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Abstract—This paper presents a new approach for demon-
strating whether safety-critical, hard real-time systems implement
fault hypotheses correctly and timely. In the forefront are
tests which non-intrusively and deterministically stimulate and
monitor the system under test. The tests use a domain-specific
language which can formalize logical truths on system properties
derived from fault hypotheses. Test results are strong arguments
in safety cases. In this way the tests support both development and
certification of safety-critical systems. Advantages over existing
approaches to evaluating safety properties of complex and diverse
safety-critical systems are discussed briefly, and fundamental
work is referenced.

Keywords—safety, safety properties, safety case, fault hypothesis,
Sfault injection test

I. INTRODUCTION

The evaluation of safety properties of safety-critical sys-
tems and related fault-hypotheses is a challenging task. Of all
safety-critical systems fail-operational systems have to meet
the highest availability and reliability requirements. In order to
dependably provide safety mechanisms in typical and critical
situations, fail-operational systems with extensive computer
hardware and software are realized as distributed systems
consisting of redundant components, replicated communication
channels and redundancy control so as to tolerate transient
and permanent faults without bringing down the complete
system. To ensure that there is evidence that a complex
safety-critical system implements safety properties timely and
correctly according to the system’s fault hypothesis, different
functional safety standards impose various requirements on
processes and systems and propose methods for implementing
and verifying these requirements according to system and
context specific safety integrity levels. The recently released
ISO 26262 [1] targeting automotive systems represents many
similar but nonetheless different functional safety standards.
ISO 26262 recommends fault injection tests at various system
levels for assessing the effectiveness of the safety mechanisms
and demonstrating the correct implementation of safety re-
quirements. This raises the issue of how to inject hardware
and software faults into partially or fully integrated systems
during tests without affecting the behavior of the systems in
any other aspect than is intended.

Safety-critical systems usually run under hard real-time
constraints with response times of a few milliseconds even
when faults occur or system components fail. This creates
special challenges for test systems and tests which check safety
properties. A test system must be capable of injecting faults,
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seed and capture data at the right places (internals of redundant
components) and at the right point in time in order to verify
detection and error handling mechanisms. To avoid functional
and temporal distortions of the system under test, tests must
run free of undesirable side-effects, not related to the system
stimuli. Otherwise tests would not be sound and hence could
not be used in safety cases.

The contributions of the work presented here are twofold:
(1) Formalization of fault hypotheses for safety-critical, hard
real-time, distributed systems in form of tests with the help
of a new, domain-specific test language called ALFHA!, (2)
Specification of ALFHA tests that can seed and monitor
signal and state data into integrated system parts and systems
in a deterministic, non-intrusive manner. The tests enable
qualitative (structural) system analyses.

This article is structured as follows: In Section II, we
characterize target systems that enable non-intrusive, fault-
injection tests without side-effects. We introduce RACE?, a
safety-critical system from the automotive sector which has the
required characteristics of qualified target systems. Later we
use RACE for a non-intrusive fault-injection test. Since fault
hypotheses are the starting points for the approach presented
here, in Section III we define a schema for describing fault
hypotheses in terms of testable, temporal truth statements about
the behavior of different systems under tests when faults occur.
Section IV presents key concepts of the language ALFHA that
facilitates tests of these fault hypotheses. Section V outlines
an ALFHA test that checks the fail-operational capability of
the RACE system. The test system and its integration with
a target system are in the focus of Section VI. Section VII
argues similarities and differences with related work. The
paper finishes with a summary and outlook.

II. TARGET SYSTEMS

Prior to field application, safety-critical systems must
demonstrate that they implement the required safety properties
timely and correctly according to fault hypotheses derived
from safety cases. When using fault injection to demon-
strate and evaluate safety properties the question arises: What
requirements must a safety-critical system fulfill to enable
fault injection tests which permit dependable and deterministic
statements on the system’s reliability?

! Assertion Language for Fault-Hypothesis Arguments
2Robust and reliant Automotive Computing environment for future Ecars,
www.projekt-race.de/en
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The class of safety-critical systems considered in this paper
operate under tight and hard real-time constraints. Ideally,
critical system functions are scheduled in a time-triggered
manner under control of the internal clock rather than in an
event-triggered manner where external incidents can stress the
system. This provides a safety-critical system a more determin-
istic behavior for the mission for which it is constructed and
dimensioned. Fast time-triggered systems typically progress in
cycles of milliseconds or multiples thereof. The system by
design contains a module that enables injection of faults at
exact locations and cycles. This module, hereafter referred to
as test probe, operates in a time-triggered manner like all other
system modules. Test probes run at the end, and therefore
at the beginning, of every cycle. In this position between
two adjacent cycles, test probes are enabled to (a) monitor
system data accumulated in the last cycle and to (b) manipulate
system data for the next cycle. The system accumulates data
per cycle and in different processing stages in a real-time
system database. Distributed target systems contain a real-time
system database and built-in test probe in each system node.
Each real-time system database captures system-relevant data-
flows within and among system modules and system nodes
(Figure 1).
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Data flow in a time-triggered system with built-in test probes
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Reliable fault-injection tests provide identical results when
applied to the system in the lab or in the field, under com-
parable conditions. Hence, in all circumstances, fault injection
tests must run free of side-effects other than the fault itself
in order to avoid functional and temporal distortions of the
system under test. Test probes acting like any other module
from the point of view of the system scheduler is one measure
of this kind. Exclusively reserved time slots, memory areas
and network bandwidth for test probes is another measure.

Furthermore, each test probe is connected to a test control
machine via a point-to-multipoint connection physically sepa-
rated from the transmission medium that the system nodes use
for communication. When scheduled at the end of a system
cycle a test probe polls a dedicated test I/O port (Figure 1.b,
I/0.TP). Each test probe and the test control machine exchange
maximum one frame per cycle and direction, limiting the
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WCET of test probe operations. Other modules cannot use
time slots, memory area and the I/O port of a test probe
when no tests run. Otherwise a probe would be intrusive and
the behavior of the system in the field would differ from the
behavior of the tested system in the lab.

The safety critical, distributed system RACE [5], [12] is an
almost ideal subject for qualitative evaluation of fault hypothe-
ses based on non-intrusive fault injection. In particular, RACE
stays operational when redundant electric circuits, sensors,
actuators or central processors fail. Hence, we use RACE
for stating and evaluating fault hypotheses on fail-operational
behavior. On every system node RACE offers safety mecha-
nisms as part the run-time environment (RTE) between low-
level, redundant hardware and high-level system functions,
like steering, braking and accelerating. In RACE, the central
processor is physically divided into several duplex control
computers (DCC) connected by a bidirectional communication
ring. A DCC consists of two execution channels. Both channels
monitor input and output data mutually. In case of a channel
inconsistency, the faulty DCC backs out to not jeopardize the
operation of a RACE system. A safety mechanism guarantees
fail-operational behavior when a redundant DCC takes over
system control tasks from a failing DCC. Moreover, aggregate
(sensor and actuator) redundancy is also handled by the RACE
RTE (platform) using voting mechanisms. Steering a car is
an example of a safety-critical system function that utilizes
the safety mechanisms of the RACE platform in general
and the central processor in particular. In RACE the system
function steering consists of three RTE applications running
on three different RACE nodes: one RTE application runs
on the steering wheel aggregate (front-end), one runs on the
steering actuator (back-end), and the steering logic runs in
between on the central processor. Section V illustrates a fault-
injection test for the central processor of RACE running a
steering application. Beforehand, the fault hypotheses schema
(Section IIT) and a formal language for automatic tests of fault-
hypotheses (Section IV) are introduced.

III. FAULT HYPOTHESES SCHEMA

Fault hypotheses drive the development and verification
of safety-critical systems. When developing safety critical
systems the selection of safety mechanisms and their imple-
mentation depend upon the underlying fault hypotheses. A
fault hypothesis in turn is derived from the system safety
analysis. Since we want to obtain deterministic statements
about the effectiveness of safety mechanisms from test runs,
we need fault hypotheses that describe qualitative system
properties. Hence, we assume that fault hypotheses describe
types, number and sequences of system-internal or system-
external faults that a safety-critical system shall detect, handle
and, in the strongest form, tolerate. For a safety analysis
requiring a given probability of failure, a fault hypothesis must
address the following seven points in order to cover failure
relevant properties if one or more triggering faults will occur:

(1) Fault tolerance region (FTR). The minimal subsystem
of the target system that tolerates failures of one or more
components constituting the FTR.

(2) Fault containment region (FCR). The maximal sub-
system of the target system that operates correctly regardless
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of faults outside the FCR. This holds for faults captured in the
fault model of the system.

(3) Failure mode. The type of behavior that the FTR
expects of an FCR impacted by a fault. The behavior ranges
from very restricted (fail-silent) to unrestricted (undefined).

(4) Failure persistence. Failures are classified according
to the temporal persistence. Permanent failures prevail until
repair, transient failures disappear without an explicit repair,
and intermittent failures usually appear as irregular sequences
of transient failures of degraded devices.

(5) Error detection latency. The time it takes the target
system to detect an error which is a part of the system state
liable to lead to a subsequent failure.

(6) Recovery interval. The time it takes the target system
to recover from a fault.

(7) Safety mechanism. A mechanism that the target system
uses or implements to detect faults or control component
failures in order to achieve or maintain a safe state.

Altogether these points characterize the fault-specific struc-
tures (regions) and behavior of a safety-critical system facing
a single fault or multiple faults which can lead to a system
failure if not properly handled. One or more fault hypotheses
can be stated for a safety-critical system. Each fault-hypothesis
is automatically checked with a test suite consisting of one
or more test cases formalized with ALFHA (Section IV) as
Section V demonstrates.

IV. ASSERTION LANGUAGE FOR FAULT HYPOTHESES

Tests checking fault hypotheses in the sense of Section IIT
under hard real-time constraints must be able to stimulate
the system under test with faults at the right time, without
impairing the behavior of the system under test in any way.
The test language ALFHA is aimed at distributed systems with
redundant time-triggered components, where triggers are fired
in discrete multiples of a base rate measured in milliseconds.
ALFHA offers constructs for specifying space-time coordinate
points in the system under test. At these points ALFHA tests
seed signal and state data or capture data on a per cycle basis
for comparing and checking properties within defined regions,
for example within FTRs or FCRs. The issue of ALFHA
tests avoiding undesired and hence defective side-effects is
addressed in Section II and Section VI.

Procedures, parameters and variables. ALFHA aims at,
among other things, separation and combination of tests of
safety elements out of context as well as in context of different
systems and situations. To this end, ALFHA separates parame-
terizable test setup procedures (SETUP...WITH...) from param-
eterizable test procedures (TEST...WITH...). These procedures
can be combined and used in different contexts just by calling
them with different sets of parameter arguments describing
target systems, system stimuli and context dependent expec-
tations. The consistency of arguments passed as procedure
parameters and variables are checked before test runs as part
of static test applicability checks (RESTRICTIONS).

Test actions, system variables and node variables. Test
setup procedures and test procedures contain test actions.
Test actions in a test setup procedure bring the system under
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test into a defined state where the test procedure starts. Test
actions operate either with system variables or with node
variables. System variables designate system nodes. They are
special insofar as target systems are, in many cases, distributed
systems of varying numbers of connected nodes with differ-
ent tasks. All other variables are node variables. Each node
variable belongs to exactly one system node. START, STOP,
CONTINUE are test actions that can only be applied to system
nodes. Monitor (ASSERT, ==) and manipulate (=) are applied
to node variables. Invariants are asserts which shall hold during
a complete test run. At call-up point (cycle) a test condition of
an invariant must evaluate to true (!!, strong invariant) or can
temporarily be undefined (!, weak invariant). They must never
evaluate to false. Test conditions of asserts must evaluate to
true or to false.

Test clocks and clock conditions. Target systems utilize
time-triggered architectures and hence run cyclically. So do
the test system and hence ALFHA tests with an important
difference. The pace of test clocks and the duration of the
test cycles are determined by the clocks of all nodes of the
system under test. The test system signals a timing issue if
these clocks tick irregularly or drifts intolerably. Furthermore,
ALFHA distinguishes absolute clocks and relative clocks. An
absolute clock ticks throughout a test run. The fastest booting
node of the target system starts the absolute clock. However,
in the strict sense, a test effectively starts when the system
under test satisfies clock start conditions (CLOCK WHEN...)
triggering test relative clocks.

Time points and phases. ALFHA tests can provide pre-
cise statements on time-dependent behavior of target systems
because in ALFHA exact cycles as well as phases (several
succeeding cycles) can accurately be specified within the time
granularity SYSTEM PERIOD. ALFHA tests execute test
actions within a cycle ([Tx]) or during a bounded sequence
of cycles ([Tx:Ty]) of either relative clocks in test procedures
or absolute clocks in test setup procedures. Each test run is
limited in time in order to obtain a definite test verdict.

These constructs form the backbone of an ALFHA test.
Whether ALFHA tests can falsify or confirm fault hypotheses
primarily depends on the richness of the data model of a target
system, i.e., on what system variables and node variables can
be monitored and manipulated, what they represent and how
they relate. The data model is derived from the fault model as
are the fault hypotheses.

V. EXAMPLE OF A FAULT HYPOTHESIS TEST

This section explains a fault hypothesis and a correspond-
ing ALFHA test that evaluates a fail-operational property of
RACE. The core of a system built with RACE is a platform
providing safety mechanisms to RACE applications (system
functions). The test investigates two duplex control computers
(DCCs) of a RACE platform connected by a bidirectional
ring and supplied with electricity by two separate circuits
(Figure 2). Every DCC comprises two channels, which monitor
each other while executing the same control tasks. Hence,
the target system under test in this case is distributed on
four central nodes. The master switch safety mechanism built
into the RACE platform enables platform applications to stay
operational in case of the DCC acting as the master of an
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application fails. The master switch mechanism running on
both DCCs detects the failing master. The slave DCC takes
over the master role and continues executing the platform
application (Table I).
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Fig. 2. Topology of test system and an example target system

Failure derived from the | Redundant duplex control computer (DCC) fails.

fault model

Fault tolerance region Vehicle control computer (VCC) composed of 2 DCC
including the RTE, forms an FTR.

Every DCC consisting of two channels each, in-

Fault containment region
cluding the RTE and the applications of concern,
represent an FCR.

Failure mode Application running on the VCC stays operational

when the master DCC hosting the application fails.

Failure persistence The DCC executing the application as master fails
permanently.
Slave DCC detects failure of master DCC within 10

milliseconds.

Error detection latency

Recovery interval Slave DCC becomes master 10 milliseconds after

error detection.

Safety mechanism Distributed master switch algorithm evaluates DCC
states and controls redundant execution of application

on several DCC.

TABLE 1. FAULT HYPOTHESIS A: MASTER SWITCH

The master switch test (Algorithm 1) is parametrized with
four RACE nodes (Algorithm 1, lines 6-7). These four nodes
constitute two DCCs. The separate test network links their
test probes (TP) to the central test control machine (ALFHA
processor, see also Figure 2 and Figure 3). To induce different
channel inconsistencies in the master DCC during different
test scenarios, the test takes additional parameters indicating
the memory locations in both channels that the test shall
manipulate (Algorithm 1, lines 8-9).

Before execution the test checks whether it can be applied
for the test arguments given. For example, the test assumes
four unique nodes, which in pairs of two channels build a
central platform of two DCC (Algorithm 1, lines 16-18). If
applicable to the target system, the test switches on the four
nodes (Algorithm 1, lines 26-30) via relay cards (Figure 2, c)
and waits until they are in a steady system state (Algorithm 2,
line 14). The main part of the tests starts as soon as the system
satisfies the clock condition (Algorithm 1, line 31). Remaining
test actions are triggered by ticks of the relative clock.

When two or more computers redundantly execute a control
program (RACE application) then, for sake of unambiguous

163

control, at each time point only one of these programs is
allowed to send signals to the connected actuators which
translates to: only one program of a group of redundant
programs acts as master (Algorithm 1, line 32):

INVARIANT NodellsMaster XOR Node2lsM aster

The master switch test procedure checks this safety prop-
erty in each test cycle. In this example we suppose that,
for acceptably short periods, no master DCC is available in
the target system. Accordingly, the safety property is relaxed
permitting exactly one master DCC down period for a given
number of cycles (Algorithm 1, line 41, weak invariant (!)),
which shall be at most two cycles according to Table I.

In line with the weakened safety property, the master switch
test shall be called for a target system sketched in Figure 2
with the following arguments (see also Test Trace 1, line 2):

Application = Steering,

Nodela = DCCla, Nodelb = DCC1b,

Node2a = DCC2a, Node2b = DCC?2b,

Varla = TwinChannel.ErrorIndicator, Valla =17,
Varlb = TwinChannel. ErrorIndicator, Vallb = 0,
InjectionCycle = 10, InjectionDuration = 3,
SwitchCycles = 2, Cycle Length = 10, M axCycles = 100

Actually, this test case does not inject a fault into an
arbitrary memory cell, /O buffer or CPU register. Rather,
the test attacks the target system at a different position later
in data flow where the RTE stores the evaluation result for
further processing. Disregarding the current physical condition,
the test overwrites the ErrorIndicator in both nodes of
DCCI1 with different values 7 (fatal error in channel 1a) and
0 (no error in channel 1b) in order to definitely induce an
inconsistency. In line with the fault hypothesis the test expects
both DCCs to detect and confirm the inconsistency. The master
DCC is expected to back out of the system and the slave DCC
shall take over the master role. When repeated or executed for
various configurations of the target system and test vectors, the
master switch test is expected to deterministically demonstrate
the fail-operational capability of a central RACE platform.

VI. TEST SYSTEM

Because of aiming at systems running under tight and
hard real-time constraints ALFHA tests and the test system
must not accidentally change the behavior of the system
under test. To this end, ALFHA and the test system rely on
test probes built into each node of the (distributed) system
under test (Section II). Test probes and related concepts, like
time-triggered scheduling and data flow across a real-time
database per node, while necessary for avoiding problems
with inadmissible side-effects on system run-time and memory
usage, do not suffice for dependable fault-injection tests. It
is also necessary to efficiently run ALFHA tests without
impairing the timing behavior of the target system. This is
the responsibility of the test system as a whole, including the
central ALFHA processor of the test control machine, the test
probes on each node, local ALFHA processors on their own,
and the communication infrastructure between the test control
machine and the test probes (Figure 2, Figure 3).

Although showing characteristics of a dynamic script lan-
guage such as wild cards for variable names, ALFHA tests
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Algorithm 1 Test master switch mechanism

1: TEST Master Switch

2: WHAT Vehicle control computer consisting of 2 duplex control computer WHEN Application master fails
3: EXPECT Application slave becomes master in time
4: WITH
5: Application, // Part of a safety-critical system function, e.g. steering or braking
6: Nodela, Nodelb, // Duplex control computer 1 (DCC1)
7. Node2a, Node2b, /| Duplex control computer 2 (DCC2)
8: Varla, Varlb, // Where to inject the fault in Nodela, Nodelb?
9: Valla, Vallb, // What fault to inject in Nodela, Nodelb?
10: InjectionDuration, // Number of cycles to inject the fault
11: SwitchCycles, // Maximum number of cycles allowed for switching an application’s master
12: InjectionCycle, // When to inject the variable values?
13: CycleLength, // The length of a period (cycle) in milliseconds, e.g., 10 milliseconds
14: MaxzCycles // Limit the test run to obtain a definite verdict
15: RESTRICTIONS
16: IsUnique(Nodela, Nodelb, Node2a, Node2b)
17: AreTwins(Nodela, Nodelb)
18: AreTwins(Node2a, Node2b)
19: SwitchCycles > 0
20: ../l eg Valla != Vallb, InjectionCycle < MaxCycles — InjectionDuration — SwitchCycles

21: SYSTEM PERIOD CycleLength TOLERANCE 0.1
22: TIME BOUND MaxCycles
23: CONDITIONS

24: NodellsMaster : eMaster == Nodelx.Run.Application. Authority

25: Node2IsMaster : eMaster == Node2x.Run.Application. Authority

26: SETUP Master Switch WITH

27: Nodell = Nodela, Nodel2 = Nodelb, StartDelayl = 0, // DCC1 starts with no delay

28: Node21 = Node2a, Node22 = Node2b, StartDelay2 = 10, // DCC2 starts with 10 cycles delay
29: UpAndRunning = 300, // Allow the target system to settle

30: State Expected = eNormalOperation

31: CLOCK WHEN NodellsMaster // Because DCC1 starts before DCC2
32: INVARIANT NodellsMaster XOR Node2IsMaster // Safety property

33: BEGIN

34: /Il 1. A system with two DDCs must determine one master and one slave

35: [ < InjectionCycle ] !l // Strong invariant (!!)

36: /// 2. In fault detection phase an inconsistent master is tolerated

37: [ <+ InjectionDuration | !!

38: Nodela.Varla = Valla

39: Nodelb.Varlb = Vallb

40: /Il 3. During a master switch the system is allowed to run without any master
41: [ < 4 SwitchCycles ] ! // Weak invariant (!)

42: /Il 4. The faulty master can stay down or come back as slave but the former slave must become the new master
43: [:]! Node2IsMaster

44: END

45: END

Algorithm 2 Setup harness for master switch test

1: SETUP Master Switch
2: WHAT 4 nodes of 2 DCCs WHEN DCCs start with a delay

3: EXPECT DCCs reach expected state

4: WITH

5: Nodell, Nodel2, // Node pair of DCC1 to start

6: StartDelayl, /| Cycle when DCCI starts

7: Node21, Node22, // Node pair of DCC2 to start

8: StartDelay?2, /| Cycle when DCC2 starts

9: UpAndRunning, // Cycle when setup is finished
10: StateExpected // State of all nodes after setup
11: BEGIN
12: [ StartDelayl | Nodell; Nodel2 // Power up DCC1
13: [ StartDelay2 | Node21; Node22 // Power up DCC2
14: [ UpAndRunning ] Nodex.State == State Expected
15: END
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must be compiled for performance reasons. The ALFHA
compiler generates a binary test plan from the test procedure,
test setup, test data vector and the symbol table identifying all
variables in the real-time databases of all nodes as sketched
below:

(1) Compiler: Locate and map variables. The compiler
expands variables and parameters given as wild cards to
individual variables. The compiler then maps symbolic names
of all individual variables to nodes of the distributed target
system and unique physical addresses by means of the system’s
symbol table. Thereby the compiler indicates variables and
parameters that can not be localized in the target system.

(2) Compiler: Plan actions per cycle, variable and node.
The compiler generates a two-dimensional table with each
table element codifying the test action (command), such as
monitor or manipulate, to be performed in the selected cycle
(row) for the selected variable (column). All variables of each
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node related to the same test action that shall be executed
in the same cycles are combined, for example all variables
of node N to monitor from cycle Tx onwards. The compiler
minimizes the number of commands per cycle and per node
by, for example, compiling a new monitor command only if
the set of node variables to monitor changes. The compiler
also indicates contradictory test actions and test actions with
too many operands (variables, parameters) if they exceed worst
case execution times allowed for test probes or for the central
ALFHA processor.

] | Symbol oo
I:ablc
Tesl
(/ \ - \:].‘
Tcsl vector |

Test

; Nodel Node2 <
N-DBg L N-DBg
2 —
& N i@ om )
(N-DBi() [ NpB,|
- Test
N-DB; = Real-time test data: | T-DB Control

manipulated values and node-
local test plans

T-DB = System test-data base [
TP = Test Probe trace |

Fig. 3. Data flow in the test system

During testing, the ALFHA processor steps through the
compiled test plan, cycle-by-cycle. At the same time the central
ALFHA processor processes values of node variables and
health data received from all connected nodes in every cycle.

(1) Processor: Perform test actions. Non-empty cells
of a compiled test plan contain test actions for the current
cycle, i.e., for the current table row. Test actions intended
for execution by the central ALFHA processor include: start
nodes, start relative test clocks, and check values of variables
of more than one node (global asserts). Test actions intended
for execution by test probes include monitor and manipulate
commands that test probes shall perform autonomously, such
as checking values of node variables (local asserts) and in-
crementing values of node variables on-site. A conditional
test action which a test probe can decide locally needs 1
cycle to take effect. A conditional test action which the
central ALFHA processor must decide globally needs 4 cycles
minimum, including the cycles for data round trip, to become
effective. The number of test actions and the number and size
of operands (variables and values) an ALFHA processor can
process per cycle is reasonably limited, which simultaneously
serves time-scheduling restrictions.

(2) Processor: Supervise node vitality. In every cycle, the
central ALFHA processor receives from every connected test
probe one and only one data packet of constant (maximum)
size and processes the transmitted values of node variables
in accordance with the test plan, for example data packets
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from DCC nodes cyclically transferring the master/slave state.
Simultaneously, the central ALFHA processor continuously
watches out for fatal errors of the test system. Lost or late
data packets indicate timing faults. Data packets from a test
probe which do not confirm the test action to be performed and
data packets of sizes other than the agreed size indicate faults
within the test system. Ignoring such faults can invalidate test
verdicts.

| chart view &2 [J_pl Y P o~ =0
Nodel/Node2: Master/slave status

Value
%]

2.500 5.000 7,500

Time [msec]
I—own-state 0wn-state|

Fig. 4. Visualization of the master switch test (Algorithm 1)

The basis for prototyping the ALFHA test system is
VITE®. Figure 4 was captured with VITE for a trace pro-
duced by a master switch test of a RACE system with
two DCC. The test is implemented with VITE and specified
in ALFHA (Algorithm 1). Historic values of the variables
Run.Steering. Authority of DCCla and DCC2a feed the
visualization. The interactive front-end of VITE is an instance
of an ALFHA explorer (Figure 3). While executing a binary
test plan an ALFHA processor traces test actions in tabular
form. Test Trace 1 shows a conceived trace for the master
switch test, derived from and extending VITE traces. Rows
tagged with a leading TICK unroll an executed test plan. The
unrolled test plan is enriched with actual and manipulated
values of signal and state variables of system nodes in scope
of the test case and captured in the test-data base (Figure 3, T-
DB). ALFHA traces shall explain how the test system produces
test results and enable automatic analysis of test runs for false
positives and false negatives. For supervising and checking the
vitality of target systems and the test system the traces must
contain real-time stamps (not considered in Test Trace 1).

VII. RELATED WORK

The verification of fault hypotheses with non-intrusive
fault-injection tests as presented in this paper requires systems
under test to operate in a time-triggered manner. The time-
triggered architecture (TTA) is an approved framework for
implementing distributed embedded real-time systems with
high dependability requirements [8]. TTA is well suited for
implementing target systems as presented in Section II. For
example, TTA utilizes a global time base of known precision
at every node which enables node clocks of identical cycle
lengths ticking with equal pace. Furthermore, TTA defines
several node interfaces such as the diagnostic and maintenance

3Verification and Integration Testing Environment, www.aviotech.de
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Test Trace 1 Partial test trace of a master switch test (schema)

1: PROC TEST_Master_Switch

2: ARGS Application = Steering, NodelA = DCCla, ..., Varla = TwinChannel.ErrorIndicator, Valla = 7, ..., vVallb = 0,

3: PROC SETUP_Master_Switch

4: ARGS Nodell = Nodela, Nodel2 = Nodelb, StartDelayl = 0,

5: T-DB 1.1 :A: DCCla.CycleCounter // System test-data base (T-DB): node 1, variable 1
6: T-DB 1.8 :B: DCCla.State // System test-data base (T-DB): node 1, variable 8
7: T-DB 1.23:C: DCCla.TwinChannel.ErrorIndicator

8: T-DB 1.44:D: DCCla.Run.Steering.Authority // Figure 4: DCCla starts as master (value 3, yellow)
9: T-DB 2.1 :E: DCClb.CycleCounter // System test-data base (T-DB): node 2, variable 1
10: T-DB 2.8 :F: DCClb.State

11: T-DB 2.23:G: DCClb.TwinChannel.ErrorIndicator

12: T-DB ...

13: T-DB 3.44:L: DCC2a.Run.Steering.Authority // Figure 4: DCC2a starts as slave (value 1, blue)
14: 1-DB

15: #

16: # : A:B:C:D: E:F:G:H I:J:K:L M:N:0:P // Map T-DB variables to value traces

17: ¢ e

18: TICK SETUP_Master_Switch // Run setup procedure, Algorithm 2

19: TICK ...
20: TICK :300: :<:298:3:0:3:298:3:0:3:288:3:0:1:288:3:0:1:
21: TICK :300: ty: :3: o :3: 0 :3: :3: %14 // Assert in SETUP_Master_Switch, line 14 succeeds
22: TICK TEST_ Master_ Switch // Run test procedure, Algorithm 1
23: TICK :300: ty: s 3 : o 3 R N :or ol %31 // Condition in TEST_Master_Switch, line 31 succeeds
24: TICK :300: :>: 7 :0: : EE oo Q10=3 // Manipulate C and G in test cycles 10, 11, 12
25: TICK 1. A system with two DDCs must determine one master and one slave %34 // Documentation comment on line 34
26: TICK :301: 0:<:299:3:0:3:299:3:0:3:289:3:0:1:289:3:0:1:
27: TICK :301: O:w: :or i3 s 3 HEEEEES cor :1:%32 // Strong invariant on line 32: completely defined
28: TICK :302: 1:<:300:3:0:3:300:3:0:3:290:3:0:1:290:3:0:1:
29: TICK :302: 1l:w: :or 3 :or 3 A :1: %32 // Strong invariant on line 32: completely defined
30: TICK ...
31: TICK :310: 9:<:308:3:0:3:308:3:0:3:298:3:0:1:298:3:0:1:
32: TICK :310: 9:w: HEE HEECH I :1: %32 // Strong invariant on line 32: completely defined
33: TICK :310: 9:c: RN AT : 0 // Probes at DCCla and DCClb manipulate C and G

34: TICK 2. In fault detection phase an inconsistent master is tolerated %36 // Documentation comment on line 36

35: TICK :311:10:<:309:3:7:3:309:3:0:3:299:3:0:1:299:3:0:1: // C and G manipulated in test cycle 10

36: TICK :311:10:w: :or 3 :or 3 HEE A :or ol 832 // Strong invariant on line 32: completely defined
37: TICK :311:10:c: N 0 A H // Probes at DCCla and DCClb manipulate C and G

38: TICK :312:11:<:310:3:7:3:310:3:0:3:300:3:0:1:300:3:0:1: // C and G manipulated in test cycle 11

39: TICK ...
40: TICK :400:99:<: s $387:3:0:3:387:3:0:3: // DCCl disappeared, only DCC2 operates
41: TICK :400:99:v: HEE - cor i3 :3: %32 // Weak Invariant: only DCC2 satisfies conditions
42: TICK :400:99:y: Do A :or i3 :or :3: %43 // Assert on line 43 succeeds: DCC2 is master
43: 4
44: VERD 0 // Test verdict: no error found.

(DM) interface for “setting node internal parameters and for
retrieving information about the internals of the node, e.g.,
for the purpose of internal fault diagnosis. Usually, the DM
interface is not time-critical” [8] (p. 118). By comparison, the
test probe interface of a target system for ALFHA tests is time-
critical by its very nature. Test probes are not intended just
for retrieving data for system diagnosis or for setting system
parameters before system runs, but also for unobtrusively
seeding signal and state data during system runs. In any
case, a test probe does not impair the temporal composability
of the containing node because it uses exclusively reserved
resources in test and production environments. This is in stark
contrast to tools like software debugger or profiler, which
must consume system resources for instrumentation. While
none of the individual techniques for making test probes and
fault-injection tests non-intrusive is original, their combination
enables the qualitative evaluation of fault hypotheses without
undesired side-effects.
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Fault hypotheses are essential for the construction of safety
cases and hence for the development, verification and valida-
tion of safety-critical systems. The fault hypothesis schema
(Section III) builds on the schema used by Kopetz [7] and
Obermaisser et al. [9] with an important difference: Faults and
resulting failures are treated qualitatively, not quantitatively.
Statistical statements about failures rates, operational availabil-
ity and repair times are not the focus of the presented fault
hypothesis schema, since it is used to describe how a target
system shall handle concrete faults in concrete situations.

ALFHA tests utilize temporal operators for obtaining reli-
able statements about a behavior of a system under real-time
constraints in the presence of rare events such as faults. Tempo-
ral specifications and operators are the innate strength of model
checkers. The Specification and Assertion Language SALT [3]
is a mature language, which utilizes Timed Linear Temporal
Logic operators (TLTL) for obtaining statements about real-
time properties of systems with strict execution times and
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deadlines. As with every model checker SALT statements
can be all-quantified and are verified offline for simplified
system models, but not for real system implementations. In
contrast, ALFHA statements hold for single but deterministic
test runs, operate online and thus check the fulfillment of fault
hypotheses against real systems, in the lab and in the field.
Model checkers and test systems complement each other. So
do, for instance, SALT and ALFHA.

When fault-injection tests shall be applied to AU-
TOSAR [2] systems, an obvious idea is to use tracing and
debugging modules belonging to the basic software (BSW).
However, these BSW modules do not enable cycle-accurate
data seeding because the specifications lack necessary provi-
sions. Additionally, the debugger specification does not define
the linkage to the operating system and hardware. Despite of
a comprehensive meta-model for automatic software system
configuration, AUTOSAR has no notion of a real-time database
cross cutting the AUTOSAR’s software component layer (SW-
C), the AUTOSAR run-time environment (RTE) and the BSW
of one or more electronic control units (ECUs). In Summary,
AUTOSAR does not fulfill the requirements on target sys-
tems as specified in Section II. Similar arguments hold for
the Software-Implemented Fault Injection (SWIFI) technique
presented by Pintard et al. [10] for two reasons: (1) SWIFI
targets AUTOSAR, (2) SWIFI is intrusive because it modifies
source code. The framework for instrumentation of AUTOSAR
systems from Piper et al. [11] operates at model level and
is intrusive because it changes source or binary code of
purposefully selected system parts. Routine specialization [4]
is another intrusive SWIFI technique although it reduces the
impact on the system per type of fault injected.

Automatic checks of fault hypotheses demand deep system
understanding, because ALFHA tests access system internals
represented by signals and data in one or more real-time
system databases of distributed systems. Kane et al. [6] present
an approach for formulating tests that explore and check
the behavior of distributed systems solely on the network
level where an external run-time monitor performs offline
verification. As the authors state, their approach does well
support offline tests but pose challenges when used online
because of the possible disturbance of the behavior of real-
time systems. Another issue is the limited observability and
controllability of systems under test.

VIII. SUMMARY AND FUTURE WORK

Safety properties must be proven to hold in case of faults
occurring for an integrated system for it to be called safe with
confidence. In practice, tests that can falsify truth statements
are the method of choice for proving fault-hypotheses of
complex, safety-critical systems. For this purpose the domain-
specific language ALFHA was designed. ALFHA tests allow
reasoning about time-constrained properties of distributed,
redundant real-time systems in typical, critical and exceptional
situations. Time-bounded runs of target systems prove asser-
tions of system properties in ALFHA being either true or false.

Systems which can be evaluated for the validity of ALFHA
statements have many advantages. ALFHA tests observe and
trigger a target system at several locations in space and time
without distorting its behavior. Systems designed for ALFHA
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tests execute module operations in a time-triggered manner
providing deterministic behavior. Data flows between and
within modules are stored cyclically in a database on each
system node. The database is the key means for decoupling
system modules and the starting point for non-intrusive data-
seeding and data capturing. In future work, more tests of
different types and with different goals are planned in order
to test and elaborate the scope of ALFHA and ALFHA traces.
Compiling ALFHA tests automatically to VITE tests is a
promising approach. ALFHA tests shall be extended with
automatic plausibility analysis, test coverage determination,
and offer suggestions for isolating or replacing parts of the
system that jeopardize the reliance of safety-critical systems.
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