
Kinodynamic Motion Planning with Space-Time Exploration Guided
Heuristic Search for Car-Like Robots in Dynamic Environments

Chao Chen1 and Markus Rickert1 and Alois Knoll2

Abstract— The Space Exploration Guided Heuristic
Search (SEHS) method solves the motion planning problem,
especially for car-like robots, in two steps: a circle-based
space exploration in the workspace followed by a circle-guided
heuristic search in the configuration space. This paper
extends this approach for kinodynamic planning in dynamic
environments by performing the exploration in both space and
time domains. Thus, a time-dependent heuristic is constructed
to guide the search algorithm applying a kinodynamic
vehicle model. Furthermore, the search step-size and state
resolution are adapted incrementally to guarantee resolution
completeness with a trade-off for efficiency. The performance
of Space-Time Exploration Guided Heuristic Search (STEHS)
approach is verified in two scenarios and compared with
several search-based and sampling-based methods.

I. INTRODUCTION

Planning a feasible motion for a mobile-robot with non-
holonomic constraints is a challenging task, especially in
a dynamic environment [1]. If the time variation of the
obstacles is unpredictable, a prompt replanning is required.
Therefore, a real-time capable motion planner is important
for a mobile-robot application with insufficient knowledge
or imperfect sensing in dynamic environments. When infor-
mation about the obstacle motion is available through object
tracking or multi-agent communication, a kinodynamic mo-
tion planner is capable to plan a valid motion regarding the
environment changes, as it considers the speed and acceler-
ation of the robot to enable time-dependent collision checks
with moving obstacles. The planner can also achieve better
performance with the knowledge of dynamic environments,
e.g., to help creating a heuristic for a search algorithm.

Fig. 1 shows a dynamic scenario in which a robot vehicle
drives to a side track to let an approaching vehicle pass. The
Space-Time Exploration Guided Heuristic Search (STEHS)
planner explores the free-space regarding the moving ob-
stacle and returns a path corridor connecting the start and
goal positions. The heuristic search takes this result as a
guidance to propagate the states with forward dynamics
towards the goal configuration. There are several advantages
of the STEHS approach:
• Exploration-Based Space Decomposition: The space-

time exploration does not decompose the whole sub-
space as the combinatorial methods, but applies an
A* algorithm to collect the free-space dimension and
topology information in an appropriate scope. This

1Chao Chen and Markus Rickert are with fortiss GmbH, An-Institut
Technische Universität München, Munich, Germany

2Alois Knoll is with Robotics and Embedded Systems, Technische
Universität München, Munich, Germany

Fig. 1. Kinodynamic motion planning for a car-like robot with Space-Time
Exploration Guided Heuristic Search (STEHS): The green and red vehicle
frames represent the start and goal poses respectively. The static obstacles
are colored in gray and the yellow vehicle is a dynamic object. The result of
the space-time exploration is projected to the workspace as the cyan circles.
The result motion is plotted in green lines. A snapshot is taken when the
gray robot vehicle is performing the motion with the motion of the obstacle
vehicle being demonstrated with the yellow shadows.

knowledge is presented as a time-dependent heuristic,
which balances path length and safety distance.

• Kinodynamic Planning with Motion Primitives: The
heuristic search constructs a tree of states with forwards
dynamics, which employs a kinodynamic model to
propagate the states regarding a set of motion primitives.
As a result, the solution can be directly executed as the
control inputs for each motion step are provided.

• Search Step-Size and Resolution Adaptation: Regard-
ing the free-space dimension along the path corridor,
the search algorithm adapts the step-size and resolution.
Furthermore, they are reduced incrementally when no
solution is found, which makes a good trade-off between
efficiency and completeness.

• Grid-Free Heuristic Search: The path corridor is pre-
sented in a decomposed form, which provides an easy
clustering of the states. A list data structure maintains
the states instead of a grid for the whole configuration
space, which reduces the memory consumption.

• Anytime Planning and Incremental Replanning: As
the exploration and search procedures are both per-
formed in an A* search manner, the anytime or incre-
mental techniques of the heuristic search can be applied.
For example, an incremental exploration can be per-
formed based on the previous result in replanning. The
heuristic search can refine the step-size and resolution
to improve the solution quality.

II. RELATED WORK

In the context of kinodynamic planning for a car-like
robot, not only the minimum turning radius constraint,
but also the relations between velocity and acceleration,
steering speed and orientation need to be considered. As

a result, there is no closed-form solution for the shortest
path between two arbitrary configurations. The methods
requiring explicit geodesics of the configuration space are
impracticable, e.g., PRM [2]. The artificial potential field
method [3] or the velocity obstacle model [4] are able
to provide instant safe motions in dynamic environments
by generating control inputs for local collision avoidance.
However, a robot could get trapped in local minima for
global motion. RRT provides a general approach for the
kinodynamic planning with nonholonomic constraints by
gradually constructing a search tree [5] [6]. However, the
randomized exploration schema not only produces stochastic
results with different qualities, but also causes performance
issues in sophisticated environments, e.g., narrow passages.
Among them RRT* [7] can achieve asymptotic optimality
only when explicit connections between vertices are pro-
vided. The grid-based search methods [8] [9] solve the
problem in a more systematic way by bearing a trade-off
between completeness and performance in order to fit real-
time applications. Moving obstacles can be modeled in a
time-bounded lattice [10]. Furthermore, cooperation between
different methods is developed for complex tasks, e.g., in
[11] PRM and AD* search are combined for an anytime
planning strategy in dynamic environments.

Additional knowledge about the configuration space or
workspace can provide a great performance boost to the
planning methods mentioned above. A global navigation
function [12] or an elastic band [13] in the configuration
space helps the potential field methods to avoid local minima.
The workspace decomposition with wavefront expansion
in [14] reduces the complexity of generating such a global
guidance for the whole configuration space. Random sam-
pling methods can optimize the sampling progress by collect-
ing and evaluating the information about the configuration
space with a low-dimensional grid projection or a subspace
partition, e.g., EST [15], PDST [16] and KPIECE [17].
In [18], the balance between exploration and exploitation
is emphasized and a workspace exploration is proposed to
improve the exploration efficiency. The impact of workspace
decompositions on randomized motion planning methods
is studied in [19]. A grid discretization is typical space
decomposition, which also provides a grid-based distance
heuristic. However, further information such as free-space
topology and the distance to obstacles is either implicit
or not included. Moreover, a time-consuming pre-process
is required to construct the grid, especially for a dynamic
environment.

Applying the same principle of space guidance, the Space
Exploration Guided Heuristic Search (SEHS) method [20]
introduces a general space exploration procedure by expand-
ing circles in a wave-like fashion from the start position to
the goal position in the workspace. Thus, the planner gathers
space topology knowledge of relevant areas, rather than the
whole workspace. Meanwhile, the circle size indicates the
local free-space dimension, which is useful for step-size
adaptation in the search procedure. By clustering the states
according to the circles, redundant states can be quickly

identified regarding an adapted resolution. The generic SEHS
approach is able to benefit from further traffic information,
and environment changes can be handled by incremental
replanning [21]. However, completeness is compromised
by SEHS with a constant ratio between circle radius and
step-size. Furthermore, time is not considered in the space
exploration, as the workspace circles are created in a static
environment. The Space-Time Exploration Guided Heuristic
Search (STEHS) approach extends SEHS with an exploration
including time domain and improves the algorithms in sev-
eral aspects as presented in the following section.

III. GENERAL SPACE EXPLORATION GUIDED HEURISTIC
SEARCH FRAMEWORK

The Space Exploration Guided Heuristic Search frame-
work consists of two steps: space exploration and heuristic
search. This section introduces several further improvements
such as A*-based space exploration and incremental adapta-
tion of search resolution.

A. Space Exploration

The space exploration in a general SEHS framework
investigates the free-space with simple geometric shapes
for a passage from the start position to the goal position.
The SEHS method takes circles for the atomic shapes as
it relaxes the nonholonomic constraints of a car-like robot
to a holonomic point robot with a certain safety margin.
Algorithm 1 describes the exploration procedure in details.

A symbol c stands for a circle. A start circle cstart and
a goal circle cgoal are given as initial conditions. The major
modification to the algorithm in [20] is that a heuristic search
is performed instead of the combined depth-first and breadth-
first approach. The heuristic cost h of a circle is the Euclidean
distance to the goal circle regarding the center points. The
actual cost g is the accumulating distance from the start point
through the centers of the predecessors. The total cost f is
the sum of the both. Obviously, this heuristic is admissible
and monotonic. Therefore, an open-set Sopen and a closed-
set Sclosed can be applied. Sopen holds the fresh circles sorted
after the f -value. A function PopTop(Sopen) picks the one
with the minimum f -value from Sopen as ccurrent. Sclosed holds
all the evaluated circles. A function Exist(ccurrent,Sclosed)
checks whether the center point of ccurrent is inside any circle
from Sclosed, except for its parent. If so, ccurrent is redundant
because it can be covered by a circle from the closed-set
and its descendants. Otherwise, a function Expand(ccurrent)
creates child circles with centers on the border of ccurrent.
In addition, a function Overlap(ccurrent,cgoal) checks if the
current circle overlaps with the goal circle. The g-value and
parent of the goal circle are updated if a shorter path is found.
The algorithm terminates if the f -value of ccurrent is larger
than the f -value of the goal circle. In this case an optimal
solution is found.

B. Heuristic Search

The heuristic search takes the result from space explo-
ration as a guidance, which provides a good compromise

Algorithm 1: SpaceTimeExploration(cstart,cgoal)

1 Sclosed← /0;
2 Sopen←{cstart};
3 while Sopen 6= /0 do
4 ccurrent← PopTop(Sopen);
5 if f [cgoal]< f [ccurrent] then
6 return success;

7 else if !Exist(ccurrent,Sclosed) then
8 Sopen← Expand(ccurrent)∪Sopen;
9 if Overlap(ccurrent,cgoal) then

10 if f [ccurrent]< g[cgoal] then
11 g[cgoal] = f [ccurrent];
12 parent[cgoal] = ccurrent;

13 Sclosed←{ccurrent}∪Sclosed;

14 return failure;

between path length and safety distance. Furthermore, the
step-size and resolution are incrementally adapted to achieve
a better balance between performance and completeness. The
heuristic search is defined as Algorithm 2.

The heuristic search with open-set and closed-set is sim-
ilar as Algorithm 1. In each iteration, the state with the
smallest f -value from the open-set is evaluated. A function
MapNearest(~qcurrent) maps the selected state ~qcurrent to the
nearest circle. The h-value is the sum of the distance from
~qcurrent to the next circle and the distance along the rest
circle centers to the goal state. Thus, the next circle of
the path corridor is chosen as a local target for the states
propagation. If the mapped circle is the goal circle, the
Euclidean distance to the goal state is taken as the h-value. A
function Expand(~qcurrent,ccurrent,k) applies predefined prim-
itive motions and checks collisions to create new states.
When ~qcurrent is inside a defined goal range Rgoal, a function
GoalExpand(~qcurrent,~qgoal) tries to directly reach the goal
with primitive motions. The redundancy are resolved by
the function Exist(~qcurrent,ccurrent,k), which evaluates all the
states mapped to the same circle.

The circle radius is used to adapt the motion step-size
and the state resolution. An improvement to SEHS in [20] is
that a step-rate parameter k is introduced to enable an incre-
mental refinement in function Expand(~qcurrent,ccurrent,k), and
Exist(~qcurrent,ccurrent,k). Starting with an initial value kinit, k
is halved if the open-set is empty. Then, the search restarts by
adopting the closed-set as the new open-set. The algorithm
terminates with no solution only when k reaches a lower
bound kmin. Thus, the heuristic search begins with a large
step-size and resolution, and then gradually refines them
when necessary, which achieves a good trade-off between
completeness and efficiency.

IV. CYLINDER-BASED SPACE-TIME EXPLORATION

In dynamic environments, the velocity of a robot should
also be taken into account. Starting from a single point, a

Algorithm 2: HeuristicSearch({ci},~qstart,~qgoal)

1 Sclosed← /0;
2 Sopen←{~qstart};
3 k← kinit;
4 while Sopen 6= /0 do
5 ~qcurrent← PopTop(Sopen);
6 ccurrent←MapNearest(~qcurrent);
7 if f [~qgoal]< f [~qcurrent] then
8 return success;

9 else if !Exist(~qcurrent,ccurrent,k) then
10 Sopen← Expand(~qcurrent,ccurrent,k)∪Sopen;
11 if h[~qcurrent]< Rgoal then
12 GoalExpand(~qcurrent,~qgoal);

13 Sclosed←{~qcurrent}∪Sclosed;

14 if Sopen = /0 then
15 k = k×0.5;
16 if k > kmin then
17 Sopen← Sclosed;
18 Sclosed← /0;

19 return failure;

point robot with a constant velocity v can reach an area of
a circle with radius r in a time duration ∆t = r/v. The time
evolution of the reachable set can be modeled with a cone.
As shown in Fig. 2, a cone grows from the point O0 to a
height of ∆t and a radius of r. A child cone can start from
any point inside the parent cone. For example, a new cone
is created at the point O1 on the top of the cone from O0. If
the timestamp at O0 is t, the timestamp at O1 is t +∆t. The
cone from O0 exists in the time-slot [t, t +∆t].

O0

O′0 O1

∆t = r/v

r

Fig. 2. Modeling of space and time using cylinder-based exploration. A
cone represents the reachable set for a robot within a given time frame and
is approximated by a cylinder in the dashed lines.

A cone grows until it reaches an obstacle with a safety
margin. However, it is complex to perform this procedure
with a time-dependent collision test or distance query for
cones. A simpler way is to approximate the cones with
cylinders, as the dashed lines in Fig. 2. The radius of
the cylinder is decided in an iterative manner. First, a
collision-free distance dt is calculated at the starting time
t. Then, the time duration is obtained with ∆t = dt/v. After

that, the distance to obstacles is checked again in time-slot
[t, t +∆t] with the sweeping area of the moving obstacles.
min(dt ,dt+∆t) is the radius of the cylinder. If the distance
dt+∆t is chosen, the time duration is reduced to dt+∆t/v. As
a cylinder is an overestimation of the total reachable set of
the point robot in a cone, it contains all the possible solutions.
Thus, the two-dimensional circles in SEHS are extended to
three-dimensional cylinders for the space-time exploration.

In this case, the circles in Algorithm 1 are replaced with
cylinders for space-time exploration, i.e., a symbol c stands
for a cylinder. The costs are measured in time. The h-value
of a cylinder is the projected Euclidean distance divided
by a desired velocity for the robot motion. The heuristic is
still admissible and monotonic as the distance is divided by
one positive value for velocity. The g-value can be directly
obtained as the difference between the cylinder timestamp
and the start timestamp. The redundant cylinder is identified
by examining whether the starting point of the cylinder
is inside any cylinder from the closed-set, except for its
parent. The child cylinders are generated on top of the parent
cylinder, with starting points locating at the center point and
the interpolated points on the top circle.

Fig. 3 shows the space-time exploration result of the sce-
nario in Fig. 1. The expanded yellow cylinders approximate
the total reachable set of the robot. The result is a cyan
cylinder path in the reachable set. The space-time exploration
can be carried out in an incremental manner, based on the
space exploration result of the static environment. The path
circles are first converted to space-time cylinders. If there
is a gap between two neighboring cylinders, a local space-
time exploration is performed to fix the connection. Thus,
the space-time exploration is performed only when a moving
obstacle blocking the path.

Fig. 3. Cylinder-based space-time exploration: The transparent yellow
cylinders are expanded during the exploration. The transparent cyan cylin-
ders show the resulting cylinder path.

V. CYLINDER PATH GUIDED HEURISTIC SEARCH

The space-time heuristic search is similar as Algorithm 2,
following the cylinder path with modified distance functions.
The distance between a state and a cylinder is the combi-
nation of the space distance (1) and the time distance (2).
The space distance is calculated with the projections of the
state and the cylinder in the two-dimensional Cartesian space.
The time distance is the time difference between the state
timestamp and the cylinder time-slot. The total distance is
calculated with (3). v is a desire velocity identical as in space-
time exploration. The distance between the cylinders of the
path corridor is the difference between their timestamps.

dspace(~q,c) = max(‖(x~q,y~q)− (xc,yc)‖− rc,0) . (1)

dtime(~q,c) =

 tc− t~q if t~q < tc
t~q− (tc +∆tc) if t~q > (tc +∆tc)
0 otherwise

(2)

dtotal(~q,c) =
dspace(~q,c)

v
+dtime(~q,c) (3)

The mapping between a state and the nearest cylinder
is based on the total distance (3). The distance and time
difference between two states are resolved with (4) and (5)
respectively. The distance (4) combines the projected point
distance ‖(x~qi ,y~qi)−(x~q j ,y~q j)‖ and the orientation difference
|θ~qi − θ~q j |. The orientation difference is multiplied with
the minimum turning radius rmin to calculate the minimum
traveling distance to compensate the angle discrepancy. The
maximum operation returns a lower bound of the motion
distance from one state to the other. The time difference is
|t~qi − t~q j |. If the distances are smaller than a certain value,
rdistance and rtime respectively, one state is redundant. The
resolution values are proportional to the cylinder radius and
height, as well as the step-size in Algorithm 2.

dspace(~qi,~q j) = max(‖(x~qi ,y~qi)− (x~q j ,y~q j)‖, |θ~qi −θ~q j |rmin)

(4)
dtime(~qi,~q j) = |t~qi − t~q j | (5)

Fig. 4 shows the heuristic search result based on the
cylinder path from Section IV. A kinodynamic vehicle model
is applied with a constant velocity and different change rates
for curvature. We can see that the planner takes large steps
in large cylinders, and the expanded states follow the path
cylinders. The result robot motion pursues the centers of the
cylinders to achieve a good safety distance.

Fig. 4. Cylinder path guided heuristic search: The transparent cyan
cylinders are the cylinder path from the space-time exploration. The red
points are the expanded states connected with blue lines. The green lines
show the solution from the search algorithm.

VI. DYNAMIC ENVIRONMENT EXPERIMENTS

In this section, the STEHS planner is verified in two
dynamic scenarios1, comparing with the search-based SEHS
and Hybrid A* methods, as well as the random-sampling
RRT, EST, PDST, and KPIECE algorithms from the Open
Motion Planning Library [22]. All the planners apply the

1https://www.youtube.com/watch?v=AmyweePd1HU

https://www.youtube.com/watch?v=AmyweePd1HU

Fig. 5. Overtaking scenario: A robot vehicle (gray) overtaking a moving obstacle (yellow vehicle on bottom) in front, while another moving obstacle (yellow
vehicle on top) is approaching from the opposite direction.

same implementation of a kinodynamic vehicle model in-
troduced in [20] and the same environment model with
collision check functions. An objects list holds the static and
dynamic obstacles. The motion of the dynamic obstacles is
known, which enables collision checks with any time-labeled
state. The SEHS algorithm performs the space exploration
only in the static environment. So does the Hybrid A*
calculate the grid-based heuristic. The dynamic obstacles are
evaluated later during the states expansion. The performance
is measured with 100 trials with random start positions in
an area of 2m× 2m. The experiments are conducted on a
computer with an Intel Core i7 2.90 GHz processor and 8 GB
RAM running Linux.

A. Overtaking Scenario

The first example is an overtaking scenario shown in
Fig. 5. A robot vehicle and an obstacle vehicle are moving
in the same direction along a road. As the ego vehicle moves
faster than the obstacle, it has to perform an overtaking
maneuver to reach the goal position. At the same time,
another obstacle vehicle is approaching in the opposite
direction on the other side of the road. Therefore, the planner
should plan an overtaking motion without colliding with
the approaching obstacle. The search-based methods apply
a set of motion primitives with combinations of 3 different
acceleration and 3 different steering values as in [20]. Fig. 5
is a snapshot of the robot vehicle performing the result
motion from STEHS. The cyan circles are the projections of
the path cylinders from the space-time exploration. The green
line is the overtaken motion planned by heuristic search. The
motion of the dynamic obstacle is demonstrated with the
blurring trails.

Table I compares the simulation results from the different
algorithms via the number of states, the number of collision
tests, and the planning time with its standard deviation.
The STEHS and SEHS methods have two rows for the
space exploration and heuristic search respectively. The
numbers in the exploration row are the counts of circles or
cylinders and the distance queries. Regarding the planning
time, the STEHS method takes half of the total planning
time compared to the SEHS method on average. Although
the space-time exploration costs more time than the space
exploration in SEHS, it provides better heuristics for the
dynamic scenario, that more time is saved in the search
phase. The SEHS performs better than Hybrid A* in planning
time, as the incremental adaptation of the search step and
resolution reduce the number of nodes to compensate for
the sub-optimal heuristic estimation. In contrast, the step size
and resolution of Hybrid A* search are constant. Therefore,
it needs a small resolution of 0.3 m in both x and y direction

TABLE I
RESULTS OF THE OVERTAKING SCENARIO

Planner States Verifications Time (ms) STD (ms)

STEHSexplore 961 1796 3.59 2.36
STEHSsearch 545 2553 11.27 4.73

SEHSexplore 627 1148 1.42 0.68
SEHSsearch 1107 6613 24.92 30.29
Hybrid A* 4033 35162 180.16 283.14

RRT 1828 239488 414.18 261.84
EST 8618 1627933 2274.91 1645.96
PDST 978 62920 187.15 98.54
KPIECE 1822385 3717245 7164.50 4493.49

to solve all the random scenarios. These two search-based
methods both have large deviations of planning time, because
the dynamic obstacles create a narrow passage in a certain
time-slot which is occasionally hard to traverse with the
static heuristic. The STEHS method extracts this knowledge
already in the exploration phase to adjust the search direction
and the step-size fitting to the path corridor.

The solutions from the random-sampling methods vary
greatly in planning duration and geometric form of the path.
The robot position and orientation is chosen as the subspace
for the space projections in EST, PDST, and KPIECE.
The subspace projection and the progress evaluation do
not always work well in dynamic scenarios. Only PDST
has better time performance than RRT. As the subspace
occupation is dynamic in this scenario, the workspace pro-
jection does not always provide the right information for a
certain moment. The KPIECE method often suffers from the
numerical precision limitation problem and only returns an
approximate solution. Furthermore, these random-sampling
methods cannot provide any optimal guarantee. The RRT*
and PRM* methods are not applicable to the kinodynamic
motion model with nonholonomic constraints—there is no
closed-form solution to connect two specific states in the
configuration space to optimize the path length.

B. Intersection Scenario

The second example takes place in an intersection as
shown in Fig. 6. The robot vehicle needs to move across the
intersection to reach the goal position, while two obstacle
vehicles are coming through the intersection at the same
time. The speed of the vehicles is configured to cause a
collision in the middle of the intersection, if the ego vehicle
does not adapt its motion. The planner should plan a motion
to avoid the collision and reach the goal. A snapshot of the
result motion is shown in Fig. 6. The quantitative results
from the planners are listed in Table II.

Fig. 6. Intersection scenario: A robot vehicle (gray) moves across an
intersection to reach the goal, while two obstacles vehicles (yellow) are
crossing the intersection at the same time.

TABLE II
RESULTS OF THE INTERSECTION SCENARIO

Planner States Verifications Time (ms) STD (ms)

STEHSexplore 1070 1571 4.50 2.39
STEHSsearch 2666 17265 67.28 44.54

SEHSexplore 405 520 0.64 0.57
SEHSsearch 2825 27064 101.72 122.53
Hybrid A* 18234 181418 1311.32 1664.42

RRT 2591 337998 785.19 921.81
EST 4219 843493 1444.03 2087.31
PDST 2212 149052 453.22 366.32
KPIECE 1820488 2883336 8001.44 3648.32

The ranking of the results is the same as the first scenario.
The advantage of STEHS is reduced comparing to the first
scenario with a larger variation in planning time. This effect
is due to the fact that the space-time exploration does not
consider the vehicle kinematics. The path corridor captures
the obstacle dynamic, but may be sub-optimal for the ve-
hicle to follow due to the nonholonomic and differential
constraints. This effect is more obvious in the intersection
scenario, where a dramatic evasion is required in a small
free-space.

VII. CONCLUSION

The Space-Time Exploration Guided Heuristic Search
approach combines time-dependent workspace exploration
with configuration space heuristic search to solve the motion
planning problem for car-like robots in dynamic environ-
ments. This method improves the SEHS approach with time
modeling in space exploration and a step-rate factor for
incremental search step-size and resolution adaptations. The
space-time exploration creates a cylinder path regarding the
desired velocity of the robot and the dynamics of the envi-
ronment. The search procedure follows this time-dependent
heuristic to expand states for a solution. The cylinder path
from the exploration phase provides a good compromise
between path length and safety distance, while the step-rate
adaptation achieves a fine balance between time-performance
and resolution completeness.

As future work, the STEHS planner will be evaluated
for incremental replanning with environment updates, and
imperfect perception with uncertainties.

REFERENCES

[1] J. Canny, “Complexity of robot motion planning,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1987.

[2] L. Kavraki, P. Švestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[3] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The International Journal of Robotics Research, vol. 5, no. 1,
pp. 90–98, 1986.

[4] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The International Journal of Robotics Re-
search, vol. 17, no. 7, pp. 760–772, 1998.

[5] S. LaValle and J. Kuffner Jr., “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

[6] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kino-
dynamic motion planning with moving obstacles,” The International
Journal of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.

[7] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[8] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, 2009.

[9] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning
for autonomous vehicles in unknown semi-structured environments,”
The International Journal of Robotics Research, vol. 29, no. 5, pp.
485–501, 2010.

[10] A. Kushleyev and M. Likhachev, “Time-bounded lattice for efficient
planning in dynamic environments,” in Proc. IEEE International
Conference on Robotics and Automation, 2009, pp. 1662–1668.

[11] Jur van den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning
and replanning in dynamic environments,” in Proc. IEEE International
Conference on Robotics and Automation, 2006, pp. 2366–2371.

[12] J. Barraquand and J.-C. Latombe, “Robot motion planning: A
distributed representation approach,” The International Journal of
Robotics Research, vol. 10, no. 6, pp. 628–648, 1991.

[13] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in Proc. IEEE International Conference on Robotics and
Automation, 1993, pp. 802–807.

[14] O. Brock and L. Kavraki, “Decomposition-based motion planning: A
framework for real-time motion planning in high-dimensional config-
uration spaces,” in Proc. IEEE International Conference on Robotics
and Automation, 2001, pp. 1469–1474.

[15] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” International Journal of Computational Geom-
etry and Applications, vol. 9, no. 4-5, p. 495512, 1999.

[16] A. Ladd and L. Kavraki, “Motion planning in the presence of drift, un-
deractuation and discrete system changes,” in Proc. Robotics: Science
and Systems, 2005, pp. 233–241.

[17] I. Şucan and L. Kavraki, “Kinodynamic motion planning by interior-
exterior cell exploration,” in Workshop on the Algorithmic Foundations
of Robotics, 2008.

[18] M. Rickert, O. Brock, and A. Knoll, “Balancing exploration and ex-
ploitation in motion planning,” in Proc. IEEE International Conference
on Robotics and Automation, 2008, pp. 2812–2817.

[19] E. Plaku, L. Kavraki, and M. Vardi, “Impact of workspace decomposi-
tions on discrete search leading continuous exploration (dslx) motion
planning,” in Proc. IEEE International Conference on Robotics and
Automation, 2008, pp. 3751–3756.

[20] C. Chen, M. Rickert, and A. Knoll, “Combining space exploration and
heuristic search in online motion planning for nonholonomic vehicles,”
in Proc. IEEE Intelligent Vehicles Symposium, 2013, pp. 1307–1312.

[21] ——, “A traffic knowledge aided vehicle motion planning engine
based on space exploration guided heuristic search,” in Proc. IEEE
Intelligent Vehicles Symposium, 2014, pp. 535–540.

[22] I. Şucan, M. Moll, and L. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012, http://ompl.kavrakilab.org.

http://ompl.kavrakilab.org

	Introduction
	Related Work
	General Space Exploration Guided Heuristic Search Framework
	Space Exploration
	Heuristic Search

	Cylinder-Based Space-Time Exploration
	Cylinder Path Guided Heuristic Search
	Dynamic Environment Experiments
	Overtaking Scenario
	Intersection Scenario

	Conclusion
	References

