
Determining the Nonexistence of Evasive
Trajectories for Collision Avoidance Systems

Sebastian Söntges and Matthias Althoff
Department of Computer Science
Technische Universität München

Boltzmannstraße 3, 85748 Garching, Germany
Email: soentges@in.tum.de

Abstract—It is of utmost importance for automatic collision
avoidance systems to correctly evaluate the risk of a current
situation and constantly decide, if and what kind of evasive
maneuver must be initiated. Most motion planning algorithms
find such maneuver by searching a deterministic or random
subset of the state space or input space. These approaches can
be designed to be complete in the sense that they converge to a
feasible solution as sampling is made denser. However, they are
not suitable to determine whether a solution exists. In this paper,
we present an approach which overapproximates the reachable
set of the host vehicle considering workspace obstacles. Thus, it
provides an upper bound of the solution set and it can report if
no solution exists. Furthermore, the calculated set can be used
for guiding the search of an underlying planning algorithm to
find a solution as each trajectory of the host vehicle is ensured
to be contained within this set.

I. INTRODUCTION

In recent years, the number and capabilities of advanced
driver assistance systems and its implementation in production
cars has steadily increased [1]. In addition to a gain in comfort
by automatic distance or lane keeping, these systems may
provide a tremendous increase in traffic safety beyond the
conventional passive safety systems. However, since these
collision avoidance or mitigation systems must take over
control of the vehicle, they bear the risk to endanger passengers
or other traffic participants. It must be guaranteed that the
system intervenes only if neccessary and the consequences of
an automatic maneuver is predictable. Based on an assessment
of the current traffic situation, the decision to intervene the
driver is made in case a collision is “almost inevitable”. The
notion of almost inevitable is ambiguous and a number of
different criteria like time to collision or dynamical load have
been proposed.

A common idea to assess a situation is to continuously
determine if there is any collision-free trajectory or if there
is none, and assess all the possible maneuvers found. Most
motion planning algorithms applicable to cars cannot finally
answer the question of the existence of such trajectories. Res-
olution complete lattice planners, which search a deterministic
subset of the input space or the state space, find a feasible solu-
tion if the resolution is made sufficiently small [2]. Probabilis-
tically complete randomized planners eventually converge to a
solution as the number of samples is increased [2]. Both may
find a solution to a planning problem in finite time, but if they
do not, we cannot conclude about the existence or nonexistence
of a solution. Complete algorithms like decomposition-based
planners are difficult to apply since computational complexity

restricts their use to low-dimensional problems with simple
motion models.

In this paper, we address the problem of proving the nonex-
istence of any evasive trajectory using reachability analysis.
The reachable set is defined as the set of all states that can be
reached from an initial set of states at a given time and without
a collision. Both underapproximation and overapproximation
of this set are useful to a planner since they provide a lower and
an upper bound of the existence and nonexistence of feasible
trajectories. A nonempty underapproximated set indicates the
existence of a feasible trajectory and may reduce false inter-
vention. An empty overapproximated reachable set shows that
a collision is inevitable. The system may intervene earlier to,
at least, mitigate the collision. Since the overapproximation of
the reachable set shows the upper bound of states that can be
reached at a point in time, it can be used to identify possible
goal states at the end of the planning horizon and guide the
trajectory planner.

II. RELATED WORK

To assess the severity of a traffic situation, a common
approach is to evaluate a set of preselected or sampled evasive
trajectories. A typical selection for evasion maneuvers are
strong steering to the left and right, braking, or combined
steering and braking maneuvers [3], [4]. By checking each
maneuver for collisions, potential evasive trajectories are iden-
tified. They are evaluated by their dynamical properties like
longitudinal and lateral acceleration, jerk, or steering angle
rate. Based on one or more of these values, the decision to
intervene is made if no maneuver or only maneuvers with
uncommonly high dynamical load can avoid a collision. Other
common quantities to assess the risk include e.g. variations of
time to collision [5].

A low number of simple, but carefully selected maneuvers,
have the advantage that they need little computational power
and are readily deployed in current production cars. Due to
their simplicity, they cannot deal with the diversity of more
complex traffic situations [6]. More elaborate techniques must
be applied to further increase the capabilities for evaluating
situations with several dynamic objects and to plan appropiate
trajectories considering follow-up collisions. A combinatorial
search is used in [6], [7] which passes each obstacle either
to the left or right. The resulting trajectories are built by
concatenation of all combinations of passing maneuvers. In
[6], [7] the problem is simplified by decoupling longitudinal
and lateral motion. However, this can yield to non-drivable

trajectories. An advanced search on state lattices as presented
in autonomous driving [8], [9] seems difficult to apply. In
emergency situations we expect that an evasion trajectory is
not necessarily aligned with a lane and will have to pass
very narrow passages in the state space. This would require
a prohibitively dense lattice. Also, model predictive control
is proposed to plan trajectories and assess their risk [10].
Nevertheless, it needs a high-level planner which selects a
homotopic path. This method is intrinsically unsuitable for
choosing to pass an obstacle on one side or the other as
both correspond to a local optimum. A comparison of the
approaches can be found in [11].

If we only consider a subspace of all possible actions, the
host vehicle might perform well in a wide range of scenarios.
Yet, it does not provide any formal guarantuee that in some
cases there is actually an evasive maneuver which just has
not been found yet or a guarantee that definitely none exists.
Furthermore, these methods are limited to a finite time horizon
only. To formally verify safety in motion planning, the concept
of Inevitable Collision State (ICS) was introducted in [12].
An ICS is defined as a state, which – whatever input is
selected – eventually ends in a collision. Similar concepts
under different names are known, e.g. [13]. Although the ICS
concept is theoretically sound, it is difficult to determine the
set of ICS efficiently, except for a number of simple scenarios
and motion models. Even for a bicycle motion model in a
moderately complex static scenario, it is hard to calculate the
set of ICS in a timely manner [14]. Also, for all arbitrary time-
dependent obstacles, technically, their future evolution must be
known for an infinite time horizon, which is impossible for
obvious reasons [15]. Approximations of ICS set may lead to
similar problems as the evaluation of a subset of maneuvers
as mentioned above.

In this work we present an algorithm which provides an
upper bound of the set of all collision-free trajectories with
bounded absolute acceleration. Rather than evaluating a num-
ber of single trajectories, we compute an overapproximation
over the whole set of trajectories similar to the approach in
[16]. Thus, we can provide a formal guarantee that no solution
exists if the calculated set is empty. In contrast to the approach
in [16], we use a four-dimensional state space, which considers
both position and velocity, instead of only two-dimensional
regions of position. Also, we do not use general polygons
to describe the region, but a set composed of hyperrectan-
gles. Each hyperrectangle has a simple rectangular shape in
workspace, which can easily be checked for collision either
in occupancy grids or with polygonal obstacles. Thus, we can
seamlessly handle topological changes of the regions without
the difficulties that may arise in polygonal representations.

III. DEFINITIONS AND PROBLEM STATEMENT

The reachable set reach(R0,∆t) for an initial set of states
R0 and time step ∆t is defined as the set of all states that can
be reached at time t0 + ∆t for a feasible input u ∈ U .
reach(R0,∆t) ={
s

∣∣∣∣∣ ∃u ∈ U ∃s0 ∈ R0, s = s0 +

∫ t0+∆t

t0

f(s(t), u(t))dt

}
This definition does not consider the restrictions imposed by
the obstacles in the workspace. The obstacles are given by a

time-varying set O(t). At all times t of the planning horizon,
the occupied region of the vehicle A(s(t)) in the workspace
at state s(t) must not intersect with O(t)

∀t : A (s(t)) ∩ O(t) = ∅. (1)

We denote by reachO(R0,∆t) the subset of reach(R0,∆t)
of states which can be reached without collision (i.e. its
trajectory s(t) fullfils (1) for all times t ∈ [t0, t0 + ∆t]).

Even for rather simple motion models, the reachable set
soon becomes too complicated to be calculated and repre-
sented efficiently. This complication arises from the obsta-
cles, which forbid certain vehicle configurations. Therefore,
a simplified motion model and overapproximations for the
set representation are needed. Firstly, the set representation
must be suitable for the chosen motion model. Secondly, it
must be able to handle constraints of the plentiful shapes of
obstacles in the workspace. In the proposed algorithm, we
need efficient approximations for set union, intersection and
complement operations. A common choice for the reachability
of linear system are polyhedrons. We use more restricted
hyperrectangles since they provide fast overapproximations for
the set operations mentioned above.

A method to find useful approximations is to alter the
motion model. Additional constraints can be added to the
model to obtain an underapproximation or constraints can be
relaxed to find an overapproximation. We describe the host
vehicle dynamics by a two-dimensional double integrator in
x- and the y-direction with bounded accelerationẋẏẍ

ÿ

 =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

xyẋ
ẏ

+

0 0
0 0
1 0
0 1

(u1

u2

)
(2)

∥∥∥∥(u1

u2

)∥∥∥∥
∞
≤ a0 (3)

and state s = [x, y, ẋ, ẏ]T . The occupied region of the
car in the workspace is modeled by a disk A(s(t)) with
nonzero radius rcar of the inner circle of its footprint. The
technical requirement of nonzero radius is pointed out in
Sec. V-B. Clearly, this simple motion model does not account
for many dynamical restrictions of vehicle motion. However,
the limitation on acceleration is valid for all realistic vehicles.
As mentioned above, relaxing constraints of a more accurate
vehicle model yields an overapproximation of the reachable
set.

In the following sections, we present an algorithm to
calculate a conservative approximation of the reachable set
reachO(s0, t) for the simple motion model (2)-(3) under
consideration of obstacles (1). If the calculated set is empty for
a given planning horizon, it is guaranteed that no collision-free
trajectory exists, neither for the double integrator model nor
for any other more accurate but acceleration-bounded model.
In the event that the set is nonempty, it cannot be said if there is
a feasible trajectory, but if there exists any, it must be contained
in reachO(s0, t).

IV. REACHABLE SET WITH CONSTRAINED POSITIONS

First, we consider the following one-dimensional problem.
Given is the set of initial states at time t0 which are contained

in the position interval [x
(L)
0 , x

(H)
0] and the velocity interval

[v
(L)
0 , v

(H)
0]. We determine the set of all possible velocities

[v
(L)
1 , v

(H)
1] that can be reached within a given position interval

[x
(L)
1 , x

(H)
1] at time t1 = t0 + ∆t for the system dynamics

ẍ = u subject to the constraint |u| ≤ a0. We optimize over the
inputs u ∈ U to obtain the maximum and minimum velocity
at t1.

The Pontryagin principle yields a bang-bang input candi-
date function with switching time γ:

u(t) =

{
−a, t0 ≤ t < t0 + γ

a t0 + γ ≤ t ≤ t0 + ∆t

for maximum velocity. To simplify the notation, we define
[dL, dH] = [x

(L)
1 −x(H)

0 , x
(H)
1 −x(L)

0], which is the maximum
displacement to the left and to the right after ∆t. The position
x1 = x0 + v0 γ − a γ2

2 + a (∆t−γ)2

2 + (v0 − a γ) (∆t− γ)
after time step ∆t yields the set of possible switching times γ
depending on v0, x0 and x1. Using v1 = v0−a γ+a (∆t− γ)
we obtain the optimization problem

max
dx,v0

− a∆t+ v0 +
√

2a2∆t2 − 4v0a∆t+ 4adx

subject to vl ≤ v0 ≤ vh,
dL ≤ dx ≤ dH ,
1

2
a∆t2 + v0∆t ≥ dx,

− 1

2
a∆t2 + v0∆t ≤ dx,

where the latter two constraints follow from valid switching
times. Similarly, to minimize the velocity we use the candidate
function

u(t) =

{
a, t0 ≤ t < t0 + γ

−a t0 + γ ≤ t ≤ t0 + ∆t

and obtain

min
dx,v0

a∆t+ v0 −
√

2a2∆t2 + 4v0a∆t− 4adx

subject to vl ≤ v0 ≤ vh,
dl ≤ dx ≤ dh,

− 1

2
a∆t2 + v0∆t ≤ dx,

1

2
a∆t2 + v0∆t ≥ dx.

The Hessian shows that the objective term in the maximization
is convex in the interior of the feasible region, whereas the
minimization term is concave in the interior of the feasible
region. Thus, we have to search the boundary of the feasible
region for the optimal value.

We use this result in Sec. V to find an overapproximation
of all states that can be reached within a time step but are
constrained by some obstacles to lie in a given position interval
at t1:

reach([x
(L)
0 , x

(H)
0]× [v

(L)
0 , v

(H)
0],∆t)

∩ [x
(L)
1 , x

(H)
1]× [−∞, ∞]

⊂ [x
(L)
1 , x

(H)
1]× [v

(L)
1 , v

(H)
1]

1: procedure REACH(R0)
2: for i← 1 to steps do
3: Ri ← ∅
4: for all box(i−1) in Ri−1 do
5: box(i) ← PROPAGATE(box(i−1))
6: Ri ← {Ri, SPLIT(box(i))}
7: if |Ri| > maximum number of elements then
8: Ri ← REPACK(Ri)
9: end if

10: end for
11: end for
12: return R1,R2, . . . ,Rsteps
13: end procedure

Fig. 1. Algorithm to determine reachO

The one-dimensional problem can be readily extended to
the two-dimensional case by considering the x- and y-axis
separately. This is possible since by the infinity norm the
acceleration constraint (3) applies to the x- and y-direction
independently.

V. ALGORITHM

We now describe how we overapproximate the set
reachO(R0,∆t) introduced in Sec. III. It is assumed that a
function, which provides collision checks of an axis-aligned
rectangle with static and dynamic obstacles at any time step,
is given. The function should report about any intersection
with an obstacle and whether the rectangle is fully covered
by the obstacle. In our implementation, we use summed area
tables for checks with an occupancy grid [17], which facilitates
constant time collision lookup, and the separated axis theorem
for intersection checks with convex polygonial obstacles [18].

The main idea is to overapproximate the reachable set by
a collection of sets of simple shapes. Each element of this
collection is a four-dimensional hyperrectangle in state-space
defined by an interval for each state variable x, y, ẋ, ẏ. In
the following a hyperrectangular subspace at time t is inter-
changeably denoted as hyperrectangle, box or element rt. The
union of elements

⋃
i r

(i)
t defines the approximated reachable

set reachO at time t.

Fig. 1 shows the algorithm. Starting with an initial state s0,
the algorithm calculates at each time step the reachable set
using the boxes from the previous time step (line 5). If the
projection of a box into the position domain collides with an
obstacle, it is replaced by a set of new noncolliding boxes
(line 6). In most scenarios, this yields a rapidly increasing
number of boxes due to frequent collisions. To keep the total
number of elements tractable, the set of boxes is redistributed
to a lower number of boxes covering the original set if a
maximum number of elements is exceeded (lines 7-8). Each
step is described in detail below.

Fig. 2. Before splitting (left) and after (right); green boxes denote the
reachable region in the position domain at the current ∆t; black rectangles
denote obstacles

Fig. 3. Before repacking (left) and after (right); green boxes denote the
reachable region in the position domain at the current ∆t; black rectangles
denote obstacles

A. Propagation

A hyperrectangle is propagated according to the integration
of the transition equation (2):

x
(L)
t+∆t = x

(L)
t + v

(L)
t ∆t− 1

2
a∆t2

x
(H)
t+∆t = x

(H)
t + v

(H)
t ∆t+

1

2
a∆t2

v
(L)
t+∆t = v

(L)
t − a∆t

v
(H)
t+∆t = v

(H)
t + a∆t

The y-direction is updated similarly. The superscript denotes
the upper and lower limit of the hyperrectangle.

B. Splitting

Whenever the projection of a hyperrectangle intersects with
an obstacle in the workspace, the box is replaced by a set of
boxes with the following property: Any state in the original
box is either contained in one of the new boxes or its distance
to an obstacle is smaller than the radius of the inner circle
of the robot footprint rcar (Fig. 2). Since, if the distance
is smaller, the state collides and can be removed from the
set. Using the inner circle of the robot footprint yields to an
overapproximation of the reachable set.

We use a similar scheme as in quadtrees to split a box in the
position domain [19]. The covered region is divided into four
subregions until the subregion is collision free, fully covered
by an obstacle, or colliding and its diagonal is less than rcar.
The latter terminal condition guarantees that splitting is finite
and each box has a minimum size. After the box is split in
the position domain, we restrict the set of possible velocities
using the result from Sec. IV.

C. Repacking

In common scenarios the number of elements increases in
each step due to collisions. The purpose of the repacking step
is to keep the number of elements tractable. A set of boxes is
replaced by another set with a lower number of boxes which
cover the original set. In general, this is at the expense of
loosing accuracy. In our implementation we use a line-sweep
algorithm and a segment tree to merge all boxes in the position
domain to orthogonal polygons and split these polygons again
to rectangles (Fig. 3) [20]. An orthogonal polygon is one whose
edges are aligned to two orthogonal axes. From each of the
newly created rectangles we create a new box and assign to
it a velocity region by merging all velocities from intersecting
original boxes.

Before repacking, the area in the spatial domain of each
box is increased such that the boundary lies on a grid. This is
needed as otherwise slightly misaligned (real-valued) region
boundaries cannot be efficiently merged. As can been seen
in Fig. 3, the new boxes may overlap with obstacles. This is
admissible since we calculate an overapproximation.

VI. EVALUATION

This section shows the output of the algorithm for a
simulated scenario with two lanes. The host vehicle is driving
behind vehicle A, which suddenly brakes. Vehicle B is driving
on the second lane in the opposite direction and passes both
vehicles at about the same time. The border of the road is
modeled by a set of static obstacles (see Fig. 4).

We predict the future positions of other vehicles using a
simplified approach from [21]. It is assumed that both vehicles
stay on the lane but can arbitrarily accelerate or brake within
given bounds. Using the currently perceived velocity, a worst
case prediction is made by using a dynamical model with
a maximum acceleration and braking capability of 10 m/s2.
These regions are marked in red. Note that the regions grow
with time.

We choose a propagation time step of 150 ms, a maximum
number of 200 elements before repacking, a maximum accel-
eration and braking capability of 9 m/s2 for the host vehicle,
a discretization grid before repacking of 1.0 m and the inner
circle of the car of 1.0 m. The determination of reachO for a
time horizon of 3 seconds (20 steps) took several seconds in
our MATLAB implementation. The current implementation is
not optimized. We expect that the runtime can be significantly
reduced, particularly a large part of the algorithm can be easily
parallelized.

Fig. 4 shows the resulting overapproximation of the reach-
able set for different ∆t in position domain. The color rep-
resents the minimum velocity in x-direction (bright green for
slower, dark green for faster). As can be seen, the algorithm
implicitly covers all maneuvers such as braking or steering.
The final set at ∆t = 3 seconds shows that at most a braking
maneuver exists. All possible goal states of an underlying
trajectory planner must be within this region.

In Fig. 5, we compute reachO(R0(t), 3 s) for a three-
second time horizon at different initial points in time t =
{t1, t2, t3} of the scenario. By checking reachO(R0(t), 3 s)
the algorithm shows that in Fig. 5b overtaking and braking

host vehicle
vehicle A

vehicle B
road boundary

Fig. 4. Initial scenario and reachO(R0,∆t) at different ∆t = 0.6, 1.2,
1.8, 2.2, 2.6 and 3 seconds with two time-varying obstacles (red); the road
boundary is modeled by a set of static obstacles (black)

may be possible; in Fig. 5c at most braking is possible; and
in Fig. 5d it leads inevitably to a collision since the final
set is empty. Accordingly, the system should not brake later
than t2 to avoid the collision, or at t3 to at least mitigate the
collision. Fig. 6 shows the narrow passage that must be passed
for overtaking for initial time t1. At t1 + 1.8 s the reachable
region splits into two parts.

t1
t2
t3

t1
t2
t3

t3
t2
t1

(a) initial scenario at t1, t2 and t3

(b) t1: reachO(R0(t1), 3 s)

(c) t2: reachO(R0(t2), 3 s)

(d) t3: reachO(R0(t3), 3 s)

Fig. 5. Scenario at three different initial times (a), and corresponding
reachO(R0(t), 3 s). Either braking or overtaking possible (b); only braking
possible (c); inevitable collision (d)

Fig. 6. t1: reachO(R0(t1), 1.8 s); narrow passage that must be passed at
t1 + 1.8 s for overtaking (cf. Fig. 5b)

We make a short remark on the infinity norm in the
acceleration constraint (3) of the motion model. The norm
‖·‖∞ simplifies the calculation of the velocities since the x-
and y-direction can be considered independently. Also, the
result depends on the chosen coordinate system as a rotation

of the x- and y-axes yields a slightly different result, which
is nevertheless still a valid overapproximation. Restricting
the acceleration by the ‖·‖2 norm would be more realistic
according to the friction limit given by Kamm’s circle. In
this norm, the reachable regions correspond to circles in the
position domain instead of squares [16] and yield the same
result independent of the chosen coordinate axis. However,
first tests show that it is difficult to apply this norm in the
splitting and repacking part of the presented algorithm (see
Sec. V-C) where we need to efficiently replace a set of circles
by another set of circles.

VII. CONCLUSION

An algorithm to overapproximate the set of all states that
can be reached at a given time by an acceleration-bounded
vehicle has been presented. The most common approach to as-
sess the severity of a traffic situation and to find an emergency
maneuver is by evaluating a set of possible evasive trajectories
for a finite time horizon. By searching these candidates in the
subspace of all trajectories, it may indicate the nonexistence
of a collision-free trajectory but cannot finally guarantee it. As
opposed to this, the proposed algorithm works on the whole set
of trajectories. It cannot prove that there is a feasible trajectory,
but it gives an upper bound and thus it can show if no feasible
trajectory exists. Also, the calculated approximation of the
reachable set may be used as a heuristic for an informed
search or to find an initial solution for an optimization-based
trajectory planner as it is guaranteed that the solution must be
contained in this set.

The algorithm has been evaluated in a simulated scenario
with two dynamic objects within a set of static obstacles. Dif-
ferent stages of the scenario have been shown. The algorithm
can prove when overtaking, braking and finally avoiding a
collision are no longer possible. The accuracy of the algorithm
from coarse to fine can be balanced against the computational
effort by adjusting a low number of parameters. The algorithm
supports all main types of obstacle representation including
time-varying occupancy grids or object lists of polygonal
shape. It scales well with the number of dynamic obstacles.
Also, it is not restricted to specific structure in environments
like lanes.

As a future work, we wish to combine our approach with
a trajectory planner. We want to investigate further the benefit
from the reachable set information on different underlying
planning algorithms.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support by
the German Research Foundation (DFG) AL 1185/3-1.

REFERENCES

[1] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and
H. Winner, “Three decades of driver assistance systems: Review and
future perspectives,” IEEE Intell. Transp. Syst. Mag., vol. 6, no. 4, pp.
6–22, 2014.

[2] S. M. LaValle, Planning algorithms. Cambridge University Press,
2006.

[3] M. Brannstrom, E. Coelingh, and J. Sjoberg, “Model-based threat
assessment for avoiding arbitrary vehicle collisions,” IEEE Trans. Intell.
Transp. Syst., vol. 11, no. 3, pp. 658–669, 2010.

[4] N. Kaempchen, B. Schiele, and K. Dietmayer, “Situation assessment
of an autonomous emergency brake for arbitrary vehicle-to-vehicle
collision scenarios,” IEEE Trans. Intell. Transp. Syst., vol. 10, no. 4,
pp. 678–687, 2009.

[5] A. Tamke, T. Dang, and G. Breuel, “A flexible method for criticality
assessment in driver assistance systems,” in IEEE Intelligent Vehicles
Symposium, 2011, pp. 697–702.

[6] A. Eidehall, “Multi-target threat assessment for automotive applica-
tions,” in IEEE Int. Conf. on Intelligent Transportation Systems, 2011,
pp. 433–438.

[7] C. Schmidt, Fahrstrategien zur Unfallvermeidung im Straßenverkehr
für Einzel-und Mehrobjektszenarien. KIT Scientific Publishing, 2014,
vol. 30.

[8] J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast trajectory
planning in dynamic on-road driving scenarios,” in IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, 2009, pp. 1879–1884.

[9] M. McNaughton, C. Urmson, J. Dolan, and J.-W. Lee, “Motion planning
for autonomous driving with a conformal spatiotemporal lattice,” in
IEEE Int. Conf. on Robotics and Automation, 2011, pp. 4889–4895.

[10] S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma, “An
optimal-control-based framework for trajectory planning, threat assess-
ment, and semi-autonomous control of passenger vehicles in hazard
avoidance scenarios,” International Journal of Vehicle Autonomous
Systems, vol. 8, no. 2, pp. 190–216, 2010.

[11] D. Madas, M. Nosratinia, M. Keshavarz, P. Sundstrom, R. Philippsen,
A. Eidehall, and K.-M. Dahlen, “On path planning methods for auto-
motive collision avoidance,” in IEEE Intelligent Vehicles Symposium,
2013, pp. 931–937.

[12] T. Fraichard and H. Asama, “Inevitable collision states - a step towards
safer robots?” Advanced Robotics, vol. 18, no. 10, pp. 1001–1024, 2004.

[13] I. M. Mitchell, “Comparing forward and backward reachability as tools
for safety analysis,” in Hybrid Systems: Computation and Control.
Springer, 2007, pp. 428–443.

[14] A. Lawitzky, A. Nicklas, D. Wollherr, and M. Buss, “Determining states
of inevitable collision using reachability analysis,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2014, pp. 4142–4147.

[15] R. Parthasarathi and T. Fraichard, “An inevitable collision state-checker
for a car-like vehicle,” in IEEE Int. Conf. on Robotics and Automation,
2007, pp. 3068–3073.

[16] C. Schmidt, F. Oechsle, and W. Branz, “Research on trajectory planning
in emergency situations with multiple objects,” in IEEE Int. Conf. on
Intelligent Transportation Systems, 2006, pp. 988–992.

[17] F. C. Crow, “Summed-area tables for texture mapping,” in Proc. of
the 11th Annual Conference on Computer Graphics and Interactive
Techniques. ACM, 1984, pp. 207–212.

[18] S. Gottschalk, M. C. Lin, and D. Manocha, “Obbtree: A hierarchical
structure for rapid interference detection,” in Proc. of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques. ACM,
1996, pp. 171–180.

[19] R. A. Finkel and J. L. Bentley, “Quad trees: a data structure for retrieval
on composite keys,” Acta Informatica, vol. 4, no. 1, pp. 1–9, 1974.

[20] W. Lipski and F. P. Preparata, “Finding the contour of a union of iso-
oriented rectangies,” Journal of Algorithms, vol. 1, no. 3, pp. 235 –
246, 1980.

[21] M. Althoff, D. Hess, and F. Gambert, “Road occupancy prediction of
traffic participants,” in IEEE Int. Conf. on Intelligent Transportation
Systems, 2013, pp. 99–105.

