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Routing Choice Information Maximising Robust
Optimal Sensor Placement Against Variations of
Traffic Demand Based on Importance of Nodes

Jordan Ivanchev1, Heiko Aydt2, Alois Knoll3

Abstract—This paper defines the measure of importance for
a node (intersection) in a transportation network, based on its
topology and traffic demand. Consequentially the measure is
used in order to define and solve the sensor placement problem
that maximises the information gain regarding agents’ routing
choices by sensing the most uncertain areas in the system. It is
demonstrated that utilising the strategy for placing the sensors
described in this work makes the performance robust against
short and long term variations of traffic patterns. Finally, a
method for finding the optimal number of sensors to be installed
in a city is proposed. It models and maximises the trade-off
between cost, performance, robustness and reliability of the
sensor placement problem solution.

I. INTRODUCTION

IDENTIFYING the most important modules or elements of
a complex system is a problem that is of great interest to

engineers and researchers. The entities or sub-systems that turn
out to be of higher significance are, depending on the system,
either cautiously monitored, robustly controlled, or studied in
order to gain deeper understanding of the system’s dynamics.

In the case of transportation systems, important links or
nodes are usually sensed in order to get information about
the overall traffic state. Engineers go even further by trying
to change and control traffic parameters at such locations by
planning new infrastructure developments [1], control strate-
gies [2], novel policies [3] etc.

The aim of sensing traffic has been mostly in order to de-
termine the flows in a city. The problem of optimal placement
of counting sensors in order to estimate an OD matrix has
been around for more the four decades [4]. Knowing the OD
matrix, the flows can be extracted and knowing the flows, the
delays on each link can also be evaluated, thus gathering some
aggregated information about the traffic situation.

Given the increased pace of introduction of new technolo-
gies to the market and growing availability of computing
power, traffic sensing and city planning are getting more
interdependent and strongly connected. There are methods
developed that even use sensed data in real time in order to
apply changes to the traffic system [5].

Therefore, sensors may not be placed with the sole reason to
observe traffic. Smart cities use their sensors’ data streams in
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order to optimize their performance. With the increased num-
ber of sensor types such as plate scanning, velocity measuring,
emissions etc, and their reduced error rate, it is now a matter of
great importance to shift the sensor placement problem toward
a more active goal. The information stream coming out from
the sensors should be utilised by control algorithms or long
term planning strategies in order to ”actively” sense the traffic
by controlling it at the same time.

Fundamentally, sensors are put in such positions so that they
maximize the information gain. In other words, the chosen
locations to be sensed are usually the ones that we are most un-
certain about. Depending on the definition of information the
placement problem takes different forms. Usually, information
is considered to be the number of agents that pass through a
link or the link’s flow velocity. If, however, we want to find the
intrinsically important locations, we need to look for the places
where the choices, that lead to those characteristics, are made.
The locations of activity should be sensed in order to actively
sense the traffic. Consequentially, instead of examining links,
a more topological approach should be taken and nodes should
be examined instead. The nodes are actually the places where
agents make choices, and what is sensed at the links are just
the consequences of those choices.

The uncertainty of the agents choices at every node should
be weighted by the number of agents that utilize it in order to
be able to evaluate their importance. Naturally, the locations
that need to be sensed in order to maximize the information
gain are the ones of higher importance. It is important to note
that, when examining nodes instead of links the importance
values and the dynamics of each node are expected to be
weakly correlated to their spatial position. This excludes the
need for a mutual information optimisation approach in order
to find the optimal sensor placement, because there is basically
no redundant information in the sensing network.

Another pressing matter that has been ignored in the past
is the robustness of the sensors. Usually, robustness is under-
stood as the error rate or redundancy of a particular sensor
placement. In this work, however, we look at robustness
from another angle. Due to the fact that sensors are quite
expensive and their installation is consuming both time and
resources, we want to minimize the need of moving the sensors
around (if at all possible) after they are once installed. In
this sense, robustness of a sensor placement can be defined
as the characteristic of the set of locations that they will stay
important when we change the conditions in the system. Such
changes may include short term changes in the OD matrix such
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as daily variations of traffic (evening rush hour vs. morning
rush hour or weekday against weekend) and also long term
changes in the network demand such as people moving around
the city and changing living districts and jobs, building of
new living complexes or business centers, districts etc. Such
type of changes might severely alter the situation for a given
sensor placement and thus make the investment obsolete. The
robustness of a planned sensor network against variations
in the traffic demand is of great importance, especially for
megacities.

In a more fundamental aspect, there exist measures gov-
erned mostly by the OD matrix (link flow, link average
speed) and measures connected to the topology (centrality,
heterogeneity, etc.). There have been previous efforts to define
entropy of a node or a link but only in a pure topological
sense [6]. We strongly believe in the need of employing the
information contained in the OD matrix as well in order
to come up with a more useful definition of importance of
a node. In this study we define the entropy of the node
and consequently its importance by using both information
about the traffic demand and topological information about the
network, which surely gives a better overview. The information
from both sources must be entangled since they are actively
affecting each other, in order to get one single measure that
represents all the information we posses.

The main contributions of this work are:
• Definition of entropy of a network and importance of

nodes.
• Study on the robustness of the measure against changes

in the OD matrix.
• Design of methods for finding the most robust optimal

sensor placement against short and long term variations
• Design of a method for finding the optimal number of

sensors to be placed in a given network.

II. LITERATURE REVIEW

Determining the importance of locations in traffic networks
is crucial. One of the main areas, where the importance of
locations plays a great role is traffic sensing. In most sensor
placement problems, the set of locations to be sensed is chosen
so that, the resulting synthesis of data is the most informative,
which boils down to sensing the important locations. There
are many attempts to find optimal sensor placement in order
estimate an important traffic characteristic. One of the most
comprehensive surveys [7] discusses and summarizes the
existing sensor location problems, looking at different types
of sensors as well as at the observability and the estimation
problems of traffic flows. It also reviews models that deal with
describing the optimisation problem. Moreover, it describes
different rules for optimisation and analyses methods such as
flow intercepting, demand intercepting, independence of traffic
counts (mutual information).

One of the most standard traffic characteristic to be observed
is the OD matrix. Estimating it from sensor data has become
a central problem. In [8] the sensor location problem for
OD matrix estimation is defined and a solution is suggested.
This study deals with counting sensors, while other studies

also include the possibility of using AVI (Automated Vehicle
Identification) readers, which are more informative since they
also collect information about the identity of the car, which
allows for easier tracking and therefore path estimation [9]. In
[10] both types of sensors are used in a method that places
counting sensors and AVI readers to maximize the expected
information gain for an OD demand estimation problem. It
also takes into consideration uncertainty in historical demand
information. A technique for calculating the optimal number
and locations of plate scanning sensors for a given OD matrix
is also presented in [11]. Those approaches are centred around
the goal of estimating the OD matrix. In most of the cases
they are applied on artificial networks as a proof of concept,
however their high complexity might turn into a disadvantage
if one tries to apply such a strategy for a real life mega-
city. Therefore there is a need for sensor placement method
that is less computationally intensive so that it is practically
applicable.

Once the locations of the sensors are fixed one might use
a linear approximation technique is used to estimate offline
the OD pairs using traffic counts such as the one described
in [12]. In case plate scanning sensors are used a method for
path reconstruction from such type of data can be used as in
[9]. In [13] methods for extracting information from sensors
data in order to estimate travel times are discussed, while also
looking at sensor failure probabilities.

There are more universal approaches for choosing the
most important locations to be sensed, which are based on
maximizing information gain. There are information theoretic
techniques such as [14],where a non-myopic strategy is used
to find the most informative locations for sensors, [15] where
a Kalman filtering structure is employed in order to solve a
traverse time prediction problem via optimally placing sensors,
and [16] where a method for target localization and tracking
is presented, which computes the posterior target location
distribution minimizing its entropy.

Information theoretic approaches, however, may vary among
each other. In [17] traffic phenomena are modelled as Gaussian
processes and the sensor locations are based on different infor-
mation theory approaches. They discuss maximizing entropy
for sensor locations and also mutual information between
the locations and demonstrate that the mutual information
approach performs better for certain type of scenarios. More-
over the method is extended to find robust placement against
failures of sensors and uncertainties in the model and uses
real world data sets. This is a generic method that can be
applied to many different types of sensors. It locates the most
representative links in the network that reduce the uncertainty
about the unobserved links. There is not method that is able
to determine the most important links in the sense of locations
where agents makes the choices that are later observed at the
representative links.

With the advancement of technology some type of sensors
now can be mobile instead of static, while granting better
coverage. In [18] a mobile traffic surveillance method is
presented. A routing problem is defined such that it computes
the optimal paths for the mobile sensors and show that in
most cases it performs better than the static network. Link
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importance is defined as a combination of importance on
three levels: link level, which looks at V/C ratio, path level,
examining estimation of path travel time, and on a network
level, looking at the percentage of OD pairs that use this link.
Those components encompass the finding in [19], where the
authors demonstrate using traffic indicators that importance of
road segments is mainly determined by the network structure
and the flows. Even though, this statement is clearly known
there is still no indicator of importance of road segments
that fully utilizes the flow information and the topological
properties of the network. As it can be seen most methods to
determine important locations for sensor placement are based
mostly on the flows, while in a separate part of literature
people look at purely topological properties of transportation
graphs.

Important locations can be determined based solely on the
topology of a network. Some efforts deal with identifying
critical links using a network robustness index based on link
flows, link capacity and network topology as in [20]. In [21]
the most vital links or nodes are defined as the first n links
or nodes whose removal will lead to the biggest increase in
average shortest path distance. While in [22] the importance
of roads is simply defined to be proportional to the traffic load
on them, in [23] three measures of centrality for a street are
suggested: closeness, betweenness and straightness and their
correlation to various economic activities in the respective
areas are examined.

Moreover, the network itself can have some properties that
are usually based on the structure of the system and not on
local properties of its elements. In [24] the development of
the Swiss road and railway network during the second half
of the 20th century is investigated. It is observed that the
spatial structure of transportation networks is very specific,
which makes it hard to analyse using methods developed for
complex networks. In [25] Existing measures of heterogeneity,
connectivity, accessibility, and interconnectivity are reviewed
and three supplemental measures are proposed, including mea-
sures of entropy, connection patterns, and continuity. Entropy
is used in order to determine the heterogeneity of the network
regarding a chosen parameter.

The topology of a network holds an enormous amount of
information. Using it we can get insights into the structure of
the roads (transportation networks are organized hierarchically
as shown in [26]). In [27] they measure the efficiency and
accessibility in Paris and London based on the network con-
nectedness. Moreover, this information can be utilized in order
to reconstruct agent’s trajectories from GPS signals as in [28].
There is also a family of graph measures based on entropy that
are very well summarized in the survey [6]. It includes some
measures from chemical structural analysis and social network
analysis. The survey examines the overall connectedness of
graphs such as the topological information content and the
entropy of the weights of the edges. However measure of local
features’ such as entropy of nodes is defined as well, based on
length of links connected to it. The centrality measure of links
is also defined. Most of the measures deal with evaluating the
information content in the graph itself. Those measures are
highly uncorrelated, which means that they capture different

aspects of graphs, so the proper measure should be chosen.
Once a measure of importance is defined and the most

informative locations are chosen, there is one more aspect
that needs to be examined. The robustness of those choices
depends on the evolution of both the topology of the network
and on the evolution of the OD matrix as well, and those two
are also interdependent, of course. In [29] the evolution of
the topology of networks is observed that demonstrates high
degree of self-organization and spontaneous organization of
hierarchies in the city of Indiana. Also variations in the relative
importance of parts of the network are observed. In [30] the
evolution over 200 years of a North Milan road network is
observed. Two main processes can explain the processes that
occur. Densification of the road network around the main roads
and emergence of new roads as a results of urbanisation.
An evaluation of the robustness against long term network
evolution for any type of sensor placement is lacking at the
moment.

In order to analyse traffic and plan for its surveillance one
needs a model. Dynamic traffic assignment models such as the
one described in [31] need a dynamic network load model and
routing choices of agents model, which basically means that
they need the OD matrix combined with a routing model such
as in [32] based on stochastic conditions. Although patterns
seem not to vary excessively as observed in [33]. It is shown
that daily traffic is highly predictable and that there exist
regular patterns that can be exploited. This stability of choices
made by traffic participants together with network topology
also leads to traffic concentration on mainly a few links of the
network as shown in [34].

III. MEASURING IMPORTANCE OF NODES

In this section we introduce the measure of importance of
nodes. We define a node as important if many agents pass
through it and we are uncertain about the choices they make.
In order to get the uncertainty we need an entropy measure at
the node. After that we simply weight it by the throughput of
agents. In this way we measure how much this node adds to the
overall uncertainty of the road network given an OD matrix.
Let us introduce some notation that will be used throughout
the paper first:
Nij - number of cars that pass sequentially through node i
and j
Pl - the path of the l-th agent
f lij - function that is one if the sequence of nodes ij is the
that path of agent l
A - a set containing all the agents
pij - probability that an agent that is at node i will continue
on to node j
Si - set of nodes that are successors to node i
Hi - entropy of node i
Ii - importance of node i
Nr

ij - number of cars that pass sequentially through node i
and j during time period r
Ht

i - entropy of node i during time period r
Iti - importance of node i during time period r
Īi - overall daily importance of node i
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T - number of regions the day is split into
R - total reduced entropy
Īdi - the overall importance of node i for a degree of
perturbation d
L - a set of sensor locations
Ld - locally optimal sensor placement for a degree of
perturbation d
Lo - globally optimal robust sensor placement
V ard[Idi ] - the variance of Ii across all possible values of the
d coefficient
Ed[Idi ] - the expectation of Ii across all possible values of
the d coefficient
gd - a function that takes as argument a set of sensor locations
L and return the total reduced entropy for a given degree of
perturbation d
VLo

- variation level of the importance values of sensor
placement Lo

Md
Lo

- percentage of mismatched sensors between locally
optimal placement Ld and globally optimal robust placement
Lo

MLo
- the overall percentage of mismatched sensors for all

degrees of perturbation
QLo - performance measure of robust optimal solution Lo

KLo - cost of installing solution Lo

ULo
- utility function value of solution Lo

As we know Shannon’s entropy is calculated using the
transition probabilities between the states of the system. Let
us assume that the state of an agent is its current link. Then
the set of possible transitions from this state represents the
agent turning on any of the links that are successors of the
current link. The entropy of the node connecting those links
is calculated using this information.

Here are the steps taken in order to calculate the importance
of a node:

1) Calculate turning probabilities:
Let Nij be the number of cars that pass through the i-th
node and after that through the j-th node and let Pl be
the path of the l-th agent. Then let the function f lij :

fij =

{
1 if nodes ij are in Pl

0 otherwise
(1)

Then:

Nij =

|A|∑
l=1

f lij(Pl) (2)

, where |A| is the number of agents.
Let pij be the probability that an agent at node i
continues to node j
Let Si be the set of nodes that are successors of node i.
Then we can define the turning probability as the ratio
between the number of cars that pass through node i
and then proceed to node j and the number of cars that
pass through node i altogether :

pij =
Nij∑

k∈Si
Nik

(3)

2) Calculate the entropy at every node:
The entropy of a node i, Hi, is calculated using Shan-
non’s entropy definition. A state is represented as the
current link an agent is on and the transition probabil-
ities are the turning probabilities from this node to its
successors. Then the entropy becomes:

Hi = −
∑
j∈Si

pij log pij (4)

3) Weight the entropy of every node with the number of
agents that pass through it
In order to differentiate between nodes that have a high
entropy value and respectively, high and low traffic
throughput, we weight the entropy of every node by the
number of agents utilising it. The importance of node i
is defined as:

Ii = Hi

∑
j∈Si

Nij (5)

Due to the fact that traffic demands change throughout the
day so does the importance value of the nodes. First of all,
agents make different routing choices in depending on the time
of day and second the traffic volumes naturally also vary. Some
nodes may experience high importance values during morning
rush hour while having lower values during the evening. In
case sensors are placed at nodes, whose importance value
varies significantly throughout the day, they cannot be moved
if some other nodes become more important. This is the reason
why we need to find out the nodes that overall, have the biggest
importance values across the day.

Since it is also important to study the daily variation of
importance let us examine the notation describing splitting the
day into time regions:
N t

ij - the number of agents that go from node i to node j in
period t
Ht

i - the entropy of node i during period t
Iti - the importance of node i during period t

Next step is to come up with an importance value represen-
tative for the whole day. Some regions of the day are of less
interest than others simply because the amount of information
that can be extracted is smaller. Typically, the factor that plays
the largest role in this case is the traffic amount. Therefore,
we compute the total importance of a node for the whole day,
using a weighted average of importance values of the node for
different regions of the day. The weight function is governed
by the number of agents that pass through the node during the
respective time region. Then, we can define the overall daily
importance of a node as:

Īi =

T∑
t=1

Iti

∑
k∈Si

N t
ik∑

k∈Si
Nik

(6)

The second term in the sum is simply the number of cars that
pass through the node throughout time region t over the total
number of cars that pass throughout the whole day and T is



5

the number of regions the day is split into. This definition
of overall importance puts an emphasis on the nodes that are
interesting during the important parts of the day.

IV. ACHIEVING ROBUSTNESS AGAINST CHANGES IN THE
OD MATRIX

In reality apart from the changes of the OD matrix through-
out the day, there is another process that alters the traffic
demand in a less intense but more gradual way. This process
is a result of long term changes to both the agent population
and the city structure. In order demonstrate that our method is
robust against such type of variations we implement a generic
way to ”alter” or ”perturb” the traffic demand.

A. Methodology for altering the OD matrix

Let every agent have a list of itineraries, which is composed
of separate trips. Every trip has an origin, destination and start
time. It is usually the case that an agent takes two trips per day:
from home to work in the morning and from work to home in
the evening. Let us take two agents. We assume that the first
origin and the last destination in the itinerary of those agents
is their place of residence. Then we exchange those places for
the agents. We do this for a predetermined percentage of all
the agents that we call degree of disturbance. By executing
this strategy the number of people starting from or arriving at
all the regions is not changed. This means that the intensity of
people starting from the various regions in not changed as is
the intensity of people arriving at those regions. The factor that
is perturbed is exactly the OD matrix, since the connections
between origins and destinations are altered.

This procedure is visualised in Fig. 1

B. Strategy for robust placement

In order to find locations that are optimal for performance
and robust against variations in the OD matrix we have to find
a measure that represents the importance of a set of nodes for
different degrees of perturbation. This is the overall importance
of the chosen locations. Every node has an importance measure
Īi. We assume that we can take a given number of sensors out
of all possible locations and then we calculate the total reduced
entropy in the network which is:

R =

|L|∑
i=1

Īi (7)

For every different degree of perturbation every node has
a calculated importance value Īdi where d is the degree of
perturbation.

Let the resulting reduced entropy from a set of locations
L for different degrees of perturbation be calculated by the
function gd:
gd(L) = R, let the optimal placement for a given degree of

perturbation d be Ld and gd(Ld) = Rd

We are looking for an optimal placement Lo that maximizes
the reduced entropy relative to the local maximum across the
various perturbations:

Fig. 1: Diagram illustrating the exchange of origins or living
locations of two agents. Both agents still have the same work
locations however they switch their homes. In this way the
OD pairs intensity is changed.

max
Lo

∑
d

gd(Lo)

gd(Ld)
(8)

C. Strategy for finding the optimal number of sensors

There are four aspects that should be taken into account
when designing a utility function that should be maximised in
order to find the optimal number of sensors.

1) The variation of the importance value across the pertur-
bations.
Every node has a different importance value across the
perturbations Īdi . We want to evaluate the degree of
variation so that we can locate globally important nodes
rather than nodes that have just one high importance
value. In order to do that, we calculate the variance for
every node i across different degrees of perturbations
d: V ard[Īdi ]. We scale it by the average value across
the perturbations so that this measure is comparable to
others:

V ard[Īdi ]

Ed[Īdi ]
(9)
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In order to evaluate the total variation level of the
importance for a sensor placement we calculate the
average of the scaled variances for all chosen locations:

VLo
= Ei

[
V ard[Īdi ]

Ed[Īdi ]

]
(10)

We can vary the number of nodes to be included in the
set of optimal locations Lo that can also be referred
to as its cardinality: |Lo|. The goal is to minimise the
variation of importance of the same node across the
degrees of perturbation in order to ensure robustness of
the placement.

2) The percentage of mismatched sensors.
We define the function Md

Lo
as the percentage of sensors

that are mismatched between the optimal sensor place-
ment for a certain degree of perturbation Ld for a given
number of sensors, and the robust optimal solution Lo,
which is the cardinality of the difference between the
two sets divided by the cardinality of the set:

Md
Lo

=

∣∣Lo \ Ld
∣∣

|Lo|
(11)

Then the overall percentage of mismatched sensors is
just the average of this measure across all degrees of
perturbation:

MLo = Ed[Md
Lo

] (12)

This is a measure of distance between the optimal
solution for d and the robust optimal solution for all
degrees of perturbation. It can also be understood as a
value signifying the percentage of sensors that need to
be moved in order to reach the local optimal solution.
This measure should be minimised if we want to ensure
robustness of the placement. Meaning that the sensor
locations should be as universal as possible.

3) Performance measure of the robust optimal solution
compared to the local optimal solutions
This measure is used to describe how close is the robust
optimal solution to perfectly match the locally optimal
solutions.

QLo =
∑

d

gd(Lo)

gd(Ld)
(13)

This measure should be maximised since we aim for
maximum performance.

4) Cost of sensors
We also include a function that punishes high number
of sensors. For simplicity we just use a linear function
that grows with the increase of number of sensors:

KLo
= α |Lo| (14)

The utility function that needs to be maximised subject to
the number of sensors or the cardinality of the set Lo then
becomes:

max
|Lo|

ULo
= w1QLo

− w2VLo
− w3KLo

− w4MLo
,

where
4∑

i=1

wi = 1
(15)

All the separate functions are scaled to assume values
between 0 and 1, however depending on the designers choice
some measures can be given more weight by varying w1−4.
On the graph we can see all the separate functions and the
utility function that determines the optimal sensor number.

V. CASE STUDY: SINGAPORE

In this section we are going to demonstrate the functioning
of the described methodologies in a case study about Singa-
pore. We start with calculating the entropies of every node of
the network within each of the time regions they day is split
into. A video can be found of the evolution of the importance
measures of the nodes at VIDEO.

Following this we apply the robustness against daily vari-
ations technique. This allows us to get the overall daily
importances of the nodes and use them to find the optimal
sensors placement as described in section III. A picture of
the Singaporean road network with the importances of nodes
can be found on Fig. 2. It can be observed that the sensors
cover the city completely with accents on the central business
district, the highway intersections and intersection of highways
with other large roads. More than that, there are also plenty
of sensors in the living areas, which however have lower
importance values due to the smaller number of cars that go
through those intersections.

Next, we try to simulate change in traffic demand as
explained section IV-A. Fig 3 visualises the results of applying
the change. Since it is not practical to visualise all OD pairs,
in our visualisation we are showing only the intensities of
OD pairs that have as origin the university area around the
Nanyang Technical University in the western part of the city.
We can observe the change in the destinations intensities as
people increase their trips to the east part of the city while
reducing the trips that stay within the western part.

The following step is finding the optimal sensor placement
for Singapore that is robust against such type of variations
in the OD matrix as described in section IV-B. In order to
evaluate the performance of the robust placement we run the
following experiment:

1) For each degree of perturbation run a set of 10 sim-
ulations in order to get an averaged value for all the
required parameters.

2) Using the simulation outputs, calculate the turning prob-
abilities, entropies, and importance of all nodes

3) Find the optimal placement of sensors for every degree
of perturbation

4) Using the optimisation strategy described above, calcu-
late a robust sensor placement.

5) Compare the performance of the robust sensor placement
to the performance of the locally optimal (in the sense
of perturbation degree) sensor placements. The perfor-
mance in this case is the ratio between the total reduced
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Fig. 2: Averaged importance value of nodes for a full day. The sensor placement resulting from those values is optimally robust
against daily traffic variations.

entropy R of the robust placement to the total reduced
entropy of the locally optimal placements.

In Fig. 4 we can see a comparison of the performance of the
optimally robust method versus the locally optimal solutions
for sensor placement.

After that we calculate the performance of those sets of
locations for other degrees of perturbations. For example the
blue line on Fig. 4 represents the optimal sensor placement for
the original OD matrix. Naturally, since we are examining the
optimal placement for 0 degrees perturbation the performance
at 0 is 100%. We can then see that the performance of this
sensor placement if the traffic is governed by the OD matrix
perturbed by 5% decreases. The more we perturb the traffic
demand, the more the performance of the optimal sensor
placement calculated from the original OD matrix, decreases.
The goal of the method is to achieve robustness in the sense
that the performance stays high as we vary the OD matrix.
We have also plotted the performance of our robust sensor
placement solution. It can be observed that the robust solution
does not vary that much when the OD matrix is perturbed and
is performing better than the rest.

Finally, we have to compute the optimal number of sensors
to be placed in Singapore as described in section IV-C. For
the sake of simplicity let all factors be equally important.
In Fig. 5 the functions related to the process of finding the
sensor count are plotted. On the last sub-graph we can see the

utility function whose maximum corresponds to the optimal
number of sensors to be installed. We can see that in the case
of Singapore this number is 582. Surely, if some factors are
more important than others, they can be weighted differently
and this will affect the optimal number of sensors.

VI. CONCLUSION

In this paper we have pointed out the need for an importance
measure that is able to combine and refine the information
about the traffic demand contained in the OD matrix and the
information about the topology of the network. In this way one
can gain the ability to point out to the locations in the network
that hold the biggest amount of uncertainty related to agents’
routing choices, which we believe is a crucial underlying
factor that determines traffic conditions in a network. We have
discussed that nodes should be examined instead of links since
the intersections are the places were decisions are made and
the roads are the locations were the results of those choices
are observed.

We have defined a measure of importance that satisfies
the aforementioned conditions using information theory. More
precisely, the measure is a combination between the flow
through a node and the entropy of the node itself. The novel
definition of entropy of a node is dictated by the routing
choices agent’s made instead of by purely topological factors.

We have observed that the importance of nodes can vary
throughout the day due to changes in traffic patterns, moreover
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(a) Original OD

(b) OD with 30 % Perturbation

(c) Difference Map

Fig. 3: Visualisation of effects of perturbing the OD matrix. On
3a can be seen the original intensity OD pairs with destination
NTU, while on 3b the intensities of the same pairs are shown
after the OD matrix has been 30 % perturbed. On 3c we can
see a heat map showing the differences between the two, where
yellow means the same intensity, red means more and green
means less.

we have designed a method that finds the most robust sensor
placement against such type of changes, which we call short
term traffic demand variations. Long term changes are also
being addressed by our work. We have defined a method to
simulate long term city dynamics and their effect on the traffic
demand in the city. Moreover, a method is described in order
to find a robust sensor placement against such type of changes,
providing certainty that sensors will not have to be moved once

Fig. 4: Comparison of the performance of the optimally robust
method across the various degrees of perturbation for the
OD matrix to the performance of the locally optimal sensor
placements. It can be observed that the robust placement is
performing better so it is more invariant to changes in the OD
matrix.

they are installed.
Finally, we have designed a method that allows designers to

weight various factors connected to their preferences regarding
the sensor network and its functionality, in order to determine
the optimal number of sensors that need to be placed. The
utility function consists of the variation factor of the sensor
readings, the average percentage of mismatched sensors un-
der varying traffic demand, the performance and the sensor
instalment and sustaining cost.

Future work on this topic would require the development of
a more comprehensive tool for modelling long term changes
in city dynamics, such as building new living or business
areas, building new road segments etc. Implementation of such
types of changes will bring qualitatively different type of OD
matrix variations, since this processes will create completely
new origins and destinations. Moreover the population growth
should be modelled as well.

Another interesting research aspect would be to use the mea-
sure of importance in order to reconstruct agents’ trajectories.
Due to the fact, that by design the sensed locations maximise
the information about agents’ routing choices, the sensed data
can be very useful in order to determine the paths agents take
and consequentially the OD matrix. However, attention should
be given to the issue that regions where agents actually begin
or end their trips are usually of low importance value.

The heterogeneity of the nodes’ importance as a network
characteristic can be of great importance as well, as it is
directly proportional to the utilization factor of the trans-
portation network. In case of homogeneous importance values,
there is lack of central points at which congestion is created.
Homogeneity of the importance measure also means that
agents are evenly spread across the network and utilize fully
its infrastructure. Heterogeneity, on the other hand, means that
agents’ paths are very similar with the exception of several
hub points through which everyone passes. This might bring
imbalance of traffic on the network as some roads become
congested while others stay empty. Following this argument it
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(a) Performance

(b) Reliability

(c) Robustness

(d) Utility Function

Fig. 5: Function that participate in the utility function and
utility function to be maximized by the number of sensors:
5a performance of the sensor placement as a function of
the sensor number, 5b Overall variation of the importance
values of the sensor network as a function of sensor count,
5c Overall Percentage of mismatched sensors for the sensor
network as a function of the sensor number, 5d utility function
that maximizes 5a and minimizes 5b, 5c and the number of
sensors

might be interesting to use the measure of heterogeneity of the
importance measure of a network in order to either evaluate the
traffic performance or optimise the routing of agents leading
to overall reduction of congestion.

Finally, an interesting application of the measure would
be to use its daily variation to determine the nodes (cross-
sections) that are most dynamical in a city. Those intersections
should be given additional attention. For example, this measure
might be used in order to find the optimal locations for
installing intersection control systems, since it provides us
with the information that the flow ratios at those nodes vary
significantly throughout the day.
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