
Task Planning for Highly Automated Driving

Chao Chen1 and Andre Gaschler1 and Markus Rickert1 and Alois Knoll2

Abstract— A hybrid planning approach is presented in this
paper with the focus of integrating task planning and motion
planning for highly automated driving. In the context of task
planning, the vehicle and environment states are transformed
from the continuous configuration space to a discrete state
space. A planning problem is solved by a search algorithm for
an optimal task sequence to reach the goal conditions in the
symbolic space, regarding constraints such as space topology,
place occupation, and traffic rules. Each task can be mapped
to a specific driving maneuver and solved with a dedicated
motion planning method in the continuous configuration space.
The task planning approach not only bridges the gap between
high-level navigation and low-level motion planning, but also
provides a modular domain description that can be developed
and verified individually.

Our task planner for automated driving is evaluated in
several scenarios with prior knowledge about the road-map
and sensing range of the vehicle. Behavior that is otherwise
complex to achieve is planned according to traffic rules and
re-planned regarding the on-line perception.

I. INTRODUCTION

The research of autonomous driving has developed a rich
spectrum of planning algorithms and systems from global
navigation to local trajectory tracking. A navigation system
deals with street maps, traffic conditions, fuel consumption,
etc. from a global perspective to determine a route without
motion details. A motion planning algorithm produces tra-
jectories and control inputs for a concrete driving maneuver
regarding vehicle kinematics and obstacles inside a local
space and time horizon. It is usually impossible to plan
a motion for an entire route due to insufficient perception
and limited processing capacity of the system. Therefore,
a motion planner is always responsible for sub-problems
regarding the actual system state and milestones of the global
route. As a result, an integration of these two kinds of
planners is necessary for highly automated driving. In this
paper, a domain specific task planning method is proposed
to fulfill this purpose.

The idea is to design a hierarchical decision making
strategy analogous to the behavior of human drivers. While
having a rough route in mind, a human driver usually makes
discrete decisions, such as overtaking, lane switching, or
turning based on the actual traffic condition. Then, these
driving tasks are performed with continuous steering, ac-
celerating, or braking commands. If the situation is not
clear, certain behaviors are performed to acquire additional
information or negotiate with other traffic partners to resolve

1Chao Chen, Andre Gaschler and Markus Rickert are with fortiss GmbH,
An-Institut Technische Universität München, Munich, Germany.

2Alois Knoll is with Robotics and Embedded Systems, Department of
Informatics, Technische Universität München, Munich, Germany.

q0

q1

q2

q3

q4

Configuration Space

s0

s1 s2

s3

s4

s5

s6

Symbolic Space

Fig. 1. Combined task planning and motion planning: The plane below is
the continuous configuration space for motion planning with configurations
as red dots. The plane above is the discrete state space for symbolic planning
with states as green dots. The dashed blue lines show the mapping between
the two spaces. First, the start q0 and the goal q4 are mapped to the
symbolic states as s0 and s6, where a sequence of tasks is found through
the states {s0, s1, s3, s4, s6}. Then, the symbolic states are projected back
to the configuration space as {q0, q1, q2, q3, q4}, and concrete motions are
planned from the start to the goal.

the uncertainties. If a task cannot be accomplished, the
following actions and even the route are adapted. Such
abilities and behaviors are especially addressed by artificial
intelligence (AI) research as reasoning and problem solving,
which are further developed in robotics domain as task
planning. Fig. 1 shows the general concept of combining
task planning in symbolic state space and motion planning
in continuous configuration space.

The contribution of this work is a hybrid planning ap-
proach and introducing task planning into autonomous driv-
ing domain. In essence, our task planning approach is based
on three necessary design principles that cannot be achieved
by conventional state machine or signal-based architectures.

• Symbolic-geometric hierarchy: The whole problem
is first processed in the symbolic space with limited
discrete system states. Then, the tasks are passed to
the motion planner as milestones and a sequence of
motions are planned to perform these tasks. Thus, a
large complicated problem is divided into sub-problems,
which can be solved more efficiently with specific
methods in adequate scopes.

• Verifiability: All symbolic domain description is orga-
nized as modules that can be verified individually and
independently from the planning algorithm.

• Generic AI planning: Traffic rules and semantic infor-
mation allow and require automatic planning and fully
integrate into the task planning concept. 40 years of
research in artificial intelligence have brought powerful
task planning methods that are increasingly applied to
robotics and can also be applied to automated driving.



II. RELATED WORK

Classical planning is an important branch of artificial intel-
ligence [1], which performs logical reasoning in a symbolic
space and searches for a strategy or a sequence of actions to
achieve the goal. A symbolical definition of problem domains
can be found in STRIPS [2], PDDL [3], and their successors.
In these formulations, a system state is represented with
a number of predicates. Actions are defined with certain
preconditions and effects. The preconditions decide whether
an action is applicable to a state. The effects change the
state when an action is performed. A planner searches for a
sequence of actions that provides a valid transformation from
the initial state to a state satisfying the goal conditions. The
general approach to solve the classical planning problem is
forward search [4] or backward chaining [1].

Symbolic planning applies well to problems that are dis-
crete, deterministic, and fully-observed. However, the prob-
lems in the robotic domain are more intricate. The state of a
robot and its environment is continuous and may be partially
observed [5], [6]. The actions of a robot are also continuous
and cost time. As a result, a symbolic planner cannot be
directly applied, but as a task planning layer in a hierarchical
planning architecture. It works with a set of abstractions
of the world states and plans symbolic tasks for the robot
based on the domain-specific semantic knowledge. These
actions divide a large problem into sub-problems and limit
the context for an efficient motion planning [7]. Only few
works integrate symbolic and geometric constraints in mobile
robotics. Plaku and Hager [8] develop a kinodynamic motion
planner that can solve symbolic tasks. Their approach is to
perform a forward search of motion that fulfills differential
constraints, guided by a task planner. In the field of mobile
manipulation, integrated task and motion planning is con-
sidered necessary to solve all but the simplest scenarios. A
typical approach here is the belief-space hierarchical planner
by Kaelbling and Lozano-Pérez [9]. This approach is quite
different, as it searches backward from the goal state in
a probabilistic state space and models uncertainty of both
perception and manipulation actions.

In the autonomous driving domain, route planning prob-
lems are solved with graph search algorithms regarding
a cost metric on a higher level. On the motion planning
level, algorithms such as Hybrid-A* [10] or SEHS [11]
produce collision-free trajectories for a vehicle in a known
environment. In addition, the low-level motion planner can
benefit from certain traffic knowledge [12]. However, so-
phisticated traffic rules are difficult to be modeled in the
continuous configuration space. The common approach is to
integrate all the conditions, rules, and actions into a state
machine [13] [14]. In this case, the system complexity, in
general, grows exponentially with respect to the number
of states or conditions; test, verification, and modification
of such systems are tedious and error prone. Kress-Gazit
and Pappas [15] propose an approach to synthesize hybrid
controllers with high level descriptions for urban driving
behaviors, which guarantee correctness and facilitate the

development of state machines. An alternative approach are
behavior-based solutions, which select the current control in-
puts by likeliness or a fusion of predefined actions [16] [17].
However, the result behavior may be a local optimum that
does not comply with the longer-term goals.

III. DOMAIN DEFINITIONS

The task planning domain for automated driving is defined
with a tuple {W,S,P,O}. W is the continuous world
model, which consists of the vehicle and environment states
such as vehicle speed, object position, place geometry, etc.
S is the symbolic state space, which holds the semantic
information, e.g., parking-lot occupation, lane type. A set
of predicates P provides a projection from W to S by
verifying certain propositions of the world model. O is a set
of operators, which have effects on the world state. A task
is a function from a set of symbolic states to another. The
preconditions are a set of predicates, which define the domain
of the function. The value range of the function is determined
by the effects of the task, i.e., a set of operators with
parameters. Details are outlined in the following subsections.

A. World Model

A world model consists of places and objects. A place P
is a particular space where a vehicle can perform its motion,
e.g., a lane, a parking-lot. An object O is a traffic related
entity, e.g., a vehicle, a pedestrian or a traffic signal. Fig. 2
shows an example of a world model with three lanes, two
junctions, and a vehicle.

0 240 1000

L0

L1

L2

J0 J1V : (L1, 240)

Fig. 2. Example of a world model: Places L0, L1 and L2 are lanes and
J0 and J1 are junctions. L2 is left to L1, while L0 is on the right of L1.
J0 is before the lanes and J1 is after them. The axis below shows a lane
coordinate starting from 0 to 1000m. Object V is a vehicle at the location
(L1, 240), i.e., on the lane L1 at position 240m.

A place has attributes such as type T , and the topological
relations to other places. It maintains a list of adjacent
objects. Its geometry is used for spatial reasoning and
generating motion planning requests. Two types of places
are defined for the example scenarios in Section V.

• Lane (L): A lane can have a type such as urban
street, highway, motorway, etc. Further attributes are an
identifier, a speed limit, and a driving direction. It is
able to access the neighboring lanes and the adjacent
junctions from it. Vehicles, traffic signals, and parking-
lots are registered to a lane in different lists. They are
located with a distance value d in the lane coordinate
as (L, d) in Fig. 2. Thus, it is possible to reason about
the relative positions of the objects and places. Finally,
a lane has a certain geometric shape.



• Junction (J): A junction holds the adjacency informa-
tion of the inbound and outbound lanes. The connec-
tions have priorities and permissions according to the
traffic rules and signals.

An object is described with attributes such as type, posi-
tion and speed. It can be mapped to multiple places, e.g., a
traffic light can be referred by several lanes of the same road.
The state of a dynamic object can be changed and predicted.
Two types of objects are introduced in the examples.

• Vehicle (V): The state of a vehicle includes its location,
speed, and driving behaviors such as light signals. The
state of a vehicle is dynamic.

• Traffic Signal (S): Traffic signals are lane markers,
traffic signs, and traffic lights. A traffic light holds its
current state and may also contain information about
the phase period.

B. Predicates

A predicate is a proposition about the world state. The
arguments can be constants or variables from the perception.
The value of a predicate is a trilean: True, False or Unknown.
If the information is insufficient to verify a proposition,
the value of the predicate is Unknown. A predicate can
consist of sub-predicates or inherit from other predicates.
The predicates used in the examples are:

1) At(O, T ) takes the value True if object O is at a place
of a specific type T .

2) At(O,P ) takes the value True if object O is at any
location of a specific place P .

3) Before(O,L, d) takes the value True if object O is
on lane L and before the location (L, d). It is derived
from the predicate At(O,P ).

4) In(O,L, d0, d1) takes the value True if object O is
inside the range [d0, d1] of lane L. It is the combination
of Before(O,L, d1) and ¬Before(O,L, d0).

5) Beside(L1, L2) takes the value True if lane L1 is
beside lane L2.

6) Free(L, d0, d1, t0, t1) takes the value True when an
object can travel from (L, d0) to (L, d1) in the time
duration [t0, t1] without collision with other objects.
Only the point locations of the objects are considered
to verify this predicates.

7) Connect(L1, L2, J) takes the value True if lane L1

and lane L2 are connected in junction J .
8) Clear(L1, L2, J) takes the value True if the connec-

tion between lane L1 and lane L2 is clear to drive in
junction J for both space clearance and permission by
traffic rules. It is derived from Connect(L1, L2, J).

C. Tasks

Tasks are primitive driving actions, which composed of
Preconditions and Effects. The Preconditions are a set of
predicates which decide whether a task is applicable. If one
of the predicates is Unknown, the task is uncertain. The
effects of a task are a set of operators, which mainly change
the state of the ego vehicle. A task can take parameters,
which serve as arguments for preconditions and effects.

These parameters can be obtained directly from the world
model or suggested by a third component reasoning about
the semantic information. In addition, a task may also have a
cost value, allowing the planner to choose an optimal solution
regarding a cost metric. The following tasks are defined for
the example scenarios:

1) FollowLane(V,L, d, v): Vehicle V follows lane L to
location (L, d) with speed v.
Preconditions: Vehicle V should be on lane L and
before the location (L, d). Lane L should be free at
{(L, d0, t0), . . . , (L, d, td)} during the task. The start
location and time (L, d0, t0) can be obtained directly
from the vehicle state. td = t0+

(d−d0)
v is the estimated

time at the final location (L, d) with a constant speed v.

Before(V,L, d) ∧ Free(L, d0, d, t0, td)

Effects: Vehicle V is at the desired position d with the
desired speed v at time td.
Cost: The time cost of the task, td − t0.

2) SwitchLane(V,L1, L2): vehicle V switches from
lane L1 to lane L2.
Preconditions: Vehicle V is on lane L1, which
is beside lane L2. The both lanes should be free
at {(L1,2, d0, t0), . . . , (L1,2, ds, ts} during the task.
(L1, d0, t0) is the start location and time. (L2, ds, ts)
with ts = t0 + tswitch and ds = d0 + v× tswitch is the
final location and time calculated with a constant time
cost tswitch and a constant speed v.

At(V,L1) ∧Beside(L1, L2)

∧ Free(L1, d0, ds, t0, ts)

∧ Free(L2, d0, ds, t0, ts)

Effects: Vehicle V is at lane L2 with distance ds at
time ts.
Cost: The time cost of the lane switching, tswitch.

3) ChangeLane(V,L1, L2, J): Vehicle V change from
lane L1 to lane L2 at junction J .
Preconditions: Vehicle V should be close to the end
of lane L1 within a range dchange. Lane L1 and L2 are
connected in junction J and is clear to drive. The end
of lane L1 and the begin of lane L2 should be free
during the duration tchange of the lane changing. l1 is
the length of lane L1. t0 is the start time of the lane
changing. The final time is tc = t0 + tchange.

In(V,L1, l1 − dchange, l1) ∧ Clear(L1, L2, J)

∧ Free(L1, l1 − dchange, l1, t0, tc)

∧ Free(L2, 0, dchange, t0, tc)

Effects: Vehicle V is on lane L2 with distance dchange
at time tc.
Cost: The time cost to change the lane, tchange.

These tasks are the very basic maneuvers concerning
only the topology, length, and occupation of lanes. Further
traffic rules can be applied to these tasks by extending the
preconditions or providing the parameters regarding certain
conditions. More details are presented in the example section.



IV. TASK PLANNING

According to the domain definition, a problem of task
planning for automated driving can be represented with a
triple {I,G, T }, of which I is an initial state, G is a set of
goal conditions, and T is a group of relevant tasks. The task
planner follows a forward search approach.

A. Forward Search with Heuristics

The general approach of the task planning is to propagate
the world state forward until fulfilling the goal conditions as
Alg. 1. A node of the search algorithm contains a world state
s and a task t to reach the current state from the previous
state. A heuristic is designed to improve the search efficiency
with an actual cost f for the cost from the start to the current
state and a heuristic cost h for the estimated rest cost to
reach the goal. Nodes to be traversed are sorted in an open
set Sopen according to the total costs g = f + h. The node
with the smallest total cost is expanded with a set of tasks
in each iteration. The evaluated nodes are saved to a closed
set Sclosed to avoid revisiting the same node.

Algorithm 1: TaskPlanning(I,G, T )
1 Sclosed ← ∅;
2 Sopen ← (I, tnull);
3 while Sopen 6= ∅ do
4 (si, ti)← PopTop(Sopen);
5 if Verify(si, G) then
6 return success;

7 else if (si, ti) /∈ Sclosed then
8 Ti ← ChooseTasks(T , si);
9 for each tj ∈ Ti do

10 if Verify(si,PreConditions(tj)) then
11 si,j ← ExecuteTask(tj , si);
12 Sopen ← {(si,j , tj)} ∪ Sopen;

13 Sclosed ← {(si, ti)} ∪ Sclosed;

14 return failure;

The function Verify(s, P ) returns True if the world state s
satisfies a set of predicates P . The function PopTop(Sopen)
removes the node with the smallest g-value from the open set.
The function ChooseTasks(T , s) selects a subset of tasks
from T based on the world state s. Tasks are mapped to spe-
cific types of states in order to reduce the condition checks,
e.g., a lane-switching task is only possible when a vehicle
is in a lane. The task parameters are decided when a task
is selected, e.g., the distance and speed of a lane-following
task are decided based on the speed limit, traffic condition,
and sensing range of the vehicle. If the preconditions of a
selected task are satisfied, the effects of the task are applied
to the current state with the function ExecuteTask(t, s) to
obtain a new state. In addition, the cost of the task is added to
the f -value and the h-value is calculated for the new state.
According to a route, the heuristic cost is estimated only
based on the distance and speed limits regardless of the other

constraints or driving efforts. The algorithm returns success
when the goal conditions are fulfilled.

Due to the limited sensing capabilities of a vehicle, the
available information may be insufficient to decide whether
a precondition of a task is valid or not. In this case, the task
is specified as uncertain, and still evaluated by the planner,
with all the following nodes marked uncertain. If no solution
with determinable tasks exists, the planner may return an
uncertain result. The planner can further consider the success
rate of the tasks and select the most promising solution. In
contrast to re-planning with inexecutable tasks, a planner can
generate an entire strategy assuming each uncertain task can
fail to makes sure that the vehicle is always able to reach
the goal or remain in a safe state.

B. Planning Architecture

Task planning requires a route as heuristic and generates
tasks as motion planning requests. It connects route planning
and motion planning in a highly automated driving system
as Fig. 3.

Route Planning

Task Planning

Motion Planning

Road Network

Traffic Signals

Objects List

Driving Tasks

Fig. 3. Hybrid planning system architecture: The rectangles are the
intelligent components which plan routes, tasks, and motions in different
layers. The ellipses are the perception components that provide information
such as road map, traffic signals, and objects list. A set of driving tasks are
defined for the task planning and motion planning.

A high level navigation component provides the vehicle
with a route, which serves as a global heuristic for tasks
planning. A task planner sets way-points along the route as
sub-goals to plan tasks on-line. If the task planner finds a
selected target is unreachable, the route planner may receive
a feedback and suggest an alternative route.

A task is then forwarded to create a request for motion
planning. As a task can provide additional information about
the driving behavior, a motion planner can solve the problem
efficiently in a convenient scope. For example, a motion for
a lane-following task should be performed only inside the
lane, which can be generated with a compact behavior-based
method. A motion planner can also give feedback to the task
planner if a task is inexecutable for unsuccessful planning.
The task planner can adapt the solution by suggesting an
alternative task.

V. SCENARIOS

To test the task planning concept for automated driving,
two scenarios are implemented and verified: an overtaking
scenario on the motorway and a rerouting scenario in a



round-about. The former one puts emphasis on the traffic
rules and the latter one deals with uncertainties and re-
planning. A behavior-based method is employed to per-
form the lane-following task. The lane-switching and lane-
changing tasks are planned with a traffic knowledge aided
SEHS planner from [12].

A. Overtaking on the Motorway
The overtaking scenario is demonstrated in Fig. 4. A

motorway has three lanes in one direction with a speed
limit of 50m s−1. The lanes have the same length and their
coordinates are aligned at the same start point. The ego
vehicle is on the right lane L0 at distance 0m with a speed
of 35m s−1. There is another vehicle on the middle lane L1

80m ahead with a speed of 30m s−1. The goal is driving
to 1000m on any of the three lanes. According to German
traffic rules [18], overtaking from the right is forbidden on
the motorway. In addition, a vehicle should drive on the
most possible right lane on the motorway. Therefore, the
ego vehicle can choose its behavior as either staying on the
right lane and reducing its speed or switching to the left lane
L2, overtaking the slow vehicle, and switching back to the
right lane. Following the slow vehicle in the middle lane is
not allowed because the right lane is not occupied.

L0

L1

L2

s0 s1

s2

s3

s4

s5

Fig. 4. Overtaking scenario: There are three lanes in one direction of a
motorway. The blue rectangle is the ego vehicle and the red rectangle is a
slower vehicle in front. The initial state is s0. The arrows show the possible
driving tasks planned with the internal states {s1, s2, s3, s4, s5}.

Assuming the sensing range of the vehicle is 100m, so
each lane-following task takes a distance parameter as 100m.
The lane-following speed is the minimum value of the speed
limit, the speed of the vehicles in front or on the left within
a safety distance. Thus, a vehicle will not overtake other
vehicles from the right or threaten the vehicle in front.
Another precondition for lane-following task is that the lane
on the right should not be free in a certain look-ahead
distance. The lane-switching task has a constant time cost
of 5 s. The planning result is presented in Fig. 5, with a
solution that first switches twice to the left lane, overtakes
the slow vehicle, then switches back to the right lane and
follows it to the target location.

If the overtaking problem is solved by a state machine
approach, the states are defined with lane positions or types
of driving maneuvers. Each possible transition between the
states should be defined regarding the traffic rules and condi-
tions. The state machine can only be applied to this specific
scenario. Each tiny change of the traffic rules requires to
modify the state machine, e.g., overtaking from the right is
allowed in the urban street. In contrast, the task planning
approach has a generic planner, which can handle infinite
situations with a right selection of the task set.

(L0, 0)

FollowLane(V, L0, 100, 30) : (L0, 100) SwitchLane(V, L0, L1) : (L1, 175)

SwitchLane(V, L1, L2) : (L2, 350) SwitchLane(V, L1, L0) : (L0, 350)

FollowLane(V, L2, 450, 50) : (L2, 450) SwitchLane(V, L2, L1) : (L1, 425)

SwitchLane(V, L2, L1) : (L1, 700)

SwitchLane(V, L1, L2) : (L2, 950) SwitchLane(V, L1, L0) : (L0, 950)

FollowLane(V, L0, 1000, 50) : (L0, 1000)

Fig. 5. Task planning for the overtaking scenario. The task and vehicle
position of each node is listed. The solution is colored in blue.

B. Round-About with Blockage

In the second scenario, the vehicle is driving through
a round-about, where the initially planned exit is blocked.
The scenario is illustrated in Fig. 6. For simplicity, the
round-about has only one entrance and three exits with four
lanes L0, L1, L2, L3 and four junctions J0, J1, J2, J3. The
lanes L4, L5, L6, L7 in the round-about is 20m long. The
connection priorities are designed to let the vehicle take
precedence while driving inside the round-about. The speed
limit of all the lanes is 10m s−1.

L0

L1

200 s

L2 100 s

L3

400 s

L4 L5

L6L7

J0

J1

J2

J3

Fig. 6. Round-about scenario: L0, L1, L2 and L3 are lanes connecting to
the round-about with the arrow directions. The four lanes in the round-about,
L4, L5, L6 and L7, are counterclockwise directed. The four junctions, J0,
J1, J2 and J3, connect the adjacent lanes. The blue rectangle is the vehicle
coming from lane L0 and can choose one of the three exits with different
time to goal values. The red cross shows a temporary blockage at L2, which
can be detected only after the vehicle enters lane L5.

The ego vehicle starts at the end of lane L0 and the
goal is at any of the three exits L1, L2, L3 with different
time to goal values. The time cost of a lane-changing in a
junction is 5 s. Thus, the cost differences between the three
exits are larger than driving around the whole round-about.
The sensing range of the vehicle can only reach the next
junction in this clustered environment. The optimal exit to
L2 is chosen at first as an uncertain solution in Fig. 7. After
detecting the blockage, the vehicle continues driving in the
round-about to the exit at lane L1 with the second best cost,
rather than the closer exit to L3.

Alternative, the planner can assume that each uncertain



(L0, 0)

ChangeLane(V, L0, L4, J0) : (L4, 10)

FollowLane(V, L4, 20, 10) : (L4, 20)

ChangewLane(V, L4, L5, J1) : (L5, 10) ChangeLane(V, L4, L1, J1) : (L1, 10)

FollowLane(V, L5, 20, 10) : (L5, 20)

ChangeLane(V, L5, L2, J2) : (L2, 10) ChangeLane(V, L5, L6, J2) : (L6, 10)

FollowLane(V, L6, 20, 10) : (L6, 20)

ChangeLane(V, L6, L7, J3) : (L7, 10) ChangeLane(V, L6, L3, J3) : (L3, 10)

FollowLane(V, L7, 20, 10) : (L7, 20)

ChangeLane(V, L7, L4, J0) : (L4, 10)

FollowLane(V, L4, 20, 10) : (L4, 20)

ChangewLane(V, L4, L5, J1) : (L5, 10) ChangeLane(V, L4, L1, J1) : (L1, 10)

Fig. 7. Task planning for Round-about scenario. The dashed tasks are
planned after detecting the task ChangeLane(V, L5, L2, J2) in red is
inexecutable. The node ChangeLane(V, L6, L3, J3) is also a solution,
but ChangeLane(V, L4, L1, J1) is better with less time cost. The solution
is colored in blue.

task may fail. When the vehicle plans its tasks at lane
L0, it has only enough information for the first task,
ChangeLane(V,L0, L4, J0). If a lane-following task fails
later, the goal in unreachable. In this case, a specific safety
task should be added, which is acceptable as the final state
when the goal is unreachable. If an exit lane-changing task
fails, the vehicle can choose another connection to continue
driving in the round-about. Thus, the entire tree in Fig. 7
is generated as a solution. At junction J1, the vehicle is
uncertain about the situations at J2 and J3, so it continues
driving to junction J2 as the best choice. At junction J3, the
vehicle has all the information about the junctions to decide
which exit to take.

If the route is only planned by a navigation system, it will
suggest to choose L2 again by driving around the round-
about. Additional feedback between motion planning and
navigation is required to avoid such a behavior or deadlocks.
A task planning can adapt the plan quickly and evaluate all
the possibilities to provide a complete solution. The search
algorithm checks the duplicated states to avoid a deadlock
in the round-about when all the exits are blocked.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a task planning approach to auto-
mated driving, based on generic AI planning in a symbolic-
geometric hierarchy. It connects the high-level route planning
with the low-level motion planning. The power of symbolic
planning is that it can handle semantic information, espe-
cially the traffic rules. Specific motion planning methods can
be applied to different tasks. As a result, the task planning
method is more flexible to domain modifications, scales
better with increasing complexity, and allows an incremental
development. Furthermore, testing and verifying such system
is easier than a conventional integrated approach, as the
planner and the task domains can be verified separately.

As future work, we are going to develop a larger set
of driving tasks with thorough traffic rules to evaluate this

framework in diverse traffic scenarios. A comparison of dif-
ferent symbolic planning methods from artificial intelligence
domain, e.g., Metric-FF, SHOP, is planned to choose the most
efficient method for automated driving task planning. Finally,
the task planner will be integrated in a real-time demonstrator
with navigation and various motion planning methods for
field tests.

REFERENCES

[1] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Prentice Hall, 2009.

[2] R. Fikes and N. Nilsson, “STRIPS: A new approach to the application
of theorem proving to problem solving,” Artificial Intelligence, vol. 2,
pp. 189–208, 1971.

[3] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, et al.,
“PDDL - the planning domain definition language,” Yale Center for
Computational Vision and Control, Tech. Rep. CVC TR-98-003/DCS
TR-1165, 1998.

[4] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan
generation through heuristic search,” Journal of Artificial Intelligence
Research, vol. 14, pp. 253–302, 2001.

[5] A. Gaschler, R. Petrick, M. Giuliani, M. Rickert, and A. Knoll, “KVP:
A knowledge of volumes approach to robot task planning,” in Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2013, pp. 202–208.

[6] A. Gaschler, R. Petrick, T. Kröger, A. Knoll, and O. Khatib, “Robot
task planning with contingencies for run-time sensing,” in Proc. IEEE
International Conference on Robotics and Automation, Workshop on
Combining Task and Motion Planning, 2013.

[7] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” The International Journal
of Robotics Research, vol. 28, no. 1, pp. 104–126, 2009.

[8] E. Plaku and G. Hager, “Sampling-based motion and symbolic action
planning with geometric and differential constraints,” in Proc. IEEE
International Conference on Robotics and Automation, 2010, pp.
5002–5008.

[9] L. Kaelbling and T. Lozano-Pérez, “Integrated task and motion plan-
ning in belief space,” The International Journal of Robotics Research,
vol. 32, no. 9-10, pp. 1194–1227, 2013.

[10] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning
for autonomous vehicles in unknown semi-structured environments,”
The International Journal of Robotics Research, vol. 29, no. 5, pp.
485–501, 2010.

[11] C. Chen, M. Rickert, and A. Knoll, “Combining space exploration and
heuristic search in online motion planning for nonholonomic vehicles,”
in Proc. IEEE Intelligent Vehicles Symposium, 2013, pp. 1307–1312.

[12] C. Chen, M. Rickert, and A. Knoll, “A traffic knowledge aided vehicle
motion planning engine based on space exploration guided heuristic
search,” in Proc. IEEE Intelligent Vehicles Symposium, 2014, pp. 535–
540.

[13] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, et al.,
“Autonomous driving in urban environments: Boss and the Urban
Challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 425–466,
2008.

[14] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, et al.,
“Junior: The Stanford entry in the Urban Challenge,” Journal of Field
Robotics, vol. 25, no. 9, pp. 569–597, 2008.

[15] H. Kress-Gazit and G. Pappas, “Automatically synthesizing a planning
and control subsystem for the DARPA Urban Challenge,” in Proc.
IEEE Conference on Automation Science and Engineering, 8 2008,
pp. 766–771.

[16] J. Rosenblatt, “DAMN: A distributed architecture for mobile naviga-
tion,” Journal of Experimental and Theoretical Artificial Intelligence,
vol. 9, no. 2/3, pp. 339–360, 1997.

[17] A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Terwelp, et al.,
“Odin: Team VictorTangos entry in the DARPA Urban Challenge,”
Journal of Field Robotics, vol. 25, no. 8, pp. 467–492, 2008.

[18] “Verordnung zur Neufassung der Straßenverkehrs-Ordnung (StVO),”
in Bundesgesetzblatt, Mar. 2013, vol. 1, no. 12, pp. 367–427.


