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Abstract— We present a novel approach of active object
categorization based on an iterative Bayesian method using
capacitive sensing during object manipulation. The approach
uses a novel type of capacitive sensor, which can measure
internal properties of materials that are inaccessible to vision
or tactile sensing. The electrodes of this capacitive sensor are
sufficiently flexible and thin to be attached to various types
of robot tools, including humanoid fingers and palms. They
are mechanically robust and wear resistant. In comparison to
earlier capacitive sensors systems, we perform single ended
and differential measurements over an array of electrodes,
and coordinate measurement with robot manipulation to ex-
tract information not available from static measurements. We
demonstrate the capability of our active object categorization
system in the James robot bartender system. This system
can manipulate objects and measure continuously in order
to categorize empty and non-empty bottles. The principle of
capacitive sensing during manipulation can be applied to more
general object manipulation tasks in robotics and also in other
fields of industrial automation.

I. INTRODUCTION

In this work, we propose a new approach for active object
categorization using capacitive sensing during object ma-
nipulation. While humans are often limited to tactile sensing
(while manipulating objects) to perceive invisible properties,
robots are not limited to human senses and can exploit other
sensing principles. One such sensing principle is capacitive
sensing, where electric fields are used to extract information
from the environment. While humans have very limited
capabilities to sense electric fields and do not generate them
on the purpose of sensing, certain animals, such as electric
eel, make use of similar effects.

Capacitive sensors provide several benefits for robot sys-
tems: Using electric fields, they can sense through the air
without the need for direct contact. Sensor elements are
conductive electrodes, which can be designed very thin,
small, and flexible, and can therefore be attached to both,
stiff or flexible surfaces, including robot fingers and palms.
By virtue that they do not require any moveable parts
they are mechanically robust and wear resistant. Electrically
interacting with materials, they provide information about
objects not available from other sensors such as vision or
classical tactile sensors. Thus, this technology is of particular
interest for grasping and safety applications [1] and perfectly
complementary with vision based systems.
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Fig. 1. Our novel capacitive sensor can measure material properties that
are invisible to conventional visual or tactile sensing. In this demonstration
scenario, the capacitive sensor is attached to the robot’s hand and extends the
robot’s capabilities to categorize empty and full bottles, and even estimate
the fill level through object manipulation in real-time.

Human perception is based on sensory information, which
is further processed for planning tasks and making decisions.
Different senses may be used depending on task, situation, or
environment. When only tactile sensing is possible, e.g., due
to occlusion or low light conditions, most humans explore
an object by combined manipulation and sensing. Additional
information about the object is acquired by changing finger
positions, lifting or shaking the object and so on. While our
approach uses capacitive sensing - a sense humans do not
use - we follow a similar scheme to continuously sense and
manipulate until the significance level is sufficiently high
to categorize an object. Our unique active categorization
algorithm is based on an iterative Bayesian approach and
provides a confidence information about the categorization
result. This is mandatory for reliable and robust sensors
applied in the field of industrial and robotic applications.
In particularly, this is useful for grasping scenarios, where
objects in the vicinity of the grasper should be reliably
detected with a certain confidence. This approach can also
lead to improvement of existing pretouch sensing systems
based on capacitive sensing (compare [2]), to further increase
the reliability of grasping.

While capacitive sensing has long been used in robot ap-
plications [2], [3] for tactile and pretouch sensing, our sensor
design is different in that it uses an array of electrodes. In
addition to the standard single ended measurement mode,
capacitances between all pairs of electrodes can be mea-



sured in a differential measurement mode. To demonstrate
the effectiveness of our approach, we designed and built
the sensor system and the measurement hardware with the
capability to perform measurements in both modes and quasi-
simultaneously.

In our demonstration example, we use the robot bartender
platform. This platform was previously developed in the
project JAMES, shown in Fig. 1 [4]. In order to extend
James capabilities for human-robot interaction, we address
the problem to distinguish between empty and full bottles.
Similar to humans, who combine object manipulation and
tactile sensing, the robot manipulates bottles to perform
continuous measurements, gather information to categorize
objects, and even estimate the fill level. In our demonstration,
James uses this information to clear the bar and remove all
bottles that are empty. Note that transparency of a bottle is
not required.

The paper is structured as follows: After a brief summary
of the related work in Section II, we describe the architecture
of James as well as the sensing principle in Section III. In
Section IV, we present the active categorization approach.
The implementation for our demonstration example is de-
scribed in Section V. Experimental results are provided in
Section VI. Finally, the findings are summarized in Sec-
tion VII.

II. RELATED WORK

Capacitive sensing is a well known practice in the field of
robotics and mobile platforms, with various applications in-
cluding pretouch, tactile, and proximity sensing for collision
avoidance. In recent works [2], [5], capacitive sensing, or
electric field sensing, has shown good performance for pre-
touch sensing to improve grasping and manipulation abilities,
and gather information about objects even without physical
contact. However, there are still options to further improve
the capabilities of these sensor systems. For instance, these
electric field sensors measure only the displacement current
between pairs of electrodes (i.e. differential sensing mode,
compare Section III-B) at a single frequency with a low
measurement speed of 20 − 30 Hz. This, can lead to in-
consistent readings for the object being sensed because the
measured sensor values strongly depend on the coupling of
the object to ground (compare [3]). Schlegl et al. [3] integrate
capacitive sensors in a highly responsive collision avoidance
system for safe human-robot interaction. A related principle
for pretouch sensing is to measure resonance frequencies of
acoustic cavities. Using the so-called seashell effect, Jiang
and Smith [6], [7] place a microphone inside a cavity
at a fingertip, measure its acoustic resonance frequency,
and estimate distances to approaching objects in a mobile
manipulation application. Concerning touch sensing, tactile
sensing has shown promising results for object manipulation
in [8] by combining 3D depth sensor data with a fingertip
sensor to model the shape of an object. Capacitive touch
sensors are installed in robot grippers, including fingertips,
and in arms of humanoid robots in [9]. Dahiya et al. [10]
give a more general overview on tactile sensing.

Active object recognition and categorization is a common
approach with visual sensors, to recognize objects that would
be ambiguous or unreliable from only a single sensor read-
ing [11]. In [12] objects are manipulated to gather new sensor
readings from a visual sensor in order to correctly categorize
the objects.

In our demonstration example, a robot bartender is sup-
posed to serve drinks on a regular basis. Therefore, the
robot has to handle both, transparent and non-transparent
objects, and estimate their fill level. Recognition and pose
estimation for transparent objects is very challenging for
vision sensors, such as RGB or Time-of-Flight (ToF) cam-
eras. Fill level determination of non-transparent objects is
of course impossible with visual sensors. The problem of
transparent objects has been addressed in several research
papers [13], [14]. In [13], the shape of a transparent object
is reconstructed by ToF imagery from two different points of
view, extracting a region of interest. In [14], a single RGB-D
image is used to determine the 6-degrees-of-freedom (DoF)
pose of a transparent object, with the RGB image being used
for silhouette and background subtraction. However, all these
methods focus specifically on empty transparent objects and
have limitations in case of overlaps or occlusions. In addition,
estimating the fill level of a transparent liquid in a transparent
bottle is still difficult with visual sensors.

III. SYSTEM DESCRIPTION

A. Humanoid Platform

Intelligent robots like the social bartender James (see
Fig. 1) need to use multiple types of sensing modalities
to fulfill their task. The system uses a Meka Robotics
H2 humanoid robot with one arm, consisting of a 3-DoF
humanoid torso, a 7-DoF arm, and tendon-driven fingers.
All joints of the robot are equipped with torque sensors,
allowing fine-grained torque control in real-time. Because of
the lightweight design and accurate torque control, we can
effectively limit its external forces in a whole-body 1 kHz
control loop and allow close interaction with humans. In
addition to the capacitive sensor, which is described in this
paper, the James interaction system uses a Kinect device with
its microphone array and depth sensor. On the output side,
James uses a simple humanoid head rendered on a tablet
screen, and loudspeakers for speech output.

The software architecture of the interaction system is
shown in Fig. 2. All sensor input is processed in a simple
rule-based interaction system: An object detection routine
receives capacitive sensor measurements and forwards detec-
tion results to a rule-based interaction manager. To interact
the dialogue with human guests, the interaction manager can
recognize ordering requests in a domain-specific grammar,
and recognize new guests by their body posture. The robot’s
face is visualized on a tablet screen, and its eyes establish
eye contact during conversation. The interaction manager can
choose from a list of domain-specific utterances, which are
output as synthesized speech with synchronous lip motion.
Details on the complete James software system covering
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Fig. 2. Software architecture of the James human-robot interaction system.

sensing, planning, and output modules, can be found in the
system overview papers [4], [15].

In the system configuration used for this work, the robot
manipulation and direct capacitive sensing are the two key
components. The robot manipulation planner controls pick-
ing and placing actions, following a pre-defined roadmap of
waypoints that allow human-like motion. These waypoints
are not directly executed, but rather used as goal positions in
a real-time whole-body controller. Using a complete dynamic
model with estimated payloads and accurate torque mea-
surements, the whole-body controlled robot can move and
manipulate objects, applying only minimal external forces,
which allows safe interaction with humans.

B. Sensing Principle

The sensing principle is based on the interaction between
the electric field and a material causing a deformation of
the electric field. The sensor front end consists of elec-
trodes, which are electrically insulated from the environment.
Dielectric as well as conductive objects, which are in the
vicinity of the sensor front end (also referred to as region
of interest (ΩROI )) cause an electric field deviation. This
deviation can be detected by measuring the capacitances,
using one or both of the following measurement modes [16].

1) Single ended measurement mode: Within the single
ended measurement mode an excitation signal is applied to
a single electrode and the emitted displacement current is
measured. Thus, the capacitance between the electrode and
the distant ground can be determined (see Fig. 3).

2) Differential measurement mode: In the second mode,
also called mutual capacitance mode, an excitation signal
is applied to an electrode and the displacement current at
the receiver electrode is measured. Thus, the capacitance
between those two electrodes is determined (see Fig. 3).

The electrodes are made of conductive material, e.g.,
copper. In our setup we use copper of 70 µm thickness. Our
sensor structure consists of seven electrodes on one finger.
The electrodes are covered by a thin duct tape. A conductive
layer underneath the electrodes, referred as shield or guard,
is used to make the sensor insensitive to objects on the
back of the robot hand. A flexible yet incompressible spacer
maintains the gap between shield and electrodes at a constant
level. Fig. 3 shows the sensor structure used in this work.

Fig. 3. Sketch of the sensing principle for a pair of electrodes and
the sensor structure. The electrode on the backside of the sensor can act
as a guard electrode (single ended measurement mode) or as a shield
electrode (differential measurement mode). This is controlled by the switch
S1. The displacement currents IDS and IDD are measured in the single
ended and differential measurement mode, respectively. The capacitances
are shown exemplarily for one pair of electrodes. CT is the capacitance of
the transmitting electrode to the object. CR is the capacitance of the receiver
electrode to the object and CTR represents the direct coupling between the
receiver and transmitter electrode. ZGND depicts the impedance of the
object to the far ground.

Our measurement hardware introduced in [1], [17] (see
Fig. 4) supports both modes quasi-simultaneously. This im-
plies that switching between both modes is fast enough
so that the minor changes of the sensing geometry and
the measurands are insignificant. Using both measurement
modes comes with several advantages, like the capability to
utilize the leakage effect [18]. In addition, the hardware is
capable to measure the in-phase (I-Channel) and quadrature
(Q-Channel) signals in order to obtain an amplitude and
a phase information of the measured signal. This provides
information about the nature of the object, e.g., dielectric
and conductive objects. This is especially useful for applica-
tion scenarios such as collision avoidance [1]. However, in
the presented application the capacitive effects (I-Channel)
strongly dominate any conductive effects (Q-Channels) and
thus only the measurements of the I-Channels are further
processed for the detector. The maximum number of in-

Fig. 4. Capacitive sensing system comprising sensor unit and electrodes
(both are our own design).
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Fig. 5. Finite element simulation of the electric field and potential for an object approaching the finger of the robot’s hand. The object causes a distortion
of the electric field depending on the distance between electrode and object. (a) Object far away. (b) Object close to the electrodes.

dependent measurements depends on the number of elec-
trodes and measurement mode. In case of the single ended
measurement mode the maximum number of independent
measurement NSE , corresponds to the number of electrodes
n (NSE = n). In case of the differential measurement
mode the capacitances between one transmitter electrode and
the remaining receiver electrodes are measured providing
n − 1 independent measurements. The sensing system is
capable of using each electrode both as a transmitter and
as a receiver. This leads to n(n− 1) measurements between
a transmitter and a receiver. However, the capacitance from
electrode A to B and from electrode B to A is equiva-
lent. Consequently, the maximum number of independent
measurements is calculated by ND = n(n−1)

2 . James is
equipped with seven electrodes using both measurement
modes. Therefore, a maximum of N = NSE + ND =
n+ n(n−1)

2 = 28 independent measurements can be obtained
quasi-simultaneously. In the vicinity of the electrodes, the
spatial permittivity distribution εr influences the capacitances
and the measured displacement current is related to the
corresponding capacitance C.

As capacitive sensing is well suited to measure dielectric
and conductive objects it also has some limitations. For
instance it does not allow detecting dielectric objects with
a relative permittivity εr close to air, e.g., foams.

C. Finite Element Simulation

We exemplarily show too snapshots of simulation results
for an approaching object in the differential measurement
mode with one active transmitter in Fig 5. The object causes
a deformation of the electric field lines penetrating the object.
This information is used to gather information about the
object, e.g., material properties.

IV. ACTIVE CATEGORIZATION APPROACH

Active object categorization is a method to iteratively
compute the probabilities for the hypothesis based on the
observations of a sensor until a predefined level of confidence
is reached to decide for a hypothesis. To setup an active

object categorization system, requirements have to be defined
in advance.

First, the sensor observations have to be mapped into a
mathematical model. Generally, this can be described by

y[n] = f(r[n], o[n], s[n], e[n]) + w[n] (1)

where the sensor observations y become a function f of
the four parameter sets r, o, s and e plus a random deviation
w[n] effecting the sensor observations. The parameter set r
contains all parameters regarding the robot, e.g., wrist angle,
hand position, arm position, etc. Parameters regarding the
object to be sensed, e.g., the dielectric property, are defined in
the parameter set o. s is the sensor parameter set containing
information such as the electrode geometry regarding the
sensor, etc. Finally, the parameter vector e contains all
parameters regarding the environment, e.g., the ambient
temperature, etc. It should be noted that the content of the
four parameter sets strongly depends on the application.

Second, the hypotheses have to be defined. The simplest
case is to distinguish between two hypotheses:

H0 : Object is of category A
H1 : Object is not of category A.

(2)

and the confidence levels are assigned to each hypothesis.
Confidence levels can be assigned either individually to
each hypothesis or a common level of confidence may be
used, according to the needs of the application. Finally, the
algorithm (see Fig. 6) for the active categorization determines
a probability for each hypothesis based on the information
gathered up to the current step. If the probability is insuffi-
cient and unexplored parts of the parameter space β remain,
the parameters are changed and new sensor observations
are acquired. In the next step the probabilities for the
hypothesis are updated using the new information. β can
comprise parameters of r, o, s and e. In comparison to other
categorization methods, e.g., decision trees, the result of the
statistical approach is always accompanied by a probability
stating the confidence level of the decision.



Fig. 6. Active categorization approach. Initially, sensor observations are
acquired and the posterior probabilities for the hypothesis are determined
(combining the prior knowledge and the observation data). In case a
confidence level is reached for a certain hypothesis, this hypothesis is
accepted; the procedure is completed. Otherwise, the system checks if any
unexplored parameter combinations remain in the parameter space β. If this
is not the case, the system terminates without the acceptance of a hypothesis
(keeping the null hypothesis). Otherwise, the object is manipulated and the
procedure is repeated.

V. IMPLEMENTATION OF THE ACTIVE CATEGORIZATION
APPROACH

A. Mathematical Model

As mentioned in the previous Section IV, the model
according to Equation 1 has to be refined according to the
application. In our demonstration example, the parameter
vector r comprises the wrist angle ϕ and finger joint angles
Θ. Other relative and global position parameters, e.g., arm
position, torso position, hand position, can be neglected. This
is because those parameters have very little influence on
the sensor effect. The object’s parameter set o comprises
the object’s fill level θ. The object temperature T and the
permittivity of the object are neglected as they remain fairly
constant during the experiment and thus their variations have
a very low impact on the sensor effect. s is empty as we
assume a constant electrode geometry G while grasping a
bottle. Finally, the parameter vector e is empty because the
fairly constant ambient temperature T is negligible. Thus,
the parameter set simplifies to

r =

[
ϕn

Θn

]
o = θ

(3)

B. Calibration

To reduce the impact of model errors, an offset calibration
for each element of y of the form

y[n] = yraw − yair (4)

is used when the system is started. Hereby, the subscript air
refers to a measurement with no object in the vicinity of the
robots opened hand and raw refers to the raw sensor reading.

C. Detector Design

We use hypothesis testing as defined in Equation 2 in
order to decide for a certain object. Additionally, we only
want to reject the null hypothesis if the evidence is strong
enough. In our application example, empty bottles should
be cleared from the bar. We do not want that non-empty
bottles are cleared from the bar as this might annoy the
customer. In terms of the hypothesis test this means that

type II errors (empty bottle is not removed from the bar)
have lower costs than a type I errors (non-empty bottle
is removed from the bar). Therefore, we choose H0 (null
hypothesis) to correspond to non-empty bottles and H1

(alternative hypothesis) to corresponds to empty bottles. We
define a bottle as empty when the fill level θ is below 10 %.
Consequently, in order to categorize the object we need to
decide if the fill level is below 10 % or equal/above 10 %.

The categorization of an empty or non-empty bottle is
based on a sequential Bayesian approach. The Bayes rule
(e.g., [19]) is defined as

p(θ+) = p(θ|y) =
p(y|θ)p(θ)
p(y)

. (5)

where p(θ+) is the posterior probability density function
(PDF), p(θ) is the prior PDF, p(y|θ) is the conditional PDF
and p(y) is the PDF of the measurement taken at y and it
acts as a normalization factor. Please note that even though
the actual fill level θr is not random, we treat the fill level
as a random variable θ. Our (incomplete) knowledge about
the fill level, as obtained in all previous measurements, is
summarized in the probability density p(θ). With each new
measurement, the p(θ) is updated and we obtain the posterior
distribution p(θ+), which is the prior p(θ) for the next
iteration cycle. The aim of the active categorization is to
make the probability density function p(θ) sharp or clear
enough to decide if we have an empty or a non-empty bottle.

Initially, we do not have any information about the bottle’s
fill level. Thus, we assume that any fill level is equally alike.
Consequently, the prior PDF p(θ) of the fill level θ is uniform
over the interval [0, 1]

p(θ) =

{
1 for θ ∈ [0, 1]

0 otherwise
(6)

as shown in Fig. 7(a).
Assuming independent and identically distributed random

deviations w[n] from the ideal model f and assuming a
jointly Gaussian distribution, we obtain the likelihood func-
tion p(y|θ) from

p(y|θ) =
1

(2πσ2)
N
2

exp

(
− 1

2σ2

N−1∑
n=0

(y[n]− y(θ))
2

)
.

(7)
The uncertainty σ includes the measurement noise and
model uncertainty, e.g., inaccurate geometry of the sensor.
N is the number of independent measurements, which can
be calculated as given in Section III-B. Examples for the
resulting posterior p(θ|y) after an initial grasp (measurement
y1) are illustrated in Fig. 7(b).

Considering the Bayesian approach the hypotheses defined
in Equation 2 can be adopted for our experiment to

H0 : θr ≥ γ
H1 : θr < γ.

(8)

where θr represent the real fill level of the bottle. However,
we only know the posterior PDF p(θ+) of the fill level. Thus,
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Fig. 7. (a) Prior probability p(θ). (b) Likelihood function after the first
initial grasp for two objects with different fill level. The initial grasp position
is at fill level θ = 40% of the object. Object A is empty and object B is
fully filled.

the condition to accept the alternative hypothesis (H1) is

C1: P (θ+ < γ) > (1− α) (9)

whereas the threshold γ = 0.1 corresponds to a fill level θ
of 10 % and the level of significance α = 0.01. We decide
to reject the null hypothesis only if the probability of an
incorrect decision is below 1 %. If this is not the case we need
to decide how to continue. For this decision, we exchange
the hypothesis

Ĥ0 : θr < γ

Ĥ1 : θr ≥ γ
(10)

and accept Ĥ1 if condition

C2: P (θ+ ≥ γ) > (1− α) (11)

is met. Again, we decide to reject the null hypothesis only if
the probability of an incorrect decision is below 1 %. In case
that either one of the conditions (C1, C2) is met at the first
grasp, the robot will not even start the object manipulation
because it is not necessary. Otherwise, the parameter space
β is determined by the robot. It contains all sensor positions
to gather additional information to refine the evidence of
this hypothesis test to increase the confidence level. As
long as an unexplored sensor position remains in β (to gain
additional information for the hypothesis test) the robot can
increase the confidence level by manipulating the object. In
our experiment β is directly related to the wrist angle φ.
The flowchart of the hypothesis test is shown in Fig. 8. As
an alternative method, classification by weight measurement
would be possible. However, this would require weights and
volumes of objects to be known in advance, which is not
necessary with our capacitance-based approach.

VI. EXPERIMENTS AND RESULTS

As shown in [1] sensing in either single ended or differen-
tial measurement mode causes limitations and has shortcom-
ings. Therefore, a series of experiments with water bottles,
each having different fill levels, were set up using both
measurement modes quasi-simultaneously. The use case is
as follows: after serving the water bottle, the robot waits
a certain amount of time until it checks if the customer
has finished its drink. The robot grasps the bottle and starts
sensing and manipulating the object (in our case rotating the

Fig. 8. Algorithm of the hypothesis test. After a new measurement is
obtained hypothesis H1 is chosen only if condition C1 is met. Otherwise,
condition C2 is evaluated and hypothesis H0 is chosen if C2 holds. In
case both conditions (C1, C2) are not met and an unexplored position in
the parameter space β is left. The robot calculates a new trajectory to the
position in β and executes the trajectory by object manipulation. Once the
new position is reached, the algorithm starts over again by obtaining a new
measurement. If the parameter space β is completely exploited, no further
information can be obtained. Thus, P (θ+) cannot be further improved and
the algorithm - in doubt - chooses the null hypothesis H0.

bottle), to categorize if the bottle is non-empty or empty. In
case a bottle is categorized as non-empty the robot returns
the bottle to the customer on the bar, otherwise the bottle is
categorized as empty and James clears the bar by removing
the bottle.

In the presented experiments the parameter space β is
directly related to the wrist angle ϕ defined in the interval
ϕ ∈ [0◦, 90◦], where ϕ = 0◦ means the bottle is in upright
position and ϕ = 90◦ means the bottle is in a horizontal
position. The hypothesis test is automatically enabled and
disabled by the robot itself after grasping the bottle depend-
ing on the joint angle positions of its wrist ϕ and fingers Θ.
The fill level θ is calculated by combining the wrist angle ϕ
of the robot rotating the bottle and the measurement signal
of the sensor.

In Fig. 9 the experimental results for an empty water bottle
(θ = 0 %) are shown. The detection results show that the
bottle is clearly categorized as empty, which is truly the case.
The experimental results for a full water bottle (θ = 100 %)
are shown in Fig. 10. In this case the initial grasp is sufficient
to clearly categorize the bottle as non-empty and no further
object manipulation is necessary. The precise fill level is
not determined as it is not needed to make a safe decision.
Fig. 11 shows the results for a partially filled water bottle.
The categorization shows that the bottle is non-empty. In
this case it was necessary to determine the fill level fairly
accurately in order to make a decision. The same could be
done for other fill levels, e.g., in case that we need more
than two categories.

Looking at the measurement results of the differential
mode (see Fig. 9(b), 10(b) and 11(b)), it turns out that
a reliable categorization solely based on the differential
measurement mode is not possible. In partially filled bottle
the coupling effect outweighs the shielding effect. Thus,
there is no significant difference between no object and a
small amount of water. Also, using solely the single ended
measurement mode (see Fig. 9(a), 10(a) and 11(a)) has
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Fig. 9. Measurement and categorization results for an empty water bottle. First the robot moves its arm from the start position until it is aligned with the
water bottle t = 0− 18 s. The hypothesis test starts automatically at t0 after the robot has successfully grasped the water bottle. Between t0 and t1 the
robot inclines the bottle and stops at t1 after condition C1 is met (no signal change as the bottle is empty). After t1 the robot removes the bottle from
the bar and moves its arm back to the start position. (a) Obtained single ended measurement signals for electrode 2 and electrode 3. Both measurement
signals show a slight increase while the robot bends its fingers around the object right before t0. (b) Obtained sensor signal in differential mode measured
between electrode 1 and 3. Due to the coupling effect the signal increases while the hand is closed indicating that no water is present inside the bottle. (c)
Result of the Bayesian approach to estimate the fill level at t1 = 26.8 s when condition C1 is met for a threshold γ = 10% and hypothesis H1 is chosen
by the active categorization algorithm. The robot had to rotate the bottle by ϕ = 68◦ to categorize the bottle as empty.

(a) (b) (c)

Fig. 10. Measurement and categorization results for a full water bottle. First the robot moves its arm from the start position until it is aligned with the
water bottle t = 0 − 21 s. The hypothesis test starts automatically at t0 after the robot has successfully grasped the water bottle and stops if either one
of the conditions (C1, C2) is met and the active categorization algorithm is finished. (a) Obtained single ended measurement signals for electrode 2 and
electrode 3. Both measurement signals show a significant increase while the robot bends its fingers around the object right before t0 indicating that water
is present inside the bottle. (b) Obtained sensor signal in differential mode measured between electrode 1 and 3. Due to the shielding effect the signal
decreases while the hand is closed indicating that water is present inside the bottle. (c) Result of the Bayesian approach to estimate the fill level. Condition
C2 is met already at t0 = t1 for a threshold γ = 10%. Hypothesis H0 is chosen by the active categorization algorithm. In this case no further object
manipulation is necessary by the robot to categorize the bottle as non-empty (fill level is more than 10%). Event though it would be possible to determine
the fill level more accurately, this is not necessary as the decision can already be made safely using the available knowledge.

(a) (b) (c)

Fig. 11. Measurement and categorization results for a partially filled water bottle. First the robot moves its arm from the start position until it is aligned
with the water bottle t = 0−18 s. The hypothesis test starts automatically at t0 after the robot has successfully grasped the water bottle and stops if either
one of the conditions (C1, C2) is met and the active categorization algorithm is finished. (a) Obtained single ended measurement signals for electrode 2
and electrode 3. Both measurement signals show a significant increase while the robot is rotating the bottle around t = 25 s indicating that water is present
inside the bottle. (b) Obtained sensor signal in differential mode measured between electrode 2 and 3. The signal stays at a certain level after grasping the
bottle and decreases around t = 25 s. However, the coupling effect still outweighs the shielding effect. (c) Result of the Bayesian approach to estimate
the fill level. Condition C2 is met at t1 = 25.8 s for a threshold γ = 10%. Hypothesis H0 is chosen by the active categorization algorithm. The robot
had to rotate the bottle by ϕ = 47◦ to categorize the bottle as non-empty. In this case even the fill level can estimated.

shortcomings. The maximum signal differences between an
empty bottle, no bottle present and an approaching bottle are
too small to allow for a reliable categorization. Thus, only
the combination of both measurement modes allows for a

reliable categorization. This illustrates the advantage of our
proposed approach. In addition, the combination comes with
the capability to estimate the fill level of the bottle if needed.
In the present application a more accurate determination



of the fill level is provided in an interval θ [0.1, 0.4]
(compare Fig. 11(c)). The experimental results suggest that
our approach can be useful for industrial grasping application
scenarios, where a certain confidence level is required to
decide between two hypotheses. In addition, the sensor front
end can be mounted underneath the surface of a grasper to
maximize the robustness and reliability in a rough industrial
environment.

Due to the properties of capacitive sensing (compare
Section III-B) this approach is suitable to be used in more
general grasping scenarios using containers made of non-
conductive materials, e.g., glass, tetra pak. However, the fill
level of containers made of conductive material can not be
sensed. The shape and size of the object has little influence
on the accuracy as long as the robot grasps the object at
a position where it can be manipulated while the sensor’s
ROI ΩROI covers the interior of the object. As a result,
capacitive sensing depends on the grasping performance of
the robot. The future work will focus on using the electrical
capacitance tomography (ECT) in the active categorization
approach. In ECT an image of the material distribution in
front of the capacitive sensor system ΩROI is obtained. This
allows selecting a specific area of ΩROI , where objects from
different categories have significantly different properties.
For example, in our demonstration example we could decide
that empty and full bottles differ in the permittivity in a
distance of 1 centimeter from the finger. Consequently, the
material of the container (as long as it is non-conductive)
and the thickness of the container wall (as long as below 1
centimeter) would have a low impact on the categorization
result.

VII. CONCLUSION AND FUTURE WORK

In this work we presented an active object categoriza-
tion with combined sensing and object manipulation in a
humanoid setup. In our demonstration example, the robot
bartender James distinguishes between empty and non-empty
bottles using a capacitive sensor in one finger. In order
to obtain a correct categorization result James manipulates
(inclines) the object while measuring until a sufficient confi-
dence level is reached or no additional positions are left in the
parameter space to increase the confidence level. Apart from
this demonstration, our new combined manipulation and ca-
pacitive sensing approach allows active object categorization
in more generic robot manipulation tasks. The approach can
also be used in industrial grasping application scenarios due
to the robust sensor front end. It can be mounted underneath
the surface of a grasper to withstand a rough industrial
environment.

APPENDIX

The video attachment shows an experiment using JAMES,
a robot bartender. The scenario includes all tasks of a
human bartender of taking an order, serving the drink
and clearing the bar fulfilled by JAMES the robot bar-
tender using responsive fingers during object manipula-

tion. A high-quality version of the video can be found at:
https://youtu.be/htc3lj8Los0
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