components as well as any
possible events, along with a complete set of models for their probabilities. In [290], Sentz
gives two examples for further illustration:
• Suppose a system consisting of three components as seen through the eyes of someone

who is an expert for only a single component. The expert can make a proposition about
the probability p with which this single component might fail. Due to his ignorance of
the rest of the system, he might however assume a uniform distribution of failure over
the remaining two components.

• Probability theory requires the probabilities for all atomic events to sum up to one.
This way the complementary probability is defined for every known event. A reasonable
question therefore is whether the same expert would also assume that the whole system
would not fail with probability 1− p, with p corresponding to only his and 1− p to all
remaining components.

Sometimes uncertainty cannot be expressed in terms of precise probabilities (as is the
case above). Belief theory therefore regards probabilities as intervals or sets of atomic
events [72, 294, 73, 159, 161, 290]. It extends classical probability theory by the ability to
explicitly express ignorance [161], which implies three advantages according to [290]:
• Experts are only asked for their precise opinion if they can have one.
• Estimates can be made with respect to multiple events (a set E of events) without

having to resort to giving estimates about particular events (any non-empty subset of
E).

• Measures from multiple sources need not sum up to one (axiom of additivity). It is
possible though, and if that happens, then that would correspond to classical probability
theory. If however the sum of the measures were subadditive (less than one), that
would imply conflicting information, whereas superadditivity would occur in case of
cooperative effects between multiple sources of information.
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Based on belief theory, Dempster-Shafer theory (DST) provides a well-known framework
for epistemic uncertainty [72, 294, 73] and has “attracted considerable attention” in the
field [354]. DST is closely related to probability theory [290], yet due to its roots in belief
theory is furthermore capable of expressing lower and upper bounds of probability in
terms of belief and disbelief from the point of view of a single source of information.
Furthermore, Dempster’s rule [72, 294] defines an operation for the fusion of multiple
sources of information, as will be discussed next.

4.2.1 Dempster-Shafer theory

Assume a state space Θ = {x1, . . . , xN}, also called frame of discernment, along with a given
entity A, representing a system which at any time is in one of the mutually exclusive states
xi. From the generalized perspective of an expert (agent), probabilities are not exclusively
assigned to atomic states. Instead, a Belief Mass Assignment (BMA) m considers sets of
states:

m : 2Θ → [0, 1] (142)

subject to

m(∅) = 0 and
∑
θ∈2Θ

m(θ) = 1 . (143)

Each m(θ) corresponds to the fraction of the overall evidence that A is in any one of the
atomic states xi ∈ θ. Belief mass is expressed for a particular set θ and does not imply
mass assignments for any of its subsets.

Next, let θ ∈ 2Θ denote a proposition about A being in any one of the states in θ. An
agent’s belief b about θ is defined as

b(θ) =
∑
θ ′⊆θ

m(θ ′) (144)

To the contrary, disbelief expresses the agent’s total belief that A is in none of the states
in θ [159]. Hence it sums up all the evidence which speaks against the given proposition

d(θ) = b(θ) =
∑

θ ′∈2Θ,θ ′∩θ=∅

m(θ ′) , (145)

where θ denotes the complement. It follows that the following condition will always
hold[72]:

b(θ) ⩽ d(θ) (146)

Plausibility amounts to the total belief in the possibility that θ were true except for the
explicit evidence against it, i. e.

Pl(θ) = 1− d(θ) = 1− b(θ) . (147)
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The remaining uncertainty about θ is lower-bounded by belief and upper-bounded by plau-
sibility. It can therefore be defined as the total belief of superstates or partially overlapping
states [159]:

u(θ) =
∑

θ ′∈2Θ,θ ′∩θ ̸=∅, θ ′⊈θ

m(θ ′) (148)

Assigning all belief mass to Θ yields total uncertainty. It follows that

∀θ ̸= ∅ : b(θ) + d(θ) + u(θ) = 1 . (149)

Using the above definitions, the expected value of the probability of θ is given by

p(θ) =
∑
θ ′∈2Θ

m(θ ′)
θ∩ θ ′

|θ ′|
, (150)

for which |θ ′| is defined as the number of atomic xi ∈ θ ′ [160]. At this point, equations (149)
and (143) lead to interpretability of b(θ), d(θ) and u(θ) as barycentric coordinates. p(x) is
then the projection of the point given by the b(θ), (dθ) and u(θ) onto the principal axis of
a triangle, connecting disbelief to belief (see figure 46 on page 172). One may further note
that whenever lower and upper bound collapse, belief theory reduces to classical probability
theory. For further reference, table 29 gives an example of the former definitions for a tri-
state system.

4.2.2 Dempster’s rule of combination

Dempster’s rule of combination yields a fusioning mechanism for multiple independent
sources of information over the same state space Θ, for which the agents each express
their own expertise in terms of their subjective BMAs.

Let m1 and m2 be the personal BMAs of two independent agents. Their combined BMA
m12 for a proposition θ ∈ 2Θ is then defined as

m12(∅) = 0 (151)

m12(θ) =

∑
υ∩φ=θm1(υ)m2(φ)

1−
∑
υ∩φ=∅m1(υ)m2(φ)

(152)

The denominator serves not only as a normalization factor, but as a means of ignoring
all conflicting information, therefore “attributing any probability mass associated with
conflict to the null set”, [352] in [290]. As a generalization of Bayes’ rule, Dempster’s rule
behaves like an AND-operation by emphasizing the agreement between multiple sensors
[290]. Amongst others, Zadeh [354] showed that this normalization factor as a matter of
fact causes Dempster’s rule to produce unreliable results or to completely fail in case of
highly conflicting beliefs [354, 44, 74]. A corresponding example is given by Jøsang [159]:
Consider a murder case with three suspects Peter, Paul, and Mary, as well as two witnesses
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disbelief belief

uncertainty

p(!)

d(!)

b(!)
u(!)

Figure 46.: Belief, disbelief and uncertainty about a proposition θ in terms of barycentric coordi-
nates. The probability p(θ) is the projection onto the principal axis.

Proposition Mass Belief Disbelief Plausibility Uncertainty
∅ 0.00 0.00 0.00 1.00 0.00
{a} 0.19 0.19 0.49 0.51 0.32
{b} 0.20 0.20 0.61 0.39 0.19
{c} 0.25 0.25 0.48 0.52 0.27
{a} ∪ {b} 0.09 0.48 0.25 0.75 0.27
{a} ∪ {c} 0.17 0.61 0.20 0.80 0.19
{b} ∪ {c} 0.04 0.49 0.19 0.81 0.32
{a} ∪ {b} ∪ {c} 0.06 1.00 0.00 1.00 0.00

Table 29.: Belief theory measures for a system with three atomic states a, b, and c.
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Witness 1 Witness 2 Dempster’s rule
Peter 0.99 0.00 0.00
Paul 0.01 0.01 1.00
Mary 0.00 0.99 0.00
Θ 0.00 0.00 0.00

(a) Without uncertainty

Witness 1 Witness 2 Dempster’s rule
Peter 0.98 0.00 0.490
Paul 0.01 0.01 0.015
Mary 0.00 0.98 0.490
Θ 0.01 0.01 0.005

(b) With uncertainty

Table 30.: Outcome of Dempster’s rule and SL’s consensus operator in a classic example of high
conflict (a) vs. the outcome after introducing uncertainty over the whole state space (b).
Example taken from [159].

with highly conflicting testimonials. The first witness believes that Peter committed the
murder with belief mass 0.99, and that Paul likely did it with belief mass 0.01. The second
witness however assigns belief mass 0.99 to Mary, and 0.01 to Paul as well. Application
of Dempster’s rule eventually eliminates Peter and Mary as suspects and leads to a joint
belief mass of 1.0 for the initially highly unlikely Paul (see table 30a). According to Zadeh,
it is therefore evident that Dempster’s rule “cannot be applied until it is ascertained that
the bodies of evidence are not in conflict” [354]. Jøsang and Pope alleviate this by arguing
that it may still serve as an approximation in cases of low conflict [162]. In [159], Jøsang
has furthermore shown that the introduction of a small amount of uncertainty over the
whole state space Θ yields a substantial reduction in conflict and can lead to better results
(see table 30b). It is further mentioned that “dogmatic” BMAs which assign zero belief mass
to Θ (as opposed to disbelief or uncertainty) are considered hypothetical and “unnatural
in practical situations” [159].

4.3 subjective logic

Subjective Logic (SL) is an extension to DST that handles both uncertainty and subjectivity.
It serves as a generalization of first-order logic and probability calculus, and it can be
shown that it collapses to either one of them whenever the input parameters are chosen
accordingly [161]. SL itself is based on the presumption that, in principle, it is never possible
to state whether a particular assumption about the world (a system) is true or false with
absolute accuracy, in other words that “perceptions about the world are always subjective”
[163]. For this, SL regards specific types of beliefs, called opinions, and provides a rich set
of SL operators [159, 160, 163, 161]. Opinions are expressed using BMAs which assign belief
mass only to atomic states x ∈ Θ and Θ as a whole, i. e.

m(θ) ̸= 0 ⇒ θ = Θ ∨ |θ| = 1 , (153)

known as Dirichlet Belief Mass Assignments (DBMAs). Consequently, for DBMAs belief b is
always equal to the basic mass assignment m for all atomic states xi. Defining uncertainty
only for the xi and Θ makes it explicit that no one will ever be able to state assumptions
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about the world (system) with absolute accuracy. This presumption also leads to another
representation of the expected probability for a given proposition. From equation 150 one
can see that the remaining belief mass from (partially) overlapping states is distributed
in equal kind for θ ⊆ Θ of the same cardinality |θ|, in particular so for atomic states
xi ∈ Θ. In case of DBMAs, the only such overlapping state is Θ itself. It follows that m(Θ)

must be distributed uniformly among all atomic states xi for arbitrarily large frames of
discernment. This insight can be captured as a function

a : Θ→ [0, 1] subject to a(∅) = 0 and
∑
xi∈Θ

a(xi) = 1 . (154)

This function is called the base rate function and naturally represents the a priori proba-
bility for each of the xi to be true, i. e. their probability in absence of any evidence [163].
According to Jøsang, the default base rate function corresponds to a uniform distribution,
but there is no requirement for that. Different opinions over the same state space may
share the same base rate function, except for e. g. situations where distinct analyses of the
same Θ need to be modeled for different persons [161].
Another benefit that follows from the fact that DBMAs distribute belief mass only among
the xi and Θ is that uncertainty, as previously defined in equation (148), can now be
simplified to a single scalar value

u = m(Θ) , (155)

so that the expected probability from equation (150) can be expressed as

p(xi) = b(xi) + u · a(xi) , (156)

i. e. the posterior probability of A being in state xi. It can be shown that p(xi) is a valid
probability density function, considering equations 143 and 153 due to which

∑
i b(xi) +

b(Θ) = 1 for all DBMAs.
At last, the prior prerequisites lead to the definition of an opinion over a given state

space Θ as as three-tuple

ωΘ = (b,u,a) . (157)

The vectors b and a denote DBMA and base rate, and the scalar u defines uncertainty.
Opinions over arbitrarily large state spaces are called multinomial, those over binary state
spaces are referred to as binomial. For multinomial opinions, p(x) follows a Dirichlet
distribution, whereas it follows a Beta distribution for binomial opinions [161]. A mapping
from subjective opinions over binary state spaces to Beta distributions is given in [163].
The preferred notation for binomial opinions as a four-tuple

ωΘbinary = (b(x),b(x̄),u,a(x)) = (b,d,u,a) (158)

for the binary state space Θ = {x, x̄}. Although including the disbelief is clearly redundant
(refer to equation (149)), it allows for a more compact operator notation. Note that binary
state spaces are also referred to as focussed frames of discernment.
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4.3.1 Fusion operators

SL provides a rich set of operators for opinions as input and output parameters. While most
operators are related to well-known operators from logic and probability calculus, some
exist only in the context of SL. A comprehensive listing of SL operators can be found in
[161]. The fact that SL is compatible with both logic and probability calculus can be shown
by considering frames of discernment such that e. g. the input and output parameters
correspond to binary TRUE or FALSE. In such cases the SL operators will produce the
same results as propositional logic does. The equivalent holds for probabilities [159, 160,
163, 161]. For applications in SSP, the most interesting operations are implemented by the
cumulative and averaging fusion operators. Cumulative fusion is the case whenever agents
observe the same process at different times. This also means that they are considered to be
independent sources of information, which is also an important presumption in Dempster’s
rule (see section 4.2.2). Averaging fusion, on the other hand, is concerned with agents
observing the same process simultaneously or within at least partially overlapping time
frames. For (partially) dependent observations, a hybrid fusion operator can be defined
[163].

cumulative fusion operator Let ωAΘ and ωBΘ be the two opinions of sources A
and B over the same multinomial state space Θ. The cumulative fusion operator ωA⊕ωB
is defined as
• uA ̸= 0 ∨ uB ̸= 0:

ωA ⊕ ωB = ωA⋄B =

bA⋄B(xi) =
bA(xi)u

B+bB(xi)u
A

uA+uB−uAuB
∀xi ∈ Θ

uA⋄B = uAuB

uA+uB−uAuB

(159)

• uA = 0 ∧ uB = 0:

ωA ⊕ ωB = ωA⋄B =

bA⋄B(xi) = γAbA(xi) + γ
BbB(xi)

uA⋄B = 0
(160)

where γA = limuA→0,uB→0
uB

uA+uB
and γB = limuA→0,uB→0

uA

uA+uB
.

This definition follows the notion that the fusioned opinionωA⋄B should equal that opinion
which yet another agent C would have after monitoring all events of the process during both
time frames. The operator can be understood as a generalization of SL’s consensus operator
which is defined over binary state spaces. [160] illustrates the use of the consensus operator
in spite of ternary state spaces, such as e. g. in the example of the three murder suspects. It
should be pointed out that the second case corresponds to a complete lack of uncertainty
(as in probability calculus). The result resembles a weighted average of probabilities, and
is equal to the result of combining two measurements under the assumption of normally
distributed measurement errors (see section 4.2).
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averaging fusion operator Let ωAΘ and ωBΘ be the two opinions of sources A
and B over the same multinomial state space Θ. The averaging fusion operator ωA⊕ωB
is defined as
• uA ̸= 0 or uB ̸= 0:

ωA⊕ωB = ωA⋄B =

bA⋄B =
bA(xj)u

B+bB(xj)u
A

uA+uB
∀xi ∈ Θ

uA⋄B = 2uAuB

uA+uB

(161)

• uA = 0 or uB = 0:

ωA⊕ωB = ωA⋄B =

bA⋄B = γAbA(xj) + γ
BbB(xj)

uA⋄B = 0
(162)

where γA = limuA→0,uB→0
uB

uA+uB
and γB = limuA→0,uB→0

uA

uA+uB
.

4.3.1.1 Properties
Both the cumulative and the averaging fusion operator are commutative, associative and
non-idempotent [161]. This is an important property because order should not matter when
combining beliefs, a fact not not necessarily true for other published combinators [160].
It can furthermore be shown that both operators satisfy equation 149. For comparison
with DST, table 31 illustrates the application of the cumulative fusion operator over the
murder-suspect state space. The improvements through introduction of uncertainty over
the whole system have been demonstrated in tables 30a and 30b. It comes to no surprise
that the results of Dempster’s rule in 30b are quite similar to those of SL consensus. The
difference is subtle, but this is not always the case [160]. To see this, assume a belief
mass over a binary state space Θ = {x, x̄} which is distributed such that m({x}) = 0.9
and m(Θ) = 0.1. In particular, no belief mass is associated with x̄. This setup can be
interpreted as an expert stating their opinion about x being true and overall uncertainty
about Θ as a whole, yet being reluctant to state their expertise about x being false. In
this example, the results differ vastly between both frameworks. Although they are quite
similar for x and x̄, they greatly differ for Θ. Dempster’s rule amplifies the belief in x much
more than SL’s consensus operator. To the contrary, SL also takes into account the overall
uncertainty about Θ, which comes much closer to an intuitive way of thinking.

Witness 1 Witness 2 Dempster’s rule SL consensus
Peter 0.98 0.00 0.490 0.492
Paul 0.01 0.01 0.015 0.010
Mary 0.00 0.98 0.490 0.492
Θ 0.01 0.01 0.005 0.005

Table 31.: Outcome of Dempster’s rule and SL’s consensus operator in a classic example of high
conflict (a) vs. the outcome after introducing uncertainty over the whole state space (b).
Example taken from [159].
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Figure 47.: Transitivity of trust through the discounting operator. Figure taken from [163].

4.3.2 Trust modeling

So far, it has been discussed how SL is used for the explicit treatment of uncertainty through
subjective opinions. Apart from modeling uncertainty and belief ownership though, another
useful property is SL’s ability to model trust. The latter proves to be especially useful in
the context of a MSN scenario such as the detection of socially interacting groups based on
the subjective opinions of multiple independent agents. For the purpose of trust modeling,
the idea is to interpret trust as “belief in reliablity” [163], and consequently enabling SL
– as a calculus for belief – to be used for reasoning about trust. Practically speaking, trust
transitivity is achieved by combining individual opinions about trust with other opinions
about particular elements of a given frame of discernment. For this, trust in other agents
is modeled over a binary state space Θ = {B, B̄}, so that ωAB corresponds to the belief of A
in whether B is reliable (or not, as in B̄). Linking wAB with the corresponding opinion wBx
of B about x by using an appropriate operator would then lead to the transitive opinion
wA:B
x of A about x, as illustrated in figure 47.

Careful consideration of the available operators is mandatory because the opinions of
multiple agents might depend on each other without the agents being aware of that. For
example, several unrelated newspaper authors might have listened to the same secret
source of information. In cases were mutual dependencies are likely, operators must there-
fore be chosen accordingly as already indicated in section 4.3.1. Failure to compensate
for dependent sources might otherwise result in some opinions being emphasized beyond
reason. However, according to Jøsang et al. there is no single flawless operator for trust
transitivity due to the insight that “trust transitivity is a psychological phenomenon that
cannot be objectively observed” [163]. Following these considerations, Jøsang et al. present
the following two operators for trust modeling [163].

uncertainty favouring discounting Let A and B two agents and Θ the frame
of discernment. The idea of the uncertainty favouring discounting operator is that uncer-
tainty about a proposition x ∈ Θ is favoured based on the principle disbelief of A in B.
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In this regard, A assumes that B has either no knowledge of x or simply ignores the true
value of x [163]. Therefore A will ignore x as well.

ωAB ⊗ ωBx = ωxA:B =



bA:B
x = bABb

B
x

dA:B
x = bABd

B
x

uA:B
x = dAB + uAB + bABu

B
x

aA:B
x = aBx

(163)

opposite belief favouring discounting Let A and B two agents and Θ the
frame of discernment. The opposite belief favouring discounting operator serves the case
where A believes that B is prone to constantly telling the opposite of the true value of x.
The operator therefore combines the disbelief of A in B’s belief in x with the belief of A
in B’s disbelief in x.

ωAB ⊗ ωBx = ωxA:B =



bA:B
x = bABb

B
x + dABd

B
x

dA:B
x = bABd

B
x + dABb

B
x

uA:B
x = uAB + uBx (b

A
B + dAB )

aA:B
x = aBx

(164)

4.3.2.1 Properties and Use-Cases

Readers should be aware that Jøsang et al. have defined both operators in terms of the same
mathematical symbol. Also note that both operators are associative but not commutative,
which otherwise would be nonsensical since trust is inherently directed based on its human
nature.
Bamberger et al. [23] use SL to model trust and uncertainty in a car-to-car scenario. The
scenario assumes that cars meet multiple times and therefore build a “social structure”.
Trust is deliberately expressed on an individual basis and there is no such thing as a general
reputation. As an example, consider a DBMA over the binary state space Θ = {x, x̄}, where x
and x̄ represent the presence or absence of a new traffic sign at a given location. Individual
cars build their opinion about x (or x̄) by taking into account all available opinions of the
remaining cars. Once enough information has been collected over time, the true value of
the accordingly fusioned opinion can be assumed as fairly certain and thus be used to
develop trust in each of the other cars. Each individual trust relation will then depend on
the quality of the other cars’ assessments of the proposition in question. For this, given two
cars A and B, the trust model consists of the three components competence, predictability,
and recommendation [23]:
Competence: A’s opinion about B’s competence is determined by the mean error of B’s
opinions after consideration of all available evidence so far, and is denoted as ωAcomp,B.
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Figure 48.: Topology of the proposed sensor model. Image reproduced from [125].

Competence is therefore inverse to the magnitude of the accumulated mean error. Older
evidence is weighted lower by using a time-dependent factor.
Predictability: A’s opinion ωApred,B about the predictability of B reflects the ability of A
to make correct decisions based on B’s opinion, considering A’s trust in B.
Recommendation: A’s opinion ωArec,B about B is published as a recommendation upon
contact with other cars to help them build or sustain their own local reputation of B.
Recall that there is no general reputation maintained by any kind of central unit.

4.4 sensor model

For applications in a decentralized MSN scenario, the work at hand proposes a sensor
model comprised of physical and logical sensors arrayed at different levels of abstraction.
Physical sensors provide raw measurements. They represent the kind of sensors which are
directly employed on modern mobile hardware, such as e. g. microphones, accelerometers,
compasses, gyroscopes, etc. The sensor model assumes that any agent Ai is equipped with
a number 1 ⩽ m ⩽M of these hardware sensors, denoted as Him. Logical sensors abstract
over any other type of sensor, i. e. both physical and logical. The input for logical sensors
is furthermore not restricted to the output of one agent’s individual device (local). Instead,
they can freely gather and exchange data from and with other devices (remote). These
sensors will be denoted as Lin, where 1 ⩽ n ⩽ N for an agent with N logical sensors.
Figure 48 illustrates the topology of the proposed sensor model. On top of the base layer
Ia of hardware sensors, layer Ib represents a set of logical sensors, best described in terms
of three main categories: First, those logical sensors which directly interpret or combine
measurements from one or more local physical sensors. For example, consider a sensor
Liθ1 which integrates the smoothed measurements from a mobile device’s accelerometers,
gyroscopes and magnetic compasses so as to determine its absolute heading (for an in-depth
discussion refer to chapter 3). Second, those that combine several local logical sensors, such
as a sensor Liθ2 which yields the upper body orientation of the person wearing the device
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with respect to an ENU reference frame. That sensor would e. g. combine the former Liθ1
with another logical sensor Lib, the latter of which reflecting precise on-body location and
orientation of the device (corresponding sensors were discussed in section 3.2). Third, those
sensors that relate the outputs from both local and remote physical sensors. An example
for this type would be a sensor Liδd;i,j which interprets the readings from two ultra-sound
sensors in order to determine the interpersonal distance δdij between agents Ai and Aj
(refer to section 3.3 for an in-depth discussion). Further note that none of the sensors on
the first level take into account the outputs of any remote sensors from the same level. This
design was chosen to emphasize the notion that those sensors which abstract over others
typically serve a more analytical purpose (layer II). A sensor on the second level would
therefore e. g. combine the outputs of several local and remote logical sensors, such as
interpersonal distance Liδd;i,j, upper-body orientations Liθ2 and Ljθ2 , and relative positions
Liδϕ;i,j and Ljδϕ;j,i, in an effort to determine whether Ai and Aj interact. For this, a sensor
LiGEO;i,j would e. g. employ the model for social interaction geometry from chapter 2.
In the context of SSP, the proposed model assumes that every agent possesses one or more
level II sensors Lin;i,j, each of which yielding the probability with which Ai and Aj do
(p⊕) or do not (p⊖) interact. The sensors Lin are based on distinct (independent) sources
of information. Aside from the example given in the previous paragraph, this could be
as trivial as inferring one such pair of probabilities from Bluetooth encounters within
a given time frame, however unreliable that may be, or via the analysis of turn-taking
patterns from audio recordings. The latter technique was successfully demonstrated by
Groh et al. in [126]. Yet another technique which focusses on the correlation of low-level
Mel Frequency Cepstral Coefficients (MFCCs) from level Ib audio sensors was developed
in the proceedings of [234]. The goal of this approach is to come up with a set of social
situations as a result of incorporating the Social Network (SN) inside the social sphere
[119] around an agent. In principle, the social sphere includes any other close-by agents,
for instance as determined via Bluetooth, Wifi networking, ultrasound ranging, or other
appropriate means of near-field communication.
The model assumes that level II logical sensors are eventually combined by one top-most
logical sensor per agent. The output of this sensor corresponds to the agent’s belief about
its own social situation, as well as those of the perceived agents. For this, the top-most
logical sensors Lin;i,j communicate their outputs as a function of time t in the form of
subjective opinions ωin;i,j(t) = (b,d,u,a). Belief, disbelief and uncertainty directly relate
to the probabilities (p⊕,p⊖), i. e. for or against agents Ai and Aj participating in the
same social situation. For this, the base rate a represents the a priori probability for the
pair of Ai and Aj. From a naïve point of view, it could be chosen as the default base rate,
i. e. according to a uniform distribution [161]. Instead, a better intuition of a is given by
the number x of past encounters between Ai and Aj in relation to the total number y of
encounters that Ai has experienced within a predetermined time frame [t− τ, t]. The base
rate can then be expressed conveniently as a = x+1

y+2 . Following the discussion about the
relevance of group size in section 2.4, future attempts might further consider incorporating
respective priors, realized e. g. in terms of a corresponding logical sensor.



4.5 social situation estimates 181

4.5 social situation estimates

The proposed model uses SL fusion operators to combine outputs from the logical sensors.
Recall that these outputs are in the form of subjective opinions. It can be assumed that
these opinions are partially dependent due to the fact that some sensors, such as Liδd;i,j
providing ultra-sound based distance measurements between Ai and Aj, rely on mutually
dependent measurements from both local and remote sensors in order to produce a result.
In addition to this it is also important to model two different aspects of trust. First, trust
in sensors Lin is modeled as a function over time ωi

Lin
(t). Second, following the discussion

in section 4.3.1, Ai’s and Aj’s logical sensors are combined through averaging fusion and
the uncertainty favouring discounting operators from section 4.3.1:

ωi{i,j}(t) =

[⊕
n∈Ni

(
ωi
Lin;i,j

(t)⊗ωin;i,j

)]⊕[⊕
n∈Nj

(
ω
j

L
j
n;j,i

(t)⊗ωjn;j,i

)]
(165)

Equation 165 shows that a) the opinions of Ai about its own sensors are weighted by its
respective trust through ⊗, and b) that the output of Aj’s sensors are weighted analo-
gously, in particular also according to Ai’s individual trust in each of these now remote
sensors. The use of ⊕ for fusioning reflects the notion of partially dependent opinions.
Arguably, modeling trust separately for every foreign sensor Ljn ′ seems cumbersome and
unfeasible. As an alternative, trust could be consolidated into a single binary opinion
ωij(t) = (b,d,u,a)(t), representing Ai’s principle belief in the realiability of Aj. Belief,
disbelief and uncertainty parameters ofωij(t) can be determined analogously to Bamberger
et al. [23], i. e. by evaluating statistics on Aj’s recent opinions versus a general consensus
achieved among multiple agents. For the base rate, an unbiased estimator is given by the
default base rate a = 0.5 [163].
In order to get the complete picture of the set of social situations within its social sphere,Ai
requests the opinionsωk

{k,l}(t) of all perceived agents Ak about their presumed social situa-
tions with other agents Al and i ̸= l. Each of these opinions is subsequently weighted with
the trust ωik(t) of Ai in Ak. Once all relevant data have been acquired, Ai will then use
all trust-weighted opinions to build its own current assessment of SSk(t) = (Pk, Tk,Xk,Kk)
about the social situations for all Ak at time t.
The sets of persons Pk are estimated by considering all ωi

{m,n}. For this, a weighted graph
G(t) = (V ,E,w) is constructed whose vertices V denote the agents, E corresponds to
the edges between agents, and w : E → R assigns weights to these edges as a result of
evaluating the expected probabilities of the ωi

{m,n}. This graph consequently expresses a
probabilistic view of the situational SN as perceived by Ai, therefore in particular also in-
cluding its subjective view on its own SSi. The graph is then clustered using an algorithm
for the detection of non-overlapping components [102, 220], following the definition of non-
overlapping social situations as a consequence of full mutual awareness of all participants
(refer to chapter 1). The algorithmically determined SSk(t) are eventually broadcast to the
nearby agents. From this point onwards, every agent therefore has a complete (subjective)
view of the surrounding situations.
Agents can now deliberate on a consensus which could then be used for several purposes:
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For example, agents could improve and/or assess the quality of their own opinions. Agents
could furthermore adapt their trust into their own sensors, or likewise for building trust
in other agents. Last but not least, each Ai could propagate their trust to enable others
to build local reputations for all agents that Ai had contact with (similar to [23]).

4.5.1 A Protocol for Finding Consensus

In order to answer the question regarding how agents may eventually achieve a consensual
view, the problem is broken down into two phases. Phase one is concerned with finding a
suitable set of agents to deliberate with, whereas phase two is about achieving consensus.
A full specification of the algorithm and communication protocols can be found in [100].
The proposed protocol for the first part is as follows: It is presumed that agents have
means of precisely and accurately synchronizing time. A consensus request will be triggered
periodically at isochronous intervals of length τ, i. e. a consensual view should be found for
the time frame [t− τ, t], where t denotes the current time. With respect to a reasonable
workload and above all to avoid noisy results, the interval τ should be chosen as a good
compromise between avoiding the former yet still allowing for capturing of dynamic social
events. It therefore requires to be chosen heuristically (e. g. τ = 5s) and may depend on
overall social context. Following the previously described fusion and exchange of opinions,
each agent Ai performs smoothing of its subjective estimation SSi = (Pi, Ti,Xi,Ki) based
on its recent estimations. The protocol then defines the following steps:
1. Each agent Ai pushes SSi to all Aj ∈ Pi, and requests their SSj in return. In doing

so, Ai can be confident that it will receive an exhaustive view of all candidate social
situations.

2. Let Sreq =
∪
k {SSk} be the set of social situations received upon request, and let Spush =∪

l {SSl} be the set of social situations received as a result of other agents pushing their
most recent estimations to Ai. In other words, Spush refers to the accumulation of those
SSl that were pushed from Al to Ai due to Al’s individual execution of step 1. Spush will
therefore typically be a superset of Sreq (unless one or more agents ∈ Pi suddenly cease
to operate) and may include additional SSl from those Al that Ai is not yet aware of
but who themselves consider Ai ∈ Pl. Then SSocSph = Sreq ∪ Spush ∪ {SSi} denotes the
set of candidate social situations inside Ai’s social sphere. Ai consequently pushes a
consensus initiation request to all Aj ∈ SSocSph.

3. All agents Ai mutually accept or decline these requests following a decision function df.
The idea behind df is to serve as a distance measure for the social situations SS ∈ SSocSph,
effectively partitioning this set into “accepted” and “declined” estimates, ultimately
accepting only those estimates that include the optimal candidate situations involving
Ai. For the current application, df is proposed as weighted Manhattan distance

df(Si,Sj) = wPd(Pi,Pj) +wTd(Ti, Tj) +wXd(Xi,Xj) +wKd(Ki,Kj) . (166)
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The choice of the weights w for P, T , X and K is left to the agents and can be adapted
to the requirements of the application. Note that the distance metrics vary for each of
the variables. For the set P of persons, a component-based Jaccard distance

d(Pi,Pj) =
|Pi ∩ Pj|
|Pi ∪ Pj|

(167)

is suggested, but could as well be replaced by other suitable metrics. Furthermore, since
both the temporal reference T and the spatial reference X can be seen as a projection
of a higher-dimensional spatio-temporal entity X̃ ∈ R4, the suggested distance measure
exploits this fact through a relating density between X̃i and X̃j, namely

d(X̃i, X̃j) =
r

min(ρi(x), ρj(x))d4xr
max(ρi(x), ρj(x))d4x

, (168)

for which the ρ(x) denotes spatio-temporal densities. A discrete approximation of the
ρ(x) could e. g. be achieved by means of location measurements at precise time intervals
of each involved agent.

4. From these data, each agent infers a star-shaped SN graph, induced through mutual
agreement.

5. The set of agents which will then enter the consensus phase is finally determined by
application of the Modularity algorithm [148].

After determination of the sets of agents who will negotiate with each other, the second
step is concerned with the acquisition of a consensual view on the social situations. This
can e. g. be achieved through yet another application of SL averaging fusion. If, in spite
of the distance metrics which were applied during initiation of the consensus phase, the
subjective estimates within a group of deliberating agents are way too inhomogeneous,
then either the alternative approaches of Rosenschein [274] or cumulative fusion could be
chosen instead. Recall that the latter requires independent sources of information. However
unlikely in a SSP scenario, this could still be a case for estimates which do not rely on
mutual measurements from either agent’s remote sensors.

4.6 evaluation

The proposed model was evaluated on the primary interaction geometry dataset from
section 2.2, thus allowing for comparison of the results achieved through sensor fusion
with those from the previous evaluations (refer to 2.3.5). The concrete sensor model based
on the primary dataset is as follows: Layer Ib logical sensors LiGEO;i,j continuously assess
whether two agents Ai and Aj are members of the same social situation. These logical sen-
sors are based on pairwise interaction geometry. More precisely, they rely on the outputs
of both local and remote layer Ia and Ib sensors from which δθ, δφ, and δd can be ob-
served. In order to decide for S⊕ or S⊖, the LiGEO;i,j then employ the model for interaction
geometry as described in section 2.3. Next, recall that synchronized audio streams were
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recorded for each subject during the experiment (see 2.2). These audio streams are cap-
tured by additional layer Ib sensors LiMFCC yielding the low-level MFCCs [287]. The MFCCs
are computed at a frequency of 2 Hz for a sliding window over the interval [t− 60s, t]. The
outputs of the LiMFCC are then processed by layer II sensors LiAUDIO;i,j which focus on the
correlation of the pairwise

(
LiMFCC,LjMFCC

)
. The LiAUDIO;i,j base their decision towards S⊕

or S⊖ on a K Nearest Neighbour (KNN) classifier [34, 218], previously trained on an initial
set of audio profiles which notably do not include explicit person-specific information, but
instead represent general settings such as indoor or outdoor scenarios [234].
Due to the limited length of the recordings it was decided to forego a meticulous modeling
of trust in favour of the fusion of the agents’ subjective opinions. The first part hence
evaluates two variants V1 and V2 for models comprised of only the LiGEO;i,j. Each variant
differs in its mapping from probabilities p⊕ and p⊖ to binary opinions ωiGEO = (b,d,u,a),
where p⊕ and p⊖ denote the probabilities with which Ai and Aj do or do not interact.
The first variant defines the mapping

V1 :
(
p⊕,p⊖

)
7→
(
b = p⊕,d = p⊖,u = 1− p⊕ − p⊖,a =

1

2

)
(169)

for which a was chosen as the default base rate [162] instead of any prior probabilities
based on previous interactions for each pair of Ai and Aj. The second variant enforces a
rigid uncertainty boundary through a constant value of u = 1

4
. This value was heuristically

chosen to model remaining uncertainty based on the overall accuracies from the previous
evaluation of various classifiers (see table 10 on page 70). It will also be justified a posteriori
by the final evaluation results (see table 32). As a consequence of setting u = 1

4
, belief

and disbelief have to be chosen according to equation (149 on page 171):

V2 :
(
p⊕,p⊖

)
7→
(
b =

3

4
· p⊕

p⊕ + p⊖
,d =

3

4
· p⊖

p⊕ + p⊖
,u =

1

4
,a =

1

2

)
. (170)

Now, let ω
ij
GEO = ωiGEO;i,j⊕ω

j
GEO;j,i and ωiGEO = ωiGEO;i,j, both layer II sensors which

output their belief in S⊕ (as opposed to S⊖) as the result of applying some decision func-
tion to the outputs of either the fusion of several or just single sensors.
Table 32 shows the evaluation results for both variants and three choices of decision func-
tions, according to which f1 shows the best performance. Both f2 and f3 are more strict
than f1 since both require p⊕ to be significantly higher than p⊖ for a decision towards S⊕.
For the present dataset, the difference is about 6% and therefore neglible. The choice of
f1 is further sustained by the fact that both f2 and f3 achieve higher precision in general,
albeit at the expense of recall. The accuracy of the classifiers is roughly equal for each
variant and choice of decision function. Comparison of the results however yields the most
homogeneous performance for f1 regardless of V1 and V2.
Among V1 and V2 the latter exhibits the overall better results. Accuracy and precision
are both higher while recall is roughly the same for all configurations. It is interesting to
have a look at the uncertainty component in case of V1. Resulting from the underlying
model of interaction geometry, the values for p⊕ and p⊖ can be fairly small for certain
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Decision function What Variant Accuracy Precision Recall

f1 =

S⊕ ifb ⩾ d

S⊖ else

ω
ij
GEO

V1 0.731 0.676 0.764
V2 0.761 0.721 0.758

ωiGEO V1,V2 0.757 0.719 0.748

f2 =

S⊕ ifb− d > d
2

S⊖ else

ω
ij
GEO

V1 0.739 0.724 0.669
V2 0.772 0.796 0.656

ωiGEO V1,V2 0.760 0.768 0.664

f3 =

S⊕ ifb− d > b+d
2

S⊖ else

ω
ij
GEO

V1 0.723 0.802 0.503
V2 0.746 0.874 0.502

ωiGEO V1,V2 0.736 0.841 0.502

Table 32.: Classification performance based on opinions of logical GEO sensors under varying map-
pings and decision functions. Precision and recall were computed with respect to S⊕.

input parameters (δθ, δφ,dd). Such a configuration would leave relatively large values for
the uncertainty u in V1, and most likely have deteriorating influence on the results of
sensor fusion like in equation (165). The proposed system therefore favours V2 over V1 as
a mapping from probabilities to binary opinions.

Most importantly, the performance evaluation shows that in all cases the fusion of two
sensors ωGEO yields better performance than ωGEO alone. This result is further corrobo-
rated by the evaluation of the fusion of distinct kinds of level II sensors, for which

ωAUDIO = ωiAUDIO;i,j⊕ω
j
AUDIO;j,i (171)

and

ωGEO⊕AUDIO =
(
ωiGEO;i,j⊕ω

j
GEO;j,i

)
⊕
(
ωiAUDIO;i,j⊕ω

j
AUDIO;j,i

)
. (172)

The results are given in table 33. As expected, comparison of the performances of either
one of ωGEO and ωAUDIO with that of ωGEO⊕AUDIO shows that SL fusion of the distinct
subjective opinions of the agents yields a notable benefit for algorithmic inferral of social
situations.

Decision function What Variant Accuracy Precision Recall

f1 =

S⊕ ifb ⩾ d

S⊖ else

ωAUDIO V2 0.737 0.709 0.695
ωGEO⊕AUDIO V2 0.785 0.756 0.767

Table 33.: Classification performance based on opinions of single and fusioned logical AUDIO and
GEO sensors. Precision and recall have been computed with respect to S⊕. Table taken
from [125].
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4.6.1 Evaluation of clustering with or without sensor fusion

Following the discussion from section 4.5 the Ai build their personal opinions ωi
{i,j}(t) and

also request the ωk
{k,l} from other nearby agents Ak, where k, l ̸= i. Based on the collec-

tion of their own and the other opinions, a probabilistic view of the situational SN is won
by clustering the graph G(t) = (V ,E,w) whose vertices represent the agents and whose
weighted edges represent the probability of two agents sharing one social situation. More
precisely, the weights w(ek, el) correspond to the expected probabilities of the ωi

{k,l}(t)

under a default base rate of a = 0.5 (refer to equation (156). Since G is based on mutual
agreement, the lack of an edge between two vertices is equivalent to a zero-weighted edge.
For comparison, all of Single Link, Complete Link and Average Link clustering [102] were
evaluated. For each approach the optimal height of the corresponding dendrograms was
determined according to Maximum Modularity [221, 220]. Greedy Maximization of Mod-
ularity [220] which is derived from Dijkstra’s single-source shortest-path algorithm was
evaluated as well. Maximum Modularity is defined as

Q =
1

2m

∑
ij

(
Aij −

kikj

2m
δ(ci − cj)

)
, (173)

for which Aij = w(ei, ej) denotes the weight of the edge between agents i and j, ki =∑
jAij, m = 1

2

∑
ijAij, and ci denotes the index of the community (here: social situation)

to which i is assigned. δ is the delta function δ(x) = 1 for x = 0, else 0. As such, Q

corresponds to the number of edges within social situations minus the expectation in a
random graph, given the assigned communities ci and the Aij.
The results of the clustering process were compared with the manual annotation of the
social situations from section 2.2.3, and performance was measured in terms of the Rand
index [260] and the adjusted Rand Index [147] which are defined as follows: Let C and C ′

distinct clusterings of the same G(t), and let k and l the number of clusters under C and
C ′. Furthermore, let N denote the total number of vertices. The Rand Index

R
(
C,C ′) = a+ b(

N
2

) with 0 ⩽ R
(
C,C ′) ⩽ 1 (174)

measures the relation between a the number of vertices in the same cluster and b the
number of vertices in different clusters under C and C ′. For large N the index will converge
towards 1 due to the increasing number of clusters, in particular those consisting of only
a single vertex. The Adjusted Rand Index therefore takes into account the expected value
of the index under a generalized hypergeometric distribution [147, 338], i. e.

Radj
(
C,C ′) = Index − IndexExp

IndexMax − IndexExp
=

∑
k

∑
l

(
mkl

2

)
− t3

1
2
(t1 + t2) − t3

(175)

where

t1 =
∑
k

(
|Ci|

2

)
, t2 =

∑
l

(
|C ′
j|

2

)
, and t3 =

2t1t2(
N
2

) , (176)
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< R (A(t),C(t)) >t ±σt < Radj (A(t),C(t)) >t ±σt
Algorithm GEO AUDIO GEO⊕AUDIO GEO AUDIO GEO⊕AUDIO

AvL 0.77± 0.20 0.74± 0.31 0.78± 0.22 0.53± 0.37 0.57± 0.42 0.57± 0.39
SiL 0.75± 0.22 0.69± 0.34 0.78± 0.26 0.51± 0.37 0.54± 0.44 0.60± 0.39
CoL 0.76± 0.20 0.74± 0.31 0.78± 0.22 0.52± 0.38 0.58± 0.43 0.56± 0.39
GrM 0.76± 0.21 0.74± 0.29 0.77± 0.21 0.57± 0.40 0.56± 0.40 0.55± 0.39
Random < R (A(t),Crandom(t)) >t= 0.524± 0.233 < Radj (A(t),Crandom(t)) >t= 0.022± 0.181

Table 34.: Rand and Adjusted Rand Indexes for combinations of single and fusioned sensors for
Average Link (AvL), Single Link (SiL), Complete Link (CoL), and Greedy Maximization
of Modularity (GrM).

and the number of vertices in the intersection of Ck and C ′
l is denoted bymkl = |Ck ∩C ′

l|.
The final evaluation compares the clustering performances of LiGEO;SS, LiAUDIO;SS, and
LiGEO⊕AUDIO;SS, i. e. those top-level II logical sensors that output the current situational
SN as seen by agent Ai based on either single or fusioned sources of information. The results
are shown in table 34. It follows that the fusion of level Ib logical sensors yields significant
better results after clustering than any of the sensor alone. For example, a Wilcoxon Rank
Sum Test rejected both of the hypotheses Median (RAvL;GEO⊕AUDIO) = Median (RAvL;GEO)

and Median
(
Radj;SiL;GEO⊕AUDIO

)
= Median

(
Radj;SiL;AUDIO

)
with significance level α =

0.05. This is further sustained by a two-sided T-test rejecting µGEO⊕AUDIO = µGEO and
µGEO⊕AUDIO = µAUDIO for the same confidence interval [125]. It should be noted that in
some cases the results based on AUDIO alone were better than those of GEO⊕AUDIO
(table 34). This was however explained after thorough analysis of the dataset in which
it was found that during a relatively long social situation among all interactants of the
experiment (table 2), a high number of frames yields artificats in terms of high variance
of the interaction probabilities based on AUDIO. This effectively leads to a maximum in
modularity for a single cluster, which just happens to coincide with the real SN at that
very moment. This is the case for about 2% of all recorded frames. Eventually, leaving out
the respective frames yields better results for all of Single Link, Average Link, Complete
Link and Greedy Maximation of Modularity.





5
C O - AC T I V I T Y D E T E C T I O N

5.1 modeling dynamic situations

The hitherto discussed approach for algorithmical models for social situation detection is
based on the assumption that human behaviour is to a certain extent generalizable. A num-
ber of evaluations and discussions sustain this notion particularly with respect to social
interaction geometry. It has also become clear that a multitude of known and unknown
variables may affect the model, such as e. g. gender or group size. The proposed model
has still proven to be rather robust and universally applicable throughout corresponding
experiments with controlled and uncontrolled variations of the aforementioned parameters.
On the other hand, there are undoubtedly situations where a static model of interaction
geometry is prone to fail. Consider for example a ride on the subway. If the train were
packed with lots of people, how could the proposed model be used to achieve reliable
results on who is interacting with whom? Also, what would happen if instead there were
less people on the train, but had to sit close together and possibly face each other? What
about visiting a theater, attending a rock concert, or dancing at the Vienna Opera Ball?
A model based solely on point estimates of interaction geometry is likely to fail due to
both static and dynamic components, which neither are nor possibly can be considered by
the model in its current form. The knowledge of the fact that individuals work together
in order to uphold established spatio-orientational arrangements [28, 114, 166] may com-
pensate for a limited number of dynamic components with bounded magnitude, but the
same cannot apply to all dynamic components in general.
One possibility to overcome a number of those problems could be to construct a model
either based on more than just interaction geometry, as was shown in chapter 4 where the
SL fusion of logical sensors of interaction geometry and of low-level audio features led to sig-
nificantly improved performance, or considering more than just independent observations,
each of which merely represents a single point in time. This kind of approach would require
to embed samples in their relevant context, be it social context, such as when feeding the
model a priori information about social relations, or be it timely context, such as when
dealing with sequences of observations. In other words, history-based estimates of social
situations may naturally lead to improvements over point-based estimates. The beginning
of this chapter therefore discusses a number of possible alternatives to static analysis as
context for the introduction of the newly proposed model for co-activity detection.
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(a) (b) (c)

Figure 49.: Amplitude spectra of sequential changes in δθ, δφ and δd. The spectra were computed
based on a sampling frequency of Fs = 6Hz and using a sliding 10s Hamming window
with 5s overlap.

5.1.1 Analyzing the frequency domain

One may be inclined to analyze just how much the values of δθ, δφ and δd change over
time. In the presence of social interactions one would consequently expect rather small
adaptions, i. e. notably less entropy. It seems however difficult to say whether the absence
of interaction will be guaranteed to yield a different picture. To see this, the amplitude
spectra of the derivatives of δθ, δφ and δd with respect to time can be investigated for
both S⊕ and S⊖. The derivatives are computed for sliding windows of equal length over
each variable. Before transforming the signal from the time to the frequency domain the
samples are weighted using a Hamming window in order to counteract effects like leakage
or additional high frequency components [359, 304] as the signal is actually not periodic.
Each window (frame) fk is then transformed into the frequency domain using the Fast
Fourier Transform (FFT), yielding a vector Fk whose elements correspond to the respective
frequency components. From these vectors of complex numbers the signal’s amplitude r
and phase ϕ are computed as

r(Fki ) =
√

Re(Fki )2 + Im(Fki )
2 and ϕ(Fki ) = atan2

(
Im(Fki ), Re(Fki )

)
, (177)

where Fki denotes the i-th component of the vector Fk in the frequency domain. Note that
the frequency resolution depends on the chosen window size [359, 304]. The original signal
was sampled at a frequency of Fs = 6 Hz (refer to section 2.2). Selecting a window size of
e. g. 10 s yields ⌊10s · Fs/2⌋+ 1 = 31 distinct frequency bins, ranging from 0 Hz to 3 Hz (the
factor 2 being explained through symmetry of the Fki for negative frequencies). Averaging
over the resulting spectra of all pairs of persons results in the final mean amplitude spectra,
corresponding to either S⊕ or S⊖. These are depicted in figure 49.
As expected, the spectra are quite distinct for each variable and class. It can be assumed

that series of δθ, δφ and δd are well separable according to their actual class, possibly
by using linear models such as logistic regression or SVMs. It is interesting though that
in spite of their actual differences the spectra for S⊕ and S⊖ are still quite similar for
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each variable. It is supposed that this is again, at least partially, a consequence of the
spatial constraints during the original experiment (see chapter 2). As opposed to the
model for static interaction geometry, it constrains the possible changes of the variables’
values in regard of dynamic analysis. It is nevertheless suspected that in particular the
higher frequency components of the spectra of δd and δφ will exhibit more significant
differences once more data are gathered.

5.1.2 Hidden Markov Models

The insight that for a given pair of persons the presence or absence of social interaction at
time t yields a high probability of remaining in the same social state at t+ 1 eventually
leads to the notion of Markov chains which may be used to model changes in the value of
a random variable X over time. The order M of a Markov chain defines the conditional
probability p(xt|xt−1, . . . , xt−M). In other words, the probability of observing x at time t
depends only on itsM previous instances. It follows that the joint distribution of observing
a sequence of N values is given by

p(x1, . . . , xN) = p(x1)
N∏
t=2

p(xt|xt−1, . . . , xt−M) . (178)

A M-th order Markov chain, corresponding to a discrete random variable with K states,
is defined by KM−1(K − 1) independent parameters [34, 218]. As computations might
otherwise become intractable, the dependency assumption is usually relaxed to the first
order [34]. A related form of Dynamic Bayesian Networks (DBNs), namely HMMs, follow
this approach by introducing a set of latent variables. Each observation xt is accompanied
by a corresponding latent variable zt [34, 218]. The zt are defined as discrete random
variables, and instead of the xt now the zt form a first-order Markov chain. Conditioning
the xt on their corresponding zt gives rise to the joint distribution

p(x1, . . . , xN, z1, . . . , zN) = p(z1)

[
N∏
n=2

p(zn|zn−1)

]
N∏
n=1

p(xn|zn) (179)

for observing the corresponding sequences of values of X and Z. It can be shown that xt
in fact depends on all its previous observations [34]. The zt are known as state variables.
Observations are therefore probabilistic functions of state [256, 255]. Also note that obser-
vations can correspond to both discrete or continuous random variables. As such, HMMs
can be seen as a generalization of mixture models whose components are not i.i.d. but in-
stead follow a Markov process [34]. Another important property of HMMs is that they are
to some extent considered to be invariant to compression or streching of the time axis [34].
HMMs are used for numerous applications e. g. in speech recognition, handwriting recogni-
tion, activity recognition, or DNA analysis [34, 256, 103, 241]. As generative models, they
are commonly used for the prediction, filtering, smoothing, and classification of sequential
data. According to Rabiner [255], the three most relevant problems that HMMs solve are:
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• Determining how well a particular model fits a given sequence of observations.
• Computing the most likely sequence of (hidden) states for a given sequence of observa-

tions.
• Maximizing the probability of observing a given number of sequences of observations.
In regard of sequences of observations of δθ, δφ and dd, some or even all of the above items
also apply to the present problem domain. This may however depend on the particular
model design and/or choice of parameters. In [122], Groh and Lehmann show the results
of evaluating a model with only two hidden states corresponding to S⊕ and S⊖. Either
one of GMMs or quantized training data were used for the distributions of the variables
as observable from each state. Evaluation of the model on the R2B dataset (see section
2.3.5.6) resulted in a classification accuracy of about 74%, which is about the same as
for the static model of interaction geometry. This is however not surprising as the states
directly correspond to the classes and were also observable from the training data. Hence
the model should be considered as a first-order Markov chain rather than a HMM. It also
means that the model merely added state transition probabilities in comparison to the
previous model. Interestingly enough, it furthermore turned out that any choice of the
initial state probabilities according to π = (i, 1− i) for i ∈ [0, 1] had no relevant impact
on the results which speaks for a rather smooth surface of the optimized function due to
the distribution of the data and stable convergence characteristics of the model.
It is trivial to see that the choice of the number of states is crucial and that this is also in-
terdependent with the choice of probability distributions for the observed variables. This
is a typical design problem for HMMs, for which Rabiner suggests an iterative process
[256, 255]. That process means making an initial choice of model parameters, followed by
computing the most likely sequence of hidden states for a given sequence of observations,
and subsequent analysis of pairs of corresponding states and observations. This may lead
to an understanding of why which observation was assigned to which state, and possibly
give an idea of how that should affect e. g. the number of states or choice of probability
distributions. Despite of or in addition to this tedious process several options come to
mind: The initial number of states could be chosen according to heuristically determined
sectors in δθ, δφ or δd. Visual inspection of the experimental datasets has shown that the
data are distributed among several clusters (see section 2.2.5). Doing so may also provide
a way to incorporate additional parameters such as group size, gender or age. Recall that
the variables’ distributions were quite distinct for varying values of those parameters.
An alternative could be to make random (or controlled) choices for the number of states
and using model selection to figure out which model suits best. This approach is consid-
ered disadvantageuous not only due to the high computational efforts but particularly so
because it will likely result in an overfitted model. Nevertheless, it may still be advanta-
geous due to the fact that a random choice for the number of states would imply neither
accidental nor explicit insertion of heuristics into the model. Making a random choice and
then using EM-based learning, such as the Baum-Welch algorithm [34, 255], might then
even lead to discovering previously unseen patterns in the distribution of the data among
the states.
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It should be noted that although it seems reasonable to use GMMs or SW-GMMs for the
probability distributions of the variables as observed from each state, depending on the
number of states and the consequent actual distribution of the observed values per state
it may be worth considering other distributions. Recall that one of the reasons why mix-
ture models were favoured so far was due to the clear presence of clusters along with the
observable variance in the data. This need not be the case once EM leads to a different
distribution of the data on a per-state basis. To the contrary, overly complex models might
lead to overfitting, resulting in disproportionally high likelihoods of some observations and
thus the corresponding states. In fact, the results in [122] indicate that quantization of
the data may be sufficient for HMMs temporal analysis of dynamic social interaction data.
In regard of classification, one must also consider whether classification should be based
on a single or two separate HMMs. If a single model were to be used, the states had to
be partitioned into two sets, each of which correspond to either one of S⊕ or S⊖. The
number of states per class need not necessarily be the same. After computing the most
likely sequence of states for a given series of observations, that state sequence ought to be
smoothened. Majority voting would finally yield the classification result. If two separate
models were to be used, however, states would correspond to neither class. Instead, each
of the models were trained per class, and classification would be done by deciding for
the class of the model with the higher likelihood of observing the given sequence. Note
that using several models is common practice in e. g. speech or handwriting recognition
[34, 256]. As a matter of fact, further research of this particular topic is beyond the scope
of this thesis. At the end of the next section, additional reasons will be given for why a
different approach was chosen.

5.1.3 Eigenzone decomposition

In 2009, Eagle and Pentland published a seminal work on representing routine behaviour
in terms of a set of characteristic vectors, together describing the so-called eigenbehaviour
of entities such as single persons or groups [83]. Their work is based on previous research
by Turk and Pentland who used a similar approach for application in face recognition for
which the characteristic vectors were formerly known as eigenfaces [328, 329].
In both cases the basic idea is the representation of complex data as a weighted sum of
its principal components, determined as the eigenvectors of the covariance matrix of the
original data. Following the insight that high-dimensional data are typically not just ran-
domly distributed but instead can be described by a lower dimensional space [329], it was
shown that the major part of the data’s variance could in fact be explained through a small
number of eigenvectors. Hence a dataset is effectively reduced by projecting it into its corre-
sponding eigenspace. Identification of behaviour, or recognition of faces, can subsequently
be achieved e. g. by means of clustering or KNN search. In case of face recognition, for exam-
ple, a set of 114 65536-dimensional images (256 by 256 grey pixels) could be exhaustively
explained through merely 40 eigenfaces [328]. As the eigenfaces form a common basis for
all images, information in each image could thus be represented by ∼ 26 instead of 216
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coordinates. For the eigenbehaviour problem, on the other hand, Eagle and Pentland used
their well-known Reality Mining dataset [82] for the analysis of social routine behaviour.
This dataset is comprised of 9 months worth of recording rich data from the mobile phones
of 100 subjects, such as “location, proximate phones, and communication” [82] (see chap-
ter 1). Analysis of the principal components puts emphasis on the variance in a person’s
daily behaviour while neglecting average behaviour. Given a set of M-dimensional vectors
Γ1, . . . , ΓN, each corresponding to one day’s recordings of M variables, Eagle and Pentland
combine subsequent vectors to represent longer periods of time. This way, a matrix of
N×M daily samples can be transformed into arbitrary representations of N

d
×Md ma-

trices, where d denotes the chosen number of days. Eagle and Pentland found that about
six eigenvectors would be sufficient to represent a person’s eigenbehaviour, of which the
most important aspect turned out to be location [83]. Interestingly enough, they note that
those six eigenvectors would describe “individuals within the business school community
with 90% reconstruction accuracy, but the senior lab students with 96% accuracy” [83].
This implies that aside from information loss through dimensionality reduction by means
of the selected number of eigenvectors there is probable cause that the recorded variables
were themselves not capable of exhaustively describing social behaviour, or capturing all
of the necessary social context, which is not unexpected.

The eigenbehaviour principle is by all means transferable to the present problem do-
main. Subsequent samples of δθ, δφ and δd, representing a window of N seconds, can be
concatenated to a single 3N-dimensional sample. All of those samples from both S⊕ and
S⊖ can then be collected in a single matrix D, and the eigenvectors of the covariance ma-
trix of D be determined via numerically stable SVD. The eigenvectors would consequently
describe temporal eigenzones, and span a subspace into which the zero-mean data can
then be projected. KNN or similar algorithms could then be used for the discrimination
of newly recorded samples between S⊕ and S⊖. All the same, the implementation and
evaluation of this approach is left as an open question. While it is assumed that eigen-
zone decomposition of the data will yield reasonable classification performance, it seems
that a corresponding model would be rather restricted, e. g. in terms of being dependent
on heuristic choices of the window length N in accordance with a respective application
domain. As an example, the model might be able to explain social interaction at the Vi-
enna Opera Ball, since the movement of a dancing couple relative to each other differs
very much from their movements relative to other couples, yet the very same model will
likely fail to “understand” a group of people playing soccer. Likewise problems apply to a
number of more or less related approaches like Goldberger’s Neighbourhood Component
Analysis (NCA) [116], representing the data by means of Non-Negative Matrix Factoriza-
tion (NMF) [186] based on specifically selected or designed components, or finding other
common properties with respect to supposedly lower-dimensional manifolds, such as by
Bishop and Svensen’s Generative Topographic Mapping (GTM) [33, 35].



5.2 the proposed model 195

5.2 the proposed model

All of the previously discussed techniques for modeling dynamic social situations approach
the problem from a different angle, albeit mostly in terms of mere different representa-
tions of the data so that some might work temporarily better whilst others will not. None,
however, explicitly add something significantly new to the cause. Generally speaking, all
of them are susceptible to careful selection of the model parameters with respect to the
concrete application domain. Without doubt, this will always imply a non-negligible con-
straint through certain heuristics. In spite of the assumption that social behaviour can be
generalized, even if only to a certain extent, the resulting models are prone to overfitting.
Note that in this context the term “overfitting” is not limited to the sense of overfitting a
particular dataset. Instead, it extends to the notion of being restricted to that particular
portion of the original problem domain that was understood when the respective model
was designed. It seems unlikely though that social behaviour can be grasped to an extent
that makes it possible to fully understand any particular domain. This is e. g. supported by
Lane et al. according to whom “mobile phones are often used on the go and in ways that are
difficult to anticipate in advance. This complicates the use of statistical models that may
fail to generalize under unexpected environments” [181], and further that “anticipating
the different scenarios the phone might encounter is almost impossible” [181].

For the purpose of detecting whether two persons interact it therefore makes sense
to exploit this particular insight and consequently reduce the amount of explicitly and
implicitly introduced heuristics to a potential minimum. The interpretation of physical
signals and/or sensations obviously makes sense for humans and machines alike. For a
machine learning model, abstracting from raw data makes further sense for two reaons:
The model might otherwise be intractable, both analytically and/or computationally, and
it might be impossible to interpret or understand the model itself. Whereas humans in
principle have continuous access to both their original raw sensations as well as their
(logical) interpretations of the former, for machine learning models it is almost inevitable
that interpretation of the raw data in terms of features goes along with a reduction of
information. Since trained models are naturally bound to the information they have “seen”,
an alternative idea for the detection of dynamic social interaction can thus be outlined
as the pairwise analysis of concurrent datastreams from mobile sensors belonging to the
subjects in question whilst refraining from interpreting those data as much as possible. In
other words, the detection of conjoint patterns in concurrent datastreams is equivalent to
detecting whether two or more subjects perform the same type of activity simultaneously.
Since knowledge of the precise type of activity (e. g. running, playing soccer, cooking, etc.)
is irrelevant for the detection of mutual interaction, a corresponding model is deemed much
more generalizable than other models from the field. In the following, this approach will
lead to the concept of co-activity detection as a new contribution to the broader fields AR
and SSP.
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5.2.1 Activity Recognition

The detection of activities as such is part of AR. Since its advent in the late 1990s, it
has gained much interest along with the substantial advances in pervasive computing
and mobile sensing. Not surprisingly, AR has many applications ranging from academic
research to personal and environmental monitoring, rehabilitation, health and elderly care,
emergency help, performance sports, social networks, business and transportation [16, 327,
181, 230]. Another interesting aspect is the processing of enormous datasources, e. g. in
online media, where AR in videos is required for automatic “content-based video annotation
and retrieval, highlight extraction and video summarization” [327]. According to Avci et
al. [16], “the goal of activity recognition is to recognize the actions and goals of an agent
or a group of agents from the observations of the agents’ actions”. Turaga et al. further
distinguish between primitive actions, also known as atomic actions, which may occur
in a single instant or even take up to a few seconds, and which are subsumed by the
more complex activities, the latter of which represent coordinated actions [327]. Note that
both entities can be interpreted as words and sentences of a language. Indeed a number
of algorithmic approaches for AR are based on the use of grammars [327]. In terms of
time series of observed variables, Lara and Labrador [182] define the Human Activity
Recognition Problem (HARP) as follows:

“Given a set S = {S0, . . . ,Sk−1} of k time series, each one from a particular
measured attribute, and all defined within time interval I = [tα, tω], the goal is
to find a temporal partition < I0, . . . , Ir−1 > of I, based on the data in S, and
a set of labels representing the activity performed during each interval Ij (e. g.
sitting, walking, etc.). This implies that the time intervals Ij are consecutive,
non-empty, non-overlapping, and such that I =

∪r−1
j=0 Ij.”

It is rather obvious that AR, being mostly based on supervised learning of statistical
models, faces the same problems that were already mentioned several times throughout this
thesis. For example, Avci et al. report that “differences between cultures and individuals
result in variations in the way that people performs tasks” [16]. In addition to that, yet
another problem is given by the hierarchial organization of activities. [167] for example
phrases this as follows: “Individual acts, moment to moment behavioural events, are not
just concatenated together, one after the other, but are always under the guidance of
a larger plan of some sort.” This may go as far as people performing multiple tasks at
once. Together, the aforementioned issues cause a multitude of problems for both, the
segmentation of a stream of activities, as well as their precise recognition. [181] eventually
conclude that “existing statistical models are unable to cope with everyday occurrences
such as a person using a new type of exercise machine, and struggle when two activities
overlap each other or different individuals carry out the same activity differently”. Steele et
al. therefore propose to regard manual annotations only as hints instead of absolute truth,
[311] in [181]. Likewise, active learning utilizes initial labels from the training data as
soft guesses [144]. In regard of semi-supervised and unsupervised approaches, Poppe [248]
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notes that “when no labels are available, an unsupervised approach needs to be pursued
but there is no guarantee that the discovered classes are semantically meaningful”.

5.2.2 Co-Activity Detection

Arguably, the proposed approach of co-activity detection is more generalizable in the sense
that it aims at detecting social co-activities, but not necessarily recognizing the exact type
of activity that was performed. For this, the terms activity, co-activity, deferred co-activity,
and social co-activity are defined as follows [19]:
• An activity is described by a four-tuple (S, T ,X,K), where S denotes a singleton whose

only element refers to the person who is performing the activity, T ∈ R references the
time at which the activity was performed, X ∈ R references the location at which the
activity was performed, and K with |K| ⩾ 0 is a set of tags which sufficiently describe the
action’s semantics. Note that this definition is close to the definition of social situations
from chapter 1, except for the singleton P. Accordingly, T and X are projections from
a spatio-temporal reference X̃ ∈ R4.

• A co-activity is described by a four-tuple (P, T ,X,K). In this case, P references a set of
persons, subject to |P| ⩾ 2, who perform the exact same activity, which is described
by K, at time T and location X. This does not imply that all persons in P need to be
mutually aware of each other.

• A deferred co-activity relaxes the former definition of co-activity as follows:
– A spatially deferred co-activity corresponds to a co-activity performed by a set P of

persons at time T , but not necessarily at the same location. It is thus described by a
three-tuple (P, T ,K), subject to |P| ⩾ 2.

– A temporally deferred co-activity corresponds to a co-activity performed by a set P
of persons at location X, but not necessarily at the same time. It is thus described
by a three-tuple (P,X,K), subject to |P| ⩾ 2.

• A social co-activity conforms to a co-activity plus the constraint that all persons in P
are mutually aware of each other as well as the fact that they are performing the same
activity. This awareness need not be conscious.

Note that including the descriptive set K of tags does not contradict the postulate that the
proposed approach should primarily detect activities as such, but not necessarily recognize
the exact types of those activities. For the detection of co-activities, it is sufficient to use
abstract tags, provided that they allow for the distinction of different activities as such.
Deducing evidence for short-term as well as long-term social relationships is arguably not
bound to labeled activities. Although, generally speaking, precisely knowing the activities’
types would allow for a deeper understanding of the subjects’ relationships, their interests
etc., the mere knowledge that, when (how often, …), and where activities were performed,
together already yields substantial information as well. If, for example, two persons were
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to perform the same kind of activity on a regular basis, they might be training partners
at sports or colleagues at work. If, on the other hand, different types of activities were to
be performed on a short-term regular basis, that may hint towards very close friends or
a spouse. It follows that in order to distinguish between the given examples, the interval
and/or duration at which activities were performed has to be taken into account. For
partners at sports, the duration would probably be less while intervals between instances
would be longer, whereas for colleagues the contrary might hold. Any assumptions such as
these will of course require future research. There is no doubt, however, that a grey zone
will always remain, e. g. when training partners are simply colleagues at the same time,
such as it might be the case for professional athletes, or because colleagues at some other
business might go to the same fitness center after work.
In the following, emphasis is placed on the detection of co-activities, whereas deferred
co-activities are rather considered as a by-product. To give at least a few examples for
why those might be useful as well, evaluations of the latter might be helpful when there
is a particular interest in a group of people who tend to perform the same activity at
either the same time or the same location. Such knowledge could e. g. be employed for
applications in surveillance, predicting the spread of diseases, or when a single party such
as a manufacturing company wants to address a group of people with the same interests.

5.3 a framework for co-activity detection

As part of the proposed framework for co-activity detection, a mobile application was de-
veloped in [19] to support continuous monitoring and recording of sequential datastreams
from numerous mobile phone sensors. The application has been designed such that it is
capable of recording all available types of sensors, but is also easily extendable to future
sensor types. Unless explicitly chosen otherwise, sensory signals are recorded at the high-
est possible sampling rate and resolution, depending on what is supported by the mobile
phone’s operating system. The data are then stored on the mobile phone’s flash drive in a
compressed format. The software was developed for Apple iOS 6 because of its possibility
to generate and deploy native code that would allow for frictionless recording of the rela-
tively high bandwidth of data from the sensors. In comparison to other mobile platforms,
iOS was deemed to support the least diverse hardware platforms which would likely allow
for gathering unanimous experimental data from different subjects. Aside from access to
the raw signals of most physical sensors, the operating system also provides a number
of logical sensors as a result of sensor fusion. The output of these logical sensors is still
rather low-level, which is why recording these signals is considered to be in agreement
with the postulate of avoiding inclusion of explicit heuristics. As an example, operating
system components like CoreLocation and CoreMotion support the fusion of several sen-
sors in order to provide more precise estimates of device location and orientation. For this,
CoreLocation may e. g. combine GPS, WiFi and ranges from mobile cell towers, whereas
CoreMotion may combine three-dimensional input from the device’s accelerometer, gyro-
scope and magnetometer. Orientation is expressed with respect to a particular reference
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frame. For this application, the reference frame was chosen such that the x-axis points to-
wards true north while the z-axis points into the direction inverse to earth’s gravitational
force. In order to estimate true north as opposed to magnetic north, magnetic variance is
taken into account depending on the device’s current location, provided that information
on the latter is available. Some operating system events, such as location updates, can be
processed, or more specifically cached for further processing, when the application is in the
background. This is unfortunately not true for all sensory input. Audio input streams, for
example, although in principle a shared resource, can be cut off by the operating system
and given to other foreground applications. Running the application in the foreground is
therefore mandatory during experiments. With the recent advances in pervasive comput-
ing and taking into account development in e. g. mobile health monitoring systems, such
as Apple’s iWatch, it is however suspected that this constraint will vanish in the near
future. Note that at the time of development iOS would not allow direct access to certain
sensors, such as e. g. the proximity sensor which is normally used to turn off the display
backlight when users are holding the phone against their cheek. Although not considered
as a significant loss in comparison to the other available sensors, a proximity sensor, which
basically works by evaluating the power of ambient light, could yield viable information
about the phone’s environment, and aid in the determination of the phone’s on-body lo-
cation. Further note that the operating system also does not permit arbitrary scans for
SSIDs of nearby WiFi access points or unpaired Bluetooth devices in the vicinity. The
following list gives an overview of the recorded data. Further details can be found in [19]:
• Location

Estimates of the device’s location are recorded in terms of latitude, longitude, and
altitude. Course (◦/s) and speed (m/s) may be recorded as well.

• Proximity
Based on “found peer” and “lost peer” events from the operating system, other devices
in the vicinity are detected via Bluetooth and/or WiFi connections. Note that operating
system restricts these events to events from other iOS devices which run the same
application concurrently. The Unique Device Identifiers (UDIDs) are then recorded for
all such devices.

• Compass and orientation
In addition to raw sensory input from the three-dimensional magnetometer, accelerom-
eter, and gyroscope, enhanced (fusioned) readings are available as gravity (g), device
acceleration (g), attitude (quaternion), and rotation rate (rad/s). Internally, band-pass
filtering techniques are used to separate gravity and device acceleration components
from the measured acceleration. Vice versa, the total acceleration equals the sum of
gravity and device acceleration.

• Audio
Monophonic audio is recorded at 8 KHz and compressed using the IMA 4:1 ADPCM
codec. In spite of an undeniable loss in quality in comparison to 44 KHz and lossless
encoding, these settings were chosen to reduce filesize and bandwidth when writing
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to the device’s internal flashdrive, thereby also avoiding possible IO related interrupts
during long-time recordings.

• Other
Device information and the current battery level are recorded, allowing for identification
of a device’s datastream as well as supplementary analysis of the energy consumption
depending on the active set of sensors.

5.4 dataset

In advance of the evaluation of the proposed system for co-activity detection, a dataset was
collected, for which the sensor logging application was deployed on several iPhone 4 devices.
Participants were asked to carry the phone in their right-hand front pocket of their trousers.
No instructions were given regarding the phone’s orientation. As placing the phone in the
pocket would clearly deteriorate the quality of audio recordings, the participants each wore
a headset (default iPhone headset), consisting of small headphones and a microphone built
into the wire that connects the phone and headset. Initial synchronization of the devices
was performed by means of using the phones’ accelerometers to detect a shock. For this,
participants would either place their phones on a common flat surface and one of them
would then thump that surface, or participants would bump their phones together. This
proved to be an efficient mode of synchronization, considering the nature and lengths
of the recordings as opposed to the much more critical synchronization aspects during
ultrasonic distance measurements which were discussed in section 3.3. In order to avoid
explicit synchronization and thus involvement of the user, future approaches may want to
investigate alternatives such as dynamic time warping [279], a technique well-established
e. g. in speech recognition [257] which provides a “distance measure between two sequences,
possibly with different lengths” [248], and thus the means to synchronize distinct sequences
of observations.
Aiming at recording the preferably most natural behaviour of the subjects led to a selection
of participants who were mostly not familiar with topics related to this work. To provide
further guidance, scriptlets [19] were used to instruct the participants during the recording
sessions. Individually or in combination, scriptlets outline an experimental scenario for
the participants. It should be noted that in comparison to recording trials which were
performed prior to the actual experiments, it turned out that the use of such scriptlets at
least sometimes affected the participants’ behaviour, of which some showed a tendency of
acting less relaxed, most notably in phases of chatting. On the plus side of using scriptlets,
however, they are less intrusive in regard of determining the ground-truth of the data.
First, participants need not be actively involved in interactions with their mobile agents.
Second, subsequent annotation by expert labelers will yield more congruency. This also
means that problems arising from either the participants’ subjective views on the activities,
as well as possible hierarchical nesting of activities, can be avoided to a large degree. Table
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35 provides a collection of all atomic scriptlets to be combined in arbitrary configurations,
for example:

“GreetingStanding → WalkingTogetherIndoors → SittingDownTogether”.
The final dataset consists of 34 clean recording sessions, i. e. sessions with proper time
synchronisation and consistent sequential streams of sensor readings. In total, 6.7 hours
were recorded over the course of a few weeks. 11 persons participated in the sessions, 4 of
which were female. An average number of 3.4 sessions were recorded per subject (minimum
3, maximum 5), and durations varied from 4.3 min to 26.6 min per session, with a median
and mean lengths of 10.9 min and 11.6 min, and a standard deviation of 5.3 min. Note that
each session is comprised of several phases with varying co-activities and non-co-activities.
Co-activities may be followed by other co-activities as well as non-co-activities, and vice
versa. Annotation of the recorded sessions shows a clear bias towards co-activities with
lengths of up to 5 minutes. Out of 6.7 hours total, 5.5 hours correspond to established co-
activities and 1.2 hours to non-co-activities. Although not strictly necessary, co-activities
were additionally labeled according to the scriptlets of the respective session.

5.4.1 Postprocessing

As mentioned before timely synchronization was performed by either placing the partici-
pants’ phones on a flat surface and thumping on that surface, or by bumping the phones
together. Doing so led to consistent peaks in the amplitudes of the devices’ measured ac-
celerations. The remainder of each recording therefore corresponds to the actual session,
from which brief transitions after the peak and before the end of the recording were cut off
consistently according to the respective session. Using the scriptlets in conjunction with
the recorded audio streams allowed for manual annotation of the data corresponding to
the prevalent activity, but most importantly according to whether co-activity was present
(C⊕) or absent (C⊖). Annotations were always performed for pair-wise recordings. For
this, a custom domain-specific language was used which allowed to define a default class
(in this case C⊖), as well as to specify only those intervals which would differ from the
default and how. This approach significantly simplified the efforts necessary for annotating
the recorded sessions [19]. Figure 63 in appendix D illustrates the result of annotating a
single session with two participants.
Next feature vectors were computed for the later classification of the data with respect
to C⊕ and C⊖. Using a sliding window over each pair of concurrent datastreams in a
session, numerous features were calculated for each window. The windows were centered
around multiples of a chosen frame rate Fr. Varying values for the frame rate as well as
window sizes were considered during the evaluation (see section 5.5). In addition to fea-
tures describing the similarities or differences of pairwise streams, some features were also
calculated for individuals streams. It will be shown that those features still occurred in
semi-pairwise configuration in the resulting models (also discussed in section 5.5).
Recall that the proposed model should introduce as little explicit domain-knowledge as
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Scriptlet Description
GreetingStanding Two persons meet and then greet each other while

both of them are standing. The greeting can be just
vocal, by shaking hands, or by hugging.

GreetingSitting Two persons meet and then greet each other while
one of them is sitting down while the other person is
standing.

WalkingTogetherOutdoors Two persons meet and then greet each other while
one of them is sitting down while the other person is
standing.

¬ WalkingTogetherOutdoors Two persons walk around outdoors without interact-
ing (no co-activity). While there is no co- activity the
two persons are still physically close, for example one
is walking behind the other.

¬ WalkingOutdoors Two persons walk around outdoors without interact-
ing. Their walking paths are not related or similar.

WalkingTogetherIndoors Two persons walk next to each other inside a building
and chat casually.

¬ WalkingTogetherIndoors Two persons walk around inside a building with- out
interacting (no co-activity). While there is no co- ac-
tivity the two persons are still physically close, for ex-
ample one is walking behind the other.

JoggingTogether Two persons go jogging together and chat.
¬ JoggingTogether Two persons go jogging and there is no interaction

between them. Their paths are similar and they are
physically close, for example one is jogging behind the
other.

SittingDownTogether Two persons sit down together and talk to each other.
¬ SittingDownTogether Two persons sit down. While they are sitting next to

each other there is no interaction between them (no
co-activity).

ThrowingAndCatching Two persons take turns throwing and catching a small
object, for example a rubber ball.

DrivingTogether Two persons drive together in the same car. One of
them drives the car. They chat casually during the
car ride.

Table 35.: Scriptlets used in the description of scenarios during the experimental sessions. Table
taken from [19].
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possible. In particular, features should not be based on concrete social or behavioural cues.
An understanding of the latter might eventually be implicit as a result of learning the
model. Therefore features such as turn-taking patterns or step frequencies were omitted.
For each pair of devices, let the signal streams of each physical or logical sensor ψ be given
as a function

f : Ψ, R, R→ R2×l
′
: ψ, t, l 7→

[
x

y

]
(180)

of time t (in seconds) and window length l (in seconds), for which l ′ = Fψ_s · l corresponds
to the number of samples depending on the sensor’s sampling rate Fψs . The following
location-, motion- and audio-based features are computed as functions of the vectors x

and y, for which more details can be found in [19].

5.4.1.1 Location-based features

Distance between the two devices is computed from their measured (latitude, longitude,
altitude) triplets. Although Euclidean distance can generally be considered a good ap-
proximation of the real distance between points A and B given in spherical coordinates,
provided that A and B are sufficiently close together, that approximation deteriorates
significantly with increasing magnitude of latitude. This feature is therefore computed as
great-circle distance.
As location estimates are susceptible to numerous sources of noise and hence their quality
may vary significantly [188], location accuracy is used as a feature for each device so as to
provide the classifier with means of weighing other location-based features accordingly.
Recall that iOS does not allow direct scans for SSIDs of wireless access points or MAC
addresses of arbitrary Bluetooth beacons in the vicinity. The sensor’s ability to sense the
presence of other devices is instead limited to those devices that run the same sensing
application concurrently. Since the latter condition holds for all participants of the actual
experiment, this device proximity feature is still useful. It is expressed as a boolean value
indicating whether the two devices could “see” each other.
The last two location-based features are the course delta, describing the difference between
the absolute courses of each device in degrees, and speed delta, describing their difference
in speed in meters per second. The features are respectively based on the course and speed
logical sensors of the phone, dependent upon the devices’ location trails.

5.4.1.2 Motion-based features

Joint and separate features are computed from the devices’ accelerations, rotation rates,
and orientations. For each device, acceleration magnitude, three-axis base frequencies,
gravity axis, and a number of simple statistical measures are computed.
Acceleration magnitude equals the magnitude of the medians of all three-axis accelera-
tion measurements within the current window, i. e.

(
(mx,my,mz)(mx,my,mz)T

) 1
2 where
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mx,my,mz denote the medians of the values of the time series for the respective axes.
The median was chosen to diminish the effect of outliers.
For each of the three measured axes, the corresponding means, standard deviations, min-
ima and maxima are computed. In accordance with [280], the (minimum - maximum) and
(maximum - minimum) values are computed as well.
The gravity axis is determined according to the highest median value of the sensed gravi-
tational force from the comparison of all axes. Recall that the respective logical sensor is
a result of low- and high-pass filters applied to the raw readings from the physical sensors.
Next, the base frequency is computed for computed for each device and each axis. For
this, the signals are transformed from the time into the frequency domain using the FFT.
The base frequency in Hz is then determined according to the frequency bin with the
maximum value.
Note that whereas the former motion-based features are computed individually for each
device, additional features are supposed to model the correspondences between both sig-
nal streams at a time. For each pair of axes, their covariance and mutual information are
computed. In addition, acceleration magnitude mutual information denotes the mutual in-
formation of the median magnitudes of the devices’ three-axis acceleration measurements,
i. e.

I(X ′,Y ′) =
∑
X

∑
Y

p
[
f(x), f(y)

]
· log

p
[
f(x), f(y)

]
p
[
f(x)

]
p
[
f(y)

] (181)

where f : R3 → R, v 7→Median(|vx|, |vy|, |vz|). At last, covariance and mutual information
are computed for both orientation and rotation rate for each pair of axes at a time.

5.4.1.3 Audio-based features

For each audio recording the base frequency is calculated individually. The correspondences
between the audio recordings of both devices are modeled in terms of their covariance and
mutual information. The cross-correlation feature

ρX,Y(τ) = E
[
(Xt − µX)(Yt+τ − µY)

]
(182)

is determined according to argmaxτ ρX,Y(τ).
Next, audio loudness and audio loudness delta are computed. Audio loudness denotes the
median amplitude of the audio signal in the current window. Consequently, audio loudness
delta refers to the differences in loudness between both devices.
Post-processing is concluded by computing the MFCCs. MFCCs are widely used for modeling
of the perception as in human hearing. The idea is to have a number of coefficients that
describe a non-linearly scaled spectrum of a spectrum [287]. This means that first the raw
audio signals are transformed into the frequency domain. The frequency components are
then squared to determine the signal’s power spectrum. Subsequent scaling to non-linear
Mel scale helps to describe linear relations between perceived pitch and actual frequency
[287]. Dependent on the chosen numberM of filter banks (usually between 24 and 40), each
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of which will correspond to a Mel frequency basis, the spectrum is then scaled according
to M triangular windows (e. g. Bartlett), and the logarithms of each window’s sum of
squares are computed. This relies on the notion that humans usually cannot perceive the
differences between closely situated frequencies. Hence the sum of the powers gives an idea
of the signal’s perceived energy around the M frequencies central to each filter bank. As a
consequence of the overlap of the triangular windows, the computed values are correlated.
In order to decorrelate them, they are transformed once more, this time using the Discrete
Cosine Transform (DCT). The resulting coefficients are the MFCCs. Similar to PCA not
all coefficients need to be kept. Coefficients corresponding to regions of lower frequencies
usually carry substantially more information than those corresponding to high frequencies.
The present system therefore keeps coefficients 0 to 12.

5.5 evaluation

Feature vectors were calculated for sliding windows centered around multiples of the se-
lected feature vector rate Fr. The window size ws was initially chosen equal for all features
as ws = 1/Fr, resulting in strictly adjacent and non-overlapping windows. Prior to further
analysis of either Fr or ws, a number of classifiers were compared using 10-fold cross-
validation on a dataset corresponding to Fr = 0.5 Hz. The results are listed in table 36.
Except for Naïve Bayes all of the listed models exhibit good to very good performance. In-
terestingly enough, Naïve Bayes shows high precision for C⊕, along with acceptable recall
for both C⊕ and C⊖, but precision is low for C⊖. Indeed the model classified more than
25% of the instances of C⊖ as C⊕. It is assumed that this is a consequence of Naïve Bayes
being the only generative model among the tested classifiers. As a generative model, it is
in particular subject to the significant difference between the class priors (p(C⊕) = 0.83,
p(C⊖) = 0.17), yielding a strong bias towards C⊕. The remaining models can be consid-
ered equivalent in terms of classification performance.
Decision trees were chosen as the default for subsequent evaluations because of their inter-
pretability and the fact that the decision process is easier to comprehend in comparison
to the other classifiers for particular samples. Also, the importance of features directly
corresponds to their place in the hierarchy of the tree. This may allow social researchers
to draw further conclusions about the significance of specific features for related models
of real-life social scenarios. In addition to that, parts of a decision tree could also be man-
ually remodeled if necessary. Furthermore, decision trees are deemed as a good fit from
a mobile computing perspective. New samples can be evaluated at low costs and model
parameters can be adapted without a demand for external processing infrastructure. Al-
though the chosen model is discriminative, it relies on a comparatively low number of
model parameters in spite of its high-dimensional input. For decision trees the number of
model parameters is a function of several parameters, such as the number and composi-
tion of continuous and discrete input variables, as well as possible constraints on the tree
itself. In its current form, the decision tree is mostly comprised of binary splits due to
mostly continuous random variables, and pruning was performed to get rid of those parts
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C⊕ C⊖

Classifier Accuracy Prec. Rec. F1 Prec. Rec. F1

Naïve Bayes 73.3% 92.5% 73.7% 82.0% 36.6% 71.8% 48.5%
Decision Tree (J48(2)) 96.3% 97.5% 98.0% 97.7% 90.3% 88.0% 89.1%
Decision Tree (J48(50)) 95.7% 96.4% 98.4% 97.4% 91.7% 82.7% 87.0%
Logistic Regression 95.0% 95.2% 98.9% 97.0% 93.8% 76.4% 84.3%
Neural Network (1HL) 95.8% 96.5% 98.4% 97.5% 91.8% 83.4% 87.4%
SVM 94.4% 94.1% 99.4% 96.7% 96.2% 70.6% 81.4%

Table 36.: Classifier performance for Fr = 0.5Hz and ws = 1/Fr. The results were computed by
10-fold cross-validation using the Weka toolkit [134]. Note that J48(2) denotes a J48
decision tree with at least 2 samples per leaf whereas J48(50) denotes a minimum of 50
samples per leaf.

of the tree that convey no substantial information. Constraints on the minimal number
of samples per leaf had no significant influence on the overall performance, as shown by
comparison of the J48(2) and J48(50) decision trees, for which at least two ((2)) and fifty
((50)) samples were required per leaf.
Qualitative inspection of the distributions of the continuous input variables for both C⊕

and C⊖ shows that not all of them are linearly separable. It is therefore suggested that
further research should investigate other choices of general model parameters, or possibly
feature-specific combinations. Another open question regards the integration of class pri-
ors into the model. This is a general issue for discriminative models (see 2.3.4), but not
necessarily so for the present model. Cieslak and Chawla describe the construction of trees
for unbalanced data [56]. This seems however unnecessary as the high scores for precision
and recall for both C⊕ and C⊖ suggest that this model is not biased towards either class
in spite of the significant difference between the class priors.

5.5.1 Feature vector rate and window size

So far, both feature vector rate Fr and window size ws were chosen as invariants where
Fr = 0.5 Hz and ws = 1/Fr. These preliminary values were chosen because computing
feature vectors at two second intervals seems to provide an intuitive balance between little
and highly varying dynamics in social activities, for which two aspects should be considered:
Arguably, social co-activities last for longer periods than just two seconds. Nevertheless it
should be possible to detect changes between subsequent co-activities without substantial
delay. Recall that precise knowledge of the semantics of the activities not of particular
interest for the purpose of co-activity detection. It is however desired that changes between
different activities can be detected as such. Without application-specific requirements, two
seconds seem to be a reasonable default which will also be verified in what follows. Selecting
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lower values for Fr may result in higher resolution of the features and thus more information
available to the classifier. That way, the distinction of closely related or nested types of
co-activities, which would otherwise be difficult to tell apart, may become feasible.
Now in order to assess the selected default for the feature vector rate, a controlled number
of variations of Fr were evaluated (see table 37). The corresponding results sustain the
default of Fr = 0.5 Hz. Beginning with very high performance around Fr = 8 Hz, the
general trend follows a bathtub-like curve which has its low around Fr = 0.1 Hz and
then climbs monotonously until Fr = 0.025 Hz. Note that ws was in each case chosen
as the reciprocal of Fr, hence ranging from windows of 0.125s to 40s. Also note that the
performance for Fr = 0.5 Hz is about the same as for Fr = 0.025 Hz. The default choice is
furthermore ratified by taking into account that
1. the very high performance for Fr = 8 Hz may be a result of overfitting, and that
2. the bathtub-like curve illustrates a general trend under which performance decreases

at first but then gradually increases to another maximum at the other end of the scale
which is merely equivalent in performance.

Next, recall that some of the computed features were based on sensors with a much higher
sampling rate than others. In addition to that, some features correspond to random vari-
ables whose values are expected to change more often than others. The latter is per se
irrespective of the sampling rate, although sampling rates are typically chosen proportional
to the expected variance. Consider, for example, a sensor such as GPS as opposed to iner-
tial or audiovisual sensors. In regard of the sensor- and feature groups described in section
5.4.1, the intuition that follows from this is that, while Fr is kept constant, for each group
of location-, motion- and audio-based features, the window size ws should be adapted
individually according to the expected change rate and expected amount of information
within a given time frame, subject to the following to considerations: Depending on the
chosen window sizes, windows of some or all features may eventually overlap. Their size
should be chosen so as to avoid overfitting, such as may be the case for very small windows.
On a sidenote, one may argue that in order to dampen high-frequency components and
to compensate for losses due to non-periodicity of the recorded signals, samples should
be scaled using a specific windowing function [359, 304] (see section 5.1.1), especially in
the context of overlapping windows. For the current application this is however not nec-
essary as the classifier will only ever consider individual feature vectors, and the presence
of high-frequency noise will not have significant impact on the chosen features, e. g. due
to the comparatively low resolution of the analysed frequency spectra or due to the use of
metrics such as the base frequency.
Several evaluations were performed in order to assess suitable choices for ws and groups
of features. First, window sizes were gradually increased equally for all feature groups
from 2s to 10s, 20s, 30s, 45s and 60s (ws const). Subsequently, two strategies (I) and (II)
were evaluated for varying window sizes between the feature groups location, motion and
audio (section 5.4.1): Strategy (I) is based on the assumption that window sizes should be
chosen “inversely proportional to the average sampling rate of each feature group” [19]. In
other words, location-based features should be computed from much bigger windows than
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motion-based features than audio-based features. The evaluation of this strategy (I) was
performed for choices of wLs = 60s, wMs = 20s and wAs = 10s for location, motion and
audio, respectively. Strategy (II) is based on the insight that the model may further profit
from the availability of additional features, each corresponding to the known features in
every feature group, but computed for varying window sizes. This can be explained as
follows: Independent of the sensors’ sample rates, distinct activities can (and likely will)
have completely different profiles with respect to varying window sizes. For example, small
windows for an accelerometer’s datastream may be useful to distinguish between activi-
ties such as dancing and running, but may be completely useless for the discrimination
of dancing and playing chess. In terms of window sizes “inversely proportional to the
average sensors’ sampling rates”, smaller increments were chosen for groups with higher
sampling rates as opposed to bigger increments for groups with lower sampling rates. Con-
sequently, the evaluation of strategy (II) was performed for choices of wLs ∈ {10s, 30s, 60s}
and wMs ,wAs ∈ {1s, 5s, 10s, 30s}.
Table 38 lists the evaluation results for strategies ws const, (I) and (II). Note that
ws const differs from the previous evaluation for varying Fr and ws = 1

Fr
. Instead, Fr

is now kept constant at the default 0.5 Hz and ws is selected independently of Fr. As
expected, the current results sustain the prior arguments towards strategy (II). Despite
another local maximum of accuracy at ws = 10s for ws const, overall both accuracy and
F1 scores reach their optima along with the anticipated information gain through addi-
tional windows per feature group. The choice of (II) over (I) and ws const follows the
general trend of the results. What remains is to clarify whether making specific choices for
ws is a way of inserting heuristics into the model, as doing so would possibly contradict
the initial postulate for the minimization of heuristics. In regard of varying ws the extent
of this issue is considered negligible. To the contrary, particular and/or limited choices of
window sizes are inevitably bound to restrict and influence the model’s view of the world.
The question is if this can be avoided at all. It is important to note that the present choices
have not been made with a particular application in mind. As discussed before, varying
window sizes allow the model to learn aspects that could otherwise not be detected, and
should thus actually be understood as a way of generalizing the model. It should also
be mentioned that, while the model for co-activity detection is yet a result of supervised
learning, apart from the detection it relaxes the actual recognition of the precise types of
activities, thereby allowing the model to gain a much more general understanding of what
it means to interact.

5.5.2 Feature Analysis

The high performance of the model may lead to further questions regarding potential
overfitting and the selection of features [34, 218, 128]. Although the decision tree itself
is relatively sparse in terms of parameters, particularly so after pruning, which typically
left an average number of 35, 19 and 25 nodes for strategies (I), (II) and ws const, the
model is of course still subject to the “curse of dimensionality” that comes along with an
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Fr (Hz) 8 4 3 2 1 0.9 0.8 0.7
Accuracy 98.31% 97.56% 97.34% 97.09% 96.43% 96.39% 96.12% 96.10%
Precision 98.80% 98.10% 98.00% 97.80% 96.90% 96.90% 97.00% 96.70%
Recall C⊕ 99.20% 98.90% 98.80% 98.70% 98.80% 98.80% 98.30% 98.70%
F1 Score 99.00% 98.50% 98.40% 98.25% 97.84% 97.84% 97.65% 97.69%
Precision 96.00% 94.80% 94.20% 93.80% 93.90% 93.60% 91.60% 93.10%
Recall C⊖ 94.30% 91.00% 90.30% 89.30% 85.00% 85.30% 85.70% 84.00%
F1 Score 95.14% 92.86% 92.21% 91.49% 89.23% 89.26% 88.55% 88.32%

Fr (Hz) 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.025
Accuracy 96.01% 95.76% 95.64% 95.50% 95.17% 94.66% 95.25% 95.88%
Precision 96.70% 96.40% 96.70% 96.70% 96.60% 95.70% 94.60% 95.50%
Recall C⊕ 98.50% 98.50% 98.10% 97.90% 97.60% 97.90% 100.00% 99.80%
F1 Score 97.59% 97.44% 97.39% 97.30% 97.10% 96.79% 97.23% 97.60%
Precision 92.10% 92.30% 90.30% 89.70% 88.00% 88.80% 100.00% 98.70%
Recall C⊖ 84.40% 82.70% 84.10% 84.00% 83.70% 79.10% 72.80% 76.50%
F1 Score 88.08% 87.24% 87.09% 86.76% 85.80% 83.67% 84.26% 86.19%

Table 37.: Performance metrics for J48(50) with varying feature rate Fr, window size ws = 1/Fr.
The results were computed by 10-fold cross-validation using the Weka toolkit [134].

Fr = 0.5 Hz ws const (I) (II)
Strategy 2s 10s 20s 30s 45s 60s

Accuracy 95.76% 97.19% 96.73% 96.77% 96.86% 96.38% 96.30% 97.52%
Precision 96.40% 97.30% 97.10% 96.90% 97.50% 97.60% 96.90% 97.70%
Recall C⊕ 98.50% 99.40% 99.00% 99.20% 98.80% 98.00% 98.60% 99.30%
F1 Score 97.44% 98.30% 98.00% 98.10% 98.10% 97.80% 97.74% 98.49%
Precision 92.30% 96.70% 95.00% 95.80% 93.80% 90.30% 93.00% 96.60%
Recall C⊖ 82.70% 86.90% 85.80% 85.20% 87.90% 88.80% 85.30% 89.00%
F1 Score 87.24% 91.50% 90.20% 90.20% 90.70% 89.60% 88.98% 92.64%

Table 38.: J48(50) performance metrics for variations of ws depending on strategy after 10-
fold cross-validation. Strategy (I) corresponds to wLs=60s, wMs =20s, wAs =10s, strat-
egy (II) to wLs∈{60s, 30s, 10s}, wMs ∈{30s, 10s, 5s, 1s}, wAs ∈{30s, 10s, 5s, 1s}. Superscripts
L, M and A denote location, motion and audio, respectively.
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Figure 50.: Ablative analysis of the relevance of the feature groups location (L), motion (M) and
audio (A) for co-activity detection. The dashed line denotes the F1-score.

increasing number of random variables. For the present dataset, the number of features
exceeds the number of recorded sessions, which is however alleviated by the length of the
sessions and the resolution of the recordings. The aforementioned pruning, in conjunction
with the constraint of at least 50 samples per leaf, reduces the number of features that are
actually used and hence the number of parameters, and consequently eases the demand
for a much greater dataset. The number of parameters will naturally grow the more data
become available. Pruning and the constrained number of samples per leaf serve as a more
“natural” way of feature selection than other means which are usually applied in order to
maximize classifier performance [128] and which may eventually lead to overfitting.
As was mentioned before, the choice of decision trees provides a way to comprehend part
or all of the classifier’s decision process. In this regard it is interesting to see how those
features which were computed for each device separately actually fit into the model. It
certainly makes sense that co-activities can be derived from features which take both
devices into account. Interestingly enough, the former features still serve their purpose as
they tend to come in pairs, yet at different levels within the decision tree. Speaking of
levels, it is clear see that the importance of features is directly related to their position in
the hierarchy of the tree. This property can just as well be exploited to assess the value
of whole groups of features, such as location-, motion- and audio-based features. Visual
inspection of the decision trees resulting from the various strategies yields the insight that
location-based features are the most important, primarily the proximity feature. This is
probably as expected from personal intuition, but it naturally raises the question what
will happen if that feature were taken away from the dataset. In order to assess the
relevance of the three feature groups, a subsequent analysis was performed during which
all of 2{L,M,A}\∅ were evaluated, where L, M, A denote location, motion, and audio. The
results in figure 50 corroborate the notion that location-based features seem to be the
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most important category in co-activity detection, at the very least in terms of the present
dataset, followed by motion- and eventually audio-based features. From the results it can
also be seen that each feature group on its own contributes to the overall result, since none
of the corresponding models fail to produce accurate results. The latter is first and foremost
the case for C⊕, whereas for C⊖ one can see that the classifier performance deteriorates
from location to motion to audio (as emphasized by the F1-score as opposed to accuracy).
It can therefore be concluded that the model will be susceptible to significantly differing
class priors once more and more features were left away. It is also noteworthy that, for
both C⊕ and C⊖, LA is en par with LMA, whereas LM shows slightly less performance.
In spite of the sole performance of M versus that of A, the latter seems to provide a better
supplement in combination with L. This is probably due to the fact that the features in
A have less correlation with L than those in M with L, which, apart from the notion that
location and motion may generally be more closely related than location and audio, is more
likely a matter of the nature of the recorded sessions. Further research may investigate
the relevance of feature groups with respect to certain kinds or groups of activities. This
is however beyond the scope of this thesis.
Apart from whole groups of features it turned out that particular features were much
less effective than others. Among the less effective feature were the MFCCs, audio cross-
correlation and location speed delta [19]. With respect to the present dataset, removal of
any of those features has small to no impact on the model’s overall performance. For the
MFCCs this comes to no surprise as none of them showed up in any of the decision trees.
J48 decision trees are an implementation of the C4.5 algorithm, based on maximization
of entropy [254]. Low entropy may hint at the lack of speech or characteristic noise, both
of which may go hand in hand. As the preferred on-body location is the front-pocket of
the trousers [150], it can be assumed that MFCCs indeed are among the more irrelevant
features, neglecting the fact that microphones were worn openly during the recording of
this dataset. On the other hand, there may be situations (activities) which are much more
characterized by speech, or where the phone is e. g. placed on a surface, so that the MFCCs
may yet contribute to the process. The desire for a preferably universal model, however,
plus the fact that the inclusion of the MFCCs in the present evaluation had no negative
consequences, suggests that they should not be left out of further considerations. As far as
audio cross-correlation and location speed delta are concerned, their absence in the decision
tree is very likely also due to the limitations of the present dataset. A good example for
when location speed delta could be relevant is given in [19], where it may help to discern
fast-paced activities, e. g. due to sports or transportation, from other kinds of activities.
In a related sense this applies to audio cross-correlation as well, when for example loud or
very characteristic (e. g. rhythmic) environments ought to be differentiated from others.
The last question in this section is concerned with the permanent or temporal lack of
certain features due to the outage of physical or logical sensors. A naïve solution would be
the computation of separate models for each case of singular or combinations of multiple
missing features. This is clear intractable as it would require the computation of up to
2N−1 models, given a set of N features. It may however be feasible to determine groups of
features which are likely to fail together, such as all features that rely on e. g. the presence
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of accelerometer or gyroscope readings, which would greatly reduce that overhead of the
number of “spare” models. As a last resort, a whole feature group such as L, M or A, could
be left out, resulting in the previously seen seven distinct models (refer to figure 50). An
alternative solution could be to stop the evaluation of the decision tree for a particular
sample at that very node ν for which the corresponding feature could not be computed or
is simply missing. In that case it seems reasonable to perform a majority voting according
to distributions of C⊕ and C⊖ at the leaves of the subtrees of ν. There is however a high
risk of leaving out features that are actually present somewhere deeper in the hierarchy,
which is why it is suggested to stick with the former approach of an intelligent choice of
“spare” models.

5.6 co-activity segmentation and clustering

Applications in SSP could be interested in more than just the simple fact that two individ-
uals were performing the same co-located activities during a given period of time. It may
for instance be interesting to know whether one or more distinct activities were performed
during that time. Even though the proposed concept does not require the precise types of
these activities to be known, a number of social aspects may be derived from this informa-
tion, for which examples were given in the previous sections. In addition to changes in the
activity types, applications may furthermore be interested in recognizing equal activities
that were not performed in timely sequence. Altogether this implies a demand for segmen-
tation and subsequent clustering of a stream of co-activities. As the precise activity types
will obviously not be known in real world settings, both segmentation and clustering need
to be implemented in an unsupervised fashion.
As part of the evaluation of the framework that was developed during the proceedings
of this thesis [19], Bader used an EM-based clusterer, provided by the Weka toolkit [134],
which he applied to those feature vectors that were previously positively detected as co-
activities for each session. The clustering algorithm is based on multivariate GMMs and
iteratively adds new clusters until there is no further increase in log-likelihood after 10-
fold cross-validation. Each detected cluster corresponds to a single activity type. Ordering
the feature vectors by the exact times which they represent consequently leads to a timely
sequence of detected activity types. This sequence is then smoothed by using a moving me-
dian to compensate for outliers, which is further justified by the assumption that activity
types will not change back and forth at sub-second intervals. Unfortunately, the evalua-
tion in [19] is flawed because the author did not account for the fact that after positive
identification of co-activities in a session, these co-activities are not necessarily adjacent.
As a consequence, changing points are identified in a presumed sequence of co-activities
which actually contains gaps. Instead, sessions should have been split into subsessions of
continuous co-activity prior to evaluation.
Generally speaking, EM-based approaches are advantageuous in situations where the num-
ber of clusters is a priori unknown. In a scenario such as co-activity segmentation, however,
it is very likely that the number of detected clusters will differ from the ground-truth num-
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ber of activity types. One important fact in this matter is the already discussed recursive
nature of activities. Naturally, new clusters show up along with significant changes in the
distribution of the measured variables, whereas those changes do not necessarily imply an
actual change in the activity type as perceived by human experts who label the data. On
the other hand, the use of GMMs in EM-based clustering makes the process more robust
against outliers, helps to compensate for missing data, and allows for clusters of different
size and correlation between the variables (e. g. as opposed to K-Means). Arguably, the
disadvantages of EM-based approaches are their computational complexity, a usually sen-
sitive choice of constraints for the covariance matrices of the Gaussians in order to prevent
singularities, especially when facing high-dimensional data, as well as the fact that all data
are taken into account at once. This global view may for instance yield a clustering which
may be optimal in terms of likelihood, but basically miss out on clusters which otherwise
could have been detected from a local perspective. More precisely, by taking into account
all samples at once, potential implications of the timely sequence of the samples are lost.
For example, from a number of samples, all of which actually belong to the same cluster, a
portion may be associated with another overlapping cluster when seen from a global rather
than a local point of view, a fact otherwise naturally justified by the i.i.d. assumption. The
EM-based approach is also not well suited for processing streams of activities. First, the
stream cannot easily be split into chunks that could then be processed by EM as a whole
because that may lead to overlapping segments of activities, especially in cases where
changes would occur close to segment borders. Second, even though EM-based approaches
can be adapted to online variants that can be fed additional data, this would come at the
price of losing robustness and the search for a suitable stopping criterion.
As a consequence, the work at hand proposes a two-fold process in which co-activities are
first segmented in a top down approach and then clustered from the bottom up. This choice
is motivated by corresponding techniques for speaker diarization, also known as speaker
segmentation and clustering [324]. Note that speaker diarization systems usually involve
decoding steps that separate speech from non-speech segments in advance of further pro-
cessing. The proposed system is equivalent in this sense since it separates co-activities from
non-co-activities before segmentation and clustering, and can therefore be considered as
a co-activity diarization system.

5.6.1 BIC-based Segmentation

Segmentation systems are typically categorized as decoder-based, model-based or metric-
based [53, 175]. Decoder-based systems are only concerned with separating speech from
non-speech at points of silence or, respectively, co-activity from non-co-activity at points
where there would be no measurable activity at all. Model-based segmentation, on the
other hand, relies on a fixed set of models according to an a priori selection of specific
classes such as speech, music, or noise, but also individual speakers, which would relate to
a specific choice of previously selected co-activities. Finally, the last category of systems
is based on finding the extrema of chosen metrics between moving adjacent windows.
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Such metric-based approaches are generally considered to yield high recall at moderate
precision [175]. An example of a corresponding metric is given by the KL2 distance metric
as introduced by Siegler et al. [302], which for two distributions A and B is defined as the
(symmetric) sum of the (asymmetric) KL divergences from A to B and B to A, supposedly
yielding better results than previous model-based approaches. The most notable metric
used in segmentation systems is the BIC-based generalized likelihood ratio [53, 324, 175].
The idea is to regard the input stream as a Gaussian process and identify those changing
points t for which it holds that the process is best modeled with two distributions instead
of just one if it were split at t. Readers should be aware that in contrast to systems which
also consider overlapping speech [39] the activity type during co-activity is by definition
unique.
In their seminal work on the BIC criterion for segmentation, Chen et al. propose testing
the hypothesis H0 that a change occurs at time t versus the alternative H1 that there is no
change, and therefore whether the data around t should be modeled with two rather than
a single distribution [53]. For this, let X = {x1, . . . , xN} be a set of multivariate samples.
For a given changing point 1 < t < N, the likelihoods L1 of a model M1 with parameter
set θ11, and L2 of a model M2 with parameter sets θ21,θ22 are then given by

L1 =

N∏
i=1

p(xi|θ
1
1) and L2 =

t∏
i=1

p(xi|θ
2
1)

N∏
i=t+1

p(xi|θ
2
2) . (183)

The maximum log-likelihood statistic for H0 and H1 consequently is

log
L2

L1
= logL2 − logL1

=

t∑
i=1

logp(xi|θ21) +
N∑

i=t+1

logp(xi|θ22) −
N∑
i=1

logp(xi|θ11) . (184)

Then, since M2 has twice as many parameters as M1, the difference of their BIC values is

∆BIC(t) =

t∑
i=1

logp(xi|θ21) +
N∑

i=t+1

logp(xi|θ22) −
N∑
i=1

logp(xi|θ11) − λ
k

2
logN (185)

for λ = 1 and k the number of parameters according to any one of θ1
1,θ2

1 or θ2
2. It is

furthermore clear that a model which has more parameters yields at least equal or better
likelihood for the same data. Thus H0 must be rejected for any given t if ∆BIC(t) ⩽ 0

because then the gain in likelihood would not outweigh the penalty induced through the
additional parameters. As the maximum likelihood estimate of a changing point is given
by t̂ = argmaxt∆BIC(t), it follows that any such candidate changing point t̂ will be
considered as a true changing point if and only if ∆BIC(t̂) > 0.
Figure 51 shows the result of computing ∆BIC(t) for varying t on data from two adjacent
segments of distinct co-activities. From the figure one can clearly see that the peak of the
metric coincides with the true changing point. It should also be noted that ∆BIC(t) was
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Figure 51.: The ∆BIC metric for two adjacent segments of distinct co-activities. The dashed line
denotes the true changing points.

only computed for values of t which lie several seconds apart from the session borders.
The reason for this is three-fold: First, enough samples are needed so that covariance
does not collapse onto a single point. Second, the number of samples must well exceed
the number of model parameters to achieve useful measures of likelihood. Third, if the
window size were chosen to large, the window might actually contain more than a single
changing point, thus violating the model assumption [358]. A co-activity model which
is likely based on tens or hundreds of features will therefore require sufficiently large
windows or a systematic increase of the feature vector rate Fr. The comparison of varying
window sizes for the present dataset has shown that ws = 10s is a reasonable value
for segmentation. On other hand, according to the prior evaluation of the model not all
features carry significant contributions to the overall problem of predicting C⊕ versus C⊖.
As a consequence, another means of avoiding large window sizes or increased sampling
rates is given by means of information reduction, e. g. by application of PCA. In fact, the
following evaluation will show that a projection of the data onto a relatively small number
is well sufficient for the task.
The problem of choosing sufficiently large windows is likewise known in speaker diarization,
which is why Chen et al. [53] defined detectability D as a measure of how likely it is to
detect a true change as D(t) = min(t,N− t) for given t and window size N. This is an
important insight as it implies that changes will be hard to detect whenever they lie close
to the window’s borders. Aside from these drawbacks, the probabilistic roots of the metric
have clear advantages. For one, it can be shown that along with an increasing number
of samples the maximum likelihood estimate t̂ converges against a true changing point.
Furthermore, since ∆BIC takes into account all samples from a window at once, the metric
is potentially much more robust than metrics that operate separately on each split, such
as KL2. A manually chosen threshold is also not necessary. Instead, the penalty term
of BIC provides an implicitly determined threshold. Manual fine-tuning is still possible
through a posteriori adaption of λ in equation (185), a fact naturally exploited in related
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work [326, 324]. Moreover, λ could also be chosen dependent on t̂ to compensate for lower
likelihoods due to fewer samples in smaller windows at segment borders.
The principle of maximizing ∆BIC has yet to be implemented as a suitable algorithm for
the current task of co-activity segmentation. Calculating ∆BIC(t) for all 1 < t < N of
a segment of N samples and subsequently determining its peak is not applicable in the
general case in order to avoid violating the model assumption whenever the data contain
more than one true changing point. Under this consideration, the original algorithm as
proposed in [53] is outlined as follows:

C = {} ▷ a set of detected changing points
w0 ← 10s ▷ a reasonably chosen initial window size, e. g. 10s
a← 0 ▷ the left boundary of the current window
b← a+w0 ▷ the right boundary of the current window
while b < N do
t̂← argmaxa<t<b ∆BIC(t)
if ∆BIC(t̂) > 0 then

C← C∪ {t̂} ▷ add t̂ to the set of detected changing points
a← b+ 1

b← b+w0
else
b← b+ 1

end if
end while

Related work suggests a number of improvements, such as variable window schemes or
avoiding computations of ∆BIC(t) where detectability D(t) is below a chosen threshold
[326]. Furthermore, if the metric has its peak near the end of a segment, then it is likely
that a true changing point approaches. Therefore, the window size should not be increased
beyond reason for the next step, as that may lead to oversized windows in scenarios where
the data contain frequent changes [358]. The algorithm was initially proposed for use
with single multivariate Gaussians, but other models (e. g. GMMs) were also reported in
subsequent works [53, 26, 210, 267, 324, 175]. For the case of single Gaussians, Zhou
and Hansen [358] propose using Hotelling’s two-sample T2 statistic to avoid redundant
computations of the determinants of the covariance matrices, yielding significant speedups
in regard of the algorithm’s quadratic complexity. The T2 distribution generalizes Student’s
t distribution [145] and can be used to determine the likelihood of different means for
multivariate distributions. For a segment X of N samples and a candidate changing point
t̂, the T2 statistic is defined as

T2 =
t(N− t)

N
(µ1 − µ2)

TΣ−1(µ1 − µ2) (186)

where µ1,µ2 denote the means of each subsegment (window), and Σ denotes the covariance
matrix of X. Most notably, it can be shown that the peak of this T2 statistic corresponds
to the maximum likelihood estimate t̂. The T2 statistic can therefore be used as a prelim-
inary step to estimate t̂, so that ∆BIC(t̂) > 0 has to be evaluated only once.



5.6 co-activity segmentation and clustering 217

The proposed algorithm for the segmentation of co-activities is closely related to the out-
lined algorithm. As input the algorithm expects a sequence of contiguous feature vectors,
previously classified as C⊕. Based on a minimum window size of wmin = 10s, chosen in
order to ensure that windows will contain at least a reasonable number of samples for like-
lihood estimation, any input sequence of less than 20s will be returned as a single segment.
Longer sequences will be processed by starting from an initial window size w0 = 2wmin,
increased by 5% at every iteration until either a changing point is found or w exceeds the
size of the segment. Other than previously outlined though, the BIC test is further con-
strained. Instead of testing the maximum likelihood estimate ∆BIC(t̂) for positive values
only, the test actually requires that

∆BIC(t̂) ⩾ Median
(
{∆BIC(t) | a < n · t < b, n ∈N0}

)
, (187)

so that changing points will be characterized by distinctly attenuated peaks. Irrespective
of Fr, computations of ∆BIC(t) are performed at integer multiples of 1s. Models are based
on single multivariate Gaussians because the use of other models such as GMMs entails no
significant improvements with respect to the present dataset as opposed to a substantial
increase in computational complexity. Note that the proposed algorithm does not involve
any prior or posterior adaptions of λ to the dataset as that would otherwise imply a loss
of generality.

5.6.2 Clustering

Once a session has been split into segments of distinct activity types, which can actually as
well be understood as a clustering task in its own right, non-adjacent segments of the same
activity type should be recognizable as belonging to the same activity. Therefore clustering
must be performed for all non-adjacent segments originating from a single stream of co-
activities. Same as with segmentation, the clustering process needs to be unsupervised
instead of relying on previously learned models for specific classes, as the identity of the
recorded activities is unknown [302]. A number of deterministic or probabilistic approaches
have been successfully used in speaker diarization [175]. The predominant approach [26,
324] however is based on the same BIC metric as the segmentation algorithm proposed in
section 5.6.1.
From the previous discussion it is known that a candidate changing point t̂ is considered
as a true changing point if and only if ∆BIC(t̂) > 0, since then the data are best modeled
with two distributions instead of just one, considering a gain in likelihood that exceeds the
penalty introduced by doubling the number of model parameters. Naturally, this criterion
implies the opposite in case of ∆BIC ⩽ 0, in other words that two separate clusters should
be joined into one. Barras et al. [26] describe the standard BIC based clustering algorithm
as follows: Starting from a set of S = {s1, . . . ,SN} segments, for each pair (si, sj) with
i ̸= j compute ∆BICij for a model M1 comprised of a single Gaussian for all samples in
si ∪ sj, and a model M2 of separate Gaussians for each of si and sj. If ∆BICij < 0 for
argminij∆BICij, then join the segments si and sj into a single cluster. The process is
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repeated until ∆BICij > 0 ∀i, j.
As a consequence of the fact that adjacent segments were just split based on the very
same criterion, only non-adjacent segments need to be taken into account. Along with
application-specific choices for λ in equation (185), further parameters may be integrated
e. g. for a posteriori fine-tuning of segment versus cluster penalties [302, 26]. The maximum
likelihood estimate naturally leads to a suitable stopping criterion once no further increase
in likelihood is expected, thereby implicitly leading to an automatic estimation of the
number of clusters [175, 210]. Moreover, the proposed bottom up approach yields a certain
prospect of locality. As opposed to other algorithms which take into account all data at
once, this approach allows for focussing on data which may be located close-by on (small)
temporal scales. In fact, this notion of locality has been shown to be advantageous for
clustering of segments of speech as opposed to global processing of the data [26]. On a
sidenote, the proposed approach is also suitable for online processing, although it is not
considered optimal since an online clusterer tends to converge into local rather than global
maxima [326, 324].

5.6.3 Evaluation

5.6.3.1 Evaluation of BIC-based Segmentation

Evaluation of the proposed algorithm was performed on data for which Fr = 8Hz and
ws = 1

Fr
. After prior classification only those data corresponding to C⊕ were kept. The

dataset was then partitioned according to the 33 annotated sessions. In order to account
for non-contiguous sequences due to back and forth transitions between C⊕ and C⊖ in
the actual sessions, each session was further split into contiguous sequences of C⊕, yield-
ing a total of 39 subsessions. As the algorithm is based on models of single multivariate
Gaussians, PCA was performed to maximize variance and avoid singular covariance ma-
trices, such that the resulting components would account for at least 95% of the original
variance. For this, missing values were replaced by the mean for numeric and the mode
for categorical variables. Recall that the values of a categorical variables each correspond
to a specific state. Also recall that, whereas nominal values could easily be mapped to
integer values, PCA takes into account the correlations of the remaining variables with
any specific state, instead of some arbitrary magnitude of an integer value of a random
variable corresponding to several states. Therefore, each categorical variable of a set of K
distinct values was replaced by K boolean variables for a 1-of-K binary encoding.
Figure 52 illustrates a projection of the data onto the first three principal components.

One can see that the decorrelation of the variables lead to reasonable separability, partic-
ularly so for throwing/catching, walking and jogging, albeit much less for sitting, eating
and standing. It is not surprising that throwing/catching and walking interfere with each
other since the former is also comprised of phases where subjects move or walk. Sitting,
eating and walking seem hardly separable, although that is somewhat mitigated by the
third component, and inspection of the remaining components shows additional contribu-
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Figure 52.: Distribution of activity types after projection onto the three major principal compo-
nents.

tions to their separability.
The major portion of the first five principal components is comprised of the cross-correlation
of the audio signals of both devices, individual means of acceleration, as well as the mu-
tual information of parts of the orientation quaternions of both devices. This is somewhat
expected as these features also often appeared near the root of the decision trees during
the discrimination of C⊕ and C⊖ (refer to section 5.5). Interestingly though, summing
up over all principal components exhibits the attenuation of audio features such as the
MFCCs, which, to the contrary, did not contribute to the decision trees. This can however
be explained by the fact that the J48 algorithm, which was previously used for building
the decision trees, aims at the maximization of Shannon entropy whereas PCA simply
maximizes variance. In the context of the proposed segmentation algorithm, the latter is
justified since the segmentation process is primarily governed by the variance of the data.
Application of the proposed segmentation algorithm to a sequence of contiguous co-

activities leads to results like the one illustrated in figure 53a. The algorithm has clearly
identified the three changing points from ground truth (as shown by dashed lines), yet it
has furthermore identified two additional changing points, effectively partitioning a single
annotated activity into three potentially different activities. Note that the segmentation
does not imply anything about the relation of the second and fourth segments, and hence
the correspondingly performed activities. Instead, it merely yields information about dif-
ferently distributed data from the second to the third as well as from the third to the
fourth segment, so that the second and fourth segment might still conform to the same
type of activity. From figure 53b one can see that the data indeed follow different distri-
butions, and that activity B furthermore contains a number of outliers. In fact, listening
to the recorded audio shows that during these segments, the two recorded subjects first
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Figure 53.: Exemplary results after automatic segmentation of a sequence of contiguous co-
activities (a), along with a visualization of the data’s distribution for the second
(A), third (B) and fourth (C) segment. The dashed lines denote true changing points,
whereas the blue lines correspond to detected changing points.

left their appartment, descended a flight of stairs, the latter of which happened to be
in a rather reverberant environment, and then went for a walk surrounded by consider-
able traffic. Activity A was also characterized by a disproportion between the first and
second speaker, which then turned around during activity B. Activity C, although visu-
ally not much different from activity B, was furthermore characterized by loud noise of a
car driving by. Other than that, the timely discrepancies between the annotated and the
automatically detected changing points are acceptable. Generally speaking, a “smooth”
transition between subsequent activities is expected, as is a result of human behaviour for
which strict and abrupt changes are presumably the exceptional case. For the same reason,
manually annotated data likely yield uncertainty. In case of the present dataset, the data
were not annotated during but after the recordings, so as to avoid obtrusive sensing to a
degree where persons would change their behaviour (see section 1.1.6.1).
All in all, the segmentation algorithm split 34 out of 39 subsessions into 190 segments. The
remaining 5 subsessions were too small to be split (shorter than the required 2wmin =

20s.). Aside from precision and recall, the performance of speaker segmentation systems
is likewise assessed by their False Alarm Rate (FAR) and Missed Detection Rate (MDR)
[175], defined as

FAR =
FA

GT + FA
and MDR =

MD

GT
(188)

for FA the number of false alarms, MD the number of missed detections, and GT the num-
ber of true changing points. This further leads to the question for reasonable sensibility of
a segmentation system. From figure 53a one could already see that a certain discrepancy
between the detected and the annotated changing points is likely. Following the prior dis-
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cussion, evaluation was performed for sensibilities of either 15s or 30s. Precision, recall,
FAR and MDR were furthermore computed for varying numbers of principal components in
order to find out how much information (in terms of variance) is actually needed for the
task at hand. The results are shown in tables 39a and 39b. In this setup, the performance
of the system is clearly far from acceptable. Further analysis shows this to be the result
of two major issues: For one, the segmentation algorithm has found more changing points
than actually present from the annotation. Not unexpectedly, though, consequent inspec-
tion of the sample distributions sustains the respective decisions of the system, likewise
discussed above in regard of the example from figure 53a. Closer inspection furthermore
shows that a non-negligible number of changing points is located close to the borders of
the corresponding sessions. It was discussed that such changing points yield only poor de-
tectability [53]. In fact it turned out that these changing points mostly correspond to the
beginning of the recorded sessions during which the subjects would often briefly stand and
discuss the session, upon which they would typically begin with their first actual activity
as laid out in the session scriptlets (see section 5.4). Yet others correspond to uncertainties
in the annotation, e. g. to a transition between activities near the ending of a contiguous
sequence of co-activities at which one subject for instance left the scene. Therefore the
system was evaluated once more, this time disregarding those changing points which lie
beyond a certain margin from the sessions’ borders. The results in tables 39c and 39d
show that respecting a correspondingly chosen margin leads to significant improvements
in recall and MDR, whereas the change had no apparent influence on FAR and precision.
As indicated above, the high FAR may be the result of diverging distributions of the

samples within segments which were actually annotated as a single type of activity. On
the one hand, this may lead to a demand for a more detailed view and consequent anno-
tation of the data. On the other hand, however, this goes along with the different ways
and levels at which humans perceive the affective meaning of any activity. It has already
been discussed that activities can be nested recursively, depending on the point of view
and more precisely also the chosen spatio-temporal frame. Walking, for instance, can be
understood as a superposition of smaller activities such as lifting a foot or moving a limb,
and in the same sense it could be broken apart into any of these fractions. Furthermore,
so far the model has no way of telling apart e. g. the sudden appearance of loud noise from
a real change in activities. To the best of the author’s knowledge, research has not yet
defined a common baseline for this problem. Other than recall and MDR, precision and FAR
therefore seem to be inadequate measures for the present task. Nevertheless, lack thereof
may be mitigated by analyzing the prevalent activities within each of the automatically
determined segments. Recall that co-activity diarization is primarily concerned with find-
ing non-adjacent segments of equal activities, yet – arguably – not necessarily the precise
changing points as such. It is thus most important that segments of actually different
activities do not overlap. In other words, automatically determined segments should not
correspond to more than one distinct type of activity. Unless taken to the extreme, for
instance when a session of N samples were split into N segments, this measure can at
least assist in the verification of the approach. Table 40 therefore shows the percentage
of automatically determined segments corresponding to only a single type of activity. For
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# Comp. FAR MDR Prec. Rec.
5 0.510 0.613 0.271 0.387
10 0.617 0.613 0.193 0.387
15 0.619 0.600 0.197 0.400
20 0.615 0.600 0.200 0.400
30 0.623 0.640 0.179 0.360
40 0.597 0.613 0.207 0.387

(a) Performance of the segmentation algorithm for
varying numbers of components. Sensibility 15s.

# Comp. FAR MDR Prec. Rec.
5 0.490 0.507 0.339 0.493
10 0.603 0.493 0.250 0.507
15 0.605 0.480 0.253 0.520
20 0.603 0.493 0.250 0.507
30 0.601 0.480 0.257 0.520
40 0.588 0.547 0.241 0.453

(b) Performance of the segmentation algorithm for
varying numbers of components. Sensibility 30s.

# Comp. FAR MDR Prec. Rec.
5 0.607 0.409 0.277 0.591
10 0.712 0.432 0.187 0.568
15 0.712 0.409 0.193 0.591
20 0.709 0.409 0.195 0.591
30 0.720 0.455 0.175 0.545
40 0.699 0.432 0.197 0.568

(c) Performance of the segmentation algorithm for
varying numbers of components. Sensibility 15s.
Margin 30s.

# Comp. FAR MDR Prec. Rec.
5 0.593 0.318 0.319 0.682
10 0.703 0.318 0.224 0.682
15 0.703 0.295 0.230 0.705
20 0.701 0.318 0.226 0.682
30 0.705 0.295 0.228 0.705
40 0.690 0.341 0.228 0.659

(d) Performance of the segmentation algorithm for
varying numbers of components. Sensibility 30s.
Margin 30s.

Table 39.: Performance characteristics of the segmentation algorithm.

Threshold
# Components 99% 95% 90%

5 68.7 77.1% 81.3%
10 75.1 79.9% 82.8%
15 75.4 79.1% 83.4%
20 75.1 78.9% 83.3%
30 75.2 79.0% 82.4%
40 74.4 78.4% 82.4%

Table 40.: Percentage of segments corresponding to a single type of activity, i. e. those segments for
which the number of samples for a single type of activity exceeds the given threshold.



5.6 co-activity segmentation and clustering 223

this, a segment corresponds to a single type of activity whenever the number of samples
for that type of activity exceeds a chosen threshold, such as e. g. 95%. Together with the
prior measures for recall and MDR, these results show that the system runs with accept-
able performance, which may yet not be convincing but is at least significantly better than
chance.

5.6.3.2 Evaluation of BIC-based Clustering

The proposed clustering algorithm was evaluated for each recorded session on both actual
as well as ideal results from prior segmentation. The latter are directly inferred from the
annotated ground-truth. The reason for this is rooted in the fact that segmentation er-
rors will eventually lead to clustering errors. Clearly, whenever segment boundaries are not
properly detected, data from one segment will leak into the other [326, 175]. In the context
of co-activity diarization this is mitigated by presuming “smooth” transitions instead of
abrupt changes between subsequent activities. This presumption is further corroborated by
inspection of the actual data around segment borders, which reveals that in most cases the
corresponding samples move gradually from one distribution to the next. This goes hand
in hand with the prior results from table 40, from which it follows that segment borders
may not be detected precisely where annotated, yet still more than 90% respective 95% of
the data correspond to a single type of activity. At the bottom line, the second evaluation
should yield a better measure for the clustering process itself, whereas evaluation based
on the actual segmentation results should give a better measure for the framework as a
whole.
Table 41 shows the results. This time λ was manually optimized for the process. The
necessary adaption of λ is a consequence of the reduced size of the segments after seg-
mentation. For this, recall that in order to compensate for the penalty term in equation
(185), likelihoods have to be computed for a considerable number of samples. As a rule
of thumb, λ was chosen such that λc = −1.5 · 40

c
, where c denotes the number of compo-

nents. Next to λ, table 41 shows the number of segments after clustering in comparison
to their numbers before. Clearly, the number of segments before clustering is constant for
the ideal scenario whereas it varies strongly in case of the actual segmentation. The table
also shows the number of non-adjacent segments that were joined in clusters, for which
the respective percentages simply correspond to the fraction by which the total number of
clusters were reduced. Although these fractions are given with respect to the total number
of segments instead of the number of non-adjacent segments before clustering, they serve
to show that the clusterer operates in roughly the same range, irrespective of the ideal or
actual scenario. Following the prior discussion from section 5.6.3.1, the ratio of segments
for which the number of samples for the prevalent activity exceeds the given threshold,
together with the relation between segments before and after clustering, indicates good
overall performance of the proposed algorithm. Comparing the results of the ideal scenario
to those in table 40 furthermore shows that the subsequent clustering step can improve
the performance of the overall diarization process, as it reduces the intra-segment dispro-
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Scenario # Components λ # Segm. (of #) # Clustered (%) Threshold Ratio

Ideal

5 -12 107 (134) 27 (20.2%)
0.90 97.20%
0.95 96.26%
0.99 92.52%

15 -3 116 (134) 18 (13.4%)
0.90 97.41%
0.95 96.55%
0.99 93.97%

40 -1.5 114 (134) 20 (14.9%)
0.90 96.49%
0.95 95.61%
0.99 93.97%

Actual

5 -12 132 (166) 34 (20.5%)
0.90 78.03%
0.95 73.48%
0.99 64.39%

15 -3 173 (211) 38 (18.0%)
0.90 80.35%
0.95 76.88%
0.99 71.68%

40 -1.5 176 (199) 23 (11.6%)
0.90 80.68%
0.95 76.70%
0.99 72.16%

Table 41.: Performance of the clustering algorithm based on actual and ideal prior segmentation,
showing the number of segments after vs. before clustering, the number and fraction of
clustered non-adjacent segments, and the ratio of segments for which the internal count
of the prevalent activity type exceeds the given threshold.

portion between the number of samples of those activities which leaked into the segment
due to segmentation errors, and the number of samples of the prevalent activitiy.



6
C O N C L U S I O N A N D F U T U R E WO R K

This work has investigated new means of modeling, capturing and characterizing social
context on small spatio-temporal scales through the use of mobile agents without depen-
dencies on external infrastructure. It was discussed that social relationships constitute
an elementary aspect of the social context. They are quantifiable as functions of social
interaction which can be inferred from social signals and behavioural cues as part of non-
verbal communication. It was shown how behavioural cues from social interaction geometry
can be used to infer social situations, defined as co-located face-to-face social interaction
subject to full mutual awareness of all participants. Once detected, a social situation is
described by a four-tuple S = (P, T ,X,K) for a set P of persons, a temporal reference T , a
spatial reference X, and K a set of tags which may be used to describe the semantics of
the situation. Interaction geometry models spatio-orientational arrangements in terms of
pairwise measurements (δθ, δφ, δd)ij for persons i and j (as seen by i), where δθ denotes
the angle between the shoulder-lines, and the polar angle δφ as well as the interpersonal
distance δd correspond to the relative position. It was shown how a quantitative model
based on these dyadic measurements can be used to algorithmically infer whether i and
j do or do not interact, and how interaction in groups of N ⩾ 2 persons allows for the
determination of social situations as a whole. For this, a new dataset was recorded using a
high-performance infrared tracking system, and the data were annotated according to the
presence (S⊕) or absence (S⊖) of social interaction for each pair of subjects and point in
time (Fs = 6Hz). Analysis of the dataset led to the use of mixture distributions to model
the experimental data as they employ the means for probabilistic soft-clustering, allow
for modeling clusters of varying size and shape, and foster the easy integration of class
priors. A new algorithmical model for the detection of social interaction was introduced
which discriminates between S⊕ and S⊖ based on separate models for observations from
either class. The proposed model is human-interpretable and allows for insight into the
decision process, in particular also for researchers from socio-psychological fields. Based on
quantitative data the model’s decision process makes no further assumptions about spe-
cific arrangements such as circular formations [13, 67]. It has been shown to be universally
applicable to groups of varying size and in various formations.
It was discussed that a model of interaction geometry should respect the fact that δθ and
δφ are both 2π-periodic. SW-GMMs permit the integration of both linear and non-linear
random variables by wrapping them according to their periodicity. As EM-based train-
ing requires an increased number of modes and due to the fact that N variables with K
tilings into every direction cause a computational overhead of (2K+ 1)N, it is necessary
to restrict K for which it was shown that 3 wraps for each of δθ and δφ yield accurate
descriptions of the dataset. Unexpected at first, the evaluation revealed that the more

225
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correct, yet also more complex, SW-GMMs had no practical advantages over GMMs. This
finding was discussed to be rooted in the fact that the data are distributed such that the
prevalent clusters are located far enough from the periodic limits and their variance is such
that overlap is neglibile, more precisely that

r
2π p(x)dx ≈ 1 for GMMs and x ∈ {δθ, δφ}.

It was also discussed that the actual distribution of the data may be a result of spatial
constraints during the experimental recordings. That issue is however mitigated by the
fact that the model has been shown to be robust under superimposed Gaussian noise and
that further recordings in less crowded scenarios led to similar spatio-orientational distri-
butions. Nevertheless it is expected that this mainly holds for S⊕ whereas the distribution
of S⊖ will change once more data will be acquired under unconstrained conditions. Future
work should clarify whether the data in S⊖ will be more evenly distributed along with
an increasing number of observations and whether e. g. fat-tailed distributions would be
a more appropriate choice for modeling S⊖. The fact that persons tend to avoid certain
configurations under normal conditions, e. g. standing very close together and facing each
other, will still show in the data so that the distribution for S⊖ cannot be uniform or sim-
ply assume random noise. It is furthermore expected that larger datasets will attentuate
the clusters in S⊕.
The evaluation of the proposed model has shown relatively high performance for both
GMMs and SW-GMMs. Comparison with other classifiers has shown that only SVMs were en
par with the proposed model which sustains the consideration that GMMs are well-suited
to reflect human interaction geometry. Accuracy, precision and recall are high for GMMs
and acceptable for SW-GMMs. Performance could of course be increased by maximizing the
number of components, but these were deliberately kept low to avoid overfitting and to
comply with the demand for a realistic and universally applicable model. In this regard
it also interesting to see that a model only based on δθ and a signed variant of δd which
only encodes whether person j is located in front or behind person i still yields reasonable
performance. Based on the analysis of the relevance of each of δθ, δφ and δd by means of
differential entropy it was discussed that δd is by far the most important measure, followed
by δφ (sic) and δθ. The reason why δφ appears to encode more information than δθ is
two-fold: First, δθij is symmetrical to δθji and therefore so is the joint distribution of δθ
and δd, and second, values of δφ > 2 mod 2π are rarely observed. This is an important
result for mobile SSP because δθ and δd are much easier to measure than δφ.

The previous discussion and results leave a part of the question whether the data and/or
the proposed model are generalizable unsolved. Starting with the manual annotation of
the data one could argue that annotations by individual labelers might lead to different
results. Related work has however shown that this is not the case [149]. On the other hand,
the spatial constraints and selection of participants may affect the actual distribution of
the data. Contrary to further experiments which were conducted during the proceedings
of this thesis, related work has reported a slight impact of spatial constraints on interper-
sonal distance [67], which is why future work should clarify the actual relevance and the
influential extent of such constraints. The present work has however discussed potential
influences by personal profile parameters such as culture, gender or age, as well as by
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latent variables such as group size. It should be noted that although related work agrees
that likewise variables may have substantial influence on the data, most results proved
to be imprecise, not based on quantitative data, and sometimes contradictory. Thus a
second series of experiments was conducted in order to investigate the influence of gender,
followed by a re-evaluation of the first dataset with respect to group size. Both variables
are quantifiable and can be considered unambigious. Evaluation of models based on the
second dataset has shown distinct distributions for male-only, female-only and male-female
dyads in groups of two, three or four. δd, for example, reveals characteristic differences
between genders, which are yet clearly not restricted to δd. Instead, differences also show
in territorial occupancies depending on age and/or cardinality. As a matter of fact though,
although specific distributions show significant differences, the size of the second dataset
does not allow for further generalization such as may be found in the literature, e. g. that
women tend to stand closer than men. At the bottom line, the result of the gender-related
evaluation is that gender certainly has a non-negligible influence on interaction geometry,
but future work should design and conduct larger experiments, possibly together with
researchers from socio-psychological fields. The focus should however not only be on strict
separation of gender, but instead also consider mixed configurations. According to the
present results, the differences are in fact greater for mixed than for same-sex groups.
Both gender and group size were controlled parameters in the second series of experiments,
whereas groups of up to nine subjects formed naturally in the initial experiment. Prior
evaluations have already shown that the original model is capable of discriminating S⊕
and S⊖ under varying group size. Reevaluation of the first dataset with separate models
S⊕n and S⊖ for group sizes n ∈ {2, . . . , 7, 9} has shown very few misclassifications for groups
of up to four persons whereas performance deteriorates quickly for larger groups. It was
discussed that this is a consequence of increasing variance and changing distribution of
the variables along with increasing cardinality. Smaller groups have more flexibility e. g.
in terms of adapting very distinct spatio-orientational arrangements (F-formations) where
each different choice itself implies overall variance in the data. Larger groups are less flex-
ible in their choice of arrangement, but variance and overlap are generally higher e. g. due
to increased distance. For example, slight changes in δθ may cause large variations in δφ
at greater distances. This reasoning is corroborated by the finding that most misclassi-
fications occurred in favour of neighbouring classes. In order to see how else the model
could profit from individual models per group size, the evaluation results of the S⊕n were
combined into a single virtual class S⊕combined which led to an increase in precision (albeit
at the cost of recall) when comparing the performances for S⊕combined with those for S⊕ in
the original model. This matter could be further investigated by further work, especially
since larger groups were not observed as often as smaller groups during the experiments.
It should also be mentioned that the apparent “bias” on smaller groups was criticized
by [292] with respect to the corresponding publication by Groh et al. [123]. The observed
group sizes are however not a result of the experimental design or possible constraints, but
instead follow the typical distribution of group sizes also known from related work which is
based on quantitative data on much larger scale [79]. Nevertheless the exact modeling of a
distribution for group size, e. g. in terms of a Poisson or fat-tailed distribution, can be con-
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sidered unresolved and should be the subject of future work. It would also be interesting
to see how interaction geometry can be used for a posteriori information about group size.
For this, the present work has demonstrated a basic decision-theoretical approach which so
far yields better than random but otherwise not acceptable results. As a proof of concept,
payoff was determined as either unit distance to neighbouring classes or alternatively in
the form of exponential decay. Future work might combine improved models for the class
priors together with carefully chosen heuristics for the payoff. Improved solutions for this
problem would be a valuable prospect as group size is a latent variable in negotiations
about social situations among mobile agents. As far as the integration of profile and latent
parameters into an algorithmical model for social interaction geometry is concerned, fu-
ture work could for instance integrate categorical variables such as gender by means of an
abstract decision tree where the path from the root to a leaf is determined by the values of
the categorical variables and each leaf yields a respective model for the evaluation of (δθ,
δφ, δd). It is clear though that the size of the tree will grow exponentially with increasing
numbers of variables and their domains, and so will the demand for additional training
data. As a first step it is therefore important to determine an importance ranking between
suitable variables for which not only their entropies but also their domains and potential
encodings should be taken into account.

Together with the development of the proposed model this work has shown how ori-
entation and position can be measured by mobile agents such as smartphones. In terms
of orientation the main problem is relating the orientation of the mobile agent to the
body of the user. In general the necessary transformation depends on precise knowledge
of on-body location and orientation of the agent, although related work has e. g. projected
acceleration measurements onto the horizontal plane as determined by PCA based on the
notion that most acceleration (aside from gravitational force) occurs along a pedestrian’s
walking direction [179]. Determining on-body location and orientation [178, 142] as well
as finding the correct transformation to relate agent and upper body was considered less
restrictive in the present context. The proposed system is therefore based on a linear trans-
formation based on training data which relate the phone’s orientation to the body. For
this, a Kinect system and smartphones were used to acquire a new dataset from several
persons. The correlated data from both sources were then used to train a linear regression
model. The resulting model uses the agent’s measured attitude in conjunction with related
temporal features for estimations of the relative heading about the yaw axis between the
phone and the body. Integration of the temporal features has helped to reduce the resid-
ual error. The absolute body heading is determined by the sum of relative and absolute
device heading. As the output heading is relative and the agent’s heading is determined
such that Gimbal lock is avoided, the system is invariant to changes in orientation. The
system is still susceptible to changes in location so that a dedicated model will be required
for each potential on-body location. According to related work only a limited set of dis-
crete locations need to be considered [178, 150]. Eventually the system has been shown
to perform with σ ≈ 9.7◦. It follows that a system which combines measurements from
two agents will operate with σ ≈ 13.7◦. This result was used to evaluate the performance
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of the GMM-based model from the original dataset after superimposition of corresponding
Gaussian noise under which the interaction geometry model still performed very well with
a mere ∼ 1.1% loss in accuracy, a fact which contributes to the choice of GMMs as well as
the understanding that the model is not overfitting the data.
For position measurements an ultrasound based system was presented. Since absolute
positions are not required for interaction geometry this system sufficiently determines in-
terpersonal distances (together with the possibility for low-quality estimates of δθ and
δφ as by-products). The system is comprised of wearable sensor boxes, each of which
houses six ultrasound sensors arrayed such that sensing areas partially overlap. An ex-
ternal clock is used for accurate synchronization of time. The system was evaluated in a
series of experiments with varying persons and group sizes against the infrared tracking
system, yielding an residual error of 24.4± 8.6cm for δd and rather large errors for δθ
and δφ. It was argued that the mean of 24cm can be regarded as systematic error and
thus be resolved. The GMM-based model for social interaction geometry was once again
evaluated with superimposed Gaussian noise with and without the systematic error plus
the standard deviation, where the model again performed well in spite of the superimosed
noise. Using the ultrasound based estimates of δθ and/or δφ leads to poor performance,
where only the systematic correction of δθ yields acceptable results. The estimates of δθ
and δφ could however be used as backups or for the fusion with accurate measurements
from more reliable sources (also with higher resolution), such as from the proposed sys-
tem for orientation estimation. At the bottom line, this ultrasound based system should
be seen as a proof-of-concept and as a means to verify the model for social interaction
geometry when subject to real-world noisy distance measurements. Future work should
consider using independent systems such as [229] although it should be ensured that a
corresponding system should work in the inaudible range.

The next contribution of this thesis is the use of Subjective Logic (SL) for sensor fusion
and the modeling of trust in a network of individual agents. Other than probability the-
ory, SL assigns belief mass to sets of atomic events and thus allows for explicitly stating
ignorance about parts of the state space (frame of discernment). It furthermore fosters the
introduction of uncertainty to overcome known limitations of DST in cases of high conflict.
It is arguable whether probability theory could be used instead. The latter would require
a much more complex model plus a priori knowledge about the whole infrastructure of the
system, a fact which does not seem reasonable in a highly heterogeneous MSN scenario. For
applications of SL in MSN a new hierarchical sensor model of physical and logical sensors
was presented, where e. g. higher level logical sensors may combine measurements from
both local and remote logical and physical sensors. It was then shown how SL can be used
to fusion sensors based on either interaction geometry and/or low-level audio features in
order to output whether two agents were engaged in social interaction or not. Moreover
it was discussed how SL could be used to model trust between agents. Due to the length
of the experimental recordings as well as missing details about the personal background
of the subjects and their relationships the actual modeling of trust was omitted and only
fusioning was evaluated. Based on the fusion of the aforementioned logical sensors of inter-
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action geometry and/or low-level audio features, several clustering methods based on the
maximization of modularity were applied. The final evaluation results have shown that
SL fusion of independent logical geometry and audio sensors yields significantly improved
results over individual measurements when compared with the manual annotation of the
dataset.

The hitherto results have shown that the new model for social interaction geometry can
be generalized to some extent. It is nevertheless highly likely that there will be situations
where such a model, which is based on static interaction geometry, will fail due to both
static and dynamic components that could neither be anticipated nor integrated into the
model. Examples were given such as a subway ride on a fully packed train, visiting the
cinema, or attending the Vienna Opera Ball. Alternative forms of dynamic models were
discussed based on frequency domain analysis, HMMs, or Eigenzones (PCA). It was argued
that all methods will eventually suffer from modeling aspects and heuristic choices. As
a result, a new dynamic model for the detection of mutual simultaneous and co-located
activities was proposed. The corresponding definition requires that all participating per-
sons perform the same type of activity, for which knowledge of the activity’s semantics is
not required. Information about co-activities can for instance be used for social network
inferral as well as further insight into social relationships, for which a number of exam-
ples were discussed. For evaluation and training, a new dataset was recorded from the
streams of numerous mobile phone sensors during several sessions with varying pairs of
persons. Scriplets were used to outline the supposed activities during the sessions which
took place in arbitrary (uncontrolled) environments. It was shown that the computation
of low-level location-, motion- and audio-based features based on the pairwise but also the
individual datastreams from the devices allows for highly accurate discrimination of the
presence (C⊕) or absence (C⊖) of social co-activities. A decision tree classifier was used
as it enables researchers to easily determine the importance of features and follow the
decision process for selected samples. Parts of the tree can also be manually remodeled if
necessary. Since decision trees do not per se support the integration of class priors, future
work could investigate corresponding means such as described in [56]. So far the problem
is alleviated by the fact that the present evaluation shows very high precision and recall
for both classes. It was found that for a number of continuous input variables C⊕ and
C⊖ are not linearly separable. If not treated with care this can lead to overfitting as well
as very large trees. The proposed model therefore performs pruning together with a lower
bound of samples per leaf. Different strategies for feature vector rates and window sizes
were evaluated. According to the results a default feature vector rate of 2 Hz yields a
good compromise between capturing reliable information and the ability to quickly react
to changes in the performed activities. It was determined that window sizes should be
chosen “inversely proportional to the average sensors’ sampling rate” [19] in each group of
sensors. Further analysis of the features proved that all feature groups contribute similarly
to the overall decision process. Future work should nevertheless investigate the relevance
of particular feature groups for certain activities or groups of activities. In case of missing
features, e. g. due to the temporary loss of a physical or logical sensor in a real-world ap-



conclusion and future work 231

plication, it was proposed to provide either individual models for different configurations
of sensors, or perform a majority voting at the node of the tree at which processing had
to stop due to the missing information.
In order to determine changes in the types of co-activities a new method for the segmenta-
tion of a continuous stream of previously detected co-activities was introduced. Based on
the BIC criterion which is used for a similar purpose in speaker diarization, the proposed
algorithm attempts to find changing points by moving adjacent windows over the data and
determining whether the data in both windows are best modeled by a single or two individ-
ual distributions. Visual inspection of the principal components of the data has shown that
persons do not abruptly change their activities. Instead, observations gradually move from
one cluster to another. Taking this sensitivity into account and compensating for general
low detectability around frame borders, evaluation shows that the segmentation algorithm
finds most true changing points but suffers from a large number of false positives. This
is not unexpected since activities can be regarded at different levels in their hierarchy.
The evaluation has furthermore shown that the algorithm is sensible to changes along the
principal components’ axes. As a number of audio-based features are close to the principal
axes of the dataset, this happens for example in situations where the primary activity is
suddenly accompanied by a loud noise such as a cable car passing by. It was furthermore
discussed that due to the possible nesting of activities default evaluation criteria like the
MDR or the FAR are not sufficient for the assessment of a co-activity segmentation algo-
rithm. It was proposed that instead the main activity in each segment should occur in at
least 90% or even 95% of the intra-segment observations which leads to significant better
results for the proposed algorithm. Finding suitable measures and defining appropriate
baselines for the comparison of related systems would definitely be an important point for
future work.
As a consequence of the prior segmentation, the last part of the thesis was concerned with
recognizing non-adjacent activities of the same type after segmentation. The proposed
clustering algorithm is similar to the segmentation algorithm in that it uses the BIC cri-
terion to decide when to join two segments whenever they are better modeled by a single
than by two individual distributions. A notable difference to the former algorithm is the
fact that a heuristic choice of a threshold value was necessary. While BIC usually automat-
ically implies a corresponding threshold, that threshold had to be adapted to compensate
for the smaller sample sizes after segmentation. The evaluation was performed on both
the actual as well as the ideal segmentation result. Using the same performance criterion
as proposed for the segmentation, the clustering algorithm shows very good performace
when applied to the ideal segmentation result and acceptable performance in case of the
actual segmentation result.

The latter evaluation concludes this thesis. Aside from the new contributions to the
field and their careful evaluation, a number of open questions remain which were beyond
the scope of this work and which were listed throughout this chapter. Readers should note
that the proposed models as well as the datasets are neither claimed as exhaustive nor
the final truth. Instead they are intended to serve as the basis for further research and
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refinement on the basis of larger scale experiments, preferably conducted by computer and
social scientists alike. Most importantly, this work has shown that a significant portion of
non-verbal human behaviour can be captured and recognized by universal algorithmical
models such as the proposed model for social interaction geometry or the model for co-
activity detection.
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(a) 2 persons (b) 3 persons (c) 4 persons

(d) 5 persons (e) 6 persons (f) 7 persons

(g) 9 persons

Figure 54.: Ideal circular configurations of varying arities.
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S C AT T E R P L O T S O F T H E DATA FO R S⊕ PER ARITY

Figure 55.: Samples of S⊕ for social situations of two.
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Figure 56.: Samples of S⊕ for social situations of three.
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Figure 57.: Samples of S⊕ for social situations of four.
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Figure 58.: Samples of S⊕ for social situations of five.
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Figure 59.: Samples of S⊕ for social situations of six.
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Figure 60.: Samples of S⊕ for social situations of seven.
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Figure 61.: Samples of S⊕ for social situations of nine.
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Figure 62.: Pruned decision tree with 25,000 samples per leaf as determined by J48 in [134].
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D
A N N O TAT I O N O F A R E C O R D E D S E S S I O N FO R C O - AC T I V I T I E S

# 2012-10-11
# Session with Daniel and Hannes around the Hohenzollernplatz.

.attributename activitytype

.defaultclass unknown

.alias daniel 63ecc0f334f552c4dcadb39959c27e2c4d462d60

.alias hannes 981d49079225398ade36eed668d26893ee1b2151

# We start from the parkbench located at Luitpoldpark.

daniel 0 10 standing
hannes 0 10 standing

daniel 10 200 walking
hannes 10 66 walking
hannes 66 302 sitting

# Hannes keeps sitting on the bench while Daniel proceeds to the tennis club
# around the corner.

# We meet again at the park bench and sit together for a short time. We then
start sportive acitivities: Throwing around fir cones! We're attacked by a dog.

daniel 200 302 sitting
daniel 302 420 walking
hannes 302 420 walking

daniel 420 580 throwingandcatching
hannes 420 580 throwingandcatching

daniel 580 9999 walking
hannes 580 9999 walking

Figure 63.: Example of an annotated session. Data originate from [19].
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F E AT U R E W E I G H T S D U R I N G C O - AC T I V I T Y D I A R I Z AT I O N
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Figure 64.: Distribution of feature weights after PCA during co-activity diarization.
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