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Abstract— To synthesize whole-body behaviors interactively,
multiple tasks and constraints need to be simultaneously
controlled, including those that guarantee that the constraints
imposed by the robot’s structure and the external environment
are satisfied. In this paper, we present a prioritized, multiple-
task control framework that is able to control forces in systems
ranging from humanoids to industrial robots. Priorities between
tasks are accomplished through null-space projection. Several
relevant constraints (i.e., motion constraints, joint limits, force
control) are tested to evaluate the control framework. Further,
we evaluate the proposed approach in two typical industrial
robotics applications: grasping of cylindrical objects and weld-
ing.

I. INTRODUCTION AND RELATED WORK

Control of the physical interaction between a robot ma-
nipulator and the environment is crucial for the successful
execution of a number of practical tasks where the robot
end-effector has to manipulate an object or perform some
operation on a surface. Typical examples in industrial settings
include polishing, grasping, machining, or assembly. During
contact, the environment may set constraints on the geomet-
ric paths that can be followed by the end-effector or other
constraints for safety. A robot must accomplish a global task
while satisfying several constraints. At the same time, the
additional redundancy must also be controlled, thus requiring
a control framework for multiple tasks or constraints.

Several frameworks for multi-task control of rigid robots
exist in the literature. Most frameworks presented in the 80s,
90s [1, 2, 3, 4] and recently by Smits et al. (iTaSC) [5] and
[6, 7] work at kinematic level, computing the desired joint
velocities (q̇) or accelerations (q̈). These approaches are not
suited for robots that interact with the environment, because
they do not allow for force control or impedance control. This
motivated a more recent trend of torque control strategies
[8, 9, 10, 11, 12], which consider the dynamics of the robot
and compute the desired joint torques (τ). This approach can
also improve tracking, as it compensates for the dynamic
coupling between the joints of the multi-body system.

As mentioned in [13], a framework is sound if the control
action of any task does not affect the performance of any
higher priority tasks. A framework is optimal if its control
action minimizes the error of each task, under the constraint
of being sound. Finally, a framework is efficient if its compu-
tational complexity is minimal. All the control frameworks
that we are interested in are sound, which means they are
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prioritized. Being optimal and efficient is crucial for real-
world applications in industrial field.

Since we are interested in controlling robots that interact
with the environment, we focus on frameworks that allow
for force control. Peters et al. [14] demonstrated that we
can derive several of these well-known torque control laws
under a unifying framework, allowing for force control by
setting the joint space control torques. This approach is effi-
cient but not optimal. The Whole-Body Control Framework
(WBCF) [8] allows for force control while being optimal,
but not efficient. The framework (TSID) presented by Prete
et al. [13] is motivated by designing a control framework
that is both optimal and efficient. However, it does not allow
for inequality constraints, which are particularly important
for modeling joint limits and motor torque bounds. These
are very important for safety in industrial robotics.

The frameworks presented above are usually applied on
humanoid robots. In this paper, we present a prioritized,
multiple-task control framework that allows for force control
for industrial robotics. Although the TSID framework is
efficient, we choose the WBCF framework for our work
because of the fact that there are only very few DOFs for
industrial manipulators. For this case, both WBCF and TSID
have similar computation times. The main reason for us to
choose WBCF is that it is easy to integrate multiple tasks
and model inequality constraints.

Our proposed framework is based on a composable struc-
ture where several constraints, each describing a robot task
or behavior, can be combined with priorities. The framework
supports several types of constraints, such as operational
task (position and orientation), force (contacts), or inequality
constraints (e.g., joint limits, collision avoidance). For safety
and for efficient control, the framework establishes a control
hierarchy among behaviors, which is exploited to establish
control priorities among the different control categories,
i.e., constraints, operational tasks, and postures. Constraints
should always be guaranteed, while operational tasks should
be accomplished without violating the acting constraints. The
priorities are accomplished by null-space projections.

In Section II, we review the Whole-Body Control Frame-
work that allows us to establish a control hierarchy for
multiple priority tasks. Section III demonstrates the frame
work by testing several types of constraints. Section IV
presents the evaluation of our approach on typical industrial
robotics tasks. Finally, Section V concludes the paper and
presents directions for future work.



II. WHOLE-BODY CONTROL FRAMEWORK

In this section, we review the hierarchical task control
framework based on projecting the control of lower priority
tasks into the null-space of higher priority tasks. In this
context, we distinguish three priority levels in the hierarchy:
Constraints (such as contacts, joint-limits, self-collisions),
operational tasks (i.e., position, orientation motion), and
postures (i.e., the residual motion), which should be con-
trolled with different priority assignments. They are treated
as independent control entities.

A. Integration of Constraints

This subsection describe the WBCF presented by Sentis
et al. [8]. This framework is based on the Operational
Space Formulation [15], which was introduced to address the
dynamic interaction between the robot’s task space motion
and force, defining a dynamically consistent task null-space.
We first review the fundamental mathematics and begin by
describing the robot’s joint space dynamics in terms of joint
coordinates q with

M(q)q̈+C(q, q̇)+G(q) = τ , (1)

where τ is the set of joint torques, M(q) is the joint inertia
matrix, C(q, q̇) is the Coriolis and centrifugal torque vector,
and G(q) is the gravity torque vector.

The Operational Space Formulation describes the torque
level decomposition of an operational task (task1) and a sec-
ondary control task (task2) according to the torque equation

τ = τtask1 + τtask2 . (2)

Based on the control algorithm projecting the control of
lower priority tasks into the task null-space of higher priority
tasks, the torque decomposition can be represented by

τ = JT
task1

Ftask1 +NT
task1

τtask2 , (3)

where Jtask1 is the Jacobian of task 1, Ftask1 is a vector
of forces, and Ntask1 = (I− J†

task1
Jtask1) is the dynamically-

consistent null space associated with the task1. J†
task1

is
the dynamically-consistent generalized inverse of the task
Jacobian.

B. Hierarchical Extension

In this subsection, we propose a control hierarchy that
extends the previous decomposition to multiple levels. This
hierarchy integrates constraints and additional tasks accord-
ing to desired priorities, while optimizing the execution of
the global task. Given n tasks controlling the robot behavior
at a given time, the multi-level hierarchy is represented as

τ =
n

∑
i=1

JT
p(i) Fp(i) (4)

Fp(i) = Λp(i){ẍ∗i − J̇iq̇+ Ji M−1(h−
i−1

∑
j=1

JT
p( j)Fp( j))} (5)

Jp(i) = Ji Np(i) , (6)

where τ , Fp(i) and Jp(i) are prioritized controls, prioritized
forces, and projected Jacobian, respectively. ẍ∗i is a reference
input at the acceleration level, Ji is the task Jacobian, and
h = C+G. Λp(i) is the task-space mass matrix and Np(i) is
an extend null-space matrix containing the null-spaces of all
preceding constraints and tasks:

Λp(i) = (Jp(i) M−1 JT
p(i))

−1 (7)

Np(i) = I−
i−1

∑
j=1

J†
p( j) Jp( j) . (8)

This prioritization strategy minimizes the error of each
task under the constraint of not conflicting with any higher
priority tasks.

C. Hybrid Control

The framework allows for hybrid position/force control by
setting (5)

Fp(i) = Ω f f ∗i +Λp(i){Ωmẍ∗i − J̇iq̇+ Ji M−1(h−
i−1

∑
j=1

τp( j))} ,

(9)
where the selection matrices Ω f and Ωm split the control
space into force and motion components, respectively, f ∗i
represent the constraint forces.

III. EXAMPLES OF CONSTRAINTS

The control framework supports several types of con-
straints, such as motion (position and orientation), force
(contacts), or inequality constraints (e.g., joint limits, colli-
sion avoidance). The robot must accomplish a global task
while satisfying several constraints. As an example, in
the typical industrial task of inserting a peg into a hole,
multiple constraints need to be simultaneously controlled,
including position constraint, force control, and the robot’s
configuration constraints (i.e., joint limits and self-collision
avoidance). This section shows some examples of different
constraints.

A. Motion Constraints

The basic operational tasks are position and orientation
movements with constraints. In the Peg-in-Hole scenario, the
first step is to move the robot end-effector to the plane where
the hole is on, then the robot needs to search the hole on
that plane. Therefore, we test these two cases for our control
framework on a 6 DOF industrial manipulator in simulation.
The robot kinematics, dynamics, and low-level robot control
are simulated using the Robotics Library1 by Rickert with a
realistic robot model.

1) Case 1 – Move to a plane: In this case, the robot is
commanded to reach a plane with its end-effector while con-
trolling the movement only along the plane normal direction.
The plane is defined by a point (p) and its normal vector (n).
During task execution, the distance d between the robot and
the plane converges to zero when it reaches the plane. The
orientation of the robot end-effector is finally aligned with

1http://www.roboticslibrary.org/
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Fig. 1. Motion constraints tests for robot manipulators in two cases: (1) Move to a plane; (2) move on a plane. (a) Constraints for tests, (b) 3D position
in the task space, (c) control parameters, (d) 3D visualization of coach for simulations.

the normal direction, which means the z axis of the end-
effector is parallel to the plane normal n. The constraints are
described in Fig. 1 (a). There are two steps:

Step 1: Move the robot to PlaneA (d→ 0) with

ẍ∗position = Ωm(kp d n− kd Ẋef) , (10)

where n is the plane normal, d is the distance between the
robot end-effector and PlaneA. Ẋef is the robot linear velocity,
and kp,kd are the positive control parameters. Moreover, we
accomplish dynamic decoupling in the controllable directions
according to the selection matrix Ωm with

Ωm = Rd
o Sn Ro

d , (11)

in which Rd
o is the transformation between the task frame Od

and the robot base frame Oo. In this case, we constrain the
motion only in the n (zd) direction, and the motion matrix
Sn can be chosen as

Sn =

0 0 0
0 0 0
0 0 1

 . (12)

Step 2: After the robot has reached the plane, we rotate the
end-effector until the zd axis is perpendicular to PlaneA (or
zd//n, which means angle (α) between zd and n converges
to zero) with

ẍ∗orientation = Ωm(kp θ − kd ω) , (13)

where ω is the robot angular velocity, θ = (0,0,α)T and α

is the angle between the robot end-effector’s zd axis and the
plane normal n.

These steps are demonstrated in Fig. 1(1)(d). Fig. 1(1)(b)
and (c) show the simulation results, with the robot trajectory
in the Cartesian space and the control parameters d,α . Both
task errors converge to zero smoothly. In step 2, the position

constraint is at a higher priority than the orientation. Due to
the projection of the orientation task into the null-space of
the position constraint, the orientation task does not affect
the position task. Fig. 1(1)(d) shows that the position has
not changed during the orientation task in step 2.

2) Case 2 – Move on a plane: In this case, we constrain
the robot motion only on the plane with the robot end-
effector perpendicular to the plane. Suppose we have a
desired position Xd that does not lie on the plane, see
Fig. 1(2)(d). The robot is commanded to reach the target
position Xd , while staying on the plane (xd − yd plane) and
keeping the end-effector z axis parallel to normal n. The
control law is a simple PD controller

ẍ∗position = Ωm{kp(Xd−Xe f )− kd Ẋe f } , (14)

where the selection matrix is

Ωm = Rd
o

1 0 0
0 1 0
0 0 0

Ro
d . (15)

In this task, the control of the position constraint is integrated
by using the top-most priority level, while the secondary task
is the orientation constraint. The orientation task is projected
into the null space of the position constraint with

τ = τposition +NT
position τorientation , (16)

where Nposition is the constraint null-space matrix.
Fig. 1(2) shows the results for this test. During the task

execution, the distance d and the angle α remain zero since
the robot is constrained to move on the plane and keeps the
orientation of the end-effector (Fig. 1(2)(c). In this test, since
the task position Xd is out of the plane, the robot moves on
the plane linearly until he reaches the projection point pd ,
which is the projection point of the task position Xd , see
Fig. 1(2)(b) and (d).



B. Position control under Joint-Limit Constraints
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Fig. 2. End-effector position control under joint limit constraints: The
robot’s end-effector has been commanded to move toward a desired goal.
The blue area defines a joint limit activation zone for the elbow joint. When
this area is reached, a control approach is implemented to block the elbow
joint while pursuing the goal (a). overview image. (b) depicts the attractor
potential used to block the elbow joint inside the activation area. (c) shows
the experiment results.

For industrial robotics, safety is a very important aspect.
To guarantee the safety of the robot and its environment,
safety related constraints (i.e., joint-limits, self-collisions)
should always be guaranteed, and operational tasks should
be accomplished without violating the acting constraints. Our
approach handles joint-limit constraints as priority processes
and executes operational tasks in the null space of joint-limits
constraints.

To illustrate our approach, let us consider the control
example shown in Fig. 2, where the robot’s end-effector is
commanded to move toward a target point Xd , while the con-
troller handles joint-limit constraints. When no constraints
are active, the end-effector is controlled using operational
space control with

τ = JT
task Ftask , (17)

where τ is the vector of actuation torques, Ftask is a control
force to move the end-effector toward the desired goal, and
Jtask is the end-effector’s Jacobian matrix.

When the elbow joint enters the activation zone (shown in
blue), we project the task in the constraint-consistent motion
manifold, decoupling the task from the constraint. At the
same time, an artificial attraction potential is implemented to
prevent the elbow from penetrating further into the activation
area. The simultaneous control of constraints and operational
tasks is expressed as

τ = JT
JLC FJLC +NT

JLC JT
task Ftask , (18)

where NJLC is the dynamically-consistent null space matrix
of the constraint Jacobian, FJLC is the vector of blocking
forces (in the example a 1D joint space torque), JJLC is the
Jacobian of the violating joint (in the example it would be
a constant matrix with zeros in non-violating joints and a
1 for the elbow joint). ẍ∗ is controlled through a simple

PD controller that includes velocity saturation. More details
about the controller can be found in Sentis’ dissertation [16].

The control of joint-limit constraints is integrated by using
the top-most priority level as specified in (18), while the
operational task is projected into the constraint null-space.
Fig. 2 illustrates the results of the control. When the elbow
joint enters the constraint activation area shown in Fig. 2(a),
we apply blocking forces (FJLC) to stop the elbow joint inside
the activation area. To lock the joint, we use attraction fields
as shown in Fig. 2(b). If there are no joint-limit constraints,
the robot joints will be violated during motion, as can be
seen in Fig. 2(c).

C. Hybrid control

In real applications, an accurate model of the environment
is difficult to obtain, e.g., the PlaneA in the move to a plane
case cannot be known as model (point,normal). Therefore,
we require a force sensor and a dynamic contact to decide
where the plane is located and what its normal direction n
is. In this case, we use hybrid control to accomplish the task
move to a plane.
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Step 1: We apply a desired force Fdesired to command the
robot to move while the motion is constrained in the x and
y axes. All constraints are combined together to guide the
robot motion solely along the z axis (Fig. 3) until it reaches
a plane, where the contact force Fsensor is provided by the
force sensor. The control law is

Fp(i) = Ω f f ∗i +Λp(i){Ωmẍ∗i − J̇i q̇+ Ji M−1(h−
i−1

∑
j=1

τp( j))} ,

(19)
with the selection matrices as

Ωm = Rd
o

1 0 0
0 1 0
0 0 0

Ro
d (20)

and

Ω f = I−Ωm = Rd
o

0 0 0
0 0 0
0 0 1

Ro
d . (21)

The force control is defined as

f ∗i = ks(Fdesired−Fsensor) , (22)



where ks is the contact stiffness. Finally, the robot stays on
the plane when Ω f f ∗i = 0.

Step 2: After the robot reaches the plane, we rotate the
end-effector until the contact force Fsensor only has the z axis
component, which means that the z axis of the end-effector
is perpendicular to the plane.

The results and motion are depicted in Fig. 3.

IV. REAL-WORLD APPLICATIONS

In this section, we evaluate our approach on a selection
of classical industrial robotics scenarios in real-world setups
(using a 6-DOF industrial robot). We choose two typical in-
dustrial robotic applications for demonstrating and evaluating
the proposed approach: grasping of cylindrical objects and
welding.

A. Grasping of Cylindrical Objects
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Fig. 4. Grasping of cylindrical objects at their rim in a robotic workcell:
(a) Task constraints. (b) 3D pose in Cartesian space, shows the end-
effector trajectory. (c) and (d) illustrate the snapshots in simulation and
real experiment.

In this scenario, an industrial manipulator is supposed to
grasp a cylindrical object at its rim using a parallel gripper
(Fig. 4). The robot end-effector is commanded to grasp the a
cylindrical object at any point along the object’s rim (a valid
grasping pose). The orientation of the gripper is adjusted in
a way that it is tangential to the cylinder’s rim.

This task can be defined with the following constraints:
• Line-Plane Coincident Constraint: PlaneB, which

contains AxisB1 and AxisB2 , coincident with AxisA.
• Line-Point Distance Constraint: PointB, which is the

point of intersection of AxisB1 and AxisB2 , at a distance
(CylinderA) from AxisA.

• Plane-Point Distance Constraint: PointB is at a dis-
tance zero from PlaneA, which is the top plane of the
object.

• Orientation Constraint: AxisA is parallel to AxisB1 and
AxisA is perpendicular to AxisB2 of the gripper.

While the above constraints need to be fulfilled exactly, a
residual degree of freedom is available as a path along the
rim of the cylinder (Fig. 4(b)). We implemented this scenario
in simulation and on an industrial robot platform (Fig. 4(c)
and (d)), where we solve the constraints to obtain the target
pose closest to the previous waypoint of the robot.

B. Welding

For the welding application, we test two cases: point
welding and seam welding.

In the point welding scenario (Fig. 5(b)), the robot is
supposed to weld an object at a user-specified point. This
task fixes the position of the welding tool-tip. However, its
orientation is not fixed and can be optimized during runtime.
The tip of the welding gun must exactly coincide with the
target point on the object with the position constraint:

• Point-Point Coincident Constraint: PointA of work-
piece is coincident with PointB of welding gun tool
(Fig. 5(a)).

In this example, the orientation of the welding gun should
be adjusted by an operator.

In the seam welding scenario (Fig. 5(c)), the tip of the
welding gun must lie on the target line on the object. The
task constraints are

• Point-Line Coincident Constraint: LineA of work-
piece is coincident with PointB of welding gun tool
(Fig. 5(a)).

In this simplified experiment, we add one more constraint
with constant velocities for the robot movement. This veloc-
ity constraint is applied in the null space of the position con-
straint, which means that the motion along the line is always
satisfied. Fig. 4(d) illustrates the pose of the seam welding
and the constant velocities of 0.04 m/s. Moreover, the robot
can be jogged in the null-space to choose an orientation as
required by other constraints from the workcell.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented a prioritized, multiple-task
control framework that allows for force control in industrial
robotics. The proposed framework is based on a composable
structure where several constraints, each describing a robot
task or constraint, can be combined with a priority. The
priorities are accomplished by null-space projections. We
tested several types of constraints, i.e., operational task
(position and orientation), force (contacts), or inequality
constraints (joint limits). Moreover, two typical industrial
robotics applications were chosen for demonstrating and
evaluating the proposed approach.

Future work will focus on the force control applications.
We are now in the process of testing the framework on typical
industrial scenarios where the force control is a critical
aspect, such as inserting a peg into a hole, turning a crank,
or turning a screw.
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