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Abstract. We present the concept of a track trigger for the Belle II experiment, based on a
neural network approach, that is able to reconstruct the z (longitudinal) position of the event
vertex within the latency of the first level trigger. The trigger will thus be able to suppress a
large fraction of the dominating background from events outside of the interaction region. The
trigger uses the drift time information of the hits from the Central Drift Chamber (CDC) of
Belle II within narrow cones in polar and azimuthal angle as well as in transverse momentum
(sectors), and estimates the z-vertex without explicit track reconstruction. The preprocessing
for the track trigger is based on the track information provided by the standard CDC trigger.
It takes input from the 2D (r − ϕ) track finder, adds information from the stereo wires of the
CDC, and finds the appropriate sectors in the CDC for each track in a given event. Within
each sector, the z-vertex of the associated track is estimated by a specialized neural network,
with a continuous output corresponding to the scaled z-vertex. The input values for the neural
network are calculated from the wire hits of the CDC.

1. Introduction to the Belle II track trigger
The Belle II experiment [1] will go into operation at the upgraded KEKB collider
(SuperKEKB [2]) in 2016. SuperKEKB is designed to deliver an instantaneous luminosity
L = 8 · 1035 cm−2s−1, a factor of 40 larger than the previous KEKB world record. The
Belle II experiment will therefore have to cope with a much larger machine background than its
predecessor Belle, dominated by Touschek scattering [3, 4]. This background produces a high
rate of background events with the longitudinal position of the vertex (z-vertex) outside of the
nominal interaction region, where the physically interesting reactions from the e+e− collisions
are produced. By reconstructing the z-vertex within the latency of the first level (L1) trigger,
a large fraction of this background can be suppressed. The total latency of 5µs for the full
L1 trigger allows for only ≈ 1µs for the z-vertex reconstruction. Neural networks of the Multi
Layer Perceptron (MLP) type are well suited to meet these constraints due to their inherent
parallelism and deterministic runtime. The approach presented here uses MLPs with only the
hits in the Central Drift Chamber (CDC) as input to make an estimation of the z-vertex without
explicit track reconstruction, based on the concepts presented in [5, 6, 7].
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The CDC contains 56 layers of sense wires of either “axial” orientation (aligned with the
solenoidal magnetic field of 1.5 T along the z-axis) or “stereo” (skewed with respect to the axial
wires). 6 or 8 adjacent layers have the same orientation and number of wires per layer and are
combined in a so-called SuperLayer (SL). In total there are 9 SL alternating between axial and
stereo SL. By combining the information of axial and stereo wires it is possible to reconstruct
a full 3D helix track, which can be parametrized by (pT , ϕ, θ, z, d), where pT is the transverse
momentum, ϕ and θ are the azimuthal and polar angle at the vertex, z is the vertex position
along the beamline and d is the displacement of the vertex from the beamline in the r−ϕ plane.
The latter is expected to be small and is therefore assumed to be d = 0 cm in our studies.

A schematic view of the track trigger is shown in figure 1. For each of the 9 SL the wire hits
are combined in so-called Track Segments (TS) by the Track Segment Finder (TSF) to reduce
noise and the amount of data for the trigger. A TS is a predefined arrangement of several wires
from 5 layers within a SL which produces a hit if at least 4 wires in different layers are active. For
each TS the TSF transmits an id, the drift time of a reference wire in the TS with a resolution
of 2 ns and the position of the track relative to this wire. The latter is obtained from a lookup
table based on the hit pattern within the TS and can be left, right or undecided1. The event
time that is needed to calculate the absolute drift times is estimated from the fastest wire hits
in an event.

The 2D trigger combines TS from the axial SL to provide 2D tracks in r−ϕ space [8]. The 3D
trigger then adds the information from the stereo TS to determine the z-vertex. The proposed
neural trigger will run in parallel to the conventional analytical 3D trigger and employ MLPs
trained on sample tracks to predict the z-vertex. The outputs of the 2D/3D triggers are fed
into the Global Decision Logic, which combines the results of all subtriggers and makes the final
decision. More details about the Belle II detector and the trigger system can be found in [1, 8].

2. Structure of the neural network z-vertex trigger
The core concept of the neural trigger are networks of the Multi Layer Perceptron (MLP) type.
The MLP is a universal function approximator [9] with the structure of an acyclic graph (see
figure 2). Each neuron calculates a weighted sum of the input values and evaluates it with a
non-linear bounded activation function, in our case the tanh function:

yj = tanh

(
N∑
i=0

wij · xi

)
(1)

where xi are the input values and wij are the weights, which contain the information of the
calculated function. The first input is x0 = 1 such that the corresponding weight wj0 acts as a
constant bias. During training the weights of the MLP are adjusted with a back propagation

1 The left/right information was not included in earlier studies [5, 6, 7], which were based on an older version of
the Belle II simulation.
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Figure 2. Structure of an MLP with one hidden
layer. In the nodes the weighted sum of the
input values xi is evaluated by the activation
function to produce one output value. The black
nodes denote constant bias nodes. Input and
target values are always scaled to the co-domain
of the activation function [−1, 1].

algorithm such that for given input values the output values converge to certain target values.
These target values are the z-vertex or other track parameters, scaled to the co-domain of the
activation function [−1, 1]. The input values are calculated from the TS hits and scaled to the
same range, following different input representations that are explained in detail below.

We use an ensemble of “expert” MLPs that are specialized to small sectors in phase space [5].
Only tracks with helix parameters from limited intervals are selected as training samples for a
given sector. For each sector a number of “relevant” TS are identified based on a histogram of
active TS generated from tracks within the sector. Only hits from the relevant TS are considered
for the MLP, limiting the amount of input data for each sector. While the sector in pT and
ϕ can be selected using the estimation of the 2D trigger, the polar angle θ is unknown. As
the stereo hits depend on both z and θ, one of them cannot be reconstructed precisely without
knowing the other. Therefore we use a multi-step cascade prediction [5, 7], where a primary
MLP specialized to a small sector in pT and ϕ is used to predict z and θ. This prediction is used
to select another MLP restricted in all track parameters, which can in the ideal case predict z
with the desired resolution. Otherwise the concept can be extended by adding another step, as
was successfully demonstrated in [7].

To find an input representation for the MLP of a given sector, the relevant TS must be
mapped to the input nodes. The most straightforward way to do this is to use one input node
per relevant TS, with the drift time scaled to [−1, 1] as input value and the left/right information
encoded in the sign (“rep1”). For undecided left/right information the input value is 0, which
is also the default value for inactive TS. While this mapping produces good results for small
sectors, it is not an efficient representation for larger sectors, as the number of relevant TS grows
with the sector size while the typical number of hits per track is just one hit per SL. In a second
approach we therefore fix the number of inputs by using always one hit per SL, choosing the hit
with the shortest drift time in case of several neighboring hits. In addition to the drift time we
also use the wire position as input for the MLP, conveniently encoded in the TS id within a SL,
which is proportional to a discrete azimuthal angle. This input representation (“rep2”) results

−r r

r

R

2R
ϕrel

ϕwire
ϕ

ϕpT Figure 3. Using the estimation for the
curvature and the azimuthal angle provided
by the 2D track finder, the relative azimuthal
angle between the track and a given wire can
be calculated.
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Table 1. Estimates for the precision of the z prediction in small sectors for different input
representations. ∆z is the RMS of the difference between true and predicted z-vertex.

input high pT low pT
values ∆z inputs ∆z inputs

rep1 1 per TS (t) 1.40 cm 17 1.89 cm 31
rep2 2 per SL (t, ϕwire) 1.10 cm 18 1.50 cm 18
rep3 2 per SL (t, ϕrel) 1.18 cm 18 1.32 cm 18
rep4 3 per SL (t, ϕrel, µ) 1.15 cm 27 1.18 cm 27

in a constant number of 18 inputs, independent of the sector size.
Making use of the ϕ and pT estimation of the 2D trigger it is possible to reduce the number

of sectors by calculating the azimuthal angle relative to the reconstructed 2D track and use this
as input for the MLP together with the drift times (“rep3”). The input representation is then
independent of ϕ and a single sector2 is enough for this variable. The relative wire position can
be obtained from the position of the wire and the estimated 2D values (see figure 2):

ϕrel = ϕwire − ϕ− arcsin
( r

2R

)
≡ ϕwire − ϕ− ϕpT (2)

where ϕ is the estimated track direction at the vertex, r is the radial position of the wire, R ∝ pT
is the radius of the helix and ϕwire is the azimuthal coordinate of a reference position on the
wire. ϕpT = arcsin

(
r
2R

)
is the change in the azimuthal angle due to the curling of the track in

the magnetic field and is also proportional to the arc length µ of the track in the r-ϕ-plane:

µ(r,R) = 2ϕpTR (3)

In the µ-z-projection the track is linear, facilitating the extrapolation of the track to the vertex:

z(r) = µ(r,R) cot(θ) + z0 (4)

where z0 is the z-coordinate of the vertex and θ is the polar angle at the vertex. Therefore the
scaled arc length µ(r,R) for each SL is used as an additional input for the MLP, leading to a
total of 27 inputs (“rep4”).

3. Experimental comparison of input representations
To evaluate the different input representations we have used simulated single muon tracks
generated within limited ranges of pT , ϕ, θ and z. The generated distribution within these
ranges is uniform, except for pT where we use a uniform distribution in p−1

T , i.e. in the curvature.

When sectorizing pT we also choose bins of equal size in p−1
T . Ranges in ϕ apply only to the

simpler input representations rep1 and rep2, otherwise we use a whole quarter of the detector
(ϕ ∈ [135◦, 225◦]). The Geant4 based detector simulation of the Belle II CDC includes material
interaction with the inner detector components (beampipe and vertex detectors), non-linear drift
velocity due to inhomogeneities in the electric field and the gravitational wire sag effect.

The presented input representations are first studied with very small sectors to compare
their performance under optimal conditions. We train one sector for low pT tracks

2 The hardware implementation for a fully pipe-lined neural trigger will consist of 4 FPGA boards, each covering
a quarter of the detector. This hardware sectorization is used also by the 2D trigger to cope with the high
bandwidth requirements.
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Figure 4. θ and z prediction without a priori 3D knowledge for different input representations
depending on p−1

T . Blue solid line: rep2, red dashed line: rep3, black dotted line: rep4.

(p−1
T ∈ [1.95, 2] GeV−1) and one for high pT tracks (p−1

T ∈ [0.2, 0.25] GeV−1). The remaining
track parameters are constrained to ϕ ∈ [180◦, 181◦], θ ∈ [50◦, 60◦] and z ∈ [−10, 10] cm. The
results are summarized in table 1. Based on the z-vertex distribution in Belle [1] we estimate that
a resolution of ≈ 2 cm will be required to efficiently suppress the background, which is reached in
both tested sectors for all input representations. Fixing the network size (rep2, rep3 and rep4)
shows an advantage not only for the hardware implementation but also for the resolution. For
the low pT case the resolution improves when correcting the curvature (rep3) and even more so
when explicitly using the arc length µ (rep4).

Next we compare the prediction capability for the first step of the cascade prediction, when
no information about θ and z is available. In ϕ and p−1

T we use a gaussian smearing with σϕ = 1◦,
σp−1

T
= 0.1 GeV−1 on the simulated values before using them to simulate the effect of errors in

the 2D trigger prediction. The 2D trigger is still under construction and not yet fully tested, but
will likely exceed this resolution. The track parameters are constrained to p−1

T ∈ [0.2, 3] GeV−1,
ϕ ∈ [179◦, 181◦], θ ∈ [35◦, 123◦] and z ∈ [−50, 50] cm. The pT range is divided into 9 sectors of
width ∆p−1

T = 0.31 GeV−1. In figure 4 the resolution is shown depending on p−1
T . rep1 is not

included in the test, as it was least effective in the previous test and the MLPs are too big to
train efficiently. The uncertainty of both the z prediction and the θ prediction increases with
rising curvature for all tested input representations. The best results are again achieved for rep4.
Although the target resolution is not reached, the prediction of the primary MLP can be used
to significantly decrease the sector size for the next step.

Even in this first step the MLP prediction exceeds the estimate for the 3D trigger of
∆z = 9.3 cm given in [1], where no drift times were used. Recent progress in the development
of the 3D trigger including the drift time information suggests that a better z resolution can
be achieved. A comparison of the neural trigger and the 3D trigger will be subject of future
studies.

4. Conclusion
We have presented a setup for a first level z-vertex trigger based on an ensemble of “expert”
MLPs, specialized to sectors in phase space, and demonstrated the influence of different input
representations on the final z-vertex resolution. Efficiently using the information provided by
earlier trigger components and knowledge about the detector geometry itself, we can reduce not
only the size of each expert network, but also the total number of sectors.

In future investigations we will try to improve the resolution for low momentum tracks,
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combining different training algorithms for the neural networks with the presented preprocessing.
The fully pipe-lined neural network trigger will be implemented in hardware on Virtex 7 FPGA
boards and installed in the Belle II detector.
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