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1. INTRODUCTION

Dynamic motion taking advantage of inertia with a

flexible-joint robot is useful for energy efficiency and

rapid motions. However, it is difficult to control flexi-

ble joints considering the complexity of their dynam-

ics.

To overcome the problem in past studies, oscilla-

tor [1], attractor [2], and search tree [3] methods have

been explored. Attractors and oscillators force trajec-

tories to return to the pre-designed trajectories when

any deviation occurs, while the search tree finds sub-

optimal motion. These methods have three limita-

tions: (1) Generate only designed motion; (2) require

all robot model information; and (3) take time to

search. To overcome these problems, we use recurrent

neural network (RNN) and motor babbling to acquire

body dynamics, forward inverse model [4]. RNNs can

learn various motions and therefore, robots will be

able to acquire body dynamics with motor babbling.

Motor babbling is defined as the movement that in-

fants use to acquire their own body model [5]. RNNs

can also generate associative motions, which do not

take time to search. In our previous research [4],

a robot performed simple motions using motor bab-

bling to acquire body dynamics with RNN. However,

to generate more complex motions, it is necessary to

learn specific movements. It would take a long time to

learn such specific tasks with neural networks. There-

fore, we propose a method where the robot learns spe-

cific tasks after the robot performs pre-training with

motor babbling to acquire body dynamics. To acquire

body dynamics (natural dynamics) with a flexible-

joint robot, we also target the type of motions used

in motor babbling.

2. MOTOR BABBLING FOR
MOTION LEARNING

In this section, we describe the method for dynamic

motion learning for a flexible joint. To realize this, we

undertake following approach.

• A robot learns motor babbling to acquire body

dynamics during pre-training, then learns the

target task motions

• The robot performs several types of motion in

motor babbling to acquire body dynamics with

flexible-joint efficiently.

2.1 Pre-training with Motor Babbling

First, the robot learns motor babbling with RNN to

acquire body dynamics in pre-training. To learn body

dynamics, we implemented a type of RNN, Multiple

Time-scales RNN (MTRNN) proposed by Yamashita

and Tani [6]. MTRNN can predict and generate the

next state from the current state. Next, the robot

learns the target tasks with the acquired body dy-

namics.

If a robot has redundant flexible joints, there are

numerous possible motion patterns. During motor

babbling, the robot learns frequently occurring mo-

tions caused by the bodily constrains. This will gen-

erate limited number of motion patterns. After the

robot acquires its body dynamics from motor bab-

bling, the robot modifies the acquired body dynamics

to specific target tasks, instead of directly learning

the tasks. The acquired body dynamics are reused

when the robot learns other task. Therefore, motor

babbling would still be efficient even if it takes time

to learn the body dynamics.

2.2 Types of Motion for Motor Babbling

We classify the motion into two types: (1) passive

motion; and (2) active motion. During passive mo-

tion, the robot operates under inertia without torque

input. During active motion, the robot generates

torque to perform the motion. A flexible joint is char-

acterised with damping, spring, and friction proper-

ties. Under these conditions, it is assumed that the

torque exerted by the robot itself affect the motion

intricately. This makes it difficult to acquire body

dynamics. By contrast, it is easy to learn body dy-

namics from passive motion. From active motion, the

robot learns how to exert torque.

3. EXPERIMENT SETUP

To evaluate our method, we built a humanoid robot

model with the OpenHRP3 robotics simulator. The

model’s size and DOFs were based on the humanoid

robot ACTROID. Seven DOFs of the right arm with

flexible joint were used.

The robot performed motor babbling for 3 [s], 30

steps. The first five steps were active motion and the

last 25 steps were passive motion. As target tasks,

the robot performed crank turning and door opening

and closing. The robot turns the crank for 10 cycles in



48.95 [s], 979 steps, and open and close the door for 30

cycles in 66.95[s], 1339 steps. The robot’s joint angles,

angular velocity, joint torque, and arm tip positions

were used to train the MTRNN.

4. RESULTS and DISCUSSION
Fig. 1 shows the number of learning iterations of

MTRNN required to correctly generate the target

tasks. Each experiment was conducted five times with

different MTRNN initial parameters. In crank turn-

ing, the active-passive babbling method resulted in

a reduction of 73.3% and 65.1% in terms of learning

cycles compared with direct learning task and active

motor babbling. In door opening/closing, a reduc-

tion of 82.2% and 66.7% in terms of learning cycles

compared with random babbling. There was no sig-

nificant difference using t-test between active motor

babbling and active-passive motor babbling in terms

of door opening/closing because two out of five of the

neural networks failed to generate motion correctly

and variance was large in active motor babbling. We

suspect that this is because the robot does not have

experience of passive motion. As a result, the robot

could not learn the correct motions. Fig. 2 shows the

motion of the tasks to generate the motion of crank

turning and door opening/closing. Even if the num-

ber of iterations is small when compared with direct

learning tasks and active motor babbling, the robot

generates motion with the same performance. There-

fore, we can say that motion generation using inertia

is effective when the flexible-joint robot learns the mo-

tion considering dynamics.

Fig. 1 Learning cycle of crank turning and door
opening/closing

5. CONCLUSION
We proposed a method for dynamic motion learn-

ing with a flexible-joint robot using motor babbling.

First, a robot learns simple motions via motor bab-

bling to acquire body dynamics by RNN. Next, the

robot performs additional learning for a target task

with the acquired body dynamics. By classifying the

motions used in motor babbling into two, passive and

active motion, it was possible to learn tasks more ef-

ficiently.

In future work, we plan to conduct experiments

with real robot, e.g. ACTROID and/or PR2.

Fig. 2 Generated motion of crank turning and door
opening/closing
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