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Abstract—Ridesharing offers the opportunity to make more
efficient use of vehicles while preserving the benefits of individual
mobility. Presenting ridesharing as a viable option for commuters,
however, requires minimizing certain inconvenience factors. One
of these factors includes detours which result from picking up
and dropping off additional passengers. This paper proposes a
method which aims to best utilize ridesharing potential while
keeping detours below a specific limit. The method specifically
targets ridesharing systems on a very large scale and with a high
degree of dynamics which are difficult to address using classical
approaches known from operations research. For this purpose,
the road network is divided into distinct partitions which define
the search space for ride matches. The size and shape of the
partitions depend on the topology of the road network as well as
on two free parameters. This allows optimizing the partitioning
with regard to sharing potential utilization and inconvenience
minimization. Match making is ultimately performed using an
agent-based approach. As a case study, the algorithm is applied
to investigate the potential for taxi sharing in Singapore. This is
done by considering about 110 000 daily trips and allowing up to
two sharing partners. The outcome shows that the number of trips
could be reduced by 42% resulting in a daily mileage savings of
230 000 km. It is further shown that the presented approach
exceeds the mileage savings achieved by a greedy heuristic by 6%
while requiring 30% lower computational efforts.

Index Terms—Network partitioning, optimization algorithm,
dynamic ridesharing, taxi sharing, multi-agent systems.

I. INTRODUCTION

IN recent years, urbanization and economic growth have led
to a rapid increase in the demand for mobility causing many

urban transportation systems to operate at their capacity limits.
As the potential for scaling-up the infrastructure is limited and
subject to spatial and economic constraints, solutions for a more
efficient utilization of the existing resources is required.
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One possibility for mitigating the strain on urban infrastruc-
tures while preserving the benefits of individual mobility is the
introduction of mobility services which leverage on the grow-
ing availability of real-time information. An example of such
individualized mobility services is real-time ridesharing which
includes different variants such as peer-to-peer ride sharing, taxi
sharing and smart on-demand buses.

One key challenge common to all variants of real-time
ridesharing is to maximize the capacity utilization of vehicles
while minimizing the inconvenience resulting from detours.
As discussed in Section II, especially for the case of large-
scale systems with dynamic transportation demand and ve-
hicle availability, practically implementable methods leading
to good results have not yet been established. Therefore, in
Section III, an approach is presented which addresses this
issue by partitioning the road network into regions that satisfy
certain inconvenience constraints. The partitioning reduces the
size of the search space in which the match making algorithm
described in Section IV attempts to find matches. Two free pa-
rameters involved in the partitioning process allow optimizing
the partitioning with regard to maximizing the outcome of the
match making procedure as described in Section V.

As an application, this method is employed in Section VI
for quantifying the potential for taxi sharing in Singapore. This
application scenario is motivated by the fact that despite the
large number of taxis in many megacities (28 000 in Singapore
in 2013 [1]), supply bottlenecks during peak hours tend to lead
to significantly reduced service quality. Given the availability
of efficient match making algorithms, these shortfalls could be
mitigated if passengers with overlapping routes would make use
of the possibility to share rides.

To assess the performance of the partition-based approach,
Section VII provides a comparison to a greedy heuristic build-
ing on the results of the Singapore case study. In Section VIII,
the results are discussed and conclusions as well as an outlook
on future work are ultimately given in Section IX.

II. RELATED WORK

Dynamic ridesharing systems are related to a class of prob-
lems known as vehicle routing problems (VRP). These prob-
lems exhibit a large variety of different characteristics and have
been subject to intensive research in recent decades.

A. General Context

A number of taxonomies and reviews have attempted to
develop classifications of the various types of problems. A
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taxonomic review on the VRP was published by Eksioglu et al.
[2] which on one hand provides an overview of previous
classifications [3]–[9] and on the other suggests a compre-
hensive categorization scheme aiming to achieve complete
coverage for all varieties of VRPs. Review papers on VRPs
were published by Laporte [10] who gives an overview of
exact algorithms, heuristics and metaheuristics, by Vidal et al.
[11] whose focus are heuristics and by Pillac et al. [12] who
investigate dynamic VRPs (D-VRP). Surveys on the class of
pickup and delivery problems (PDP) are provided by
Berbeglia et al. [13], [14], Savelsbergh et al. [15] as well as
Parragh et al. [16], [17]. PDPs are problems where goods need
to be picked up at a certain location and be delivered to another
one which makes them conceptually related to ridesharing
problems. This is particularly the case for the dynamic variant
of the problem where transportation requests are generated over
time in contrast to the static case where the entire problem is
known beforehand. Methods addressing these dynamics can be
found in [18]–[24].

A generalization of PDPs are dial-a-ride problems (DARP)
which include additional inconvenience constraints that need to
be considered when transporting passengers rather than goods
[25]. DARPs consist of creating vehicle routes and schedules
for passengers with a specific origin-destination pair and cer-
tain requirements regarding pickup and drop off time. Their
objective is to minimize the transportation costs under a set
of constraints. The formulation of the optimization problem
can take a large variety of different forms, depending on what
attributes are considered relevant for the quality of service.
These attributes can for example be waiting time, maximum
ride time or the difference between actual and desired arrival
time. A comprehensive review on quality of service aspects and
a categorization of previous work can be found in [26]. Just as
PDPs, DARPs can either have a static or a dynamic character.
Furthermore, it can be distinguished between a simple single-
vehicle DARP and the more common multi-vehicle DARP
[25]. Exact solutions based on dynamic programming for small
instances of the static single-vehicle DARP had been developed
early [27], [28] and were adapted to the dynamic variant of the
problem as well [27]. Significantly more research was carried
out on variants of the multi-vehicle DARP. For the static variant,
starting from the solution proposed by Jaw et al. [29], a great
number of heuristics have been developed which are explained
in further detail in [16], [17], [25]. The dynamic multi-vehicle
DARP was addressed by a smaller number of studies, including
the work on heuristics in [30]–[32] where instances of up to
a several hundred users could be solved. It, however, needs
to be mentioned that most so-called dynamic DARPs are only
dynamic in a sense that in addition to a static case a fraction
of requests may occur or be canceled during operation time.
Purely dynamic problems, in contrast, are comparably new and
primarily arise from the increasing ubiquity of smart mobile
devices [33]. With regard to DARPs, in [25] it is concluded
that the number of solution techniques for the static problem
is fairly abundant with methods able to solve instances with
several hundred users. In contrast, dynamic problems remain
hard to address and are therefore considered to deserve greater
research efforts.

B. Ridesharing Systems

Despite certain similarities, dynamic ridesharing systems
differ from conventional DARPs in various aspects as pointed
out in Agatz et al. [34]. They consider one distinguishing factor
to be the supply of drivers and vehicles who in the typical
DARP belong to a company while they are independent entities
in a ridesharing system. This causes additional dynamics since
the appearance of drivers is subject to uncertainty. Furthermore,
new and more heterogeneous constraints may arise from indi-
vidual preferences of different drivers. Also, vehicles in ride-
share systems are not operated from depots but have unique
origin-destination pairs so that routing decisions need to be
evaluated as deviations from a driver’s direct path. Methods
developed for DARPs are therefore not universally applicable
to ridesharing systems.

Surveys specifically on ridesharing were recently published
by Agatz et al. [34] with a focus on optimization techniques
and Furuhata et al. [35] who adopt a more practical perspective.
Furuhata introduces a classification framework for ridesharing
services which includes business functions such as pricing
strategies and payment methods as well as issues of trust
and privacy. While they identify a number of soft factors that
pose challenges to the practical implementation of ridesharing
concepts, their view on technical issues concludes that central
research questions lie in the development of real-time bid-
ding agents which implement automated rideshare exchange
markets. This issue has recently been addressed by research
presented in [36] and [37] which will be briefly discussed at
a later stage.

With regard to optimization, Agatz et al. arrive at two main
conclusions which are well in accordance with most findings
on other types of VRPs mentioned above. The first aspect is
that existing approaches may not be capable of solving realistic-
size instances which is why a clear need for fast and practically
implementable approaches is identified. A second aspect con-
cerns scalability issues of existing centralized approaches. In
this regard, it is concluded that centralized methods may not
be feasible for addressing ridesharing problems in larger urban
areas. Therefore, a need for decentralized approaches which
reduce the size of the search space is derived. Addressing these
two aspects as well as the challenges arising from the dynamics
of the problem are the main contributions of the approach
presented in this paper.

C. Categories and Examples of Ridesharing Systems

Ridesharing problems can be classified according to a num-
ber of different criteria. According to Agatz et al., problem vari-
ants can be distinguished by the number of drivers and riders
involved. This leads to four different categories, encompassing
single rider—single driver, single rider—multiple driver, mul-
tiple rider—single driver and multiple rider—multiple driver
assignments. While the approach presented in this paper is not
generally limited to a particular category, the case study in
Section VI presents a single rider—single driver assignment.
This is, in fact, an assignment problem which is discussed in
greater detail in the review conducted in [38].
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Another classification is described by Yan et al. [39] who
distinguish three types of models based on the deviation of
passengers’ routes. These models are 1) the many origins to
one destination (MOOD) model, 2) the one origin to many
destinations (OOMD) model, and 3) the many origins to many
destinations (MOMD) model. In addition, a fourth basic model
can be defined which is 4) the one origin to one destination
(OOOD) model.

There have been a number of commercial applications imple-
menting the OOOD model. Most of these applications operated
in a way that users could either create new rides by providing
their trip details and wait for others to join or choose to join an
existing trip themselves. One crucial limitation of these imple-
mentations was that the match making had to be conducted al-
most manually thus limiting their attractivity. An improvement
in this sense is the vHike system presented by Stach [40] which
transmits information via Bluetooth to potentially matchable
people nearby.

Due to their greater flexibility, implementations of the
MOMD model have undergone a recent increase in popularity.
An example for an MOMD model can be found in [41] where a
discrete event model is used to identify the best match and route
by minimizing the deviations from desired departure and arrival
times. Other examples in this context are startups like Sidecar,1

Flinc,2 and Carma3 which facilitate dynamic ridesharing using
location-aware mobile devices.

As for examples of an OOMD model, Chen [42] presents a
system in vehicular ad-hoc networks (VANET) which aims to
optimize fuel-savings. One characteristic of this system which
establishes a relation to the method presented in this work is that
it considers the road network topology by conducting match
making based on road network partitioning. This means that the
road network is divided into sub-areas in the form of a grid and
the system matches passengers not only traveling to the same
destination sub-area, but also to all sub-areas which share the
borders with the destination sub-area.

Car pooling applications which are often organized to facil-
itate the commute to work are implementations of the MOOD
model. An example for both an exact and a heuristic algorithm
addressing this problem can be found in [43]. There is also
some work which combines OOMD and MOOD models. For
example, Tao [44] implements a taxi sharing system where the
match making phase consists of enumerating all possible com-
binations from one origin to all destinations. The combination
which leads to the shortest path is then chosen as the solution.

Gidofalvi and Pedersen [45] use a mathematical approach
to solve the match making problem. Given a set of sharing
requests, a maximum taxi-share size k and a minimum savings
requirement, their algorithm is aimed at finding combinations
of passengers which yield the maximum financial benefit. The
algorithm first tries to find the best combination of sharing part-
ners in a group of k for every request, where ‘best’ is defined as
sharing the longest common route. For all these combinations,
the algorithm further tries to find the one with maximum overall

1http://www.side.cr
2http://www.flinc.de
3http://www.carmacarpool.com

savings. Since taxi fares are simply approximated by using the
linear distance between two locations, this may, however, lead
to sub-optimal results in practice. This is because cost typically
depends not only on the linear distance but also on the time
traveled, which is highly traffic dependent.

d’Orey [46] presents a taxi sharing algorithm with two parts,
namely a customer algorithm and a taxi algorithm. The cus-
tomer algorithm receives user-defined parameters such as ride
time or distance and sends the information to a selected range
of taxis. The taxi algorithm then calculates the optimal route
with minimum distance.

Geisberger et al. [47] describe a fast detour computation
algorithm to minimize the additional travel distance resulting
from sharing a ride. Once a sharing request is generated, it
is compared to all existing requests to find the combination
with the shortest detour. This is done by performing a routing
calculation whenever a new sharing request appears. Since the
algorithm is aimed at finding an optimal solution, the required
exhaustive search through all possible solutions may become a
bottleneck in case of a large search space though.

D. Agent-Based Approaches

While most approaches are implemented as classical central-
ized optimization problems, a way of better accounting for the
dynamics of ridesharing systems may be the use of agent-based
methods as also employed in this work. One example of an
agent-based approach was investigated by Mes et al. [48] who
compare an agent-based vehicle scheduling technique based on
Vickrey auctions with a classical look-ahead heuristic. In their
simulation study with about 20 automated guided vehicles, they
demonstrate that the multi-agent approach is less sensitive to
fluctuations of demand and supply and that it achieves higher
service levels than classical heuristics, particularly in the case of
greater dynamics. With regard to agent-based approaches, the
question arises how limited information provided to individual
agents influences the overall system performance. This issue
is addressed by Winter and Nittel [49] who consider a system
where autonomous agents are matched based on short-range
communication. In this context it is shown that a system built
on local communication does not perform significantly worse
than a system which has access to global information.

A frequently encountered issue regarding ridesharing sys-
tems is the question of fair pricing. In [36], Kamar and Horwitz
present a system where prices are negotiated according to a
Vickrey auction mechanism. This system dynamically creates
shared plans and calculates fair splits of payments. A drawback,
however, is that users do not have any influence on their assign-
ment which may limit the system’s attractiveness to travelers.
Also, its suitability for large-scale problems has not yet been
investigated.

The first drawback is resolved by the approach of Kleiner
et al. [37], who propose a dynamic ridesharing system based
on auctions with a second-price scheme. In contrast to the
approach presented by Kamar and Horwitz, this system is
able to consider individual user preferences regarding sharing
partners and personal valuations for specific rides. By tuning
the maximum allowed detour, the system allows to tradeoff the

http://www.side.cr
http://www.flinc.de
http://www.carmacarpool.com
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minimization of total vehicle kilometers with the probability
of successful matches and thus facilitates achieving a critical
mass. Drawbacks of the concept are that it has only been
implemented as a single rider—single driver assignment and
that investigations in a large-scale system are still pending.

E. Partitioning Approaches

One common problem of most existing ride matching tech-
niques is their lack of scalability. Resolving this issue requires
approaches to either parallelize and balance the computing
workload or to reduce the search space.

Early attempts to reduce the size of the problem were con-
ducted in the context of PDPs. One example for this approach
is the work by Bodin and Sexton [50] who formed clusters of
users to be served by the same vehicle. This idea was further
developed by Dumas et al. [51] and later by Desrosiers et al.
[52], Ioachim et al. [53] and Borndörfer et al. [54] who used
mini-clusters of users to be served within the same time frame
in the same area.

Another way of reducing the problem size is to partition the
road network into different regions. A number of approaches
using this principle to balance computing workload is dis-
cussed by Möhring et al. [55] who compare several partitioning
schemes with regard to speeding up the Dijkstra algorithm.
These schemes partition the road network into grid, Quad-tree,
Kd-tree and METIS [56] structures with the aim of balancing
the number of vertices or edges in each partition. Another
partition-based approach for PDPs is presented in [22]. They
define a route as a sequence of 3-D boxes with the rectangular
base representing the geographical area and the height defining
the time span at which the zone is serviced by a vehicle. New
pickups or drop offs are added to an existing zone if they are
spatially and temporally close thus expanding the size of the
zone. Once a zone exceeds a predefined size, it is split into two.
In [24], the fuzzy C-means (FCM) method presented in [57]
is employed to divide an area into multiple, homogeneous and
non-overlapping sub-areas. The fuzzy zones are created based
on historical data on origin-destination pairs so that they serve
for estimating the probability of the occurrence of new ride
requests.

An approach which is aimed at parallelizing the simulation
is presented by Wei et al. [58] who partition the network with
the objective of balancing the workload for each partition.
Another road network partitioning technique for the purpose
of employing a hierarchical path computation algorithm is
described by Gonzalez et al. [59]. In their work, roads are clas-
sified according to different categories such as highways, main
roads, neighborhood roads etc. which divide the road network
into areas belonging to different hierarchical levels. Another
example for this approach is a model developed by Zeng et al.
[60]. It is based on partitioning the road network into a grid
of rectangular tiles. The granularity of the grid is individually
adapted to each single sharing case with four different possible
resolutions ranging from (1 × 1) km to (10 × 10) km. A route
can then be expressed as a sequence of tiles which is referred to
as a corridor. For match making, only passengers whose origin
and destination lie inside the corridor of an existing trip are

Fig. 1. Example of a partition where a set of minor roads is surrounded by
major roads.

considered. While this approach is effective in regard to the
reduction of the search space, the choice of partition granularity
is somewhat arbitrary. The search space may therefore be either
too large resulting in too many solutions or too small which
may lead to good matches being filtered out. Furthermore,
due to their fixed quadratic shape, partitions do not account
for varying densities of the network so that the number of
nodes, links and ride requests may highly vary among different
partitions. This drawback common to a variety of partition-
based methods motivates the approach presented in this paper
which is discussed in greater detail in the following section.

III. NETWORK PARTITIONING ALGORITHM

The approach presented in this paper builds on the method
described by Zeng [60]. In contrast to their work, however, a
partitioning procedure is defined which aims to create partitions
of which the shape represents the topology of the road network.
Due to the existence of two free parameters, the outcome of
the partitioning process can be tuned with regard to certain
objectives such as maximizing ride matches and minimizing
inconvenience caused by detours. Based on the partitioned
road network, a passenger’s route is described as a corridor
consisting of a sequence of partitions. A match making al-
gorithm finally compares the corridors of different passengers
and identifies a match in case the destination of one passenger
is located within the other passenger’s corridor. Due to the
partitioning based on road network topology, matching partners
can be expected to reside in areas of the network which can
be conveniently reached so that the search space contains more
desirable solutions than in case of a partitioning consisting of a
simple rectangular grid.

One characteristic of a road network is its hierarchical struc-
ture which distinguishes different road categories, ranging from
highways to minor roads. Typically, a number of roads that
belong to a high category encloses a set of roads belonging
to a lower category. The partitioning algorithm exploits this
network characteristic by distinguishing three types of roads,
i.e., highways, major roads and minor roads. As illustrated in
Fig. 1, it then divides the network into partitions consisting of
minor roads which are enclosed by sets of major roads.

Defining partitions simply by using major roads is, however,
not always precise. This is illustrated in Fig. 1 where one
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Fig. 2. Buffer operation results in a bounding shape with a width
defined by α.

Fig. 3. Illustration of the buffer and union operation. Given a set of major
roads (a), a buffer operation creates a set of individual bounding shapes (b).
These bounding shapes are then combined by a union operation to obtain a
single boundary containing all major roads (c).

Fig. 4. Partition is scaled according to the parameter β (a). This re-
sults in partition overlaps which allow to match passengers from adjacent
partitions (b).

partition is surrounded by multiple parallel roads on either side.
Apart from the colored partition, this would create a number of
undesired small partitions in between those parallel roads. To
achieve a properly partitioned network, the partitioning process
therefore consists of three distinct steps which are explained in
the following paragraphs.

a) Step 1—Basic Partitioning: As illustrated in Fig. 2, the
first step employs a buffer operation which generates a bound-
ing shape around every major road. Subsequently, overlapping
bounding shapes are combined by performing a union operation
as illustrated in Fig. 3. The inner edge of a bounding shape then
defines a partition. The width of the buffer zones depends on
a parameter α which determines the granularity of the parti-
tioning and which will be used for partitioning optimization in
Section V.

b) Step 2—Partition Scaling: As a result of Step 1, adjacent
partitions are separated by a buffer zone of minimal width 2 · α.
To include this zone into the partitioned network, partitions
need to be expanded by β as illustrated in Fig. 4(a). The
minimum expansion to eliminate areas not contained in any
partition is given by β = α. With regard to ride matching,
however, also an expansion by β > α resulting in partition
overlaps may be beneficial. As shown in Fig. 4(b), these
overlaps may allow travelers residing near partition edges to
be matched with travelers in a neighboring partition and thus
increase their chances for a match. The degree of the overlap

Fig. 5. Illustration of how a partition (patterned area) is defined by four
major roads and their corresponding buffer zones (a). If α is too large, the
partition may disappear (b).

can be tuned by the parameter γ = β − α which will be subject
to the optimization discussed in Section V.

c) Step 3—Fixing of Artifacts: In a real-world road network,
partitions may be of very different sizes. As illustrated in Fig. 5,
small partitions could be lost if the value of α is large. In case
this is not compensated by a sufficiently high β, some roads
may not be contained in the partitioned network. To resolve
this issue, the buffer operation is also applied to the roads
which are not included in any partition. In case the resulting
buffer intersects with an existing partition, it is merged into this
partition using the union operation. If no overlaps are found, a
new partition is created. Other roads that may overlap with this
new partition are then merged into it using the union operation.

IV. MATCH MAKING ALGORITHM

The purpose of the match making algorithm is to identify
combinations of travelers who could share a ride. For matching
purposes, travelers are distinguished by three different cate-
gories. The first category consists of those travelers who are
just about to start their trip and are looking for a ride. The
second category comprises passengers who have started their
trip already but have not yet been matched. These travelers
are looking for another passenger to share their ride. Travelers
belonging to the third category have been matched already
and are not available for further matches. The match making
algorithm is invoked for every traveler k of the first category
who is about to start a trip. If another traveler j belonging to
the first or second category is found who fulfills the matching
criteria defined below, both travelers are matched and a new
corridor is calculated. If this causes the shared vehicle to
reach its capacity limit, both travelers are assigned to the third
category. If no match is found, agent k starts his own trip and
thus switches to category two. In the following, the criteria for
identifying valid matches are explained in further detail.

A. Corridor Subset Criterion

To be eligible for a match, both travelers need to reside in
the same partition by the time one agent is about to start a
trip. Furthermore, the routes of both travelers need to coincide
which requires the destination partition of one traveler being
a member of the corridor of the other. For each newly created
agent, the algorithm therefore iterates over all travelers in the
same partition and compares their respective corridors.
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Fig. 6. Example of a traveler j and a passenger k sharing a ride.

B. Inconvenience Criterion

As illustrated in Fig. 6, inconvenience arises from detours
required for picking up or dropping off passengers. As shown
in Fig. 6, there are two routing options for each pair of agents.
Since agent j has started the ride already, the first trip consists
of traveling from his current location J to the pickup location
K of agent k. Option (a) is then to first drop off agent j
at his destination J ′ and subsequently continue to agent k’s
destination K ′. Conversely, option (b) swaps destinations K ′

and J ′ so that k is dropped off before j

(a) J →K → J ′ → K ′

(b) J →K → K ′ → J ′.

While both options may be feasible for taxi sharing, rideshar-
ing involving a private vehicle may only allow for option (b) as
option (a) would require agent j to hand his vehicle to agent k.

The different options cause different inconvenience to the
travelers involved. With option (a), a passenger j traveling from
J to J ′ sharing a ride with another person k traveling from K
to K ′ needs to take a detour for picking up k. At the same time,
passenger k has to wait until j reaches his pickup location and
ultimately has to accept a detour for dropping off j. Option (b)
imposes an extra detour on the itinerary of j and removes the
detour from k’s route.

The resulting inconvenience in either case can be quantified
by the deviation of the new route from the direct way and
may be measured in various units such as extra travel time or
additional driving distance. Choosing travel time as the measure
of interest, a match is only considered feasible if the extra time
related to a shared ride remains below a certain inconvenience
limit Imax for both sharing partners. Solution (a) can therefore
only be feasible for j if

tJ→K
pickup + tK→J ′

shared − tJ→J ′

direct ≤ Imax (1)

with t denoting the travel time between the locations denoted
in the superscript. As agent k needs to wait for being picked up
and ultimately has to accept a detour via J ′, a second condition
for the feasibility of this solution is that

tJ→K
pickup + tK→J ′

shared + tJ
′→K′

dropoff − tK→K′

direct ≤ Imax. (2)

Following the same argumentation, solution (b) is only feasi-
ble if for agent j the entire trip only exceeds the duration of the

direct trip J → J ′ by Imax so that

tJ→K
pickup + tK→K′

shared + tK
′→J ′

dropoff − tJ→J ′

direct ≤ Imax. (3)

The condition that the waiting time tJ→K
pickup of agent k also

needs to be below Imax is implicitly contained in (3).

C. Mileage Savings Criterion

From a system perspective, a match is desirable if the total
driving distance of the shared ride dmatchtotal is shorter than the
sum of the direct individual trips dK→K′

direct and dJ→J ′
direct. Hence, a

last feasibility condition for any option (a) or (b) is that

d
(a,b)
match total < dK→K′

direct + dJ→J ′

direct. (4)

It may be the case that both options (a) and (b) lead to
feasible solutions and that there are multiple agents having a
feasible match with agent k. Among all feasible solutions, one
is chosen which maximizes the driving distance savings. These
savings are expressed by the difference between the sum of
the distances of the direct individual trips dK→K′

direct , dJ→J ′
direct and

the total length of the shared ride dmatch total, leading to the
condition

maximize
(
dK→K′

direct + dJ→J ′

direct − dmatch total

)
. (5)

V. OPTIMIZATION METHODOLOGY

The main metrics of interest are the mileage savings S and
the sharing potential R. The mileage savings S indicate how
many kilometers of driving are saved by sharing rides. They
are determined by the accumulated daily mileage D of all
agents traveling individually as compared to the corresponding
mileage D′ when employing ridesharing:

S =
D −D′

D
. (6)

In turn, the sharing potential is expressed by the number of
matches M divided by the entire number of trips N :

R =
M

N
. (7)

As a match reduces the number of trips by one, R also
denotes the relative trip reduction achieved by ridesharing.

The objective is to maximize S while keeping the inconve-
nience Ik imposed on each passenger k below a certain limit
Imax. The probability for finding a match depends on number,
size distribution, and shape of the partitions which are in turn
a function of α and γ. A large value for α is expected to yield
larger partitions which lead to an increased size of the search
space. This implies a higher sharing potential which in turn can
be expected to yield higher mileage savings. The same applies
to large γ which cause partition overlaps that also increase the
pool of potentially matchable travelers. While the number of
possible matches increases with α and γ, the growing partition
size also leads to an increasing share of matches with detours
greater than the inconvenience limit Imax. Finding the best
solution in this growing search space therefore also comes with
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increased computational efforts. Finding an optimal partition
configuration while keeping inconvenience below a certain
limit translates into the optimization problem

maximize
α,γ

S(α, γ) (8)

subject to Ik ≤ Imax ∀ k. (9)

The presented approach aims at identifying a partitioning
of the road network which during system operation yields
a good exploitation of the sharing potential under the given
limitations. For this purpose, a great number of different parti-
tion configurations with each configuration corresponding to a
specific tuple (α, γ) are created. By means of simulation, these
configurations are then classified according to the optimization
problem defined above. The optimal partition configuration can
finally be used for both further in-depth simulation studies as
well as real-time ridesharing system operation.

VI. CASE STUDY FOR SINGAPORE

As an application to a real-world scenario, this methodology
was employed to investigate the potential for taxi sharing in
the city of Singapore. The simulation was performed using the
agent-based tool SEMSim [61]. SEMSim allows simulating a
large number of individual vehicles on the scale of an entire
city. Trips are generated according to an origin-destination ma-
trix which contains data on starting time, starting location and
destination of all trips. These trips are generated in real-time
so that the problem is purely dynamic. When a new agent is
created, N is incremented by one. At the same time, the system
checks whether there is another agent in the same partition who
could serve as a sharing partner according to the above defined
criteria. If a sharing partner is found, M is incremented by
one; otherwise the newly created agent starts his own trip. At
the same time, route lengths are calculated using the standard
Dijkstra algorithm to update the total mileage. To account for
limited vehicle capacities, each agent cannot be matched more
than once. In this sense, the investigated problem is a single
rider—single driver problem. According to the definition of the
sharing potential in (7), the fraction of shared rides out of the
entire number of trips is then given by 2 ·R.

In the first step, a road network of Singapore was partitioned
according to the method described in Section III. Initially,
for (α, γ) a range α ∈ [20, 600] m and γ ∈ [0, 1000] m with
a resolution of 20 m was chosen. The computations were
executed on a standard computer equipped with a 3.2 GHz quad
core Intel Xeon CPU, and 10 GB memory was used.

Fig. 7 shows the dependency of the number of partitions from
α. The number of partitions decreases with increasing α since
smaller partitions get aggregated at larger α values. As can be
observed from an analysis of partition size distributions, large
α lead to configurations where boundaries between partitions
are lost so that a small number of very large partitions emerges.
These partitions may expand over a large part of the network
and contain many of the smaller partitions as islands. Due to
their size, these partitions are not desirable since they contain
a large number of ultimately infeasible solutions. The remain-

Fig. 7. Number of partitions depending on α.

ing considerations are therefore restricted to an interval α ∈
[60, 180] m. The lower bound of this interval results from the
observation that smaller values lead to a network fragmentation
into regions of very small size which cannot be expected to
yield a sufficient number of matches.

The input for the travel demand is based on real-world traffic
data for Singapore. Building on this data, 50 000 agents which
perform a total number of about 110 000 daily trips were
simulated. As travel demand significantly fluctuates during the
course of a day, a period of 24 hours was investigated. For this
calculation, the parameters (α, γ) were restricted to an interval
α ∈ [60, 180] m. Since an increase of γ can be expected to yield
a growing sharing potential up to a certain threshold, γ was
successively increased up to a value where the sharing potential
saturated. As a tradeoff between computing time and accuracy,
the resolution of α was set to 40 m and the γ resolution
to 80 m.

The result of the simulation is shown in Fig. 8. The scale of γ
is cut off at a value where the sharing potential does not exhibit
any further increase. As shown in Fig. 8(a), increasing values
for α at low γ values lead to a significant sharing potential
increase. This is because increasing α causes small partitions,
which do not make any relevant contribution to the sharing
potential, to be merged to bigger ones. Towards larger α values,
this increase, however, also comes at the cost of a significant
run time increase caused by greater partition size.

At larger γ, the sharing potential is governed by γ so that the
value of α does not exhibit any considerable effect. Increasing
γ expands partitions so that small partitions either get large
enough to contribute to the sharing potential or get overlayed
by others. This increase saturates at a maximum sharing po-
tential of 42% around γ = 600 m where a further partition
size increase does not lead to any additional matches. The γ
dependency of the run time is low so that configurations with
large γ and moderate α values are preferable both regarding
sharing potential and computing time.

A similar dependency is observed for the mileage savings
depicted in Fig. 8(b). S ranges from 11% at low α and γ up to
20% for large γ values. This means that the best configuration
reduces the mileage driven by all vehicles in one day by
230 000 km compared to a scenario without ridesharing.

Fig. 9 shows sharing potential and mileage savings as a
function of the time of the day for the configurations where
sharing potential and mileage savings are the highest. It can
be seen that both R and S qualitatively follow the number of
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Fig. 8. Simulation results for the sharing potential (a) and the mileage savings (b) depending on α and γ at a maximum detour of 10 minutes per trip.

Fig. 9. Maximum sharing potential (dotted line), maximum mileage savings
(dashed dotted line) and number of hourly trips (dashed line) depending on the
time of the day.

started trips. This is expected since a larger pool of rides also
increases chances for a match. The increase is, however, not
proportional to the trip number. The maximum sharing potential
of 46% and the maximum mileage savings of 23% are achieved
in peak hours at 7am and 6pm but still remain at a notable
level above 36% and 14%, respectively during off-peak hours.
This shows that despite comparably low trip numbers, matching
chances remain considerably high.

In principle, different times of the day exhibit typical mobil-
ity patterns where the average flows of travelers have different
directions. It could therefore be expected that certain parti-
tion configurations might be more beneficial at certain times.
Choosing an optimal partition configuration for each hour of
the day, however, is observed to have a negligible effect on
the sharing potential. The most favorable configurations with
regard to the whole day therefore also belong to the most
favorable ones in each individual time interval.

The computing time required by the partitioning algorithm
shows a strong dependency on the choice of α. With small α
values, a fine-grained partitioning is created. This means that
the number of roads which need to be fixed in Step 3 discussed
in Section III is small. The opposite is the case for larger α
which lead to a greater number of roads that initially are not
contained in the partitioned network. As the buffer operation
fixing this issue is computationally expensive, the computing
time increases with α. In the interval α ∈ [60, 180] m, the

partitioning algorithm for one configuration terminates within
a time frame of one to ten minutes. As the partitioning can be
performed a priori and therefore needs to be done only once, the
only time critical part is the match making which is conducted
during system operation. This step, however, only needs a very
short time of about 1 ms per match so that real-time capability
also in large-scale systems is ensured.

VII. COMPARISON TO GREEDY HEURISTIC

Given the large scale and the dynamics of the problem,
comparing the presented method to classical approaches known
from operations research literature is not feasible. To still
provide an intuitive understanding of the performance of the
partition-based approach, a comparison to a simple greedy
heuristic was performed. For this purpose, this heuristic was
integrated into the simulation framework and applied to the
setup of the case study described above.

A. Greedy Algorithm

The concept of this heuristic is to search for possible
matching partners in the vicinity of an agent and to choose
the best among all feasible options. When a new agent k
is created, the first step is to identify all feasible matches
within a circle with radius r around the agent. In accordance
with the partitioning approach, this is done by assessing the
feasibility and optimality of a solution by the criteria defined in
Sections IV-B and IV-C. The main difference between this
approach and the partition-based method is that in this case
the search space is not determined by partitions adapted to the
structure of the road network. The resulting implications on
mileage savings S, sharing potential R, and computing time
are discussed in the following section.

B. Comparison of Results

For comparing both methods, the best partition configuration
identified in Section VI was compared to the greedy approach
using different search radii r. With regard to the mileage sav-
ings S it was distinguished between savings related to the first
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TABLE I
SHARING POTENTIAL AND TOTAL MILEAGE SAVINGS ACHIEVED BY THE

PARTITION-BASED METHOD AND THE GREEDY HEURISTIC

feasible match according to (1)–(4), S1, and savings resulting
from the best match according to (1)–(5), S2.

As shown in Table I, the sharing potential achieved by the
greedy approach increases with the search radius and ultimately
saturates at a value of R = 46%. This is slightly higher than
achieved by the partition-based approach where a maximum
sharing potential of 42 is obtained. This can be expected since
given a sufficiently high search radius, the greedy method will
certainly identify any feasible match while some matches may
be missed by the partition-based method.

Despite the lower sharing potential, the partition-based ap-
proach performs better with regard to mileage savings. In
relative terms, the maximum savings of the partition-based
method are 6% higher than those achieved by the greedy
approach. In absolute numbers, this corresponds to 14 600 km
lower daily mileage achieved by the partition-based method.
This can be explained by the fact that the greedy approach
may sometimes find matching partners which are comparably
far apart so that they are not considered by the partition-based
method. Matching these partners makes them unavailable for
later matches where a better sharing partner could be found.
While reducing r could be expected to remedy this issue, it is
observed that the further decrease of r also reduces the sharing
potential which in turn also leads to lower mileage savings. In
this sense, the partition-based approach tends to find the ‘better’
matches in terms of system performance.

Expectedly, the mileage savings S2 are greater than S1 for
both methods. For the greedy approach, the differences between
the first feasible and the best solution range from 4.4% to 7.5%
relative, for the partition-based method a 3.6% difference is
observed. These generally low numbers indicate that the feasi-
bility criteria (1)–(4) already perform a reasonable preselection
of solutions. The corridor subset comparison conducted by
the partition-based method, however, appears to perform better
since the difference between S1 and S2 remains lower than for
the greedy approach.

With regard to run time, the partition-based method is typ-
ically faster than the greedy approach. At r = 2 km where
the greedy approach performs best in terms of system mileage
savings, its run time is about 30% higher than for the partition-
based approach. This is because the greedy method generally
involves a larger number of computationally expensive routing
operations while the partition-based approach first reduces the
size of the search space by comparing partition corridor subsets.
While this difference can still be considered fairly small, it can

be expected to increase when considering higher numbers of
agents or more than two matching partners.

VIII. DISCUSSION

The outcome of the partitioning process shows a well-
partitioned network in accordance with the topology of the
road network. While increasing either α or γ yields higher
sharing potentials and mileage savings, choosing sufficiently
high values for γ makes the outcome independent of α as long
as α is kept in a certain range. In this sense, the choice for α
is crucial for achieving a network which is neither fragmented
into a large number of small partitions nor consists of a small
amount of large partitions. Given a reasonable choice for α,
increasing γ then maximizes sharing potential and mileage
savings. Raising γ beyond a threshold does not yield any further
gains but increases the run time of the algorithm.

With R = 42% and S = 20% corresponding to absolute
savings of 230 000 km per day, the results reveal a significant
potential for transportation system efficiency improvements
through ridesharing. Since in this case only single rider—single
driver assignments were considered, these numbers could be
further increased by allowing multiple matching partners. Also,
compared to 967 000 daily taxi trips in Singapore [1], the
amount of about 110 000 trips per day considered in this study
is fairly low. As it was shown that higher numbers of agents
increase sharing potential while detours can be expected to be
decreased, this is assumed to yield further mileage savings.

The comparison between the partition-based and the greedy
method shows that the partition-based approach performs well
in identifying feasible matches. At the same time, the higher
mileage savings of the partition-based method show that the
corridor subset criterion is a good measure for search space
size reduction. By allowing more than two passengers to be
matched, the number of routing requests would considerably
increase so that the run time advantage of the corridor subset
criterion would play a significantly greater role.

One more benefit of the partition-based method is not re-
flected in these results. In many cases, moving from one sub-
region of the road network into another involves a transfer via
major roads. During peak hours, travel speeds on these roads are
often significantly decreased. Furthermore, transfers from one
network sub-region into another may require passing a greater
number of traffic lights than a trip within the same sub-region.
Both aspects may lead to a significant increase in travel times.
The partition-based approach aims at finding matches in the
same sub-region of the network, thus avoiding these delays.

A factor inherent to the partition-based approach which could
lead to a sharing potential underestimation is that certain ‘good’
matches may not be counted. There may be trip configurations
at which the pickup point of a potential sharing partner is
outside of the corridor while the detour to the drop off point
is very small, or vice versa. In this case, the total inconvenience
of pickup and drop off may be smaller than for a trip which
fulfills the corridor criterion. This issue could be resolved
by modifying the match making process. For this purpose,
a configuration with smaller partitions could be used. If, for
instance, the starting point of two potential sharing partners
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would be in one of these small partitions, this would indicate
that the expected pickup detour is small. In this case, a longer
detour for the drop off would be justified. This can be realized
by also considering partitions in the vicinity of the corridor as
potential drop off locations. With this combination, the total
expected detour would still remain below the desired limit. The
small sharing potential difference between the greedy heuristic
and the partition-based approach, however, indicates that the
effect of this issue is very small.

An aspect which could further improve sharing potential
while decreasing run time is to unify partition size with regard
to expected detours. This could be achieved by refining the
partitioning algorithm in a way such that partitions in which
a significant number of trips exceed the inconvenience limit are
sub-divided while small partitions are re-aggregated to larger
areas. Such a procedure could ultimately yield configurations
in which the variance of expected inconvenience among all
partitions would be constrained to a narrow interval which is
most beneficial regarding both sharing potential maximization
and inconvenience minimization.

IX. CONCLUSION AND FUTURE WORK

In this paper, a match making algorithm for dynamic
ridesharing based on network partitioning was presented. The
aim of this approach is to minimize the mileage driven in
the entire system while keeping the inconvenience caused by
detours for picking up and dropping off passengers below a
certain limit. Addressing this problem on a large scale requires
reducing the space in which the algorithm searches for matches.
This is achieved by partitioning the road network into dis-
tinct regions which represent certain sub-structures of the road
network. Consequently, routes can be described as corridors
defined by sequences of these partitions. Passengers can then be
matched if the destination partition of one passenger lies within
the other one’s corridor. This approach significantly reduces
the number of computationally expensive route calculations
enabling the method to address systems at a very large scale
involving a great number of agents.

As a case study, the method was applied to investigate a
dynamic taxi sharing problem consisting of about 110 000 daily
trips in Singapore. This was done by employing a microscopic
traffic simulation using real-world mobility demand data. The
case study confirmed the applicability of the algorithm and
allowed conclusions on a reasonable value range for the two
optimization parameters. The results demonstrated that, in the
case of a single rider—single driver problem and a maximum
accepted detour per traveler of 10 minutes, the number of trips
could be reduced by 42%. This would reduce the accumulated
daily system mileage by 230 000 km.

To provide an intuitive understanding of the performance of
the developed approach, a comparison to a greedy heuristic
was conducted. The results show that for a single rider—single
driver problem, the partition-based approach yields 6% higher
mileage savings in 30% lower run times. Further benefits of the
partition-based method regarding computational efforts are ex-
pected in case of higher numbers of agents or when considering
multiple rider—single driver problems.

Future work will consist of further improving the partitioning
algorithm and the match making procedure. As a possible
improvement of the partitioning algorithm, the creation of
partitions with equal properties in regard to expected detours
was identified. This can be achieved by splitting up partitions
where generally longer detours occur or by merging partitions
where detours are below the accepted threshold. The match
making procedure can be further developed in various ways.
One improvement was identified to be the consideration of
potential sharing partners in neighboring partitions which may
be missed in the current implementation. Another improvement
is to also consider multiple rider—single driver assignments
which would yield an increase in sharing potential exploita-
tion. Ultimately, individual user preferences and fair pricing
strategies will be considered which will allow accounting for
the tradeoff between overall traffic system performance and
individual costs and benefits.
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